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In this article we investigate the prospects for probing the strength of the possible nonstandard neutrino
interactions (NSI) in long baseline neutrino oscillation experiments. We find that these experiments are
sensitive to NSI couplings down to the level of 0.01–0.1 depending on the oscillation channel and the
baseline length, as well as on the detector’s fiducial mass. We also investigate the interference of the
leptonic CP angle δCP with the constraining of the NSI couplings. It is found that the interference is strong
in the case of the νe ↔ νμ and νe ↔ ντ transitions but not significant in other transitions. In our numerical
analysis we apply the GLoBES software and use the LBNO setup as our benchmark.
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I. INTRODUCTION

The discovery of neutrino oscillation and neutrino flavor
conversion belongs to the major achievements of particle
physics in past few decades. The observation of the
oscillation of atmospheric neutrinos by the Super-
Kamiokande experiment [1,2] and the flux measurements
of the solar neutrinos by the SNO experiment [3] and the
earlier solar neutrino experiments [4], firmly establish that
neutrinos are massive particles and lepton flavors mix. The
parameters describing neutrino masses and flavor mixing
have been extensively studied in many atmospheric, solar,
accelerator and reactor neutrino experiments, resulting in
high-precision constraints on their values, see e.g. Refs. [5–
9]. The present experimental values of the oscillation
parameters are presented in Table I. There still are,
however, some unknowns in the neutrino mixing scheme
of the standard three neutrinos. One of them is the question
of mass hierarchy, namely does there exist two light
neutrinos and one heavier neutrino [the normal hierarchy
(NH)] or one light neutrino and two heavier ones [the
inverted hierarchy (IH)]. Also, the question of possible CP
violation in the lepton sector is still open, as is the octant of
the leptonic mixing angle θ23, too. All these open questions
will be addressed in future experimental studies, such as the

long baseline neutrino oscillation experiments which have
been under discussions recently, see e.g. [10–15].
The masses of neutrinos and neutrino flavor mixing

cannot be explained in the framework of the minimal
Standard Model (SM), since in the SM neutrinos are
considered to be massless particles. The observation of
neutrino oscillations and flavor conversion thus indicate
that there is some physics beyond the SM. Besides being
responsible for neutrino masses and mixing, this new
physics may manifest itself also as new interactions
affecting the processes through which neutrinos are created
and detected, and they can also give rise to new effects on
neutrinos propagating in matter. Such new interactions are
called nonstandard neutrino interactions (NSI).
The possible impacts of NSI have been widely studied,

and constraints on the parameters modeling their effects at
low energies have been derived from a great variety of
experimental results. For recent reviews on NSI, see
Refs. [18,19]. No definite evidence of NSI has appeared
but all observations made so far can be explained in terms
of the standard interactions of the known three neutrinos,
some of them with the help of sterile neutrino(s). In some
cases NSI can give an alternative explanation to exper-
imental results (see e.g. [20]) but so far such explanations
have never been the only possibility.
In this paper we shall investigate the potential of the

future long baseline neutrino oscillation experiments for
detecting NSI. In these experiments, NSI can affect both
neutrino production in the source and the detection process
at detectors, as well as the neutrino propagation in the
Earth’s crust. We will concentrate on the matter effect in
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this study. We will also study the interference of the CP
angle δCP, whose value is still unknown, with the deter-
mination of the NSI parameters from the oscillation data.

II. THE BASIC NSI FORMALISM

In the low-energy regime, NSI can be parametrized in
terms of effective charged current like (CC) and neutral
current like (NC) Lagrangians, given respectively by [21]

LCC
NSI ¼ −2

ffiffiffi

2
p

GFε
ff0;C
αβ ðν̄αγμPLlβÞðf̄γμPCf0Þ;

LNC
NSI ¼ −2

ffiffiffi

2
p

GFε
f;C
αβ ðν̄αγμPLνβÞðf̄γμPCfÞ: ð1Þ

Here f and f0 label charged leptons or quarks
(li; ui; di; i ¼ 1, 2, 3), GF ¼ 1.166 × 10−5 GeV−2 is the
Fermi coupling constant, α, β refer to neutrino flavor
(e, μ, τ), and C ¼ L, R refers to the chirality structure
of the charged lepton interaction, PL and PR being the

chiral projection operators. The NSI parameters εff
0;C

αβ and

εf;Cαβ are dimensionless numbers. It is assumed here that the
effective nonstandard interactions have V–A Lorentz
structure, and for the charged fermions we allow both
left-handed (PC ¼ PL) and right-handed (PC ¼ PR) cou-
plings. The charged current Lagrangian LCC

NSI is relevant for
the NSI effects in the source and detector, since both in the
creation and detection processes involve charged fermions.
The neutral current Lagrangian LNC

NSI in turn is relevant
for the NSI matter effects. The effective low-energy
Lagrangians (1) are assumed to follow from some unspeci-
fied beyond-the-standard-model theory after integrating out
heavy degrees of freedom.
In the presence of NSI the neutrino states produced in a

source and detected at a detector are not necessarily pure
flavor states but they may consist of several flavors as NSI
may be flavor nondiagonal. Furthermore, these states are
not necessarily the same in the source and at the detector as
the physical processes involved may be different in these
two places. We express these states in the following
way [19]:

jνsαi ¼ jναi þ εsαβjνβi;
hνdβj ¼ hνβj þ εdαβhναj; ð2Þ

where the superscripts s and d refer to the source and the
detector, respectively. The matrices εs and εd, which
parametrize the effect of NSI, are in general different.

Their elements are defined through the parameters εff
0;C

αβ

appearing in the CC Lagrangian given in Eq. (1), depending
on the processes the neutrino production and detection are
based on.
The current experimental upper bounds for the source

and detection NSI parameters εs;dαβ are given e.g. in [22], and
they range from 0.013 to 0.078. In the following we will
assume that εs;dαβ vanish, in other words, we assume that the
effects of NSI on the production and detection of neutrinos
is negligible and concentrate on the possible NSI effects on
neutrinos propagating in matter.
Concerning the propagation in matter, NSI could con-

tribute to the coherent forward scattering of neutrinos in the
Earth’s crust. The effective Hamiltonian describing the time
evolution of a neutrino state would take the form

H ¼ 1

2Eν
½Udiagðm2

1; m
2
2; m

2
3ÞU† þ diagðA; 0; 0Þ þ Aεm�;

ð3Þ

where Eν is the energy of the neutrino. The matrix εm

parametrizes the NSI effects (the superscript m stands for
matter), U is the ordinary neutrino mixing matrix, mi are
masses of the three active neutrinos. The elements of
the matrix εm, denoted by εmαβ, α; β ¼ e; μ; τ, are determined

by the neutral current NSI parameters εf;Cαβ through the
equation [19]

εmαβ ¼
X

f;C

εf;Cαβ

Nf

Ne
: ð4Þ

The effective matter potential, including both the SM and
NSI matter effects, is given by the matrix

V ¼ A

0

B
@

1þ εmee εmeμ εmeτ

εm�
eμ εmμμ εmμτ

εm�
eτ εm�

μτ εmττ

1

C
A: ð5Þ

The effective Hamiltonian can be then written as

H ¼ 1

2Eν

2

6
4U

0

B
@

0 0 0

0 Δm2
21 0

0 0 Δm2
31

1

C
AU† þ V

3

7
5: ð6Þ

The probability of the transition νsα → νdβ is given by

TABLE I. Standard neutrino oscillation parameters. (See
Refs. [16,17].) For the unknown δCP we have denoted the values
considered in numerical calculations.

Parameter Value� Error

sin2θ12 0.304� 0.013
sin2θ13 0.0218� 0.001
sin2 θ23 0.562� 0.032
Δm2

21 ð7.500� 0.019Þ × 10−5 eV2

Δm2
31

�
2.457� 0.045
−2.449� 0.048

�

× 10−3 eV2

δCP f2πn=25jn ¼ 1;…; 25g � 0
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Pνsα→νdβ
¼ jhνdβje−iHLjνsαij2; ð7Þ

where L is the baseline length. One can extract bounds on
the NSI parameters by confronting this theoretical expres-
sion with the results of oscillation experiments. The current
bounds on the parameters describing the matter-induced
NSI effects, as quoted in [22], are given in Table II, in the
column experimental bounds.

III. NUMERICAL SIMULATIONS

We study numerically how the future neutrino oscillation
experiments would constrain various NSI parameters. We
will concentrate here on the future long baseline neutrino
experiments, using the LBNO setup with a high-intensity
beam, a baseline of 2300 km and 20 kt double-phase liquid
argon detector as our benchmark, see Table III. The analysis
is done by using the GLoBES simulation software [23–26].
GLoBES calculates the oscillation probabilities and the

corresponding neutrino rates for any given set of oscillation
parameter values. The standard set of the software simu-
lates the neutrino propagation from source to detector and
computes the standard matter interactions (SI) for the
distance that neutrinos travel. A software extension then
allows us to perform the same calculation but also includes
all matter-induced NSI effects in the propagation. The
software computes χ2 distributions to compare different
sets of oscillation parameter values. We determine the

90% CL upper bounds for εmαβ by evaluating the NSI
discovery potential, that is, the sensitivity to rule out SI in
favor of NSI. The nonobservation of NSI then allows us to
set new 90% CL limits for εmαβ.
The NSI discovery potential is calculated as follows. The

χ2 distributions are calculated from both SI and NSI
theories. The SI value χ2SI is computed by assuming the
standard three-neutrino mixing parameters, and setting all
NSI parameters in Eq. (5) to zero. The NSI values χ2NSI, on
the other hand, are defined by assigning one εmαβ parameter
with a nonzero value. The Δχ2 value is then obtained from
the difference between the two χ2 values:

Δχ2 ¼ χ2SI − χ2NSI: ð8Þ

The 90% confidence level is hence obtained at
Δχ2 ¼ 2.71. We take the standard oscillation parameter
values from the current best fits as determined from global
analysis of experimental data [27]. The best-fit values and
their 1σ errors are presented in Table I.
For each δCP value, we have calculated theΔχ2 value in a

baseline range 100–5000 km and log10 jεmαβj range from
−3.0 to −0.5. In every case, a 90% confidence level contour
is found and the results merged in a contour band. The
bands in ðL; εmαβÞ-plane are plotted in Fig 1.
The vertical width of the band corresponds to

the strength of correlation between εmαβ and δCP.
Immediately we observe that the discovery potentials reach
their maximums at ∼2000 km baseline. This tells us that
the LBNO setup used in our numerical studies, with the
baseline of 2300 km, which is close to optimal for the
detection of the neutrino mass hierarchy and the leptonic
CP violation, is also suitable for the NSI studies. Note that
this maximum is specific for our benchmark setup: other
sources will imply the maximum to be at a different
baseline. However, there are common features for all
setups: for example, the discovery potential is greatly
reduced at shorter baselines. Correlation between δCP
and NSI parameters is notable for jεmeμj and jεmeτj.
Other parameters have only weak or nonexistent corre-

lation, which results in the narrow bands in Fig. 1. We find
that for the cases of normal and inverted mass hierarchy,
there is only little difference in the confidence limits, and
thus the corresponding plots for inverted hierarchy would
be almost identical. We have taken all εαβ to be real, and
kept only δCP as a CP-violating phase. Letting the off-
diagonal NSI parameters to be complex would widen the
bands for jεmeμj, jεmeτj, and jεmμτj. Some effects of nonzero ϵmαβ
phases were studied in [28].
We have given the expected model independent bounds

for NSI parameters for our benchmark setup in Table II.
Increasing the neutrino energy for this baseline does not
increase significantly the sensitivity for matter NSI, as was
observed in [29]. We have studied the effect of increasing

TABLE II. Current experimental limits of the matter NSI
parameters [22], and the expected limits from benchmark setup
with different detector masses at δCP ¼ π=2. All limits are at
90% confidence limit.

Parameter
Experimental

limit 20 kt 50 kt 70 kt 150 kt

jεmeej <4.2 <0.28 <0.18 <0.16 <0.084
jεmeμj <0.33 <0.040 <0.025 <0.022 <0.018
jεmeτj <3.0 <0.028 <0.021 <0.019 <0.015
jεmμμj <0.068 <0.10 <0.063 <0.056 <0.040
jεmμτj <0.33 <0.013 <0.008 <0.007 <0.005
jεmττj <21 <0.10 <0.063 <0.056 <0.040

TABLE III. The benchmark values of various experimental
parameters used in the numerical calculations.

Runtime (νþ ν̄ years) 5þ 5
LAr detector mass (kt) 20
Neutrino beam power (MW) 0.75
POT (1/year) 1.125 × 1020

Baseline length (km) 2288
Energy resolution function 0.15

ffiffiffiffi

E
p

Energy window (GeV) 0.1–10
Bin width (GeV) 0.2
Bins 50
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the LAr detector mass, while keeping all the other param-
eters of the benchmark setup as previously. In addition to
20 kt, the expected bounds have been given also for
several other detector masses. Comparing with the present

experimental bounds for the NSI parameters [22], see
Table II, it is seen that with the benchmark setup, it is
possible to significantly improve constraints for several
NSI parameters.

FIG. 1. 90% confidence limit discovery reach of NSI parameters as a function of baseline length. Band thickness corresponds to the
strength of correlation between δCP and εmαβ.
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However, one should notice that for large detector
masses, the limits on various NSI parameters become so
stringent that the detector and source NSI parameter bounds
are of the same order, and for a precise limit those should be
considered as well. Thus the bounds given for larger
detector masses are only indicative.

IV. CORRELATION BETWEEN THE
CP ANGLE AND NSI PARAMETERS

Let us now investigate analytically the correlation
between the CP angle δ and the various NSI parameters
εmll0 in the transition probabilities Pðνl → νl0 Þ≡ Pll0 ,
where l;l0 ¼ e, μ, τ.
The transition amplitude for νl → νl0 is given by

Aðνl → νl0 Þ≡ All0 ¼
X3

j;k¼1

L
2Eν

UljHjkðU†Þkl0 ð9Þ

and the transition probability correspondingly by

Pll0 ¼ jAll0 j2 ¼
�
�
�
�

X3

j;k¼1

L
2Eν

UljHjkðU†Þkl0
�
�
�
�

2

: ð10Þ

We keep all the oscillation angles θij and mass squared
differences Δm2

ij fixed to their best-fit values, given in
Table I, and treat the CP-violating phase δ ¼ δCP and the
NSI parameters εmll0 , the latter one at the time, as the only
variables.
The approximative expressions for the amplitudes All0

are in general of the form

2Eν

L
All0 ¼ Nll0 þ Kll0e−iδ ð11Þ

for appearance processes (l ≠ l0) and

2Eν

L
All ¼ Nll þ Kll cos δ ð12Þ

for disappearance processes. The expressions are accurate
to first power in s13 and εmll0 . An exception to these rules is
the transition νμ → ντ, for which we obtain

2Eν

L
Aμτ ¼ Nμτ þ Kð−Þ

μτ e−iδ þ KðcÞ
μτ cos δ: ð13Þ

In Eqs. (11), (12) and (13) the dependence on the NSI
parameters and neutrino mixing angles and squared mass
differences are given in terms of the functions Nll, Nll0 ,
Kll and Kll0 , which are defined in Table IV. In these
functions, the relevant NSI parameter εmll or ε

m
ll0, as well as

sin θ31, are taken into account to the first order. Similar
expressions are calculated in [26].

Let us consider the νe → νμ transition. For the amplitude
of this process we obtain the expression

2Eν

L
Aeμ ¼ Ac12c13ð−s12c23 − s23s13e−iδÞ

þ s12c13Δm2
21ðc12c23 − s12s13s23e−iδÞ

þ s13e−iδðΔm2
31s23c13Þ

þ Ac12c13εmeμðc12c23 − s12s23s13e−iδÞ
þ As12c13εmeμð−s12c23 − s23s13e−iδÞ þOðs213Þ

≡ Neμ þ Keμe−iδ þOðs213Þ; ð14Þ

where we have denoted sij ≡ sin θij and cij ≡ cos θij
(i; j ¼ 1, 2, 3). We find the transition probability to have
the structure

Peμ ∝ N2
eμ þ K2

eμ þ 2NeμKeμ cos δ: ð15Þ

The effect of the CP-violating angle δ becomes evident
when we evaluate the values of the functions Neμ and Keμ

for some value of the NSI parameter εmeμ. E.g. for
εmeμ ¼ 10−3, we get

Peμ ∝ ð1.56 − 1.22 cos δÞ × 10−7: ð16Þ

It is seen that varying δ causes large variation in the
transition probability Peμ. Thereby it strongly interferes
with the determination of the NSI parameter εmeμ. The wide
band in the numerical plot of Fig. 1(b) is explained, since
the plot is obtained by allowing δ to vary in the range
0 to 2π. Similarly we find in the case of Peτ that
Peτ ∝ ð1.32þ 1.08 cos δÞ × 10−7, and again a wide band
is caused by variation of δ.
Let us next consider the probability of the transition

ντ → ντ for comparison. One can show that the dependence
on the CP angle is in this case of the form

Pττ ∝ N2
ττ þ K2

ττcos2δ − 2NττKττ cos δ: ð17Þ

Taking here εmττ ¼ 10−3, we find

Pττ ∝ ð3.200þ 0.120 cos δþ 0.001cos2δÞ × 10−6: ð18Þ

Hence, the transition probability Pττ has significantly
smaller dependence on the CP angle than the transition
probability Peμ. This is seen in the discovery reach plot of
the NSI parameter εmττ in Fig. 1(f), where the CP variation
band is much narrower than the corresponding band in the
case of the νe → νμ transition in Fig. 1(b).
Similarly as in the cases considered above, one can

qualitatively understand the CP angle dependence of the
discovery reach plots of all the other NSI parameters εmll0
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shown in Fig. 1. As seen in the plots, there are two
transitions, where the effect of the CP angle δ on the
determination of the NSI parameters is much larger than in
the rest of the transitions, namely the νe → νμ and νe → ντ.
Note in particular that KeeðεÞ ¼ 0, meaning that survival
probability Pee is independent of δCP.
We have elaborated the effect of the CP angle on the

experimental reach of the NSI parameters further in Fig. 2.
There we have plotted the relative variation of the discovery
reach as a function of the NSI parameter for different
transitions for the CP angle δ varying in the range 0 to 2π.

More precisely, the curves plotted present, as a function of
the relevant NSI parameter εmll0, the quantities

R≡ Pmax
ll0 − Pmin

ll0

Pmin
ll0

; ð19Þ

where Pmax
ll0 and Pmin

ll0 are, respectively, the largest and the
smallest value the transition probability achieves when δCP
varies in the range 0 to 2π for a given value of εmll0 . The
magnitude of the variation is approximately constant when
log10 jεmj < −2.5 for all parameters. For an example value
of εmll0 , the variation with respect to CP angle as a function
of energy was considered in [30,31].

V. SUMMARY

We have investigated the prospects of long baseline
neutrino experiments to probe the possible existence of the
nonstandard neutrino interactions, or NSI, using the LBNO
setup as our benchmark. We have neglected the effects of
NSI at the source or detector and taken into account only
the effects during neutrinos traveling in the Earth’s crust.
This is justified, because the bounds on the source and
detector NSI are about an order of magnitude stricter than
on matter NSI [22,32]. It is found that the discovery
sensitivity depends on the baseline length, the best sensi-
tivity for this experimental setup being achievable at about
2000 km. We also found that the CP angle δ quite severely
interferes with the NSI search in the νμ ↔ νe and ντ ↔ νe
transitions, while in all the other transitions the effect is
negligible. The most sensitive probe would be the νμ ↔ νe
and νμ ↔ ντ transitions. In the former channel one would

TABLE IV. The expressions of the functions Kll0 and Nll0 , where εmll0 ≪ 1 is assumed.

Function Expression

Keμ ð−Ac12c13s23 − s212c13Δm2
21s23 þ Δm2

31s23c13 − Ac13εmeμðc12 þ 1Þs12s23Þs13
Neμ −Ac12c13s12c23 þ s12c13Δm2

21c12c23 þ Ac13c23εmeμðc212 − s212Þ
Kee 0

Nee Að1þ εmeeÞc212c213 þ Δm2
21s

2
12c

2
13 þ Δm2

31s
2
13

Keτ ð−Ac212c13c23 − Δm2
21s

2
12c13s23 þ Aεmeτs13s23 þ c23c13Δm2

31Þs13
Neτ Ac12c13ðs12s23 þ εmeτc23c13Þ − Δm2

21s12c13c12c23

Kμμ 2s12s13s23c12c23ðð1 − εmμμÞA − Δm2
21Þ

Nμμ Aðs212c223 þ c212s
2
23s

2
13Þ þ ðΔm2

21 þ AεmμμÞðc212c223 þ s212s
2
23s

2
13Þ þ Δm2

31s
2
23c

2
13

Kττ Δm2
21ðc212s223 þ s212c

2
23s

2
13 þ 2c12s23s12c23s13Þ − 2As12s23c12c23s13

Nττ Aðs212s223 þ c212c
2
23s

2
13Þ þ ðΔm2

31 þ AεmττÞc23c13
Nμτ −s212s23c23Aþ Δm2

21s23c23ð−c212 þ s212s
2
13Þ þ s23c213Δm2

31c23 þ Aεmμτc12c13ðc223 − s223Þ
KðcÞ

μτ −4Aεmμτs12s13s23c13c23 þ 2s223Δm2
21s12s13c12 − 2s223As12s13c12

Kð−Þ
μτ −Δm2

21s12s13c12 þ As12s13c12

FIG. 2. Relative variation R of six different matter NSI
parameter as a function of log10jεmll0 j. The CP angle δ is varied
in the range (0,2π).

HUITU, KÄRKKÄINEN, MAALAMPI, and VIHONEN PHYSICAL REVIEW D 93, 053016 (2016)

053016-6



be able to limit the value of the NSI parameter εm below
0.02, if the CP angle is close to δCP ¼ π=2, for other values
of δ the achievable bound is less stringent. In the case of the
νμ ↔ ντ channel the sensitivity is 0.01 independently of
the value of δ. In both cases the most stringent limit requires
the baseline to exceed 2000 km.
The role of baseline length in studying matter NSI effects

can be demonstrated by comparing the potential of T2HK
[33] and DUNE [34] whose abilities to constrain εm have
been studied in [32,35–37]. It is shown in these studies that
the 295-km-long T2HK experiment provides significantly
lower sensitivity to constrain εmαβ than the 1300-km-long
DUNE project. Similarly, the benchmark setup used in this

work with 2300-km-long baseline improves the sensitivity
compared to DUNE even with the 20 kt detector mass.
Comparing the baseline length using otherwise our bench-
mark setup shows that for each NSI parameter, there is an
optimal baseline length which also depends on the CP-
violating phase.
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