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ABSTRACT: Adverse reactions or lack of response to medications are important concerns for drug development
programs.However, faithful predictions of drugmetabolism and toxicity are difficult because animalmodels show
only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary
humanhepatocyte (PHH)2-dimensional (2D)monolayer cultures, canbeusedonly for acute toxicity testsbecauseof
their immaturephenotypes and inherent instability.Therefore, themigration tonovelphenotypically stablemodels
is of prime importance for thepharmaceutical industry.Novel 3-dimensional (3D) culture systemshavebeenshown
to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their
metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spec-
trometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks,
whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly de-
teriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures,
enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid
system ismetabolically stable and constitutes a suitablemodel for in vitro studies of long-term drugmetabolism and
pharmacokinetics.—Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg,
M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D
spheroid cultures revealed by a combination of targeted anduntargetedmetabolomics. FASEB J. 31, 2696–2708 (2017).
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The liver is the principal organ responsible for xenobi-
otic metabolism and thus constitutes an important de-
terminant of drug responses, with important implications
for patients, health care providers, and the pharmaceutical
industry. Drug-induced liver injury (DILI) is an important
adverse drug reaction (ADR), with an estimated incidence
rate of 13–19 cases per 100,000 individuals (1, 2), and con-
stitutes the most common cause of acute liver failure in the
Western world (3–5). Besides significantly contributing to
patient morbidity and mortality, DILI is of significant eco-
nomic concern for the pharmaceutical industry, be-
cause it is among the prime reasons for the attrition of
drug development programs; 2% of all U.S. Food and
Drug Administration–approved newmedications between
1975 and 1999 displayed mandatory black-box warnings
prompted by hepatic ADRs, causing reduced sales (6, 7).
As a consequence of fewer approvals and an increasing
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number of withdrawals of products and sales restrictions,
the average cost of new prescription medicines from devel-
opmentuntil approvalwereestimatedat $2.6billionU.S. (8).

Faithfully predicting drug metabolism and toxicity is
thus of central importance for the pharmaceutical in-
dustry. Animal experiments are commonly required to
obtain regulatory approval to progress into clinical stages.
Yet, significant interspecies differences in structures, iso-
form compositions, expression, and catalytic activities of
drug metabolizing enzymes result in poor concordance
between animal and human toxicity (63 and 47% for hu-
man toxicity to nonrodents and rodents, respectively) (9,
10). Primary human hepatocytes (PHHs) are regarded as
the current gold standard in vitro model to assess drug
metabolism and toxicity (11). When cultured as conven-
tional 2-dimensional (2D) monolayers, however, hepato-
cytes rapidly dedifferentiate (12–14), which significantly
impairs their accuracy in predicting human in vivo drug
metabolism (15). Consistent with this limited translational
accuracy, a large-scale study of 7372 investigational drugs
from 835 drug developers showed that the likelihood of
approval of drug candidates entering clinical develop-
ment was only 10.4%, with toxicity and unfavorable
pharmacokinetics being responsible formost of the project
closures (6, 16).

To overcome these obstacles, various hepatic 3-
dimensional (3D) systems have been developed in which
cultured hepatocytes remain viable and functional for
prolonged times (17, 18). PHHs cultured in 3D cellular
aggregates termed spheroids present a functionally and
phenotypically stable, versatile system in which bile
canaliculi are formed and hepatocytes retain their peri-
portal and perivenous phenotypes (19, 20). Furthermore,
this system has been demonstrated to have superior sen-
sitivity for prediction of drug toxicity, when compared to
other emerging hepatic cell culture systems, and to emu-
late hepatotoxicity of drugs with distinct toxicity mecha-
nisms at therapeutically relevant concentrations (21). The
utility of this platform as a predictive model for human
drug response is showcased by fialuridine (FIAU), which
caused thedeaths of 5 of 15participants in a clinical trial by
inducing acute liver failure (22). Although FIAU toxicity
was not detected in any preclinical model, including rat,
mouse, dog, and cynomolgus monkey (23), the PHH
spheroid system indicated that toxicity was already pre-
sent at therapeutic exposure levels [spheroid EC50 =
100 nM; FIAU serum maximum concentration (Cmax) =
639 nM] (20, 24).

During preclinical stages of drug development, there is
a need to predict human in vivo drug metabolism and
pharmacokinetics, metabolite formation, time-dependent
inhibition, and hepatic clearance, particularly of low-
clearance compounds. If a cell system is to be successfully
used as an experimental paradigm to derive accurate
predictions about these parameters, physiologic and
temporally stable phenotypes are necessary. Furthermore,
an extensive experience and knowledge base is necessary
that have to be generated by comprehensive character-
ization and relation to relevant comparator material. The
PHH spheroid system has been comprehensively charac-
terized by transcriptomic and proteomic analyses (20, 21).

Yet, their metabolomic signatures have not been in-
vestigated. Liquid chromatography in combination with
single or tandem mass spectrometry has been used for
measuring in vitro cytochrome P450 (CYP) activity, as
well as for targeted and untargetedmetabolomics (25, 26).
For quantification purposes, this technique requires the
predefinition of analytes of interest through parameter
optimization. For a more untargeted approach, high-
resolutionmass spectrometry (HR-MS) canbeused,which
can provide both precise quantification and untargeted
data collection for metabolomic evaluation (27).

In this study, we systematically assessed metabolic
signatures inPHH3Dspheroidsover 3wkof cultureusing
Orbitrap HR-MS, which detects metabolites with highly
divergent physical and chemical properties in a single
analytical setup with maximum coverage (28). We
benchmarked phenotypes and functionality of the spher-
oid system vs. fully mature hepatocytes and correspond-
ing 2D cultures. We found that the endogenous and
xenobiotic metabolic signatures of the system were stable
overall and resembled metabolic patterns of freshly
isolated cells, thus allowing comprehensive studies of
drug-induced molecular effects on cellular metabolism
and investigation of mechanisms of drug action (29–32).
The results indicate that the 3D PHH spheroid system can
be used for long-term analyses of drug metabolism and
liver function andmoreover is suitable for investigating in
vitrometabolism of very low clearance drugs aswell as for
studying time-dependent inhibition of drug metabolism
for relevant periods.

MATERIALS AND METHODS

Cell culture

Cryopreserved PHHs from 3 donors were commercially ac-
quired from BioreclamationIVT (Brussels, Belgium) and were
thawed in Cryopreserved Hepatocyte Recovery Medium
(Thermo Fisher Scientific, Waltham, MA, USA). Demographic
andmedical information about thedonors is provided inTable 1.
Genotypes were determined with the CYP+ panel (PharmGe-
nomics, Mainz, Germany). PHHs were seeded in 2D mono-
layer cultures into 12- or 96-well cell culture plates coated with
5mg/cm2 rat tail collagen type I (Corning Inc.,Corning,NY,USA)
in culture medium (Williams’ medium E, supplemented with
2mML-glutamine, 100U/ml penicillin, 100mg/ml streptomycin,
10 mg/ml insulin, 5.5 mg/ml transferrin, 6.7 ng/ml sodium
selenite, and 100 nM dexamethasone) with 10% fetal bovine
serum. After attachment, the medium was replaced with serum-
free culture medium and subsequently changed every 48–72 h.
3D spheroid cultures of cryopreserved hepatocytes from the
same donors were seeded and maintained as has been de-
scribed in Bell et al. (20).

Gene expression profiling

Gene expression analysis was performed by real-time quantita-
tive PCR (qPCR) using TaqMan Universal PCR Master Mix
(Thermo Fisher Scientific) and TaqMan probes (Supplemental
Table S1). Data were collectedwith theABI Prism 7500 sequence
detection system (Thermo Fisher Scientific) and analyzed by
using the DDCt method.
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Statistical analyses

Heteroscedastic 2-tailed Student’s t tests were used to determine
P values, unless stated otherwise. Differences betweenmetabolic
activities of PHHs in 2- and 3D culture over timewere compared
by an extra sum-of-squares test using Prism 6 (GraphPad, La
Jolla, CA, USA). The r values denote the Pearson product-
moment coefficient.

Sample preparation for targeted and
untargeted metabolomics

We performed both an untargeted large-scale metab-
olomics approach and a targeted quantification of 56 en-
dogenous metabolites (targeted metabolomics). When
untargeted metabolomics is used, the identity of most of
the metabolites cannot be unambiguously determined
unless standards for the specific metabolites of interest are
run. Thus, to complement this analysis, we ran standards
for the metabolites of the CYP1A2, CYP3A4, CYP2C8,
CYP2C9, and CYP2D6 probe substrates (Fig. 2A), which allows
unambiguous identification and precise quantification of the
metabolites in question. Standards for acetaminophen,
dextrorphan, 4-hydroxytolbutamide,N-desethylamodiaquine,
a-hydroxymidazolam, and a-hydroxymidazolam-d4 were
purchasedfromSigma-Aldrich(RoundRock,TX,USA).Allsolutions
for all native substanceswereprepared inmethanol, andworking
solution for internal standard was prepared in 0.3% formic acid.

Samples for untargeted metabolomics were prepared as fol-
lows:PHHs from3donorswere seeded ina 2Dmonolayers (n= 3
biologic replicates per donor) and 3D spheroid cultures (n = 6
biologic replicates per donor) and were incubated with CYP
probe substrates (10 mMmidazolam, 15 mMdextromethorphan,
100 mM phenacetin, 10 mM amodiaquine, and 100 mM tolbuta-
mide) for 4 h. Subsequently, supernatants were snap frozen, and
the metabolites were quantified.

For targetedmetabolomics of intracellular samples, cellswere
collected in fresh culture medium containing 25% acetonitrile,
lysed by bullet blending, snap frozen and analyzed as indi-
cated in Quantitative Targeted Metabolomics of Endogenous
Metabolites.

Untargeted metabolomics using HR-MS

The analyte separation on theHPLC systemwas performed on a
HypersilGoldC18 analytical column (1003 2.1, 1.9mm;Thermo
Fisher Scientific). Total chromatographic run time was 14 min,
with a gradient mode flow rate of 500ml/min. Themobile phase
consisted of 0.1% formic acid (v/v; solvent A) and acetonitrile
with 0.1% formic acid (solvent B). The gradient profile was set as
follows: starting with 2% B (hold time, 0.1 min) and continued
with linear change to 45%Bup to 12.5min and 98%Bup to 12.55

min. Continued 98% B up to 13.2 min and returned to the initial
condition at 13.25 min, followed by equilibration until 14 min.
The column oven temperature was 50°C, and the autosampler
tray temperature was 10°C. The injection volume was 2 ml ap-
plied at mobile phase flow rate.

Untargeted mass spectrometric analyses were performed on
an Orbitrap system (Q Exactive Plus) coupled to a Dionex Ulti-
mate 3000 Ultra-High Performance Liquid Chromatography
(UHPLC) systemequippedwith abinarypump,an autosampler,
an online vacuum degasser, and a temperature-controlled col-
umn compartment. Instrumental operation, data acquisition and
peak integration were performed with Chromeleon Xpress v. 3,
Xcalibur v. 3.1, and Q Exactive, v2.6 (all systems from Thermo
Fisher Scientific). The mass spectrometer was operated in posi-
tive electrospray ionization (ESI) mode with full scan. Source
conditions for optimal sensitivity and selectivitywere as follows:
spray voltage, 3.0 kV; capillary temperature, 300°C; auxiliary gas
heater temperature, 450°C; S-lens rangefinder level, 60; sheath
gas, 50; andauxiliary gas, 18 (arbitraryunits). The scan rangewas
m/z 100–680with resolutionof 70,000 atm/z 200 (fullwidth at half
maximum). Two lock masses atm/z 214.0896 and 391.2842 were
used.

Quantification of CYP enzyme activity

From the untargeted metabolomic data set, acetaminophen,
dextrorphan, 4-hydroxytolbutamide, N-desethylamodiaquine,
and hydroxymidazolam were unambiguously identified by us-
ing internal standards with the exact monitored masses of m/z
152.0706, 258.1852, 287.1059, 328.1211, and 342.0803, re-
spectively. Quantification was performed using extracted mass
chromatograms from full-scan recordings with an m/z mass tol-
erance window of 5 ppm. Information about chromatographic
separation and method validation is provided in the Supple-
mental Methods. Metabolomic analyses were performed with
Compound Discovery software (Thermo Fisher Scientific).

Quantitative targeted metabolomics of
endogenous metabolites

Targeted metabolomic analyses were performed by liquid
chromatography in combination with single or tandem mass
spectrometry (33). In brief, 10 ml of labeled internal standard
mixture was added to 100 ml of sample (cell lysate in Williams’
medium E buffer and 25% acetonitrile). Metabolites were
extracted by adding 4 parts of the 100% acetonitrile+1% formic
acid extraction solvent (1:4, sample: extraction solvent). The col-
lected extracts were dispensed in Ostro 96-well plates (Waters
Corp.,Milford, CT,USA) and filtered by applying vacuum at a d
pressure of 300–400mbar for 2.5 min on a robot vacuum station.
Then, 5 ml of filtered sample extract was injected in an Acquity
UPLC system coupled to a Xevo TQ-S triple quadrupole mass

TABLE 1. Demographic, serological, and medical information about the utilized donors

Donor Sex Age Race Cause of death Medical history

1 M 58 Caucasian CVA Hypertension after 5 yr with medication; diabetes
after 5 yr of noncompliance

2 F 48 Polynesian Trauma Diverticulitis with surgery
3 M 22 Caucasian ICH/CVA Hypertension at 18 yr; compliant, carcinoid tumor

of appendix removed during appendectomy 4 yr
ago; peritoneal dialysis: 2 kidney transplants 12
and 2 yr ago

CVA, cerebrovascular accident; ICH, intracerebral hemorrhage.
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spectrometer that was operated in both positive and negative
polarities with a polarity switching time of 20 ms for metabolite
separation and quantification. Multiple reaction monitoring ac-
quisitionmodewas selected for the quantification ofmetabolites.
MassLynx 4.1 software was used for data acquisition, data han-
dling, and instrument control. Data processing was performed
with TargetLynx software (all equipment and software from
Waters Corp.).

RESULTS

3D culture of PHH significantly improves
their phenotypes

To comprehensively compare the effect of 2- and 3D cul-
ture methods on hepatic metabolic signatures, we first
evaluated the temporal evolution of hepatic gene expres-
sion over the course of 3 wk by real-time qPCR analysis
(Fig. 1). Expression levels of the important CYP enzymes
CYP2C8, CYP2C9, and CYP2D6 were rapidly and persis-
tently downregulated in 2D culture (P, 0.01 for all genes
and time points compared to freshly isolated cells),
whereas their expression pivoted around physiologic
levels in 3D culture (Fig. 1B). CYP3A4 expression was
similarlydownregulated in2Dmonolayercultures,whereas
expression in 3D spheroids was consistently upregulated.
Expression of CYP1A2, which is regulated by the nuclear
receptors aryl hydrocarbon receptor and constitutive
androstane receptor (CAR), was strongly increased in
2- and 3D cultures (34, 35).

Similarly, genes encoding the phase II enzymes
UGT1A1 and UGT2B15 were downregulated in 2D cul-
ture, whereas their expression did not differ significantly
from isolated cells over the course of 3 wk in 3D culture
(P. 0.1 for both genes and all time points). Expression of
GSTP1, a marker for nonmature hepatocytes (36), rapidly
increased in 2D monolayers, whereas it remained at
physiologic levels in 3D spheroid culture (Fig. 1C).

Expression levels of ABCB11, encoding the bile salt
export pump, and SLCO1B1, an import transporter for
various endogenous and xenobiotic compounds (37),
showed progressive decreases during dedifferentiation in
2D culture (P, 0.01 for both genes and at all time points),
whereas they were not affected once spheroids were
formed (P. 0.1 for 7, 14, and 21 d for both genes; Fig. 1D).
In contrast, transcript levels of ABCC2 and ABCC3,
encoding the drug exporters multidrug resistance–
associated protein (MRP)-2 and -3, respectively, did not
significantly differ between the culture methods (P . 0.1
for both genes and all time points).

Pronounced changes in expression of the key hepatic
transcription factor HNF4A and the nuclear receptors
NR1I3 (encoding CAR) and NR1I2 [encoding pregnane X
receptor (PXR)], which control the expression of many
genes involved in absorption, distribution, metabolism,
and excretion (ADME) of drugs (38, 39), differed signifi-
cantly between culture methods (Fig. 1E). Whereas these
genes were progressively downregulated in 2D mono-
layer culture as previously reported (14), their transcript
levels were increased by 21-, 230- and 9-fold, respectively,
in 3D culture and were indistinguishable from levels

found in isolated cells. Thus, loss of key transcriptional
regulators may provide an explanation for the observed
differences in ADMEgene expression between the culture
systems.

The functional stability of PHH is drastically
extended in 3D culture

Next, we compared the functional stability of xenobiotic
metabolism in PHHs between 2- and 3D cultures. To this
end, we used a cocktail of 5 noninteracting CYP probe
substrates (midazolam, dextromethorphan, phenacetin,
amodiaquine, and tolbutamide) and quantified their me-
tabolites by liquid chromatography-quadripole extractive
HR-MS(Fig. 2). The limits of quantificationwere,1ng/ml
for all analytes in blank cell extract. Figure 2A shows
representative chromatograms of all metabolites in the
blank cell extract and in an incubated sample.

Functional activities of CYP1A2, CYP2C8, CYP2C9,
CYP2D6, and CYP3A4 exponentially declined and were
reducedby 90%after 24h and.95%after 7d in 2Dculture
compared to freshly isolated cells (Fig. 2B–F and Table 2).
In contrast, the metabolic activity of PHH in 3D culture
was significantly higher for all 5 CYPs analyzed (P ,
0.0001; extra sum-of-squares F-test). Although the func-
tional capacities of hepatocytes were reduced during the
initial aggregation stages (4h, 24h,and3d), they remained
relatively stable once spheroids had formed (after 7 d),
consistentwith previous reports (20). Compared to freshly
isolated cells, activities of CYP1A2 and CYP3A4 were in-
creased to 230 6 20 and 130 6 20% (SEM) after 7 d of 3D
culture, whereas activities decreased to 23 6 4, 46 6 14,
and 13 6 5% for CYP2C8, CYP2D6, and CYP2C9, re-
spectively.When quantitatively comparing the amount of
metabolites formed per time between 2D monolayer and
3D spheroid culture, the functional activity in 3D culture
was found to be elevatedbetween 10- and1000-fold across
all CYP enzymes studied (Fig. 2G).

Endogenous and xenobiotic metabolomic
landscapes are maintained for at least 3 wk in
3D culture

We then quantitatively analyzed the metabolism of dex-
tromethorphan to demonstrate the utility of this approach
to assess the metabolic profile of candidate drugs. Dex-
tromethorphan can be metabolized by CYP2D6 to dex-
trorphan and byCYP3A4 to 3-methoxymorphinan,which
can be metabolized further to 3-hydroxymorphinan (Fig.
3A).Weanalyzed2donors (CYP2D6*1/*1andCYP2D6*1/*4)
with indistinguishable metabolic activities that were
phenotypically classified as extensive metabolizers (do-
nors 1 and2). Furthermore,weanalyzedadonorwhowas
phenotypically and genotypically categorized as a poor
metabolizer (donor 3). This donor harbored one loss-of-
function CYP2D6*4 allele and one *10 allele with reduced
functionality and showed drastically reduced activity
more than 10-fold lower than the other 2 donors (Fig. 3B).
In both extensive metabolizers, most of the dextro-
methorphan was demethylated in freshly isolated cells
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Figure 1.Hepatic expression signatures are preserved for multiple weeks in 3D PHH spheroid culture. A) Bright-field images depicting the
temporal development of morphologic PHH phenotypes in 2D monolayer and 3D spheroid culture. Expression of phase I (CYP1A2,
CYP2C8, CYP2C9, CYP2D6, CYP3A4; B) and phase II drug metabolizing enzymes (UGT1A1, UGT2B15, and GSTP1; C) drug and bile
transporters (ABCC2, ABCC3, SLCO1B1 and ABCB11; D), xenobiotic sensors (CAR, PXR; E), and hepatic markers (ALB, HNF4A; E)
remain close to physiologic levels in 3D PHH culture, whereas expression was mostly lost in 2D culture of cells from the same donors
(n = 3). The data are presented on semilog plots showing expression fold changes (FC) compared to freshly isolated cells. Dashed lines:
the evolution of fold changes between 2- and 3D culture over time. Error bars = SEM.
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Figure 2. 3D spheroid culture significantly improves the functional activity of major human CYP enzymes. A) Chromatograms of
primary metabolites (acetaminophen, hydroxymidazolam, desethylamodiaquine, dextrorphan, and hydroxytolbutamide) of 5
CYP probe substrates in a calibrator (8 ng/ml) and in an incubated sample. B–F) Column plots showing the levels of the
metabolic activities of CYP1A2 (B), CYP3A4 (C), CYP2C8 (D), CYP2D6 (E), and CYP2C9 (F) from 3 donors cultured in 2D
monolayer and 3D spheroid culture. Dashed line: metabolite levels compared to freshly isolated cells (FICs). Error bars = SD. G)
Line plot of fold changes between 2- and 3D cultures of the same donors (n = 3) demonstrate that metabolic activities are
significantly elevated in 3D PHH spheroids.

METABOLOMIC ANALYSIS OF 3D HUMAN HEPATOCYTE SPHEROIDS 2701
 Vol.31,  No.6 , pp:2696-2708, June, 2017The FASEB Journal. 128.214.190.51 to IP www.fasebj.orgDownloaded from 

http://www.fasebj.org/


and in spheroids after 3 wk in culture (Fig. 3B). Over
culture time, the metabolic spectrum slightly tilted from
CYP2D6-mediated O-demethylation toN-demethylation
catalyzed by CYP3A4. Notably, dextromethorphan me-
tabolism in the poor CYP2D6 metabolizer (donor 3) was
strongly biased toward 3-methoxymorphinan in freshly
isolated cells aswell as after long-term spheroid culture in
agreementwith in vivodata (40).Combined, thepresented
data indicate that metabolic profiles are stable in 3D
spheroid culture, and phenotypic differences observed in
vivo can be successfully translated into an in vitro setting.

We then investigated the overall stability of PHH
metabolomic signatures in 3D culture. Orbitrap HR-MS
provided a comprehensive overview of intracellular me-
tabolites, as well as the extracellular metabolic secretome
of hepatocytes in spheroid culture (Fig. 4A, B). First, we
focused on metabolites of the 5 probe substrates. Few
metabolites were found in extracellular and intracellu-
lar samples (acetaminophen, acetaminophen-sulfate,
dextrorphan, hydroxymidazolam, and desethylamodiaquine),
whereas hydroxytolbutamide and 3-hydroxymorphinan
could be detected only extracellularly.When analyzing all
identified endogenous compounds (nextra=1132 and
nintra=565 distinct chemical entities), we found that rel-
ative concentrations were very similar with intra- and
extracellular correlation coefficients of 0.93 and 0.96, re-
spectively, between freshly isolated cells and spheroids
after 3 wk in culture. Metabolites identified in intra- and
extracellular compartments overlapped only to a limited
extent (14.3%; 212/1485 identified metabolites), in-
dicating that cell integrity is maintained (Fig. 4C).

Quantitative analysis of endogenous
metabolism in 3D PHH spheroid culture

Because the metabolomic methodology that we used in-
dicated only the relative overall stability of endogenous
metabolism, we supplemented these findings with quan-
titative measurements of 56 intracellular metabolites with
important endogenous functions (Fig. 5).

In 2D monolayers levels of various metabolites were
affectedduringearly culturephases (Fig. 5B,C).After 4h, a
peak inAMP levelswasdetected exclusively in 2Dbut not
in 3D cultures. In addition, we found that arginine levels
increased progressively in 2D cultures and were upregu-
latedmore than 540-fold after 7 d, whereas they remained
constant in 3DPHH spheroids throughout 21 d of culture.
Furthermore, we observed major reductions in carnitine
and carnitine-conjugate (isobutyryl-, isovaleryl-, pro-
pionyl-, octanoyl- and decanoylcarnitine) levels in 2D
cultures and after prolonged culture periods (7 d) also in
3D cultures, indicating reduced mitochondrial import of
fatty acids and thus decreased fatty acid b-oxidation.

In contrast, levels ofmost of the selectedmetabolitesdid
not change over 3 wk in 3D spheroid cultures, reinforcing
the relative data obtained by our comprehensive
metabolomic approach (Fig. 5A, C). The concentration of
aldose glyceraldehyde, an important molecule at the in-
tersectionbetweenglycolysis andglycerolmetabolism,was
temporally invariant. Similarly, levelsofarginine, ornithine,
and citrulline remained stable over time, indicating the
maintenance of functional urea cycle metabolism. More-
over, steady levels of glucuronic acid and UDP-glucose,

TABLE 2. Absolute levels of CYP activity of PHHs in 2D monolayer and 3D spheroid culture

Time CYP1A2 CYP3A4 CYP2D6 CYP2C8 CYP2C9

3D spheroid culture
FICs 9.4 6 0.4 17.7 6 1.2 4.3 6 1.5 161.9 6 17.7 7.9 6 0.9
24 h 2.4 6 1.7 (25.5) 8.7 6 1.8 (49.2) 2.8 6 1.5 (65.1) 37.1 6 2 (22.9) 6.5 6 1.3 (82.3)
3 d 14.6 6 5.5 (155) 3.2 6 1.6 (18.1) 0.68 6 0.32 (15.8) 13.4 6 2.7 (8.3) 1.5 6 0.7 (19)
7 d 21.5 6 4.5 (229) 21.8 6 2.5 (123) 1.4 6 0.4 (32.6) 36 6 6.6 (22.2) 1.1 6 0.5 (13.9)
10 d 21.5 6 5.8 (229) 24.4 6 4.1 (138) 1.3 6 0.4 (30.2) 30.5 6 4.9 (18.9) 1.2 6 0.4 (15.2)
14 d 27.8 6 1.5 (296) 16.4 6 1.8 (92.7) 1.8 6 0.4 (41.9) 26.2 6 2.3 (16.2) 4 6 0.5 (50.6)
17 d 26.2 6 8.9 (279) 8.7 6 1.5 (49.2) 1.6 6 0.6 (37.2) 18.4 6 2.1 (11.4) 5 6 1.2 (63.3)
21 d 14.9 6 2.8 (159) 5.6 6 1.4 (31.6) 1 6 0.4 (23.3) 9.8 6 2.2 (6.1) 4.1 6 1 (51.9)

2D monolayer culture
FICs 14.3 6 3 16.5 6 2.5 5.5 6 2.3 126.1 6 23.6 9.7 6 1
24 h 0.1 6 0.09 (0.7) 0.69 6 0.22 (4.2) 0.25 6 0.13 (4.5) 4.25 6 0.9 (3.4) 0.8 6 0.27 (8.2)
3 d 0.36 6 0.17 (2.5) 0.23 6 0.14 (1.4) 0.1 6 0.04 (1.8) 0.68 6 0.07 (0.5) 0.41 6 0.27 (4.2)
7 d 0.56 6 0.23 (3.9) 0.28 6 0.23 (1.7) 0.002 6 0.002 (, 0.1) 0.36 6 0.01 (0.3) BDL
10 d 0.32 6 0.13 (2.2) 0.27 6 0.22 (1.6) BDL 0.3 6 0.03 (0.2) BDL
14 d 0.31 6 0.13 (2.2) 0.38 6 0.31 (2.3) BDL 0.46 6 0.06 (0.4) BDL
17 d 0.54 6 0.24 (3.8) 0.34 6 0.28 (2.1) BDL 0.7 6 0.12 (0.6) BDL
21 d 0.44 6 0.18 (3.1) 0.21 6 0.18 (1.3) 0.002 6 0.002 (,0.1) 0.69 6 0.12 (0.5) BDL

Other cell models
Stem cell–derived

HLCs
ND ND 0.0003 ND ND

HepG2 1.2 ND 0.67 ND 0.67
HepaRG 0.24–2.2 4 0.4 1 1.2–3.4

The probe substrates used to determine activities of CYP1A2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9 were phenacetin, midazolam, dextromethorphan,
amodiaquine, and tolbutamide, respectively. Activities are presented as rate of metabolite formation (pmol/min/106 cells). The mean 6 SEM of 3 PHH
donors is shown. Values for HepG2 and HepaRG cells as well as stem cell-derived HLCs were obtained from other publications (66–69). Where necessary,
activity values provided per milligram protein were translated into per million cells, by using a conversion factor of 0.4 mg protein/106 cells. Values in
parentheses denote fraction of activity of freshly isolated cells (FICs). BDL, below detection limit; ND, not determined.
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which serve as a glycosidic substrate in endo- and xenobi-
otic conjugation reactions, in combinationwithmaintained
expression of responsible UDP-glucuronosyltransferase
(UGT) enzymes (Fig. 1C), indicate stable phase II metab-
olism in 3D-cultured PHHs. Similarly, levels of NAD+

remained approximately constant during culture (2.6-fold
change during 3 wk of 3D culture, which is within the
range of physiologic fluctuation) (41).

Bile acid levelswere rapidly and globally reduced in 2D
culture (Supplemental Fig. S1). The rate-limiting enzyme in
bile acid biosynthesis, CYP7A1, is regulated by HNF4A
(42, 43) whose transcript levels were drastically reduced in
2D culture (Fig. 1E). In contrast, we observed stable bile
acid levels in 3D culture; yet, with significant changes in
bile composition. We observed a sharp drop in taurine
levels, likely because the rate-limiting enzyme of
taurine biosynthesis, cysteinesulfinic acid decarboxylase,
is not expressed in human liver (44). Consequently, the
taurine-conjugatedbile acid taurocholic acidwas rapidly
lost, and cholic acid was instead conjugated to glycine,
resulting in compensatory elevations in glycocholic acid
concentrations (Supplemental Fig. S1).

Combined, these results suggest that key hepatic
functionality, suchas urea cycle andbile acid biosynthesis,
were rapidly lost in 2D culture, whereas they were sur-
prisingly stable in 3D spheroid culture on qualitative and
quantitative levels for up to 3 wk in culture.

DISCUSSION

Preclinical toxicity prediction of drug candidates and their
metabolites is an integral part of all drug-development
pipelines that encompasses in silico, in vitro, and in vivo
models. Although animal testing constitutes the corner-
stone of past and current safety assessments, there is
growing recognition that pronounced species differences
in hepatic metabolism impair the faithful translation of
animal findings to humans (10). The usage of human
cellular material has the potential to overcome these lim-
itations. Yet, the confidence in conventional human in
vitro models, such as hepatoma cell lines or primary he-
patocytes in 2D culture, is also limited, as these simple
systems do not accuratelymimic human liver biology and
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function. To overcome these hurdles, a plethora of ad-
vanced 3D hepatic in vitro models have been developed
that permit the maintenance of hepatic phenotypes for
extended periods (18). However, to obtain regulatory ap-
proval substantial evidence for increased translational
confidence has to be presented, which requires compre-
hensive characterization of these novel culture paradigms,
as well as an extensive data and experience base (45).

In this study we extensively analyzed the transcrip-
tional and metabolic profiles of PHHs in long-term 3D
spheroid cultures and quantified the phenotypic im-
provements over conventional 2D monolayer cultures. In
3D cultures, expression levels of key regulators of hepatic
gene expression profiles, such as HNF4A, and xenobiotic
metabolism, including CAR and PXR, pivoted around
levels found in freshly isolated cells, whereas they were
downregulated 10- to 100-fold in 2D culture (Fig. 1E).
Consequently, expression of genes with importance for
hepatic functionality, including the HNF4A, PXR, and
CAR targets CYP2C8, CYP2C9, CYP3A4 and UGT1A1
(46–49), were stable for at least 3 wk in the 3Dmodel (Fig.

1B,C). In contrast,GSTP1, an indicator of undifferentiated
hepatocytes (36) remained stable in 3D culture, whereas
expression levels strongly increased in 2D (Fig. 1C).

When we correlated gene expression profiles to
metabolic activities, we found that transcript levels
were generally good predictors of metabolic capacities.
Functional activities of CYP1A2, CYP2C8, CYP2C9,
CYP2D6, and CYP3A4 were highly elevated in 3D
compared to 2D culture (Fig. 2B–F), paralleling in-
creases in expression of the corresponding gene tran-
scripts. Furthermore, absolute functional activities were,
in some cases, orders of magnitude higher than in sys-
tems based on hepatic cell lines or stem cell-derived
hepatocyte-like cells (HLCs; Table 2). Notably, func-
tional activities decreasedduring the initial stages of the
spheroid aggregation process in agreement with re-
duced gene expression. Although expression levels of
CYP1A2 increased in 2D culture up to 100-fold, its
functionality remained low (compare Figs. 1B and 2B),
suggesting that post-transcriptional mechanisms are
responsible for the uncoupling of activities between
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gene and gene product. On the basis of the functional-
ity data, we estimated enzymatic half-lives of CYP1A2,
CYP2C8, CYP3A4, CYP2D6, and CYP2C9 at 12, 12,
24, 36, and 75 h, respectively, which is in agreement
with previously published in vitro and in vivo data (t1/2
for CYP1A2: 8–58 h, t1/2 for CYP2C8: 8–41 h, t1/2 for
CYP3A4: 26 h, t1/2 for CYP2D6: 51 h and t1/2 for
CYP2C9: 104 h) (50–52).

We then evaluated the metabolic flux in dextro-
methorphan metabolism in 2 donors who were pheno-
typically classified as extensive CYP2D6metabolizers and
1 poor CYP2D6 metabolizer (Fig. 3). In vivo, metabolic
extraction ratios of dextromethorphan:dextrorphan range
between 0.001 and 0.1 in extensive metabolizers after 8 h
(53). Similarly, we found that dextromethorphan was
rapidly demethylated to dextrorphan in freshly isolated

cells as well as in 3D PHH spheroids after 21 d in culture.
After 4 h of incubation, only 2 and 11% remained meth-
ylated in extensive metabolizers, corresponding to 8 h
extraction ratios of 0.0007 and 0.08 in freshly isolated and
long-term cultured PHHs, respectively. In the poor
metabolizer, dextromethorphan:dextrorphan ratios were
higher (0.1 and 0.12 in freshly isolated cells and
21 d spheroids, respectively) than in extensive metabo-
lizers approximatingvalues reported in vivo (40, 53). These
data provide proof of concept that metabolic profiles in
PHH spheroids are stable over extended culture periods
and that important interindividual differences that are
common modulators of hepatic drug response can be
translated into an in vitro setting (54). In the future, more
comprehensive analyses with more donors will reveal
whether this spheroid platform represents an in vitro
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paradigm capable of faithfully capturing the true
pharmacokinetic patient diversity, which may enable
simulation and prediction of the hepatic outcomes of
clinical trials in a more cost-effective preclinical setting.

We then assessedmetabolomic signaturesmeasuredby
a new untargeted UHPLC–ESI–HR-MS quantification
method, which has been shown to provide high-quality
quantification results (55–57).Metabolic patterns and their
responses to nutritional, viral, or xenobiotic challenges
have been studied in primary rodent hepatocytes and
human hepatic cell lines, such as HepG2, Huh7.5, and
HepaRG, and such approaches have been used for
mechanistic investigations and to predict DILI (58–62).
Yet, without direct comparisons to physiologically rele-
vant systems, such as mature fully differentiated PHHs,
the translation of findings to humans is impaired. In this
study, we addressed these shortcomings by performing
time-course analyses in 3D PHH spheroid cultures, in
which we related the metabolomic profiles after defined
culture intervals to the metabolomic signatures of freshly
isolated cells from the same donors, with unprecedented
detectability. We found that the relative abundances of
intracellular metabolites and the secreted metabolome
were stable over time with correlation coefficients of r =
0.93 and 0.96, respectively (Fig. 4). Thus, 3D PHH spher-
oids accurately mimic endogenous metabolic profiles,
even after multiple weeks in culture. To our knowledge,
this study is the first to quantify the metabolic stability of
any primary cell type in culture for extended lengths of
time, which provides crucial information about their util-
ity as long-term models for drug metabolism and hepatic
functionality.

We complemented our metabolomic assessment with
targeted and quantitative analyses of 56 important en-
dogenous metabolites in 2- and 3D cultured PHHs. Early
prominent changes in concentrations of the analyzed
metabolites were detected in 2D monolayers early in the
culture phases (Fig. 5). After 4 h of 2D culture, a peak in
AMP levels was detected, suggestive of extensive meta-
bolic remodeling, as AMP allosterically controls the ac-
tivity of AMPK, a kinase that acts as an energetic sensor
that can switch hepatic metabolism from anabolism to
catabolism by phosphorylating target proteins, such as
ACC1, CD36, and GS (63). Following these acute meta-
bolic perturbationswasadrastic increase in arginine levels
that, combined with normal ornithine and citrulline con-
centrations, is indicative of ARG1 deficiency and urea
cycle defects, as observed in fetal hepatocytes (64, 65). In
contrast, metabolic signatures were stable overall in long-
term3Dspheroid cultureand important hepatic functions,
such as urea cycle and bile acid biosynthesis, were
maintained.

In summary, our data represent the first results that
characterize the metabolomic stability of any primary
human cell type in long-term culture. Endogenous
metabolomic signatures, as well as the metabolic fluxes of
xenobiotics, were found to be surprisingly stable for
multiple weeks in 3D PHH spheroid cultures. Further-
more, the data indicate that, when all findings are related
to freshly isolated cells from the same donors, overall
transcriptional and metabolic profiles closely resemble

physiologic patterns, thus incentivizing the use of this cell
system as a physiologically relevant in vitro platform for
studies of drug metabolism and pharmacokinetics, me-
tabolite formation, time-dependent inhibition, or hepatic
clearance.
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Supplementary Figure S1: Stability of bile acid biosynthesis and 
composition. Bile acid biosynthesis remained relatively constant for 
three weeks in 3D culture (shades of red). Notably though, bile acid 

composition changed during long-term culture away from taurine-con-
jugated bile acid species taurocholic acid (TCA) and taurochenodeoxy-

cholic acid (TCDCA) towards glycocholic acid (GCA). In contrast, bile acid 
biosynthesis is rapidly lost in conventional 2D monolayer cultures 

(shades of blue).
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