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In plants, receptor-like kinases (RLKs) and extracellular reactive oxygen species (ROS) contribute to the communication
between the environment and the interior of the cell. Apoplastic ROS production is a frequent result of RLK signaling in
a multitude of cellular processes; thus, by their nature, these two signaling components are inherently linked. However, it is as
yet unclear how ROS signaling downstream of receptor activation is executed. In this review, we provide a broad view of the
intricate connections between RLKs and ROS signaling and describe the regulatory events that control and coordinate
extracellular ROS production. We propose that concurrent initiation of ROS-dependent and -independent signaling linked to
RLKs might be a critical element in establishing cellular responses. Furthermore, we discuss the possible ROS sensing
mechanisms in the context of the biochemical environment in the apoplast. We suggest that RLK-dependent modulation of
apoplastic and intracellular conditions facilitates ROS perception and signaling. Based on data from plant and animal models,
we argue that specific RLKs could be components of the ROS sensing machinery or ROS sensors. The importance of the
crosstalk between RLK and ROS signaling is discussed in the context of stomatal immunity. Finally, we highlight challenges in
the understanding of these signaling processes and provide perspectives for future research.

INTRODUCTION

Multicellular organisms use a plethora of mechanisms to control
and adjust the functions of cells to ensure coordinated and
synchronized responses in tissues, organs, and throughout the
entire organism. The perception of specific molecules at the cell
perimeter isof crucial importance for thesesignalingprocesses. In
plants, communication between cells and the extracellular envi-
ronment is largely controlled by receptor-like kinases (RLKs) and
receptor-like proteins. The RLKs are a large protein family with
over 600 members in the model plant Arabidopsis thaliana (Shiu
and Bleecker, 2003). RLKs are transmembrane proteins that are
anchored to the plasma membrane. The N-terminal extracellular
region, the ectodomain, extends into the apoplast where it per-
ceives stimuli, whereas the C-terminal kinase domain resides
inside the cytoplasm and relays signals into the intracellular en-
vironment. Recent studies have highlighted the roles of RLKs as
central regulators of development, growth, pathogen defense,
and responses to abiotic cues (Marshall et al., 2012). Since plants
are constantly exposed to multiple stimuli, the large number of
RLKs and the corresponding potential ligands might mediate the
integration of simultaneous signals through crosstalk and the use
of similar signaling components. Despite their importance, the

protein complexes that coordinate receptor action remain poorly
understood.
In addition to RLKs, reactive oxygen species (ROS) are im-

portant components of multiple signaling pathways. ROS include
singlet oxygen (1O2), superoxide anion (O2

$2), hydrogen peroxide
(H2O2), and hydroxyl radical (HO$), each with distinct chemical
properties and important roles as signaling molecules in all
domains of life. ROS are produced in multiple subcellular loca-
tions, including chloroplasts, peroxisomes,mitochondria, and the
apoplast. Importantly, localized ROS accumulation frequently
affects the redox status of other subcellular compartments (Joo
et al., 2005; Vahisalu et al., 2010) and even of distant cells (Gilroy
et al., 2016). Intracellular ROS production is primarily associated
with photorespiration and metabolic processes characterized
by high redox potentials, such as photosynthetic/mitochondrial
electron transport chains. By contrast, apoplastic ROS accu-
mulation results mainly from the specific activation of plasma
membrane-localized NADPH oxidases, in plants known as re-
spiratory burst oxidase homologs (RBOHs), and cell wall perox-
idases (Figure 1; Kärkönen and Kuchitsu, 2015). In plants, ROS
exert control over metabolic regulation, development, pathogen
defense, and responses to abiotic stimuli (Wrzaczek et al., 2013).
As evident from transcriptomic responses (Vaahtera et al., 2014;
Willems et al., 2016), plant cells meticulously sense ROS and
trigger specific responses tailored to the type, concentration, and
subcellular origin of ROS molecules. However, it is unclear how
this signaling specificity is achieved.
An emerging theme associated with RLK signaling is the pro-

duction of ROS in the apoplast. In this context, the question of
signaling specificity gains additional importance, as functionally
independent RLKs can trigger the production of the same type of
ROS in the same subcellular compartment. The integration of
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ROS-dependent and -independent RLK signaling mechanisms
likely provides specificity for local and systemic ROS signaling.
While numerous reviews discuss RLK and ROS signaling sepa-
rately, here, we evaluate recent progress in understanding the
crosstalk betweenRLKandROSsignaling.Wediscuss howRLKs
both influence and are influenced by ROS production and
signaling and propose that crosstalk between RLKs and ROS
signaling may play a critical role in plant development and en-
vironmental responses.

RLKs REGULATE ROS PRODUCTION AND SIGNALING
(ROS DOWNSTREAM OF RLKs)

The large variety of RLKs enables perception of a wide rage of
signaling molecules, which can act as ligands and activate RLKs
upon binding (Greeff et al., 2012). Ligands primarily bind to their
receptors in a noncovalent manner, often via hydrogen bonds or

hydrophobic interactions (Hohmann et al., 2017). Ligand binding
can induce the formation of multimeric complexes involving ac-
tivated receptors, coreceptors, and intracellular kinases (Couto
and Zipfel, 2016). This process further triggers the phosphory-
lation of a wide range of different substrates, such as RBOHs,
which orchestrate cellular responses.
The production of O2

$2 molecules by RBOHs, and their sub-
sequent dismutation into H2O2 both spontaneously and enzy-
matically via apoplastic superoxide dismutases has been
described for numerous processes downstream of RLK acti-
vation. These processes range from the recognition of microbe-
associated molecular patterns (MAMPs) and host-derived
damage-associated molecular patterns (DAMPs) to the control
of plant development (Table 1). The Arabidopsis genome
encodes10RBOHs involved indifferentphysiological processes
(Suzuki et al., 2011). Two RBOH isoforms, RBOHD and RBOHF,
play major roles in the responses to abiotic and biotic stimuli.

Figure 1. RLK-Related ROS Production, Perception, and Signaling Pathways.

Apoplastic ROS are produced by the activation of plasmamembrane-localized NADPH oxidases (RBOHs) and cell wall peroxidases. RLKs, in concert with
coreceptors, RLCKs, small GTPases, andheterotrimericG-proteins, control the activity of RBOHs. In addition to controllingRBOHactivity, RLKcomplexes
also regulate ROS-independent signaling components, e.g., MAPK cascades. Apoplastic ROS production leads to Ca2+ influx and Ca2+-dependent
activation of RBOHs. RLK signaling can also mediate inhibition of H+-ATPase activity leading to an increase of apoplastic pH. Sensing of ROS by putative
RLKs in the apoplast and following influx through aquaporins by intracellular proteins leads to activation of ROS-dependent signaling components. ROS-
dependent/-independent signaling and MAPK signaling are integrated to establish signal specificity. PRXs, peroxidases; Gabg, heterotrimeric G-protein
subunits; MPK, mitogen-activated protein kinase; MPKK, MAPK kinase; MPKKK, MAPKK kinase; SOD, superoxide dismutase. Detailed descriptions of
specific regulatory mechanisms are provided in the main text.
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RBOHs are synergistically regulated by phosphorylation and
calcium (Ca2+) binding to EF-hand domains in the N-terminal
cytosolic region (Kärkönen and Kuchitsu, 2015). While RLKs
might stimulate extracellular ROS production via several
mechanisms, genetic and biochemical analyses have high-
lighted two classes of signaling components by which RLK
activation controls RBOH activity: receptor-like cytoplasmic
protein kinases (RLCKs) and small guanine nucleotide binding
proteins, the so-called Rac/Rho-like guanine nucleotide ex-
change factors (Rac/ROP GEFs) (Figure 1). RLCKs represent
a subset of RLKs that lack the extracellular and transmembrane
regions and are used by several RLKs as downstream signaling
components (Table 1). Rac/ROP GEFs belong to the Ras and
Rho subfamilies of the Ras superfamily of small GTPases and
function as molecular switches in many signaling cascades (Wu
et al., 2011; Table 1). Cell wall peroxidases also contribute to
apoplastic ROS production (Daudi et al., 2012), although little is
known about their regulation.

The activation of ROS production downstream of multiple in-
dependent RLKs (Table 1) highlights the notion that ROS bursts
are a central element of RLK signaling. However, the precise
messages conveyed by the RLK-triggered ROS burst have yet to
be decrypted.

RLCKs Connect RLKs with ROS Production

The activation of RBOHs byRLCKs is awell-recognized response
to MAMPs (summarized in Table 1). Well-characterized MAMPs
include bacterial flagellin (epitope flg22), elongation factor Tu
(EF-Tu; epitopes elf18 and elf26), and fungal chitin. The recognition
of ligands by the respective receptors FLAGELLIN-SENSITIVE2
(FLS2),EF-TURECEPTOR(EFR)orLysinmotif (LysM)-CONTAINING
RECEPTOR KINASE5 (LYK5), and CHITIN ELICITOR RECEPTOR
KINASE1 (CERK1) triggers the formation of heteromeric complexes
with their respective coreceptors, ultimately leading to the activation
of the RLCK BOTRYTIS-INDUCED KINASE1 (BIK1; Couto and
Zipfel, 2016). Activated BIK1 phosphorylates RBOHD and thereby
initiates ROS production (Kadota et al., 2014). Likewise, BIK1 plays
a central role inDAMPsignaling (Table 1). The receptor for theDAMP
AtPEP1, PEP RECEPTOR1 (PEPR1) interacts with and phosphor-
ylates BIK1 in vitro (Liu et al., 2013). Phosphorylation of RBOHD by
BIK1 is required for AtPep1-induced ROS production (Kadota et al.,
2014). These findings suggest that the binding of AtPep1 to PEPR1
triggers BIK1 activation and induces ROS production by RBOHD.
These examples emphasize the essential role of BIK1 in activating
ROS production downstream of MAMP/DAMP receptors.

While it is unclear whether different RLKs phosphorylate the
same residues in BIK1 (Lu et al., 2010; Lin et al., 2014), the tar-
geting of different sites could adjust the activity and selectivity of
BIK1 toward different substrates. Importantly, BIK1 is not the only
RLCK that interacts with RLKs (Zhang et al., 2010). For example,
theRLCKPBS1-LIKE1 (PBL1) interactswithFLS2andPEPR1and
is phosphorylated upon treatment with flg22 (Zhang et al., 2010; Liu
et al., 2013). However, it is unclear whether PBL1 is directly phos-
phorylated by FLS2 or PEPR1. Furthermore, PBL1 interacts with
RBOHD and contributes to flg22-induced ROS production (Kadota
et al., 2014) but has not been shown to phosphorylate RBOHD.
However, it is conceivable that PBL1 might be phosphorylated by

RLKsandcan itself phosphorylateRBOHs inamanner similar to that
of BIK1. These different RLCKs could represent different signaling
modulesor couldbespecific todistinct cells or tissues. It is likely that
RLCKs modulate the repertoire of responses by phosphorylating
diverse sets of substrates, thereby ultimately helping to establish
signaling specificity.

Small G-Proteins Control ROS Production Downstream
of RLKs

In rice (Oryza sativa), the control of intracellular signaling events
downstream of chitin perception relies on RacGEF rather than
RLCKs (Table 1). Upon chitin treatment, OsCERK1 associates
with CHITIN ELICITOR BINDING PROTEIN (Shimizu et al., 2010).
Subsequently, OsCERK1 phosphorylates RacGEF1, which acti-
vates the small GTPase Rac1. Rac1 then stimulates ROS pro-
duction by RBOHB (Akamatsu et al., 2013).
The regulation of ROS production by Rac/ROP downstream

of RLK activation is also important for controlling plant growth
and development. In Arabidopsis, FERONIA (FER), a member of
the Catharanthus roseus RLK1-like kinase family (CrRLK1L),
perceives the RAPID ALKALINIZATION FACTOR (RALF) peptide
to inhibit primary root elongation (Haruta et al., 2014). Other
CrRLK1L kinases are also thought to recognize polysaccharides
or glycosylated proteins to monitor cell wall integrity and regulate
cell expansion (Boisson-Dernier et al., 2011; Lindner et al., 2012).
In roots, FER interacts with ROPGEF1, which then recruits and
activates ROP2 (Duan et al., 2010), which in turn potentially ac-
tivates RBOHC/ROOT HAIR DEFECTIVE2 (RHD2; Jones et al.,
2007). The FER-ROPGEF-ROP module also controls ROS-
mediated pollen tube reception in the female gametophyte
(Duan et al., 2014). ROS accumulation is essential for pollen
tube growth and relies on RBOHH and RBOHJ, as evident from
the male sterility phenotype of rbohH rbohJ plants (Kaya et al.,
2014). Two members of the CrRLK1L kinase family, ANXUR1
(ANX1) and ANX2, function upstream of RBOHH and RBOHJ
(Boisson-Dernier et al., 2013), likely contributing to the control
of their ROS production activity, as anx1 anx2 double mutants
phenocopy the male sterility of rbohH rbohJ plants. Interestingly,
ROPGEF1 is also phosphorylated by the leucine-rich repeat (LRR)-
RLK POLLEN-SPECIFIC RECEPTOR-LIKE KINASE2 (PRK2),
forming a complex with PRK2 and ROP1 that participate in the
control of pollen tube growth (Chang et al., 2013). However, it is
currently unclear whether PRK2-ROPGEF1-ROP1 controls ROS
production. Similarly, it is unknown whether ANXs phosphorylate
ROPGEFs. ActivatedROP1 could be a key element in regulating the
activity of RBOHH and RBOHJ downstream of ANXs and PRK2. In
addition to FER, ANX1, and ANX2, the CrRLK1L kinase THESEUS1
(THE1) also appears to be involved in ROS-dependent processes
(Table 1; Denness et al., 2011). However, their interactions with
ROPGEFs or ROPs have not been demonstrated. It is plausible that
all CrRLK1L kinases that initiate apoplastic ROS production could
activate a similar set of ROPGEFs, thus making them central reg-
ulators of ROS production downstream of RLK activation.

Integration of RLCK and Rac/ROP GEF Signaling Modules

CrRLK1L kinases serve as an excellent example demonstrating
that the control of ROS production by RLKs is not necessarily
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facilitated by a singlemechanism. A suppressormutant screen for
male sterility in the anx1 anx2 double mutant identified amutation
in the RLCK MARIS (MRI) that stimulates its kinase activity. Hy-
peractive (but notwild type)MRI partially rescued themale sterility
of anx1 anx2 and rbohH rbohJ double mutants (Boisson-Dernier
et al., 2015), suggesting that MRI is capable of activating other
RBOHs. This hypothesis is in line with the ability of hyperactive
MRI to rescueRBOHC/RHD2-dependent root hair growth defects
in fer (Boisson-Dernier et al., 2015). To gain more insight into the
integration of MRI into CrRLK1L signaling, it would be interesting
to assess ROS accumulation in plants with hyperactive and
kinase-deadMRI. In summary, these findings suggest thatRLCKs
and Rac/ROP GEFs might function together. Furthermore, an-
other class of GTPases, heterotrimeric G-proteins, also function
in the receptor-RLCK system. Under resting conditions, hetero-
trimeric G-proteins interact with the FLS2-BIK1 complex and
attenuate BIK1 degradation (Liang et al., 2016). In response to
flg22, G-proteins stimulate ROS production, likely by helping to
activate RBOHD.
While the regulation of RBOH through RLCKs and Rac/ROP

GEF signaling modules is well described, the direct regulation of
RBOH by RLKs is a largely unexplored research direction. BRI1-
ASSOCIATED KINASE1 (BAK1) interacted weakly with the N
terminus of RBOHD in vitro, but the in planta significance of this
interaction is unclear (Kadota et al., 2014). A survey of public
interactome data suggests that RLKs such as cysteine-rich
receptor-like kinases (CRKs) can interact with RBOHs (Jones
et al., 2014), which is in agreement with the results of a functional
analysis of crk mutants. CRKs are involved in ROS-related pro-
cesses, suchas the regulationofMAMP-inducedROSproduction
and stomatal closure (Bourdais et al., 2015). Furthermore, CRKs
associate with other RLKs, such as FLS2 (Yeh et al., 2015) and
BAK1 (Yadeta et al., 2016). Taken together, this emerging evi-
dence supports a potential role for CRKs in the regulation of ROS
production by RBOHs. However, the exact mechanism of how
CRKs influence apoplastic ROS production is still unclear.

RLKs Positively and Negatively Control ROS Production

Many different receptors and processes positively regulate ROS
production (Table 1). However, negative regulation is equally
important for helping plants avoid the consequences of un-
restricted ROS accumulation. Unlike BIK1 and PBL1, the RLCK
PBL13 negatively regulates ROS production in the absence of
flagellin, as evident from theenhancedMAMP-inducedROSburst
in pbl13 plants and the disruption of the PBL13-RBOHD in-
teraction by flg22 treatment (Lin et al., 2015). Similarly, Arabi-
dopsis mutants for LysM RLK1-INTERACTING KINASE1 (LIK1),
an LRR-RLK, show higher ROS production in response to chitin
than the wild type (Le et al., 2014). CERK1 phosphorylates LIK1 in
a chitin-independent manner (Le et al., 2014), but the relevance of
this activity has not been clarified. These data suggest that LIK1
negatively regulates ROS production, but a potential interaction
between LIK1 and RBOHs has not yet been demonstrated. In-
triguingly, FER, which activates RBOHC/RHD2 as described
above, might also negatively regulate RBOHF-mediated ROS
production. FER directly interacts with ROPGEFs, which acti-
vate ROP11. Activated ROP11 interacts with ABSCISIC ACIDT
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INSENSITIVE2 (ABI2), which subsequently inhibits OPEN
STOMATA1 (OST1;Yuetal., 2012).OST1phosphorylatesRBOHF
andpotentially regulates itsactivity (Sirichandraetal., 2009). Thus,
FER might counteract the activation of RBOHF by OST1 via
ROPGEFs, ROP11, and ABI2. FER also influences ROS pro-
duction through its role as a scaffold protein. Depending on
binding of different RALF peptides to its ectodomain, FER can
either promote or inhibit receptor complex formation and sub-
sequentsignaling (Stegmannetal., 2017).Moreover, anotherRLK,
LecRK-V.5, negatively affects ROS production in guard cells in
response to MAMPs and the plant hormone abscisic acid (ABA;
Desclos-Theveniau et al., 2012), suggesting that, depending on
the context, RLKs can negatively regulateRBOH-dependent ROS
production.

The positive and negative regulation of ROS production are
tightly integrated to provide fine-tuned control, with RLCKs and
Rac/ROPGEFs possibly functioning as a central integration node
(Table 1). The brassinosteroid (BR) signaling mechanism illus-
trates thecomplexity of this regulatorybalance.BRsareperceived
by the LRR-RLK BRASSINOSTEROID INSENSITIVE1 (BRI1; Li
andChory, 1997) and induceanRBOH-dependentROSburst (Nie
et al., 2013). Like many MAMP/DAMP receptors, the hormone
receptor BRI1 associates with its coreceptor BAK1 in response to
BR, resulting in BRI1 activation (Li et al., 2002). Subsequently,
BIK1 is phosphorylated by BRI1 and released from the receptor
complex. In addition to BIK1, BRI1 phosphorylates BR signaling
kinases (BSKs; Tang et al., 2008); these RLCKs might activate
RBOH-dependent ROS production via mitogen-activated protein
kinase (MAPK) cascades. However, other downstream compo-
nents of BR signaling, such as the transcription factors BRI1 EMS
SUPPRESSOR1 (BES1) and BRASSINAZOLE RESISTANT1
(BZR1), inhibit RBOH-dependent ROS production (Deng et al.,
2016). Moreover, BRI might also counteract extracellular ROS
production by negatively controlling peroxidase expression (Kim
et al., 2012). In summary, it appears that BR treatment not only
induces, but also counteracts, ROS production. While some
questions remain, it is plausible that, considering the functions
of BIK1 described above, BIK1 phosphorylates RBOHD to
promote BR-induced ROS production. Other factors that
control BR-induced ROS production remain to be determined.
It is tempting to speculate thatRBOHactivationmight represent
the first response toBR,while responses that rely on changes in
gene expression could occur later.

Taken together, multiple lines of evidence link the processes
controlled by RLKs and ROS signaling (Table 1). Through
“guilt-by-association,” it can be postulated that RLKs, which
employ the RLCK and Rac/ROP GEF modules discussed
above,mightmodulate ROSsignaling. Thus far, the direct ROS
dependency of RLK signaling has been ascertained in only
a few cases. As shown in Table 1, many elements that regulate
ROS production downstream of RLKs have yet to be identified
or are insufficiently understood. The ubiquitous nature of ROS
production in response to RLK activation strongly suggests
that ROS play central but incompletely characterized roles in
RLK signaling. The conservation of RLK-associated protein
complexes might reflect the importance of robust ROS pro-
duction, which can be adjusted through the integration of
parallel signaling pathways.

Disentangling ROS-Dependent and
ROS-Independent Responses

SinceROSproduction isnot theonly response toRLKactivation, it
is important to determine which parts of a signaling pathway and
the eventual outcomes are dependent or independent of ROS.
These separate downstream processes might not be readily
separated from each other. Indeed, a strong overlap between
responses to, e.g., elicitation with MAMPs and the direct appli-
cation of ROS, is visible at the gene expression level. However, in
addition, clear treatment-specific effects on gene expression
patterns can be observed (Vaahtera et al., 2014; Bourdais et al.,
2015). Furthermore, such signal specificity can already be ob-
served at the level of intermediate responses, such as ROS-
induced Ca2+ fluxes (Evans et al., 2005). These findings support
the notion that ROS, as well as RLKs, can trigger both generic
and highly specific responses.
The activation of MAPKs downstream of FLS2 serves as an

excellent model illustrating the existence of ROS-dependent and
-independent processes. Both pathogen attack and the direct
application of ROS lead to the activation of MPK3 and MPK6
(Ahlfors et al., 2004). However, FLS2-dependent activation of
RBOHD is not required for the activation of MPK3 and MPK6 in
response to bacterial pathogens (Xu et al., 2014). By contrast, the
Malectin-like/LRR-RLK IMPAIREDOOMYCETESUSCEPTIBILITY1
(IOS1;Yehet al., 2016), a component of theFLS2 receptor complex,
and LecRK-VI.2 (Singh et al., 2012) are required for the activation of
MPK3andMPK6but not for theROSburst.While the identities of all
complexes involving IOS1 remain to be elucidated, it is likely that
IOS1 serves as a common node leading to MAPK activation. Since
Malectin-like RLKs are thought to sense cell wall damage (Table 1),
IOS1 might convey information about the status of the cell wall to
controlMAPKactivation. BothROSandpathogens damage the cell
wall, whichmight be sensed by IOS1 to triggerMAPK activation. To
test this hypothesis, it would be interesting to investigate the acti-
vation of MAPKs in the ios1 mutant upon ROS treatment.
As described above, BIK1 and PBL1 positively regulate RBOH-

dependent ROSproduction, whereas PBL13 negatively regulates
this process. However, themechanisms underlying the seemingly
opposite functions of RLCKs are currently unclear. These RLCKs
might phosphorylate different amino acids within RBOHs.
Moreover, in addition to common sets of substrates, including
RBOHs, RLCKs might also phosphorylate specific substrates to
establish signaling specificity downstream of RLK activation.
Analogously, such selectivity might also be attributed to ROP-
GEFs. The mechanisms that dictate the interaction bias between
RLK kinase domains and cytoplasmic signaling components
remain to be elucidated. Clearly, the RLK kinase domain has
a major effect on the outcome of signaling. However, kinase
domains of closely related RLKs have overlapping functions. For
example, swapping the kinase domains betweenCrRLK1L kinase
family members can complement the fer mutant phenotype
(Kessler et al., 2015), indicating that the kinase domains of
CrRLK1Ls can substitute for each other. By contrast, evolution-
arily distant kinases likely display less overlap in their substrates,
as illustrated by the kinase domain of WALL-ASSOCIATED
KINASE1 (WAK1), which is sufficient to mediate responses mir-
roring treatment with oligogalacturonides, evenwhen fused to the
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ectodomain of EFR (Brutus et al., 2010). These two cases show
that the kinase domain strongly contributes to downstream sig-
naling specificity. However, kinase selectivity might be less im-
portant between closely related RLKs. Awide range of substrates
might allow dynamic feedback regulation to occur between RLK
signaling and other cellular processes.

THE APOPLAST: AN ARENA FOR ROS SIGNALING

Theapoplastic concentrationsof themajor redoxbuffersGSHand
ascorbate (AA) are orders of magnitude lower than those in the
cytoplasm. While the cytoplasmic concentration of GSH is in the
millimolar range (Koffler et al., 2013), apoplastic GSH is barely
detectable (Vanacker et al., 1998; Koffler et al., 2013). Therefore,
despite the physiological significance of apoplastic GSH me-
tabolism (Tolin et al., 2013), it is still unclear whether apoplastic
GSHserves as adonor of reducing equivalents or purely functions
in signaling (Zechmann, 2014). Similarly, apoplastic AA contrib-
utes little to the total leaf AA pool (Zechmann et al., 2011).
Moreover, even under standard growth conditions, most apo-
plastic AA is oxidized, while over 90%of total leaf AA is present in
the reduced form (Veljovic-Jovanovic et al., 2001; Booker et al.,
2012). As the antioxidant capacity of apoplastic AA is limited,
oxidative AA derivatives are thought to function as signaling
molecules (Tran et al., 2013). Apoplastic AA might also buffer
“redox noise” and restrict the perception of extracellular ROS
below the threshold level. Consequently, the low abundance of
GSH and AA extend the half-life of H2O2, the most stable form of
ROS (Mattila et al., 2015), from milliseconds (as observed in the
intracellular environment) to seconds (Costa et al., 2010), thereby
enabling diffusion of H2O2 through the apoplast for cell-to-cell
signaling. Thus, the unique physicochemical conditions of the
apoplast, i.e., low redox buffering capacity and lowpH (discussed
below), make it well suited for the generation and propagation of
ROS signals.

ROS Are Perceived via Oxidative
Posttranslational Modifications

In contrast to signaling molecules that interact with macromo-
lecular domains within receptor proteins (Hohmann et al., 2017;
Table 1), ROS directly modify amino acid residues, most promi-
nently cysteine and methionine. This activity results in covalent
oxidative posttranslational modifications (PTMs) of a large pool of
potential ROS targets (Figure 2A). Most ROS signaling pathways
utilize the oxidation of sulfur atoms within the thiol groups of
cysteine residues as the initial perception event (Waszczak et al.,
2015). In sensor proteins, cysteine reactivity is tightly controlled
and depends on the ability of thiol groups (-SH) to form thiolate
anions (-S2), which are prone to oxidation. Low pH favors the
protonated state of thiols, while at elevated pH, reactive thiol
groups are present in dissociated form. Hence, low pKa cysteine
residues, i.e., residues that form thiolate anions at physiological
pH (pKa < pH; Figure 2A), are the first points of ROS perception
(Roos et al., 2013). However, excessive differences between the
pKa and pH of the environment can reduce thiolate reactivity
(Ferrer-Sueta et al., 2011). Thus, cysteines are most prone to
oxidation at pH levels close to their pKa (Roos et al., 2013). ThepKa

of cysteine residues is determined by the local electrostatic en-
vironment, especially hydrogen bonds between thiolate and
proximal amino acids (Roos et al., 2013). Therefore, the reactivity
of cysteine residues can differ significantly within a single protein
molecule.
In the presence of H2O2, reactive thiols undergo oxidation to

sulfenic acid (-SOH), which usually serves as a gateway to
further oxidativemodifications (Figure 2A). Thesemodifications
include oxidation to sulfinic (-SO2H) and sulfonic (-SO3H) acid,
which, with few exceptions, leads to protein damage (Waszczak
et al., 2015). Overoxidation of sulfenic acid can be prevented by
S-glutathionylation (-SSG) or the formation of intra- and in-
termolecular disulfide bonds (Figure 2A). Within the intracellular
environment, multiple proteins undergo S-glutathionylation
(Zaffagnini et al. 2012); however, considering the negligible
amount ofGSHpresent in theapoplast, thisPTMmight not be as
prevalent within this compartment. Importantly, cysteine resi-
dues are not the only physiological ROS targets. Oxidation of
methionine residues has recently emerged as an additional
mechanism for ROS perception (Figure 2A; Jacques et al.,
2015). Furthermore, the metal-catalyzed dissipation of H2O2

produces highly reactive HO$, which reacts with amino acid
residues, resulting in protein carbonylation and subsequent
aggregation/inactivation.
Apoplastic posttranslational modifications might also in-

volve reactions arising in the presence of nitric oxide (NO). NO
is synthesized in the apoplast during the spontaneous re-
duction of nitrite at acidic pH and enzymatically by nitrite
reductases and polyamine oxidases (Groß et al., 2013). Within
the intracellular environment, NO reacts with GSH to form
S-nitrosoglutathione (GSNO), which is thought to serve as
a physiological NO donor (Corpas and Barroso, 2014).
Treatment with GSNO leads to S-nitrosylation of cysteine
residues within multiple proteins (Astier et al., 2012); however,
the significance of this PTM in the apoplast environment re-
mains to be determined. NO might also react with O2

$2 to form
peroxynitrite (ONOO2). Peroxynitrite can react with cysteine
thiolate anions, leading to the formation of cysteine sulfenic
acid (Zeida et al., 2013). Furthermore, the formation of ONOO2

results in the nitration of tyrosine residues; the existence of this
reaction in the plant apoplast has only recently been docu-
mented (Szuba et al., 2015).
Like other posttranslational modifications, oxidative mod-

ifications can alter protein conformation or stability, thereby
enabling ROS perception (Waszczak et al., 2015). However,
themere presence of a ROS-sensitive protein does not ensure
a ROS perception event. In addition to physicochemical re-
strictions, the reactivity of redox-sensitive amino acids also
depends on their steric accessibility, with solvent-exposed
residues being more prone to oxidation than other residues.
This accessibility depends on protein structure, which might
be subject to dynamic changes controlled by other PTMs. For
example, phosphorylation might provide a priming event that
orients redox-sensitive amino acids into an accessible con-
figuration (Scotto et al., 1998). Therefore, the activation of
antagonistic or synergistic signaling networks might help
control ROS perception events and provide additional flexi-
bility for the modulation of signaling outcomes.
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Apoplastic pH: An Overlooked Component of
ROS Signaling?

Considering the pH dependence of thiol oxidation processes, the
low pH in the apoplast might be themost crucial factor controlling
cysteine-based ROS perception in this compartment. The resting
pH of the apoplast typically ranges between 4.5 and 5.5. There-
fore, it can be expected that under such conditions, most thiol
groups are protonated and not prone to oxidation. However, RLK
activation and ROS accumulation frequently coincide with apo-
plast alkalinization (Table 1). Alkalinization of the apoplast can
occur in response to a plethora of stimuli, including exposure to
pathogens (Felle et al., 2005), MAMPs, and DAMPs, as well as
ligands that regulate plant development (Table 1). Furthermore,
salt stress (Geilfus and Mühling, 2013), auxin treatment (Gjetting
et al., 2012), and mechanical cues (Monshausen et al., 2009) are
potent stimulators of apoplast alkalinization.

Apoplast alkalinization is attributed to the inhibition of plasma
membrane H+-ATPases, which are responsible for establishing
membrane potentials. Inhibition of H+-ATPases, combined with
the activation of anion efflux channels, leads to plasma mem-
brane depolarization and the subsequent activation of voltage-

dependent K+ efflux channels. H+-ATPases are regulated by
phosphorylation, with specific sites inhibiting or promoting the
interaction with 14-3-3 proteins, a process required for the
activation of the pump (Elmore andCoaker, 2011). The activity of
plasma membrane H+-ATPases has been linked to RLK sig-
naling. For example, perception of the RALF peptide by FER
triggers phosphorylation and inhibition of the H+-ATPase AHA2,
leading toRALF-dependent apoplast alkalinization (Haruta et al.,
2014).
As discussed above, an increase in pH might promote the

dissociation of thiols, thereby increasing the availability of
thiolate anions for reactions with hydrogen peroxide. The
pH-dependence of the reaction rates between H2O2 and free
cysteine (Luo et al., 2005), glutathione (Finley et al., 1981), and
thiols in proteins (Griffiths et al., 2002) is well documented.
Therefore, apoplastic alkalinization could facilitate the oxida-
tive modification of cysteines in redox-sensitive proteins. Im-
portantly, such amechanismwould also restrict the perception
of apoplastic ROS at low pH, thereby limiting the signaling role
of background ROS levels which, due to limited apoplast redox
buffering capacity, are likely to arise in the apoplast, even under
control conditions.

Figure 2. Overview of ROS Perception Mechanisms.

(A) Oxidative posttranslational modifications of cysteine and methionine residues. Alkalization of the apoplast is expected to increase the availability of
thiolate anions for reaction with H2O2. The oxidation of methionine residues is pH independent within the apoplastic pH range.
(B)RLK-assistedROSperceptionmechanisms. Asterisks indicate pH-dependent reactions, assuming that the oxidized amino acid residues are cysteines.
See the main text for a detailed description. Prx, peroxiredoxin.
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RLKs MEDIATE APOPLASTIC ROS PERCEPTION (RLKs
DOWNSTREAM OF ROS)

RLK ectodomains and other signaling molecules, such as RLK
ligands, are exposed to the apoplastic environment and are
thereforeconfrontedwithhighlyoxidizingconditions.Considering
thehighly reactive nature ofROS, a functional interaction between
ROS and RLK signaling could arise in the apoplast. While tran-
scriptomic responses to ROS are specific to the origin and type of
ROS molecules (Vaahtera et al., 2014; Willems et al., 2016), it is
unlikely that the properties of ROS alone can explain this signaling
specificity. Instead, ROS signaling pathways can interact with
parallel signaling cascades initiatedby, for instance, theactivation
of RLKs (Figure 1) to fine-tune the signaling outcome. Despite the
evidence supporting the interplay betweenROSandRLKs, little is
knownabout howplants perceive apoplasticROS.Consequently,
a major issue in plant ROS biology is the identification of sensors
that transduce ROS signals into the cell for downstream
responses.

Perception of Apoplastic ROS at the Place of Origin

At least two models for the perception of apoplastic ROS signals
emerge from the literature.Basedon thenatureof theprimaryROS
sensor, the models (which are not mutually exclusive) can be
classified as direct (the primary ROS sensor serves as an effector)
or indirect (theROSsensor conveys the signal to the effector). The
direct ROS perception model assumes that apoplast-localized
soluble or membrane-associated proteins exist that continuously
monitor the redox status of the apoplast and directly relay the
information to downstream signaling components, simulta-
neously fulfilling the roles of sensor and effector. This scenario
could involve the direct oxidation of RLK ectodomains and the
subsequent activation of signaling functions (Figure 2B). The in-
direct ROS perceptionmodel assumes that extracellular peptides
ormetabolites exist that, uponoxidation, bind toRLKs (Figure 2B).
Alternatively, the oxidizedROSsensor proteinsmight oxidizeRLK
ectodomains via a redox relay mechanism (Figure 2B).

The oxidation of RLK ectodomains or the binding of oxidized
peptides or metabolites may lead to differential RLK complex
formation, phosphorylation events, and subsequent signal
transduction (Figure 2B). While such signaling components
have not yet been identified, CRKs have frequently been as-
sociated with processes involving apoplastic ROS accumula-
tion. Transcriptional regulation by apoplastic ROS, the presence
of conserved cysteines in the ectodomain, and functional
analysis of crk mutants suggest that CRKs are intricately in-
volved in ROS signaling (Chen, 2001; Bourdais et al., 2015). The
recent report of a cysteine-dependent function for CRK28
(Yadeta et al., 2016) further supports this hypothesis. However, it
will be critical to investigate whether the cysteines in the CRK
ectodomains fulfill signaling functions or are purely relevant for
the structure of the domain.

Other data support the relevance of interactions between plant
peptides and RLKs in ROS perception events (Figure 2B). One
example involves the extracellular GRIM REAPER (GRI) protein
(Wrzaczek et al., 2015). Upon accumulation of ROS in the apo-
plast,GRI is cleavedbyMETACASPASE9. The resulting11-amino
acid GRI peptide binds to PRK5 to initiate cell death (Wrzaczek

et al., 2015).While themechanismscontrollingGRI proteolysis are
currentlyunknown, it isunlikely thatGRI/PRK5signaling is thesole
route for initiating cell death in response to apoplastic ROS.
Oxidatively modified metabolites or cellular components might
form another class of RLK ligands; the growing portfolio of cell
wall-derived signaling molecules (Wolf et al., 2012) supports the
existence of such mechanisms in the apoplast.
Multiple lines of evidence support the signaling function of

antioxidant proteins; for example, ROS scavengers such as
peroxiredoxins (Sobotta et al., 2015) and glutathione peroxidases
(Miao et al., 2006) transduce oxidative signals to effector proteins
via redox relay. These enzymes undergo H2O2-dependent oxi-
dation. Once oxidized, the enzymes interact with and oxidize
effector proteins, thereby altering their biological activity (Figure
2B). The sensitivity of such mechanisms stems from the high rate
constants for reactions between H2O2 and specialized ROS
scavengers (Marinho et al., 2014). Importantly, in many cases, an
effector protein might not be limited to interactions with a single
sensor. Such a lack of selectivity could helpmergemultiple inputs
into a single output reaction, thus allowing for signal integration.
Despite the physiological importance of apoplastic ROS ac-

cumulation, until recently, virtually no targets for apoplastic ROS
had been documented. However, the discovery of the activation
of voltage-dependent STELARK+OUTWARDRECTIFIER (SKOR)
by H2O2 (Garcia-Mata et al., 2010) provided compelling evi-
dence for the occurrence of such signaling. In SKOR, channel
opening induced by membrane depolarization exposes Cys-
168 to the apoplastic environment, thereby allowing H2O2 to
reversibly enhance SKOR activity (Garcia-Mata et al., 2010).
Future research into apoplastic ROS perception will likely result
in the identification of additional proteins that are regulated in
a similar ROS-dependent manner.

Intracellular Sensing of Apoplastic ROS

The activity of apoplastic ROS might not be limited to the ex-
tracellular environment. Indeed, a growing body of evidence
supports the intracellular sensing of apoplastic ROS (as depicted
in Figures 1 and 2B). Import of H2O2 through aquaporins is a well-
recognized mechanism in animal cells (Satooka and Hara-
Chikuma, 2016). However, while theH2O2permeability of plant
aquaporins was documented a decade ago (Bienert et al.,
2007), its functional significance has been described only
recently (Tian et al., 2016). It remains unclear how imported H2O2

avoids intracellular ROS scavengers and how cells differentiate
between imported and intracellular ROS. Conceptually, this
could involve a localized decrease in ROS scavenging capacity
modulated by RLKs. In animal cells, the activation of plasma
membrane-localized receptors triggers the phosphorylation
and inhibition of Peroxiredoxin I, allowing limited H2O2 buildup
and oxidation events to occur (Woo et al., 2010). Alternatively,
overoxidation of intracellular ROS scavengers, i.e., peroxir-
edoxins, could enable local accumulation of imported H2O2

(“floodgate theory”; Wood et al., 2003). Both mechanisms could
lead to the formation of H2O2 maxima (Mishina et al., 2011).
Interestingly, a number of membrane proteins, including RLKs,
localize to distinct membrane microdomains in plants (Jarsch
et al., 2014). The distance of a protein to the site of ROSmaxima
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affects its likelihood of becoming a target, which allows ROS
perception events to be controlled through spatial-temporal
dynamics, i.e., positioning sensors in close proximity to producers.
Thus, the joining of components of dedicated signaling networks
togetherbymicrodomainsmight representoneway inwhichnearby
effectors aremodified and signals are passed from theROS source
in a concentration-dependent gradient. Thismodel is in agreement
with the recentdiscovery ofoxidativePTMsof intracellular domains
of cell surface receptors in animals (Truong et al., 2016). Con-
ceptually, the hypothesis of local ROS maxima is well established,
but the proposed model does not provide a sufficient explanation
for the problem of differentiation between intracellular and apo-
plastic ROS sources. Considering the short lifetime of ROS, the
strong cytoplasmic redox buffering capacity, and the level of
customization observed in response to different forms of ROS, the
apoplastic perception scenario appears more plausible. However,
the ROS perception models described above are not mutually
exclusive, and they all likely contribute to downstream signaling.

Are RLKs and ROS Modules Integrated during
Long-Distance Signaling?

Research on both RLK and ROS signaling frequently focuses on
local processes. Such approaches are justified by the physio-
logical relevance of immediate local responses within specific
cells and their immediate neighbors. However, systemic signal
transduction by peptides, non-peptide plant hormones, carbo-
hydrates, and other molecules plays important roles in relaying
information between tissues and organs in a plethora of envi-
ronmental and developmental responses.

During long-distance nutritional signaling, secreted peptides
transported through the vasculature are perceived by RLKs
(Okamoto et al., 2016). On the other hand, ROS have traditionally
been considered unsuitable for systemic signaling due to their
short lifetimes and high reactivity. However, in addition to local
ROS production, treatments such as wounding and abiotic cues
induce a rapid self-propagating “ROS wave” in the apoplast
through the activation of RBOHD in each cell along a systemic
path (Miller et al., 2009). It is conceivable that an RLK-dependent
ROS burst might initiate a ROS wave as, for instance, the acti-
vation ofPEPRsignalinghasbeensuggested toconnect local and
systemic responses (Ross et al., 2014). Ca2+ is a key regulator of
theROSwave (Gilroyet al., 2016). Interestingly,Nissenetal. (2016)
proposed that the CrRLK1L kinase family could be involved in
integratingROSandCa2+ signaling bymonitoring the statusof the
cell wall, at least locally. However, since apoplastic ROS can also
affect cell wall composition and integrity (Lee et al., 2013),
CrRLK1L kinases might participate in the propagation of ROS
waves. Furthermore, apoplastic pHchangesalsocontribute to the
systemic signaling wave (Monshausen et al., 2007; Geilfus and
Mühling, 2013). As apoplastic alkalinization depends on the in-
activationofplasmamembraneH+-ATPases, it is conceivable that
RLKs might also control this aspect of systemic signaling.

These collective data suggest that RLK and ROS signal
transduction functions are integrated in long-distance signaling.
However, themolecular details ofwhether andhowRLKsmightbe
connected to systemic ROS and other signaling elements await
elucidation.

GUARD CELLS, A MODEL FOR ROS AND MAMP/DAMP
PERCEPTION RESEARCH

As evident from the previous sections, many mechanisms that
control RLK-ROS signaling processes are not completely
understood. Research often benefits from the use of well-
established model systems that offer a basic framework for
future discoveries. In the context of RLK-ROS crosstalk, guard
cell signaling leading to stomatal closure is particularly well suited
for this purpose. Guard cells serve as a convenient system for
studying apoplastic signaling, as the lack of plasmodesmata iso-
lates their cytoplasm from that of the neighboring cells. Processes
controlling stomatal aperture respond to a multitude of stimuli to
balance photosynthetic CO2 uptake with water loss. Another core
function of guard cells is to control stomatal immunity, which re-
stricts theentryofpathogens intotheplant (Melottoetal.,2006).The
control of stomatal closure unites multiple signaling molecules/
events linked to RLK signaling (Figure 3), such as apoplastic ROS
(Sierla et al., 2016), Ca2+ signaling (Laanemets et al., 2013), and
apoplast alkalization (Merlot et al., 2007).

Stomatal Closure Requires a Plethora of Signaling Events

The initial signal perception events controlling stomatal closure in
response to abiotic stimuli, such as high CO2, low humidity,
darkness, andair pollutants, usedifferent receptors. However, the
downstream processes involve components of a relatively well-
studied stomatal ABA signaling pathway, with the protein kinase
OST1/SnRK2.6 acting as a regulatory hub (Figure 3). In response
to ABA, OST1 presumably phosphorylates RBOHF (Sirichandra
et al., 2009), which in turn triggers the accumulation of apoplastic
ROS. In addition to phosphorylation, the activation of RBOHs
depends on Ca2+ transients provided by ROS-independent Ca2+

channels (Kong et al., 2016). While RBOHF is the major RBOH
isoform involved in ABA-induced stomatal closure, RBOHD also
contributes to this process (Kwak et al., 2003). However, it is
unclear whether OST1 also phosphorylates RBOHD. Apoplastic
ROS accumulation is both necessary and sufficient to induce
stomatal closure by activating ROS-dependent inward-directed
Ca2+ channels (Kwak et al., 2003). The increase in cytosolic Ca2+

concentration activates a plethora of calcium-dependent protein
kinases that phosphorylate RBOHD and RBOHF (among other
substrates) toamplifyROSproduction (Sierlaetal., 2016).Other key
substrates of calcium-dependent protein kinases include anion
channels, with SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1)
serving as a major executor of stomatal closure (Vahisalu et al.,
2008). Undermost conditions, the activation of SLAC1 requires the
LRR-RLK GUARD CELL HYDROGEN PEROXIDE-RESISTANT1
(GHR1; Hua et al., 2012). However, the precise functions of GHR1
are not yet sufficiently understood. SLAC1-mediated efflux of
anions, combined with the deactivation of the H+-ATPase AHA1
(Merlot et al., 2007), lead to guard cell plasma membrane de-
polarizationandtheactivationofunidentifiedvoltage-dependentK+

effluxchannels,ultimatelyculminatinginstomatalclosure (Figure3).

RLKs Play Multiple Roles in Controlling Stomatal Immunity

The control of stomatal closure in response to MAMPs and
DAMPs involves the use of similar signaling components,many of
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which are not sufficiently understood. Despite the importance of
stomatal immunity, as discussed by Arnaud and Hwang (2015),
the requirement of the respective MAMP/DAMP receptors has
been ascertained only for FLS2 (Melotto et al., 2006). Therefore, it
wouldbe interesting to investigate the rolesof the respectiveRLKs
(Table 1) in the initiation of stomatal closure. According to publicly
available gene expression data, many RLKs necessary for
MAMPs/DAMPs perception are present in guard cells. However,
considering the central role of apoplastic ROS, it is conceivable
thatROSproduceduponMAMP/DAMPperception inneighboring
epidermal pavement cells contribute to stomatal closure.

The central role of OST1 in stomatal immunity is demonstrated
by thephenotypes ofost1mutants that fail to respond to flg22and
lipopolysaccharides (LPSs;Melottoetal., 2006;GuzelDegeret al.,
2015). Interestingly, BAK1, a coreceptor for manyRLKs, activates
OST1 in response to ABA, but this activation is inhibited by ABI1
and by treatment with BR (Shang et al., 2016). However, the
identity of RLKs associated with the BAK1-OST1 complex is
currently unknown. Moreover, it remains to be investigated
whether the interaction betweenBAK1andOST1canbe triggered
by the application of MAMPs.

While RBOHF plays an important role in ABA-induced stomatal
closure, RBOHD is the major isoform involved in stomatal im-
munity (Macho et al., 2012; Kadota et al., 2014), and multiple
studies describe differential RBOHDphosphorylation in response
toMAMPs (Nühseetal., 2007;Benschopetal., 2007;Kadotaetal.,
2014). In response to MAMP treatment, EFR and FLS2 activate
BIK1, which plays a major role in stimulating ROS production by
phosphorylatingSer-39,Ser-339, andSer-343ofRBOHD (Kadota
etal., 2014).Consequently, complementationof rbohDplantswith
RBOHDS39A, S339A, S343A does not restore stomatal responses to
elf18 and flg22 (Kadota et al., 2014). However, the activation
of BIK1 and apoplastic ROS production are not sufficient to
complete the process of stomatal closure. Plants deficient in
LecRK-VI.2, an RLK involved in the FLS2 receptor complex,
cannot close their stomata in response to flg22 and elf26, despite
successful activation of BIK1 and apoplastic ROS production
(Singh et al., 2012). ABA-induced stomatal closure is intact
in lecrk-VI.2, indicating that LecRK-VI.2 acts upstream or in-
dependently of ABA signaling. Another RLK, LecRK-V.5, also
negatively regulates stomatal closure in response to bacterial
pathogens andMAMPs (Desclos-Theveniau et al., 2012). The lack

Figure 3. Integration of RLKs and ROS Signaling in the Control of Guard Cell Closure.

Stomatal closure is controlled by a complex interplay of signaling pathways dependent on ABA and MAMP signaling that involve numerous RLK- and
ROS-dependent events. The figure displays a single guard cell with signaling components that have been shown to control stomatal closure. RLKs are
involved in initialMAMPperception, regulation ofROSproduction, and control of ion channels. Detailed descriptions of specific regulatorymechanismsare
in the main text. ET, ethylene; GLR, GLUTAMATE RECEPTOR; JA, jasmonates; KAT1, POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA1; PP2C,
PROTEIN PHOSPHATASE 2C; PYR, PYRABACTIN RESISTANCE; PYL, PYR1-LIKE; RCAR, REGULATORY COMPONENTS OF ABA RECEPTOR; SA,
salicylic acid; SERK, SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE; SLs, strigolactones; SOD, superoxide dismutase; YEL, yeast elicitor.
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of LecRK-V.5 results in constitutive stomatal closure due to the
accumulation of ROS within guard cells. Conversely, plants
overexpressing LecRK-V.5 cannot initiate ROS production in
response to MAMPs. Consequently, LecRK-V.5 overexpressors
are deficient in stomatal closure in response to flg22, elf26, and
LPS (Desclos-Theveniau et al., 2012). Collectively, these data
position LecRK-V.5 as a negative regulator of stomatal immunity,
acting through the inhibition of ROS accumulation. Interestingly,
LecRK-V.5 appears to also be involved in the ABA signaling
pathway, as LecRK-V.5 overexpression partially impairs stomatal
closure in response to ABA treatment (Desclos-Theveniau et al.,
2012). As described earlier, FER, which stimulates ROS pro-
duction, can also negatively regulate ABA-induced ROS accu-
mulation in guard cells (Yu et al., 2012). Considering the different
roles of RBOHF and RBOHD, guard cells could serve as a model
for further studies on the functions and modes of activation of
these isoforms. However, RBOHs are not the only sources of
apoplastic ROS, as the ROS burst in response to yeast elicitor
(Khokon et al., 2010a), chitosan (Khokon et al., 2010b), and cy-
tokinins (Arnaud et al., 2017) mainly depends on the activity of
apoplastic peroxidases. Taken together, these findings high-
light the central role of RLKs in controlling guard cell ROS
production. However, despite the physiological relevance of
guard cell ROS signaling, the initial ROS perception events
remain elusive (Figure 3).

As is the case in the responses to many abiotic stimuli, MAMP-
inducedstomatal closure requiresapoplast alkalinization,which is
achieved by the deactivation of AHA1. Plants with constitutively
active AHA1 fail to initiate stomatal immunity in response to flg22,
LPS, and virulent Pseudomonas syringae (Liu et al., 2009). This
finding is in agreement with the observation that rapid phos-
phorylation/dephosphorylation of AHAs occurs upon MAMP
treatment (Nühse et al., 2007; Benschop et al., 2007). The iden-
tities of guard cell kinases and phosphatases that regulate AHA1
activity downstream of MAMP perception are currently unknown.
Similarly, apart from the well-established function of apoplast
alkalization in the activation of voltage-dependent K+

out channels,
theprecise rolesof apoplast alkalizationarenot fully understood.
Considering the effect of apoplastic pH on oxidative post-
translationalmodifications of cysteine residues, it is conceivable
that AHA1 might help regulate apoplastic ROS signaling
processes.

Additionally, multiple hormones, pathogen effectors, and plant
metabolites play important roles in regulating guard cell signaling,
as recently reviewed by Arnaud and Hwang (2015) and Ye and
Murata (2016).

PERSPECTIVES

Traditionally, ROS were viewed as toxic by-products of cellular
metabolism or antimicrobial compounds. Currently, however,
ROSare recognized as signalingmolecules that exert control over
many plant processes. Studies in the past decade have led to the
identification of multiple mechanisms that plants use to modulate
ROS production. RLK and ROS signaling are inextricably linked:
RLKs have emerged as key regulators of apoplastic ROS bursts
and ROS production downstream of RLK activation is orches-
trated through a complex interplay of downstream signaling

components. The functional conservation of these signaling
modules highlights the central importance of the ROS burst in the
responses of plants to extracellular cues. In the future, it will be
important to identify mechanisms that allow plants to sense ROS
signals; RLKs are emerging as potential regulators of these
processes. We anticipate that the development of ROS-sensitive
probes that enable high-resolution visualization of extra- and
intracellularROSwill facilitate this research. Furthermore, asROS-
dependent responses are intertwined with intracellular sig-
naling governed by RLK kinase domains, it will be equally
important to identify components that function independently
of ROS accumulation. In this context, it will be crucial to identify
RLK phosphorylation substrates other than ROS-producing
enzymes. Future studies on the interactions between these
responses could increase our understanding of ROS signaling
specificity. Research on the integration of RLK and ROS sig-
naling with hormonal homeostasis at the whole-plant level will
provide a holistic view of long-distance signaling processes.
Ultimately, modulation of ROS-RLK crosstalk will allow ad-
justing plant growth and environmental responses in a dynamic
environment.
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