
  

 

Abstract— A Multi-Electrode Array (MEA) is a practical 
device for recording the extracellular activity of in-vitro 
biological culture. Such culture - for instance neurons - is prone 
to mistakes leading to irrelevant recordings or no recording at 
all. Additionally, with the expenses generated by in-vitro 
culture, minimizing risks is a must. This paper proposes a 
framework designed and implemented for simulating the 
spatial positioning of neuronal cultures on a MEA. The 
framework serves as a sandbox for researchers to simulate the 
model of their MEA experiments before its eventual in-vitro 
implementation. The framework enables simulating the density 
of the plated culture, the death of cells over time, choosing 
diverse reconstructed morphologies of cells, and simulating 
their spiking activity in interaction with Brian2 simulator. 

I. INTRODUCTION 

The development of Multi-Electrode Arrays (MEA) for 
recording the extracellular activity of in-vitro cultures has 
taken an important role in understanding the biological 
organization of neuronal cells into networks [1], connectivity 
changes within this network [2], and its functional behavior 
[3], [4]. 

MEA systems can be used as a tool for recording the 
extracellular electrophysiological activity in in-vitro 
environment, which assists researchers in several areas, like 
studying brain function [5], and investigating the retinal 
circuitry to visual cortex [6]. In engineering domains, MEA 
systems are is used as an interface between biological parts 
and technical systems, resulting in bio-integrated systems [7]. 
Such interfacing is realized by stimulating the neurons and 
recording their extracellular activity in response to 
stimulation. Examples of recent successes in this interfacing 
by utilizing MEA are Lego Mindstorm robot [8], and hybrid 
neurorobot system [9].  

Unfortunately, the use and maintenance of both cultured 
and dissociated neurons in a MEA are laborious tasks. 
Moreover, several risk factors, such as susceptibility to 
infection, long maturation duration, and hyperosmolality 

resulting from evaporation in the medium, are specifically 
associated with cultured neuronal networks. Only cultures 
that avoid these issues are used in recording and stimulation 
but only for a short period of their lifetime. Despite the 
efforts to keep neural cultures viable for long-terms [10], or 
to record and stimulate while keeping cultures in the 
incubator[11], the average lifetime of in-vitro neuronal 
cultures is slightly longer than a month. 

To address the above issue, we present the design and 
implementation of a simulation framework called SiMEA for 
representing the physical and electrical behavior of neuronal 
cultures on a MEA. There are several differences between the 
approach taken in SiMEA and that of older studies, e.g. 
Cultured Neuron Simulator (CNS) [12]: the main difference 
is that neural connections in the latter are modeled 
statistically whereas in SiMEA they are determined based on 
neuronal morphologies. Other studies focus either on 
simulation of MEA hardware [13], [14] or on signaling [15], 
[16].  

This paper is organized as follows: Section II outlines the 
main components of the SiMEA as well as the interaction 
between them.  In Section III, intermediate results of the core 
components as well as the final output of SiMEA are 
illustrated. Finally, Section IV presents our conclusion.  

II. METHOD 

SiMEA consists of five main components: cell plating, cell 
death, morphology, interpreter, and brian2 simulator [17] 
containing neuron model, and neuroplasticity models. The 
relations between these components are illustrated in Figure 
1. In following subsections, each of the SiMEA components 
are described in more details. 

A. Cell Plating 

For the purpose of simulating the density of cells plated on 
a MEA, Shultz proposed the use  of midpoint displacement 
fractal algorithm in his development of named Cultured 
Neuron Simulator (CNS) [12]. Using this algorithm, 
however, the cells would mostly occupy locations near the 
edges of the MEA plate. In this study, we adopted a different 
approach, entitled two-level inversed diamond-square. This 
algorithm is based on the inversion of diamond-square 
algorithm [18], the successive of midpoint displacement 
fractal algorithm that also suffers from the same issue as the 
midpoint displacement algorithm. In this approach, the 
inversed diamond-square algorithm is first applied by 
considering the soma area 10 times larger than its value in the 
simulator, resulting in a smoother distribution over a wider 
area. Based on this uniform distribution, the exact position of 
the soma within its wider box is determined by the 
application of the diamond square within this box. For this 
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Figure 1. internal components of SiMEA 

reason, this algorithm is named “two-level” inversed 
diamond-square. 

Figure 2 presents the results from the three algorithms: b) 
diamond square, c) inversed diamond-square, and d) two-
level inversed diamond-square. These results are compared 
with a grayscale version of fluorescence imaging of neuronal 
culture in a real MEA plate shown in Fig.2 a). This plating 
comparison is realized with the image processing software 
ImageJ1 in the following way. Each figure is divided into a 
10x10 grid and the number of neurons in each grid cell is 
calculated and corresponding histogram is drawn. Next, the 
histogram of each algorithm is compared with the 
fluorescence image using the Kullback–Leibler divergence 
measure and the similarity of the result of the algorithms with 
a real MEA plate are determined.   

B. Cell Death 

During the first 17 Days in Vitro (DIV) and before final 
formation of the network, 45-60% of the cells will die [19]. 
This phenomenon has an important effect on development of 
the culture and should be taken into account. However, the 
runtime for 17 days of simulation time is enormous. Hence, 
by default the starting point of the simulation will be the 17th 
DIV, or when indices of the dead cells are all determined.  
These indices are determined based on a 2-D random 
sampling over time and indices of neurons remaining alive. 

C. Morphology Analysis 

Without consideration of the form and structure of 
neurons, i.e. their morphology, neurons would be represented 
solely as square or circular somas. In this case, the strength of 
connections between neurons would be determined as a 
function of their distance. Taking neuromorphological 
aspects into account offers the possibility to compute 
neuronal connections based on the position of axons and 
dendrites. Furthermore, the connectivity between neurons is 
determined based on the intersection of one cell’s axonal 
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branches with dendrites of another cell. Morphologies of 
neurons are downloaded from NeuroMorpho2 database. 

D. Brian2 Interpreter 

The role of this component in the framework is to convert 
morphological and structural data about the plated neuronal 
network into useable data for simulating the physiological 
behavior of this network. This component works as an 
interface between the SiMEA framework and the Brian2 
simulator. For each neuron in the plated network, converted 
data expresses the following data: the behavioral type of this 
neuron, i.e. excitatory or inhibitory, the identity of neurons it 
is connected to in the network, and the number of synapses 
between them. 

Once converted, this data is used to simulate the dynamic 
behavior of the plated network in Brian2 as shown in sub-
section E.   

E. Neuron and Neuroplasticity Model in Brian2  

The physiological behavior of a single neuron in this 
framework is modeled with Izhikevich simple model of 
neuronal behavior [9]. In this study, excitatory and inhibitory 
neurons are modeled respectively with the parameters of 
Regular Spiking and Fast Spiking neurons as expressed in 
[20]. 

The initial connection strength between two neurons is 
modeled based on the number of synapses found from the 
morphological analysis component. Synaptic changes are 
modeled depending on the type of the presynaptic neuron 
with AMPA- and GABA-ergic synapses for excitatory and 
inhibitory neurons, respectively. In addition, Spike Timing 
Dependent Plasticity (STDP) is modeled between neurons as 
expressed in [21], [22] with equations 1 and 2. 
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In Equation  1, ݓ߂௝ defines the strength change of synapse 

݆ based on the summation of STDP function ܹሺݐ௡ െ ௝ݐ
௙ሻ. In 

this function, ݐ௡ and ݐ௝
௙ represent the time of nth spike of the 

postsynaptic neuron and the time of fth spike of the 
presynaptic neuron. The function W(x) is usually defined as 
Equation . 
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where ܣା, ିܣ, ߬ା and ߬ି determine the magnitude and drop-
off of each side of the exponentials.  

III. RESULTS 

Starting with plating and cell distribution, Figure 2 shows 
the cell distribution resulting from diamond-square 
algorithm, inversed diamond square algorithm, two level 
inversed diamond square algorithm and a grayscale version 
of fluorescence image of neuronal culture in a real MEA 
plate. These results from algorithms are compared to real 
distribution of cells on a MEA plate with the Kullback–
Leibler divergence measure applied on the four 
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corresponding distribution histograms shown in Fig. 2. The 
results from the Kullback–Leibler divergence measure 
presented in Table I confirm a significant similarity between 
the two level inversed diamond square algorithm and the real 
cell distribution (distance of 0.0893 between them).  

After determining the location of the survived cells in the 
MEA plate, the morphology of the neurons is generated 
based on their cell type, soma position and rotation angle. 
The intersect finder algorithm is then applied on neurons in a 
pairwise manner, generating the connection map. Figure 3 
shows the morphology and connections points of a very small 
network with 10 neurons. 

By inputting the information about the neuron groups, 
e.g. number of neuron groups and type of each neuron group, 
as well as connection map data into the Brian2 using the 
brian2 interpreter component, a dynamic simulation of the 
network activity is computed. Figure 4 shows the output of 
the framework for a MEA initialized with 1000 neurons, 493 
of which survived after applying the cell death. This network 
consists of 70% excitatory pyramidal cells of five references 
in NeuroMorpho, i.e. C031097B-P3, C300898C-P2, I03481, 
D20D and D27B, and 30% inhibitory basket cells of five 
references, i.e. BE49B, BE23B, C010600A2, C010600C1, 

and C070600A4. The framework allows an easy addition of 
more morphologies expressed in SWC format as well as their 
associated firing patterns (e.g. bursting). 

IV. CONCLUSION 

This paper presented the design and implementation of a 
framework allowing multiple simulation viewpoints on a 
model of in-vitro neuronal networks cultured on MEA. 
These viewpoints enable a realistic visualization of the 
spatial distribution of cells within a MEA; the distribution of 
cells with diverse morphologies; the creation of a neuronal 
network composed of neuronal cells of various 
morphologies and their associated firing patterns; and the 
simulation of the dynamical activity of this random recurrent 
network.  

Our results show relevant similarities to in-vitro 
experiments on MEA in three main areas. First, the density 
distribution of neurons in the plate simulated by the 
proposed two-level inversed diamond square algorithm 
achieves a high similarity with real in-vitro plating (distance 
between both distributions of 0.0893, based on 
Kullback_Leibler divergence measure). Second, neuron 
shapes and connection formation in the model are based on 
the reconstruction of real morphologies. Third, the dynamic 
activity of the network simulated with SiMEA shows 
intrinsic synchronous activity close to MEA.  

 The framework is easily configurable for the simulation 
of experiments with other in-vitro cultures than the neuronal 
culture presented in this paper. The source code is freely 
available on github4. Our future plans for this framework 

                                                           
4 https://github.com/Vafa-Andalibi/SiMEA  

Figure 3. Visualization of neurons and their synaptic connections on a small MEA with 10 neurons. Black and red lines indicate axons and 
dendrites respectively and green triangles indicate synaptic connections found between neurons.  

Figure 2. Comparison between real plating on a MEA and simulated plating a) Gray-scale fluorescence image of neurons in a MEA from [23]. Plating 
simulated with b) diamond-square algorithm, c) inversed diamond square algorithm d) two-level inversed diamond square algorithm 

TABLE I.   KULLBACK-LEIBLER DIVERGENCE MEASURES RESULTED 
FROM COMPARING THE ALGORITHM RESULTS WITH THE REAL MEA. 
GREATER VALUE INDICATES HIGHER DIVERGENCE, HENCE LESS 
SIMILARITY.  

Kullback–
Leibler 

divergence 

Algorithm 
Diamond 
Square 

Inversed Diamond 
Square 

Two-level inversed 
diamond-square 

Measure 1.6960 1.2918 0.0893 
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Figure 4. Output of the SiMEA in form of spikes from a simulated MEA initialized with 1000 neurons. 347 excitatory pyramidal cells, shown in the
figure, and 146 inhibitory fast-spiking basket cells survived after applying the cell death. Black arrows indicate the intrinsic synchronous activity of
excitatory neurons in the final output.  

include the option to simulate the effect of stimulation from 
the MEA to the network. 
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