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1 Introduction

Seeing inside an object or to determine the cause of phenomena has been the driving
question of scientific research for centuries. However mathematics was for a long time
concerned with the question of how to model the observation process, the so called
forward problem. This tradition has changed, when mathematicians started to ask
how to determine the cause from its observation and a new branch of so-called inverse
problems was born. These problems are typically ill-posed, which means given some
data there might be no solution, no unique solution, or no continuous dependence
between solutions and data. Thus, only a few ambitious mathematicians, such as E.
Fredholm, J. Radon, and A. Tikhonov, started to investigate these challenging prob-
lems in the early 20th century. Later the computational era has sparked new interest
in inverse problems research and many scientists from other fields than mathematics
joined the quest for the unknown cause.

One branch of inverse problems that has especially drawn interest are tomo-
graphic imaging methods, where one wants to see inside a physical body without
invading it. Measurements are conducted from the outside and slices (Greek: τoμos)
are being reconstructed from the obtained information. Among these tomographic
methods, medical imaging modalities had the biggest impact on our society by en-
abling physicians to see inside the human body without surgery or other invasive
methods. Most notably Allan M. Cormack and Godfrey N. Hounsfield were awarded
The Nobel Prize in Physiology or Medicine 1979 for their development of computer
assisted tomography [17], which is nowadays commonly referred to as computerized
tomography (CT). Mathematically, their work can be seen as an implementation
of Johann Radon’s early study “On the determination of functions from their inte-
gral values along certain manifolds”1 [59], even though Cormack and Hounsfield had
apparently no knowledge of Radon’s work. This particular example illustrates the
importance of combining theoretical and solid mathematical work with an applica-
tion driven attitude. Especially in computational mathematics it is important to
keep the application in mind.

In particular we are in this thesis interested in a rather new approach to medical
imaging that is motivated by using electricity to determine the inside of a body.
The clear advantage lies in the usage of harmless electric currents, in contrast to the
ionizing radiation of X-rays, whereas the mathematical problem is inherently more
challenging. This imaging modality is commonly referred to as electrical impedance
tomography (EIT) and seeks to reconstruct an image of the inner organs by de-

1Published originally in German as “Über die Bestimmung von Funktionen durch ihre Integral-
werte längs gewisser Mannigfaltigkeiten”.
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termining their conductivity, i.e. how well electricity is conducted. As a medical
imaging modality it is most promising in pulmonary and cardiac imaging, due to
considerably different conductivity values in the air filled lungs (low conductive) and
the blood filled heart (high conductive). EIT is in principle capable of monitoring
the respiratory process, detecting pathologies in the lungs, and monitoring the heart
activity.

The main focus of this work is on the partial-boundary problem in EIT, that
means one has only access to a certain part of the boundary and data can only be
collected there. In a hospital setting these situations can arise when monitoring a
critical or unconscious patient and hence one can only access the front of the torso
(ventral position). Furthermore, practical complications can arise due to faulty,
dislocated, or dispatched electrodes and hence leading to incomplete data. The
methods presented in this thesis are capable of dealing with such incomplete data.
Following the tradition of mathematical research we are also interested in quantifying
the error incomplete data introduces to the reconstruction.

In a short summary, this thesis investigates how to improve EIT reconstructions
from partial-boundary data by utilizing concepts from an ideal mathematical setting
as well as how to apply these methods to real electrode models and measurement
data. This introductory part is oraganized as follows. At first we discuss the ideal
mathematical background in Section 2, with an overview of previous results and
important contributions to the field. In the following Section 3 we will particularly
discuss the partial-boundary problem and important differences between the ideal
mathematical setting and real life applications. Followed by a discussion of measure-
ment models in Section 4 and how to obtain the needed data in each case. Section
5 presents a short discussion of the results in each publication.

2 The inverse conductivity problem

In electrical impedance tomography (EIT) one wants to determine the conductivity
distribution inside the measured object from electrical measurements at the bound-
ary. The conductivity describes how well an object can conduct electricity and hence
behaves inversely proportional to its resistance. Knowing the conductivity distribu-
tion inside an object is then equivalent to knowing important information of its
structure.

To determine the conductivity with EIT, one typically injects a current through
electrodes on the boundary and measures the resulting voltage distribution at the
same electrodes. A typical experimental setup for such a system is shown in Figure
1. In this section we will first discuss the ideal mathematical setting for EIT as well
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Figure 1: The KIT4 (Kuopio Impedance Tomograph 4) measurement system at the
University of Eastern Finland, Kuopio. (Picture Courtesy: Samuli Siltanen)

as theoretical questions that were asked and mostly solved since the problem was
first published in 1980 by Alberto Calderón.

2.1 Calderón’s problem

In his classical seminar paper [11] Calderón stated the conductivity equation and
asked whether one can determine the conductivity inside the domain from electrical
measurements at the boundary. Mathematically speaking, given a bounded domain
Ω ⊂ R

n, n ≥ 2, with Lipschitzian boundary ∂Ω, and let the conductivity σ be a real
and measurable function with lower positive bound, then the conductivity equation
is given by

∇ · σ∇u = 0, in Ω,
u|∂Ω = ϕ, on ∂Ω .

(1)

The Dirichlet boundary value is assumed to be known, corresponding to the voltage
distribution on the boundary, whereas the Neumann data is measured, i.e. the cur-
rent through the boundary. The infinite-precision voltage and current measurements
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are modeled by the Dirichlet-to-Neumann (DN), or voltage-to-current, map

Λσ : ϕ �→ σ
∂u

∂ν

∣∣∣∣
∂Ω

.

The inverse problem of determining the conductivity from the complete knowledge
of the Dirichlet-to-Neumann map is known as the classical Calderón’s problem.
Calderón also published a first uniqueness result in his paper, where he assumed
that σ is a constant plus a small perturbation δ, such that σ(x) = 1+δ(x) for x ∈ Ω.
Under these assumptions he was able to show that the conductivity is uniquely de-
termined by the boundary data.

Even though the inverse conductivity problem can be stated in a simple way, its
solution needs a thorough mathematical understanding. The first global uniqueness
result was published by Sylvester and Uhlmann in 1987 [64] for dimension n ≥ 3
and smooth conductivities. For dimension n = 2 the problem is much harder to
solve, since it is not overdetermined anymore. This can be seen from the Schwartz
kernel of the DN map which has 2(n − 1) degrees of freedom, from which we seek
to determine the conductivity σ of n variables. Thus, in two dimensions all the
information needs to be used and it took 10 additional years until a global unique-
ness result was published by Nachman in 1996 [57] for twice differentiable conduc-
tivities σ ∈ W 2,p(Ω) and p > 1, based on earlier work in [56, 58]. Following re-
search concentrated on reducing regularity assumptions on the conductivity; first to
σ ∈ W 1,p(Ω) for p > 2 by Brown and Uhlmann [9], and then eventually to bounded
and measurable conductivities σ ∈ L∞(Ω) by Astala and Päivärinta [5]. All of the
aforementioned results are based on so-called complex geometrical optics (CGO) so-
lutions and hence we will discuss the concept in the following. We will introduce one
specific family of CGO solutions, based on the results in [57], that are important for
our reconstruction procedure.

2.2 Complex geometrical optics solutions

The concept of complex geometrical optics solutions has been introduced as complex-
valued functions that are solutions of a Schrödinger equation and have exponential
growth in certain directions and exponential decay in others. They were first intro-
duced by Faddeev in 1966 [21] and then later rediscovered as powerful tool in inverse
problems by [7, 54, 63, 64]. We will introduce the concept here by an explicit exam-
ple used in the proof by Nachman [57], since these are the CGO solutions utilized
in this thesis. We will give the basic notation and ideas, for all rigorous technical
details see the original articles [21, 57] and the summary in [51, 60].
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Definition 2.1 (A class of complex geometrical optics solutions)
Let q ∈ Lp(R2), 1 < p < 2, then we define ψ(z, k), for z ∈ R

2 and k ∈ C\{0}, as
solutions of the Schrödinger-type equation

(−Δ+ q)ψ(·, k) = 0, (2)

that satisfy the asymptotic condition

e−ikzψ(z, k)− 1 ∈ W 1,p̃(R2), with 2 < p̃ < ∞. (3)

It was shown in [57] that there is a unique ψ for any k ∈ C\{0} satisfying (2) and
(3). Next we will introduce an important class of related CGO solutions, but let us
first define a crucial operator for derivatives with respect to complex variables.

Definition 2.2 (The ∂z operator)
Given the complex variable z = x+ iy, we define

∂z :=
1

2

(
∂

∂x
− i

∂

∂y

)
, and ∂z :=

1

2

(
∂

∂x
− i

∂

∂y

)
.

An important property of the ∂ operator is given by its relation to the Cauchy-
Riemann equations, which state that a function f(z, z) is analytic if ∂z f = 0. Fur-
thermore it is easy to see that the Laplacian Δ = ∂xx + ∂yy can be written as
Δ = 4 ∂z ∂z.

Now we can define a related class of CGO solutions that are important for the
reconstruction. We set μ(z, k) := e−ikzψ(z, k) and immediately note by the property
(3) that μ is in fact bounded. Inserting μ into (2) and noting that ∂ze

ikz = ikeikz

and ∂z e
ikz = 0, we obtain

q(z)eikzμ(z, k) = Δ(eikzμ(z, k))

= 4∂ ∂(eikzμ(z, k))

= 4(ikeikz ∂ μ(z, k) + eikz∂ ∂ μ(z, k))

= eikz(4ik ∂+Δ)μ(z, k).

Thus, we obtain a partial differential equation for μ(z, k) as

(−Δ− 4ik ∂z +q(z))μ(z, k) = 0. (4)

From this we aim to formulate an integral equation to compute μ, for which we need
to introduce a special Green’s function.

5



Definition 2.3 (Faddeev’s Green’s function)
Let gk ∈ Lp′(R2), for 1/p′ + 1/p = 1 and 1 < p < 2, be the fundamental solution to

(−Δ− 4ik ∂z)gk(z) = δ(z). (5)

Then Faddeev’s Green’s function is defined by

Gk(z) := eikzgk(z). (6)

It can be easily seen that Gk is a Green’s function for the Laplacian, since by defi-
nition follows

−ΔGk(z) = −4 ∂z ∂z(e
ikzgk(z))

= eikz(−4 ∂z ∂zgk(z)− 4ik ∂z gk(z))

= eikz(−Δ− 4ik ∂z)gk(z)

= δ(z).

An important property of gk is given by its symmetry

gk(z) = g1(kz),

where g1 can be written with the exponential-integral function

g1(z) = − 1

4π
e−iz(Ei(iz) + Ei(−iz̄)) = − 1

2π
e−izRe(Ei(iz)),

as introduced in [8]. Most importantly, this function can be easily evaluated with
modern scientific computing software.

By using Faddeev’s Green’s function, we are able to express μ(z, k) by a Lippmann-
Schwinger-type equation

μ(z, k) = 1− (gk ∗ (qμ(·, k))(z), (7)

or in its integral form

μ(z, k) = 1−
∫
R2

gk(z − ζ)q(z)μ(z, k) dζ. (8)

It is easy to see that (8) is a Fredholm integral equation of the second kind. Applying
−Δ− 4ik ∂ to (7), shows that solutions of (7) are also solutions of (4). We conclude
this chapter with the Lippmann-Schwinger-type equation for the CGO solutions ψ,
by applying eikz to both sides in (7) we obtain

ψ(z, k) = eikz − (Gk ∗ (qψ(·, k))(z), (9)

which turns out to be the starting point of the reconstruction procedure described
in the following section.
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2.3 The classical D-bar method

From a computational point of view the most important part of Nachman’s unique-
ness proof is its constructiveness that means it outlined a reconstruction procedure
to obtain the conductivity. The basic step is to transform the conductivity equation
(1) into a Schrödinger equation and utilize the CGO solutions discussed in Section
2.2. For this purpose let Ω ⊂ R

2 be a bounded, simply connected, Lipschitz domain.
The transformation is done by substituting ũ =

√
σu, setting q = Δ

√
σ√
σ

and extending
σ ≡ 1 outside Ω. Then we get

(−Δ+ q(z))ũ(z) = 0 for z ∈ R
2. (10)

Due to the transformation some assumptions on the conductivity are needed. At
first we need σ ∈ C2(Ω) and 0 < c < σ(z) for z ∈ Ω such that the definition of
q makes sense. For the extension we need that σ(z) ≡ 1 in a neighborhood of the
boundary ∂Ω.

The connection of (10) to the CGO solutions defined in (2) should be clear by now
and the basic idea can be summarized as obtaining the function μ(z, k) = e−ikzψ(z, k)
such that

lim
k→0

μ(z, k) =
√
σ(z), for z ∈ Ω. (11)

The above identity can be verified by taking the limit in (4) and with some special
care on the singularity of gk at k = 0. Anyhow, in practice one can just substitute
k = 0 in (11) by the analysis in [6, 46] and compute the conductivity by

μ(z, 0) =
√

σ(z).

Let us now discuss how to obtain μ from the measurements. The key here is the
name-giving D-bar equation that is obtained by taking the ∂ derivative with respect
to k in (7) and one obtains (after careful analysis)

∂k μ(z, k) =
1

4πk̄
t(k)e−k(z)μ(z, k), (12)

with the modified exponential ek(z) = ei(kz+k̄z̄) and the crucial scattering transform
t(k) defined by

t(k) :=

∫
R2

eik̄z̄q(z)ψ(z, k)dz. (13)

Thus, to solve the D-bar equation we need to obtain the scattering transform and
this is where the DN map comes into the play. However, before we can do that, we
need to state a crucial identity.
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Theorem 2.4 (Alessandrini’s identity [1])
Given a Dirichlet boundary value f ∈ H1/2(∂Ω), then for any two solutions
vl ∈ H1(Ω), l = 1, 2 to

(−Δ+ ql)vl = 0 in Ω, v|∂Ω = ϕ, (14)

the following identity holds:∫
Ω

(q1 − q2)v1v2dz =

∫
∂Ω

v1(Λq1 − Λq2)v2ds. (15)

Alessandrini’s identity is given for the potentials q and hence before we can make
use of it we need to establish the relation to our EIT data Λσ. We remind that the
potential was defined by q = Δ

√
σ√
σ
. Let u be a solution of the conductivity equation

(1) with the Dirichlet boundary value ϕ and let v =
√
σu be a solution of (14). Then

it holds that

Λqϕ = σ−1/2

(
Λq +

1

2
∂ν σ

)
σ−1/2ϕ.

By the assumption that σ ≡ 1 at the boundary we get that indeed Λq = Λσ. Let us
note here that if σ ≡ 1, then q ≡ 0.

Now we can use Alessandrini’s identity (15) to obtain an equation for the scat-
tering transform by choosing q1 = q = Δ

√
σ\√σ, v1 = eik̄z̄, q2 = 0 and v2 = ψ, then

we get ∫
Ω

q(z)eik̄z̄ψ(z, k)dz =

∫
∂Ω

eik̄z̄(Λσ − Λ1)ψ(z, k)ds.

The left hand side is equal to t(k) by definition and we obtain the representation

t(k) =

∫
∂Ω

eik̄z̄(Λσ − Λ1)ψ(z, k)ds. (16)

Now the CGO solutions are involved, so we need an equation for those as well.
Using Alessandrini’s identity again with q1 = 0, v1 = Gk(z − ζ) = eik(z−ζ)gk(z − ζ),
q2 = q = Δ

√
σ\√σ and v2 = ψ, we obtain∫

Ω

q(ζ)Gk(z − ζ)ψ(ζ, k)dζ =

∫
∂Ω

Gk(z − ζ)(Λ1 − Λσ)ψ(ζ, k)ds(ζ).

This equation can be simplified by using the Lippmann-Schwinger-type equation
for ψ (9). By taking the limit z → ∂Ω, see [57] for details, we obtain the crucial
boundary integral equation

ψ(z, k)|∂Ω = eikz|∂Ω −
∫
∂Ω

Gk(z − ζ)(Λσ − Λ1)ψ(ζ, k)ds(ζ). (17)
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This Fredholm boundary integral equation of the second kind can be solved by know-
ing the data Λσ and the data corresponding to the constant conductivity σ ≡ 1. This
background data can be computed, for instance by simulating the Laplace equation
on the given domain. To conclude this section on the inverse conductivity problem,
we discuss next a few computational aspects.

2.4 The regularized D-bar algorithm

The D-bar algorithm outlined in the previous section is based on an infinite dimen-
sional operator and the assumption that we can compute the CGO solutions and
scattering transform for all parameter k ∈ C\{0}. This is of course not possible in
practice. Furthermore, the measured DN map might be contaminated with noise
and hence some regularization is needed. In fact the D-bar algorithm as outlined
above can be adjusted to be a fully proven regularization strategy for the nonlinear
inverse problem [45].

We now present the modifications that are needed to make the algorithm com-
putable. Let us first choose the computational domain for k as the disk B0(R) ⊂ C

with radius R < 0. We will call R the cut-off radius. Given a noisy DN map, denoted
by Λδ

σ, then a regularized solution can be obtained by the following algorithm.

The regularized D-bar algorithm

Step 1 For each k ∈ B0(R)\{0} compute the CGO solutions by solving the boundary
integral equation

ψδ(z, k)|∂Ω = eikz|∂Ω −
∫
∂Ω

Gk(z − ζ)(Λδ
σ − Λ1)ψ

δ(ζ, k)ds(ζ).

Step 2 Evaluate the scattering transform in the computational domain by

tδR(k) =

{ ∫
∂Ω

eik̄z̄(Λδ
σ − Λ1)ψ

δ(z, k)ds if |k| < R,
0 else.

Step 3 Solve the D-bar equation for each z ∈ Ω,

∂k μ
δ
R(z, k) =

1

4πk̄
tδR(k)e−k(z)μδ

R(z, k).

Step 4 Obtain the regularized reconstruction by

σδ(z) = (μδ
R(z, 0))

2.
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For details on the implementation of each step, see [51]. In particular, solving
the D-bar equation in step 3 can be done by an integral equation

μδ
R(z, k) = 1 +

1

(2π)2

∫
B0(R)

tδR(k
′)

(k − k′)k̄′ e−z(k
′)μ(z, k′)dk′, (18)

for fixed z ∈ Ω. The most notable characteristic of the algorithm above is that it is a
proven regularization strategy, see [20] for the definition of a regularization strategy
and related analysis. For the sake of clarity we present here a shortened version of
the regulariztion result in [45].

Theorem 2.5 (The D-bar algorithm as regularization strategy [45])
Let Ω ⊂ R2 be the unit disk and the noise level δ > 0 small enough, such that
‖Λδ

σ − Λσ‖H1/2(∂Ω)→H−1/2(∂Ω) < δ. The reconstruction operator defined by the above

algorithm and denoted by SR(δ)(Λ
δ
σ), is a well-defined regularization strategy with the

cut-off radius satisfying

R(δ) = − 1

10
log δ.

Then the regularized solution satisfies the estimate

‖SR(δ)(Λ
δ
σ)− σ‖L∞(Ω) ≤ C(− log δ)−1/14.

A common approximation of the D-bar algorithm is done by omitting step 1 and
approximating the CGO solutions by their asymptotic behavior ψexp ≈ eikz. An
approximate scattering transform is then defined by

texp(k) :=

∫
∂Ω

eik̄z̄(Λσ − Λ1)e
ikzds. (19)

This approximation is known as the Born approximation in the D-bar algorithm and
is accurate for small |k| as explained in [51], in particular with respect to measurement
noise this includes realistic measurement data and hence (19) is a valid approximation
even for practical data. Furthermore, the first implementation of the D-bar algorithm
used the Born approximation [61] and it was successfully applied to real measurement
data [38, 39, 53]. In this shortened form, the D-bar algorithm can be fully parallelized
in Step 2-4 and hence is capable of real time imaging [18].

3 The partial boundary problem

The inverse conductivity problem with full-boundary data can be considered as
mostly solved and reconstruction algorithms are well studied, hence many researchers
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started to investigate the partial-boundary problem in EIT. It was expected to be
a rather hard problem to get a grip on theoretically. Furthermore, there are many
configurations of boundary data possible, of which not all are of practical relevance,
such as different input and measurement domains. In this thesis we concentrate on a
realistic setting, that is we are given electrodes that can inject current and measure
voltages, and hence we assume that the input and measurement domain coincides.
If we assume otherwise, we would make the problem harder than it is. To under-
stand the main difficulty of partial-boundary data we need to introduce the notion
of Cauchy data.

Definition 3.1 (Cauchy data set)
Let Ω ⊂ R2 and u ∈ H1(Ω) be a solution of

∇ · σ∇u = 0, in Ω. (20)

The Cauchy data set is defined as

C∂Ω
σ := {(u|∂Ω, σ ∂ν u|∂Ω) : u solution of (20)}.

Shortly explained, the Cauchy data consists of all combinations of Dirichlet and
Neumann boundary values for the conductivity equation. It is straightforward to
see, that the complete knowledge of the Dirichlet-to-Neumann (DN) map, i.e. for
full-boundary data, determines the whole Cauchy data by writing

C∂Ω
σ = {(ϕ|∂Ω,Λσϕ|∂Ω) : ϕ ∈ H1/2(∂Ω)}.

From this knowledge one can obtain as well the Neumann-to-Dirichlet (ND) map.
That means in the full-boundary case we can change between the DN and ND maps,
up to constants. This is not possible for partial-boundary data, in which case knowing
the Dirichlet or Neumann data only on a subset Γ ⊂ ∂Ω does not determine the
full Cauchy data and hence we need to consider these problems separately. In the
following we shall discuss both settings and their realization.

3.1 The Dirichlet problem

The partial-boundary Dirichlet problem corresponds to voltages applied on the subset
Γ ⊂ ∂Ω. Assuming our domain consists of a noninsulating body (e.g. a human) the
applied voltages would immediately distribute to the whole boundary. Thus, there
are two cases to consider, either assuming that the voltages are only known on Γ and
nonzero elsewhere or to enforce a zero condition on Γc = ∂Ω \Γ. Only the second case
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corresponds to a proper partial-boundary problem, given by the following Dirichlet
problem

∇ · σ∇u = 0, in Ω,
u|∂Ω = g, on Γ ⊂ ∂Ω,
u|∂Ω = 0, on Γc.

(21)

This problem is certainly of mathematical interest but only of limited practicality.
To realize this setting on a noninsulating body we need to place a separate grounding
electrode on Γc and measure all potentials with respect to the grounding electrode.
Obviously this is not a practical choice, since we could as well just locate proper
electrodes at said position. From these complications we can already see that the
partial-boundary Dirichlet problem is of limited practical relevance.

Nevertheless, this problem has been studied extensively and many results of math-
ematical value have been published. These include fairly well understood uniqueness
results for different configurations of input and measurement domains and dimen-
sion n ≥ 3 [10, 19, 36, 41, 43]. A thorough survey of these results can be found in
[42]. Furthermore, following the tradition, a constructive uniqueness proof has been
published by Nachman and Street [55], in this case for dimension n ≥ 3.

3.2 The Neumann problem

A more practical approach is given by considering the Neumann problem instead. In
this case currents are injected to the target and voltages are measured. In particular
it is assured that the current is only nonzero at the electrodes and zero elsewhere,
hence we can easily realize the Neumann problem given by

∇ · σ∇u = 0, in Ω,

σ ∂u
∂ν

= f, on Γ ⊂ ∂Ω,

σ ∂u
∂ν

= 0, on Γc,

(22)

with ν denoting the outward normal. The biggest obstacle of this setting is that the
resulting voltages are in general still supported on the whole boundary and hence
ideally we would need to measure on the full boundary, which of course does not
make sense if we only apply currents on the partial boundary. That means we can
only expect to know the voltages on the input and measurement domain and we
need to extrapolate from this information. Possibilities for this extrapolation are
discussed in Publication II and IV of this thesis.

For the Neumann problem there are fewer theoretical results, especially the
uniqueness question has not been answered thourougly yet. Results exist in particu-
lar for C2 conductivities; for the case of coinciding measurement and input domains

12



in R
2 by [37], in higher dimensions in [29], and for different input and measurement

domains in [16]. A more pratical case with bisweep data has been addressed in [33].
These results are of great importance for the theoretical understanding, but are so
far not readily applicable for the computational reconstruction task. For instance,
given only (very limited) finite data uniqueness can not be guaranteed any more, as
demonstrated for the point electrode model in [15]. To conclude this chapter we will
shortly discuss a few computational approaches for partial data.

3.3 Reconstruction algorithms for partial-boundary data

Reconstruction algorithms can be roughly divided into two classes: direct and in-
direct methods. Algorithms based on direct inversion are closely related to theo-
retical studies and demand a deep understanding of the mathematical structure of
the problem. An investigation on direct inversion from partial-boundary data has
been done in [26] based on the D-bar method by utilizing localized basis functions
(Haar wavelets) to recover the complex geometric optics (CGO) solutions. Other
direct approaches that can be used for partial data are for instance, complex spheri-
cal probing with localized boundary measurements [34, 35] and monotonicity based
methods [27, 28].

On the other side, indirect approaches for the partial-boundary problem are more
common and perform very well in reconstruction quality, but tend to be slow. Typ-
ically those approaches consist in minimizing a carefully chosen penalty functional,
which is based on a thorough understanding of physical aspects of the imaged tar-
get. In this category there are many algorithms available. We mention a few that
are of importance in our perception. Those include reconstruction algorithms based
on sparsity priors for simulated continuum data [22] and planar real measurements
[23]. Algorithms based on the complete electrode model [14, 62], which takes contact
impedances at the electrodes into account, include domain truncation approaches
[12, 13, 49], difference imaging [48], and electrode configurations that cover only a
certain part of the boundary [50, 65].

4 Measurement models

In this section we will shortly discuss the different measurement models, i.e. the
continuum model and electrode models, and how we can represent the ND (or DN)
map for the reconstruction task from the collected data.
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4.1 Continuum model

In the continuum model we assume to know the boundary value as a function on
the whole boundary. Typically the Neumann problem is simulated due to stability
reasons of the forward problem [51], but as we have discussed in Section 3 we can
obtain the DN map from this measurement in case of full-boundary data. That
means the boundary value problem with Neumann data ϕ ∈ H−1/2(∂Ω) as follows is
simulated

∇ · σ∇u = 0, in Ω,
σ ∂ν u = ϕ, on ∂Ω,

(23)

and the solution on the boundary u|∂Ω ∈ H1/2(∂Ω) is recorded. For uniqueness
we assume that the solutions u satisfy

∫
∂Ω

u ds = 0 and due to conservation of
charge

∫
∂Ω

ϕ ds = 0. Consequently we are measuring the ND map. For the recon-
struction algorithms we need a matrix representation, which can be obtained by first
choosing an orthonormal basis of L2(∂Ω). For instance, let Ω be the unit disk and we
choose the orthonormal basis given by the Fourier basis functions ϕn(θ) =

1√
2π
einθ for

n ∈ Z\{0}. Now we can obtain a matrix approximation Rσ of the ND map from the
measurements Rσϕn = un|∂Ω with respect to the orthonormal basis as

(Rσ)n,	 = (Rσϕn, ϕ	)L2(∂Ω) =
1√
2π

∫
∂Ω

un|∂Ω(θ)e−i	θdθ.

Having a matrix representation of the ND map, we can simply invert it to obtain
the matrix approximation for the DN map that is used in the D-bar algorithm as
described in Section 2. In case we have only partial-boundary data, we can not simply
invert the ND matrix, and hence the D-bar algorithm needs to be reformulated for
ND maps, as done in Publication II of this thesis.

4.2 Electrode models

In real life applications we can not expect to measure a function on the whole bound-
ary and hence we need to consider proper electrode models. The simplest model is
the so-called gap model and approximates currents and voltages by a constant on
each electrode. In particular, given M electrodes E1, . . . , EM then each electrode is
assigned a current value Jm. The voltages are assumed to have the values measured
at the center of each electrode Um = u(center of Em). Together the gap model can
be written as

∇ · σ∇u = 0, in Ω,
σ ∂ν u = Jm, on Em, m = 1, . . . ,M,
σ ∂ν u = 0, otherwise.

(24)
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Similar to (23) we require the zero mean conditions
∑

m Um = 0 and
∑

m Jm = 0. A
typical choice for the boundary condition is given by trigonometric basis functions.
Assuming we have M equally spaced electrodes with center θm = 2πm/M . Then
we are able to obtain M − 1 linearly independent basis vectors Jn ∈ R

M , for n =
1, . . . ,M − 1. The values on each electrode, based on the trigonometric current
pattern, are given by

Jn
m =

√
2√
M

⎧⎪⎨⎪⎩
cos(n · θm) for n < M/2,
1√
2
cos((M/2) · θm) for n = M/2,

sin((M − n) · θm) for n > M/2.

The gap model is in fact in many cases sufficiently accurate to model real measure-
ments as has been demonstrated for instance in [38, 39]. A matrix approximation
of the ND map can be obtained by taking the inner products of the measurement
Un ∈ R

M and the current vectors as

(Rgap
σ )n,	 = (Un, J 	)2.

Nevertheless, the gap model is not entirely realistic and not sufficient for simulat-
ing the measurement process, hence for building an iterative method with a forward
solver we need a better model. The first improvement to get a better approximation
is done by the assumption that the current is not constant over the electrode and
rather that the applied current equals the integral over each electrode, that is

Jm =
1

|Em|
∫
Em

σ ∂ν uds.

To model real measurement data most accurately we also need to take a phenomena
known as contact impedances into account. This is done to model the electrochemical
effect of a thin resistive layer forming between the electrodes and the measured target,
this is incorporated by a Robin boundary condition to the system. The full model,
known as the complete electrode model (CEM), is then given by

∇ · σ∇u = 0 in Ω,
σ ∂ν u = 0 on ∂Ω\Γ

u+ zσ ∂ν u = U on Γ
1

|Em|
∫
Em

σ ∂ν u = Jm for 1 ≤ m ≤ M,

(25)

equipped with the same zero mean conditions as in the gap model. This model
has been first discussed by [14] and well-posedness has been shown in [62]. For
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the definition of the measurement operator it is useful to define spaces of piecewise
constant functions on the electrodes by

T (∂Ω) :=

{
V ∈ L2(∂Ω)

∣∣∣∣∣
M∑

m=1

χmVm, Vm ∈ R, and V = 0 on Γc

}
.

It clearly follows that T (∂Ω) ⊂ L2(∂Ω) and we denote T�(∂Ω) = T (∂Ω) ∩ L2
�(∂Ω),

where L2
�(∂Ω) denotes L

2 functions with zero mean. The corresponding measurement
operator for the CEM can then be defined as the mapping

RE
σ : J �→ U, T�(∂Ω) → T (∂Ω).

This operator is linear and continuous as discussed in [31, 32]. The matrix approx-
imation of the measurement operator can be obtained similarly to the gap model,
but we need to substract the contact impedance times input current from the mea-
surement, such that

(RCEM
σ )n,	 = (Un − zJn, J 	)2.

In case we do not know the contact impedance, the computation of RCEM
σ can only

done with an additional error. Nevertheless, if we assume that the contact impedance
does not change between measurements, then taking the difference of measured cur-
rents approximately cancels the contact impedance term and a difference ND matrix
can be approximated by

(RCEM
σ1,σ2

)n,	 = (Un
σ1

− Un
σ2
, J 	)2.

Especially for the standard D-bar algorithm the case σ2 ≡ 1 is of special interest.

5 Discussion of results

5.1 Publication I

We introduce two main ideas for improving EIT images obtained with the D-bar
algorithm. Firstly we propose a new data fidelity term directly derived from the
nonlinear inversion process, by utilizing the CGO solutions. The second idea is
to post-process the reconstructions obtained with tools from image processing. In
particular we are interested in algorithms for image segmentation, as in [25]. A
particular approach has been proposed by Mumford and Shah in 1985 for detecting
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boundaries in general images [52]. Given an initial (corrupted) image ũ, we obtain
an edge-preserving approximation as the minimizer of

EMS(u,K) =

∫
Ω\K

|∇u|2dx+ β

∫
Ω

(u− ũ)2dx+ α|K|, (26)

where K denotes a curve segmenting Ω, |K| the length of K, and the two parameters
α, β > 0 are used for weighting the terms. The idea is to find the minimum of
EMS(u,K) over images u and curvesK; the minimizing image can then be considered
as a piecewise constant segmented version of ũ.

As K is unknown and singular, numerically minimizing (26) is a challenging task;
in particular formulating a gradient-descent method with respect toK is not straight-
forward. Thus, numerical studies mostly concentrate on finding an approximation
to (26). The approach we take in this publication is to use an elliptic approximation
introduced by Ambrosio and Tortorelli [4]. Their idea can be summarized as intro-
ducing an edge-strength function v : Ω → [0, 1] that controls the gradient of u. The
Ambrosio-Tortorelli (AT) functional is then defined by

EAT (u, v) =

∫
Ω

β(u− ũ)2 + v2|∇u|2 + α

(
ρ|∇v|2 + (1− v)2

4ρ

)
dx. (27)

The additional parameter ρ > 0 specifies, roughly speaking, the edge width of u. The
advantage of (27) over (26) is that the minimizer can be obtained by an artificial
time evolution formulated via a coupled PDE as the gradient-descent equations with
an imposed homogeneous Neumann boundary condition. These equations can be
easily solved and used to compute a minimizer.

We then propose to evaluate the iteratively obtained images from minimizing
(27) with the concept of the CGO sinogram. The CGO sinogram is defined for the
CGO solution μ(z, k) = e−ikzψ(z, k), as described in Definition 2.1. We remind that
the functions μ satisfy the asymptotic condition μ(z, k) − 1 ∈ W 1,p(R2). Following
this we defined the CGO sinogram as

Sσ(θ, ϕ, r) :=μ(eiθ, reiϕ)− 1

= exp(−irei(ϕ+θ))ψ(eiθ, reiϕ)− 1.
(28)

The CGO sinogram can be calculated from the measurement data, i.e. the DN map,
as well as for smooth images directly from the Lippmann-Schwinger type equation
(7). It is demonstrated in the paper that the CGO sinogram clearly encodes some
geometric properties, which can be used for evaluating the reconstructions.
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The basic idea of the proposed algorithm can be summarized as follows: given
a measured DN map, reconstruct an initial blurry D-bar reconstruction and deblur
this image iteratively by solving (27). Whether the newly obtained image is better
or not can be verified by evaluating the error of CGO sinograms corresponding to
the measured DN map and the new iterate.

It is demonstrated that this procedure is capable of significantly sharpening D-
bar reconstructions obtained from continuum EIT data. Additionally, we can assure
that the sharpened images are an improvement and reduce the error to the true
conductivity, by utilizing the nonlinear information contained in the CGO solutions.

5.2 Publication II

The D-bar algorithm has been formulated for full-boundary continuum data and
hence, in theory, has limited applications. Nevertheless, it has been successfully
applied to real data obtained from electrodes and the convergence results for noisy
data in [44, 45] have established the D-bar algorithm as full nonlinear regularization
strategy. Going one step further, this publication investigates the possibility to apply
the classical D-bar algorithm to data that is only collected on part of the boundary.
The biggest obstacle is given by the fact that the Neumann and Dirichlet problems
are not (essentially) equivalent any more, as discussed in Section 3, and hence we
can not obtain the DN map by inverting the ND map. Due to this restriction we
have reformulated the D-bar algorithm to work directly with the obtained ND maps.
This is essentially done by stating Alessandrini’s identity for ND maps and then
deriving the equations for the scattering transform and CGO solutions for ND maps.
Nevertheless, the obtained equations are not sufficient to formulate a full nonlinear
inversion algorithm, since the CGO solutions, given by

ψ(z, k) = eikz − (Bk − 1

2
)(R1 −Rσ) ∂ν ψ(·, k),

are dependend on their normal derivative and can not be readily computed as such.
One could formulate a proper boundary integral equation with the normal derivative
of ψ on both sides as done in [40], but this leads to further numerical problems that
we wanted to avoid. A similar problem arises in the calculation of the scattering
transform

t(k) =

∫
∂Ω

(
∂ν e

ik̄ζ̄
)
(R1 −Rσ) ∂ν ψ(ζ, k)ds(ζ),

where the normal derivative is needed. Thus, we rather propose to calculate an
approximation of the CGO solutions and the scattering transform by setting the
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normal derivative of ψ equal to its asymptotic behaviour

∂ν ψ(k, z) ≈ ∂ν e
ikz.

This approach is related to the classical Born approximation as initially proposed in
[61] and discussed in Section 2.4. The approximate CGO solutions are not needed
for the reconstruction task itself, but can be used to calculate the CGO sinogram
for instance. Furthermore, new developments have shown that one can formulate an
algorithm for edge detection based on the knowledge of the CGO solutions [24].

At last the publication establishes a convergence result for the data error of
partial-boundary to full-boundary data, as well as for the resulting reconstructions.
In particular it is shown in Proposition 3.2 and Theorem 4.3, that the error in data
and reconstruction depends linearly on the domain that is missing. It is demon-
strated in numerical experiments that the convergence results hold for simulated
data. Reconstructions are then presented for the unit disk as well as for a chest
shaped phantom.

5.3 Publication III

The majority of iterative reconstruction algorithms for EIT rely on some prior infor-
mation of the target. Either the simple assumption that the conductivity is piecewise
constant or more thorough knowledge on the structure of the imaged object. The
missing possibility of incorporating such prior knowledge to the D-bar algorithm has
been a major drawback that has been fixed by recent advances due to [2, 3]. The
basic idea is to utilize known structures of the imaged object and to incorporate them
as information in the scattering transform for the reconstruction task. To motivate
the approach, let us assume one wants to do a respiratory function test of a human.
Then the approximate shapes, sizes, and locations of organ boundaries may be ob-
tained from a previous CT or ultrasound scan, or by consulting an anatomical atlas.
As described in the publication we can compute a scattering transform directly from
such prior information that can be used in the reconstruction process in two essential
steps.

The first step is to fill in bad parts of the scattering transform obtained from
partial-boundary measurements. For partial data the scattering data tends to blow
up in a noncircular manner and hence leads to severe instabilities in the recon-
struction. In addition noise will blow up the scattering data for large values of |k|.
Consequently, one can extend the scattering transform outside the stable region with
the scattering data of the prior.
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The second crucial step is given by adjusting the integral equation (18) for solving
the D-bar equation. In fact, (18) is the limiting case of

μ(z, k) = lim
R→∞

{
1

πR2

∫
|k|≤R

μ(z, k)dk

+
1

(2π)2

∫
|k|≤R

t(k′)
(k − k′)k̄′ e−z(k

′)μ(z, k′)dk′
}
.

Instead of replacing the first integral by its limit 1, we can use the scattering trans-
form μPR computed from the prior for a given cut-off radius R2 and set

μint(z) :=
1

πR2
2

∫
|k|≤R2

μPR(z, k)dk.

This way we may incorporate the a priori knowledge into the reconstruction. For
a thourough introduction of the prior method we refer to [2, 3]. The publication
in this thesis examines the effectiveness of the prior approach for the detection of
pathologies form partial-boundary electrode data. It is important to note that for
computing the prior no pathologies were assumed.

5.4 Publication IV

As discussed in the previous publications, restricting the input currents to a part of
the boundary will lead to differences in the measured data to the ideal continuum
case. Even if one just considers an electrode setting, the collected data will be
inherently different. This publication examines the possibility to recover information
of the ideal full-boundary data by utilizing the knowledge of projections applied to
produce the input currents. In this context, recovering information of full-boundary
data is understood as computing an approximation to the ND matrix by formulating
an optimization problem on the coefficients with respect to the orthonormal basis
of applied currents. The desired approximation can then be computed by solving a
simple matrix-vector equation.

The publication investigates a realistic setting in which the amount and size of
electrodes is fixed. A main question is, if the approximation procedure can be applied
to measurements from the complete electrode model (CEM). For this purpose we in-
troduce the so-called electrode continuum model (ECM) that involves the partial ND
map and is more suitable to interpret real measurements in the continuum setting.
In Theorem 2.2 it is shown, that the approximation error of the ECM to the CEM
for partial boundary measurements depends linearly on the length of the electrodes,
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but is independent of the missing boundary. This approximation result is related to
the study in [31, 32], where the author analyzed the approximation properties of the
complete electrode model to the ideal continuum model.

An auxiliary result in the publication states that the coefficients of the ND matrix
for rotationally symmetric conductivities can be recovered from one single injected
current pattern. The proposed approximation procedure is successfully applied to
simulated ECM and CEM data, as well as real measured data from the KIT4 system
located at the University of Eastern Finland, Kuopio [30, 47].
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