
Department of Computer Science
Series of Publications A

Report A-2017-3

Algorithms and Data Structures for
Sequence Analysis in the Pan-Genomic Era

Daniel Valenzuela

To be presented with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
CK112, Exactum on June 9th, 2017 at 12 o’clock noon.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/84364201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor
Veli Mäkinen, University of Helsinki, Finland

Pre-examiners
Szymon Grabowski, Lodz University of Technology, Poland
Alberto Policriti, University of Udine, Italy

Opponent
Gregory Kucherov, University Paris-Est Marne-la-Vallée, France

Custos
Veli Mäkinen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c© 2017 Daniel Valenzuela
ISSN 1238-8645
ISBN 978-951-51-3230-7 (paperback)
ISBN 978-951-51-3231-4 (PDF)
Computing Reviews (1998) Classification: E.4, J.3
Helsinki 2017
Unigrafia

Algorithms and Data Structures for Sequence Analysis in
the Pan-Genomic Era

Daniel Valenzuela

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
daniel.valenzuela@cs.helsinki.fi

PhD Thesis, Series of Publications A, Report A-2017-3
Helsinki, May 2017, 74+78 pages
ISSN 1238-8645
ISBN 978-951-51-3230-7 (paperback)
ISBN 978-951-51-3231-4 (PDF)

Abstract

The advent of Next-Generation Sequencing brought new challenges for bio-
logical sequence analysis: larger volumes of sequencing data, a proliferation
of research projects relying on genomic analysis, and the materialization of
rich genomic databases, to name a few. A recent example of the latter,
gnomeAD, contains more than 15,000 whole human genomes from unre-
lated individuals. Today a pressing challenge is how to leverage the full
potential of such pan-genomic collections.

Among the many biological sequencing processes that rely on computa-
tion methods, this thesis is motivated by variation calling and haplotyping.
Variation calling is the process of characterizing an individual’s genome by
identifying how it differs from a reference genome. The standard approach
is to first obtain a set of small DNA fragments – called reads – from a
biological sample. Genetic variants in the individual’s genome are detected
by analyzing the alignment of these reads to the reference. A related proce-
dure is haplotype phasing. Sexual organisms have their genome organized
in two sets of chromosomes, with equivalent functions. Each set is in-
herited from the mother and the father respectively, and its elements are
called haplotypes. The haplotype phasing problem is, once genetic variants
are discovered, to attribute them to either of the haplotypes.

The first part of this thesis incrementally builds a novel pipeline for variant
calling. We propose to replace the single reference model by a pan-genomic

iii

iv

one: a reference that comprises a large set of genomes from the same species.

The first challenge to realize this goal is to efficiently handle large collec-
tions of genomes. A useful tool for this task is the family of Lempel-Ziv
compression algorithms. We focus on two of its exponents, namely the
RLZ and LZ77 algorithms. We analyze the first, and propose some modi-
fications to both. Using them we develop a scalable index that can process
collections longer than 2TB.

With this pan-genomic read aligner we propose a novel variation calling
pipeline to go from a single reference to thousands of them.We explore
our variation calling pipeline on a mutation-rich subsequence of a Finnish
population genome. Our approach consistently outperforms the single-
reference approach to variation calling.

The second part of this thesis revolves around the haplotype phasing prob-
lem. First, we propose a general model for sequence alignment of diploid
genomes that represents diploid genomes as a pair-wise alignment. Next
we extend this model to offer a solution for the haplotype phasing problem
in the family-trio setting (that is, when we know the variants present in an
individual and in her parents). Finally, in the context of an existing read-
based approach to haplotyping, we go back to basic algorithms: we observe
that the aforementioned approach needs to prune a set of reads aligned
to a reference. We model this problem as an interval scheduling problem
and propose an algorithm that solves the problem in sub-quadratic time.
Moreover, we give a 2-approximation algorithm that runs in linearithmic
time.

Computing Reviews (1998) Categories and Subject
Descriptors:
E.4 Coding and Information Theory: Data compaction and

compression
J.3 Life and medical sciences: Biology and genetics

General Terms:
Algorithms, Design, Experimentation

Additional Key Words and Phrases:
Sequence alignment, Pan-genomics

Acknowledgements

I could not have made it this far without the support of many people to
whom I am deeply thankful.

First and foremost, to my supervisor, Professor Veli Mäkinen: thank
you for trusting me, for sharing your way of doing research, and for the
opportunity to work in exciting problems. Thank you for the freedom and
for the guidance you gave me throughout this four-year journey. I was
also fortunate in my other mentors on this journey: Alexandru I. Tomescu,
Travis Gagie and Simon J. Puglisi. Thank you for your time, patience and
guidance. I would also like to express my sincere gratitude to the present
and past members of the Genome-scale algorithmics for creating a fantastic
working environment.

I would also like to thank the institutions that have supported this
research: The Centre of Excellence in Cancer Genetics (CoECG), funded
by the Academy of Finland, the Doctoral Programme in Computer Science
(DoCS), the Department of Computer Science of the University of Helsinki,
and the Helsinki Institute for Information and Technology (HIIT).

This manuscript is based on a series of papers, and I am thankful to all
of my co-authors; it was a pleasure to work together with you. I would also
like to thank my pre-examiners Szymon Grabowski and Alberto Policriti,
for reading the entire thesis and providing helpful feedback. Thanks to
Iona Italia and Pirjo Moen too, for their help with the manuscript.

It is thanks to Gonzalo Navarro that I ended up in Helsinki: thanks for
encouraging me to take this leap, it was totally worth it!

After my M.Sc I was exploring possibilities for the future and I was
lucky enough to encounter excellent mentors, whose advices and teaching
were lasting and helped me to get through this PhD. For this I owe a special
debt of gratitude to Professor Hannah Bast and to Andres Villavicencio.

Finally, but most importantly, I want to thank my friends and loved
ones. My gratitude to you may have nothing to do with this thesis, but
friendship is the most important thing in life and I am grateful for yours.
I particularly like to thank my parents, Alejandro and Tili, for enthusiasti-

v

vi

cally supporting me in every endeavour. Finally I would like to thank my
wife Nadia, for bravely joining me in this great adventure of love. As we
build a life together you have made my life richer than ever.

Helsinki, May, 2017
Daniel Valenzuela

Original Papers

This thesis is based on the following research articles, referred as Paper I
to Paper VI in the thesis.

I Daniel Valenzuela. CHICO: A Compressed Hybrid Index for
Repetitive Collections. In Proc. 15th Symposium on Experimental
Algorithms (SEA 2016).

II Travis Gagie, Simon J. Puglisi, and Daniel Valenzuela. Analyzing
Relative Lempel-Ziv. In Proc. 23rd International Symposium on
String Processing and Information Retrieval (SPIRE 2016).

III Daniel Valenzuela, Niko Välimäki, Esa Pitkänen and Veli Mäkinen.
Pan-Genome Read Alignment to Improve Variation Calling.
Submitted.

IV Veli Mäkinen and Daniel Valenzuela. Recombination-aware align-
ment of diploid individuals. In BMC Genomics 2014 15(Suppl
6):S15

V Veli Mäkinen and Daniel Valenzuela. Diploid Alignments and
Haplotyping. In Proc. 11th International Symposium on Bioinfor-
matics Research and Applications (ISBRA 2015).

VI Veli Mäkinen, Valeria Staneva, Alexandru I. Tomescu, Daniel Valen-
zuela and Sebastian Wilzbach. Interval scheduling maximizing
minimum coverage. In Discrete Applied Mathematics. Volume 225,
2017.

vii

viii

Contents

1 Introduction 1

1.1 DNA and genetic variation 2

1.2 NGS and variation calling 3

1.3 Outline of the contributions 4

1.4 Original papers and individual contributions 5

2 Preliminaries 7

2.1 Strings . 7

2.2 Edit distance and sequence alignment 7

2.3 Graphs and trees . 8

2.4 Flow networks . 9

2.5 String matching and text indexing 9

2.5.1 Suffix tree . 10

2.5.2 Suffix array . 10

2.6 Compressed full-text indexes 11

3 Analysis of Relative Lempel Ziv with Artificial References 13

3.1 LZ77 and Relative Lempel Ziv 13

3.2 Artificial reference for RLZ 14

3.3 Theoretical analysis . 15

3.4 Experimental analysis . 17

4 CHICO: A Compressed Hybrid Index for Repetitive Col-
lections 21

4.1 Kernelization . 22

4.2 LZ77-relaxed parsings . 23

4.3 Reducing the number of phrases 23

4.4 Faster construction with RLZ 23

4.5 In practice . 24

ix

x Contents

5 Pan-Genome Read Alignment to Improve Variation Call-
ing 27
5.1 Pan-genome indexing . 27
5.2 Pan-genomic references to improve variant calling 29

5.2.1 CHIC aligner . 29
5.2.2 Pan-genome representation 31
5.2.3 Heaviest path extraction 32
5.2.4 Variant calling . 33
5.2.5 Normalizer . 33

5.3 Experiments . 34
5.3.1 Read alignment . 34
5.3.2 Variation calling . 35

6 Diploid Alignments 39
6.1 Sequence alignment and recombinations 39
6.2 Diploid to diploid similarity 40

6.2.1 A general model . 40
6.2.2 Diploid to pair of haploids similarity 42
6.2.3 Synchronized diploid to diploid alignment 44
6.2.4 In practice . 46

6.3 Haplotyping through diploid alignment 47
6.3.1 The similarity model 47
6.3.2 Dynamic programming algorithm 48
6.3.3 From m-f-c similarity to haplotype phasing 49
6.3.4 In practice . 49

7 Read Pruning as Interval Scheduling 53
7.1 Interval scheduling . 54
7.2 Problem formulation . 55
7.3 Exact solution . 55

7.3.1 Reduction to the decision version 55
7.3.2 Reduction to max-flow 56
7.3.3 Improving the running time 57

7.4 An O(n log n)-time approximation algorithm 58

8 Discussion 61

References 65

Original articles 75

Chapter 1

Introduction

The first drafts of the Human Genome were published in 2001 [47, 94].
Obtaining them was a multi-billion dollar enterprise that involved over 20
institutions in 6 countries and hundreds of researchers [18].

In contrast, during the 2010s we have witnessed a growing market for
personalized genomes: it is possible to send a sample of blood or saliva by
mail and get your results on-line, for prices ranging between less than a
hundred to the couple of thousand dollars.1

Despite the many technological advances since the completion of the
Human Genome Project, two factors are crucial to explain such a drop in
prices: first, the adoption of the so called Next-Generation Sequencing tech-
nologies made a huge impact on decreasing the sequencing costs; second,
once the first human genome is obtained, the process to sequence a new
individual’s genome changes entirely. The first time, the sequence needs to
be assembled “from scratch”. From then onwards, the first sequence can
be used as a reference for a much accessible process called variation calling
(see Section 1.2).

Today the landscape keeps changing: there are thousands of high-
quality genomes available [89] and more are being sequenced [90, 27], estab-
lishing a map of genetic diversity in the search for a better understanding
of its implications. Similar processes have been ongoing also for non-human
organisms [87, 84], to the extent that some authors talk about the dawn of
the pan-genomic era[19].

All those achievements have been heavily reliant on computational meth-
ods [70, 41, 26]. There is a large repertoire of those methods that are critical

1 The current diversity of prices is due to many factors, including how much of the
total genome is actually sequenced. The startup 23andMe famously offered genomes from
less than $100USD, mainly focusing on specific sites in the genome. On the other hand,
Illumina offers whole-genome sequencing for $5, 000USD[92].

1

2 1 Introduction

for different stages of the genome sequencing processes. As the sequenc-
ing technologies are advancing rapidly, the computational methods need to
advance as well, evolving and adapting to new challenges. In this thesis I
will present different algorithms and data-structures aiming to contribute
to some of these processes needed for genome sequencing. In particular,
some of the contributions consider the pan-genomic nature of the data we
now have available.

The structure of this chapter is as follows: In Sections 1.1 and 1.2 I will
introduce some basic concepts from bioinformatics. Then in Section 1.3 I
will outline this thesis’ contributions. Finally, in Section 1.4 I give a brief
summary of the original publications, discussing my personal contribution
to each of them.

1.1 DNA and genetic variation

Deoxyribonucleic acid (DNA) constitutes “the blueprints of life”, for it is
the molecule within the cell that contains the instructions for growing, func-
tioning and reproducing for all known living organisms. A DNA molecule
is the linear concatenation of nucleotides, which can be of four different
kinds: adenine(A), cytosine(C), guanine(G) and thymine(T). Most of the
DNA is packed in units called chromosomes. Different species have different
numbers of chromosomes with different contents. Within species, different
individuals normally have the same number of chromosomes and the con-
tent of each chromosome is highly similar throughout the population.

In most cells of sexual organisms, chromosomes are organized in pairs,
such that each element of the pair – a “copy” – is inherited from a “father”
and a “mother” respectively. Each of those copies are called homologous
chromosomes or haplotypes. The cells that have this arrangement are called
diploid cells. During reproduction, specialized cells recombine the pairs of
chromosomes generating gametes: cells that have only one copy of each
chromosome and that later can combine with a gamete from another in-
dividual to create a new individual. These replication and recombination
processes are not exact, and sometimes an “error” occurs, generating ge-
netic variations that can be later inherited by the offspring.

Because most of the genetic content is the same among individuals
within the same species, it is possible to define a reference genome for a
species. Then, we can characterize the genetic variations of each individual
in terms of how they differ from the reference genome. A variant that
occurs in a single nucleotide, where, for instance a specific T in the reference
genome is replaced by a G, is called single nucleotide polymorphism (SNP),

1.2 NGS and variation calling 3

or single nucleotides variants (SNV). Those account for a large amount
of the known variations in human genomes, however there are also more
complex variants such as (large) insertions, deletions, inversions, among
others. When a variant is present in only one of the chromosome copies,
it is said to be a heterozygous variant. A variant that is present in both
copies is known as a homozygous variant.

1.2 NGS and variation calling

Next-Generation Sequencing (NGS) is an expression that refers to many
technologies that have parallelized the sequencing process, producing vast
amounts of sequences concurrently. What these have in common is that
they cut DNA molecules from the donor into small pieces, known as reads,
which are what is actually sequenced in great amounts. Reads length can
range from about a hundred to a couple of thousands nucleotides. When
reads are sequenced there is no information about their original position in
the genome, so the output is essentially a large set of small pieces of the
genome.2 The problem of sequencing a genome starting from this set of
reads is known as de novo genome assembly. This is known to be a hard
problem, and its simplest mathematical formulation is NP-Hard [67].

When we already posses a reference genome of the same species as the
donor, the enterprise to sequence the donor genome is much more accessi-
ble through what is known as variation calling. A simplified summary of
this process is as follows: Starting from a biological sample from the donor,
NGS technology is used to obtain a massive set of reads. A read aligner
maps the reads to the reference genome, ideally to positions with a high
similarity score with the read. The number of reads whose alignment covers
a position is known as the coverage. As the number of NGS reads is large,
the ideal situation is to have high coverage through the genome, so that
any position on the reference genome will have many reads piled up. This
pile-up is analyzed, typically using statistical methods [59, 36] that can
discover variations in the donor genome. With this process SNPs are rel-
atively easy to detect, but more complex variants pose a bigger challenge.
Nowadays, variation calling is routinely performed to sequence genomes,
using a wide variety of methods [4, 59, 85, 74]. However, their results are
not always consistent [74]. This in itself is motivation enough to study
possible improvements for variation-calling mechanisms.

2 There is more information, for instance, each base is annotated with the error
probability, and some technologies have paired-end reads, where there is a prior knowledge
about their expected distance within the genome.

4 1 Introduction

When variation-calling tools report a variant, they will indicate whether
it is homozygous or heterozygous. However, this is not enough to com-
pletely reconstruct the donors genome: we still do not know to which of
the two copies of each chromosome each variant belongs to. The problem of
deciding whether two variants belong to the same copy of the chromosome
or not is called haplotype phasing. There is a wide repertoire of methods
to address this problem [13, 14, 10, 76]

1.3 Outline of the contributions

The main motivation of this thesis is found in variation calling and hap-
lotype phasing. Our contributions are at different levels, from analysis of
basic algorithms, to the design of novel pipelines for variation calling.

The first part of this thesis incrementally builds a novel framework for
variant calling. We propose to replace the single reference model by a
pan-genomic one: a reference that comprises a large set of genomes from
the same species. The second part revolves around the haplotype phasing
problem. In Chapter 2 we first review the basic algorithms that we will use
throughout this thesis.

The first challenge in the route to the pan-genomic reference, is to ef-
ficiently handle large collection of genomes. A useful tool for this is the
family of Lempel-Ziv compression algorithms, which have proven to be
extremely effective to compress highly repetitive collections, such as collec-
tions of genomes from the same species. In Chapter 3 we introduce two
exponents of this algorithms: the LZ77 and the RLZ algorithms. Then, we
present the contributions of Paper I: a study of the functioning of the RLZ
in a particular setting, namely, the construction of an artificial reference.

Then, in Chapter 4 we propose a slight generalization of the LZ77 al-
gorithm so that we obtain a class that includes the LZ77 and the RLZ
algorithms. Utilizing this we develop a scalable index that can process a
2.4TB synthetic collection of DNA in less than 12 hours.

To improve variation calling, in Chapter 5 we submit a novel pipeline
that replaces the single linear reference by a pan-genomic one. To index
the pan-genome we further develop the index of Chapter 4 to transform
it into a read aligner for pan-genomic reference. This chapter is based on
the work of Paper III. We tested our read aligner on real data, replacing
the standard reference by sequences from the 1000 genomes project. The
use of this pan-genomic reference increased the number of mapped reads,
while the time required for the mapping remained in the same ballpark.
We tested our variation calling pipeline on a mutation-rich subsequence of

1.4 Original papers and individual contributions 5

a Finnish population genome, and observed that the results are better than
a standard variation calling pipeline.

The first contribution of Chapter 6 is a general model for sequence
alignment of diploid genomes, which represents diploid genomes as a pair-
wise alignment. This is based on Paper IV, where we originally proposed
this model. Then, we extend this representation to model the haplotype
phasing problem in the so called family-trio setting (that is, when we know
the variants present in an individual and in her parents). This latter part
of Chapter 6 is based on Paper V.

Finally, in the context of an existing read-based approach to haplotyp-
ing [76], in Chapter 7 we go back to basic algorithms. We observe that
the aforementioned approach needs to prune a set of reads aligned to a
reference, and in the original solution the reads were randomly pruned. We
studied this pruning problem and its motivation, modeled it as an inter-
val scheduling problem, and propose exact and approximate algorithms to
solve it.

Finally, Chapter 8 summarizes the contributions, discussing open prob-
lems and possible directions for future research.

1.4 Original papers and individual contributions

Next I give a brief summary of the original papers that are the basis of this
thesis, indicating my specific contribution in each of them.

Paper I. In this paper we presented a theoretical and empirical study
on the compression achieved by the Relative-Lempel Ziv algorithm in the
scenario where it needs to build an artificial reference.

My contributions to this work were in the experimental study: the
experimental analysis was jointly designed by the three authors. I imple-
mented and ran the experiments and contributed to the writing of that
section.

Paper II. In this paper I presented CHICO, an improved version of the
Hybrid Index of Ferrada, Gagie, Hirvola and Puglisi [29]. CHICO reduces
the space usage of the original version while keeping similar query times.
Compared with other indexes for repetitive collections, the size of the index
and query times were competitive, while indexing times were better than
all the alternatives. In this paper I also demonstrated the scalability of the
approach, which indexed a 2.4TB collection in about 12 hours.

6 1 Introduction

Paper III. In this paper we proposed a novel framework to perform
variation calling using pan-genomic references and released an implementa-
tion called PanVC. We represent the pan-genome using a multiple sequence
alignment, indexing the underlying sequence using CHIC aligner, a special-
ized version of the index of Paper II. We demonstrated that the approach
can improve the effectiveness of variation calling.

The framework was jointly designed with Veli Mäkinen. I implemented
PanVC and the CHIC aligner. I ran all the experiments for PanVC and
wrote a significant part of the paper.

Paper IV. In this paper we proposed a generalization of edit dis-
tance/sequence alignment where the object to be aligned is itself a pair-
wise alignment. The proposal is to model diploid individuals as pair-wise
alignments instead of a single sequence. This captures the possibility of
known variants whose correct haplotype phase is not known or that has
been wrongly phased.

The original idea is from Veli Mäkinen, the actual model and algorithms
were jointly designed. I implemented the algorithms and ran the experi-
ments, and the paper was written jointly.

Paper V. This is a follow-up of Paper IV, where we extended the
diploid alignment model to solve the haplotyping problem in family trios,
that is, when the genome has been sequenced but not phased for a father,
a mother and a child.

The model and algorithm were done jointly. I implemented the algo-
rithms and ran the experiments, and the paper was written jointly.

Paper VI. In this paper we addresses the problem of pruning a set
of NGS reads aligned to a reference. This step is a required preprocessing
step needed by previous approaches to the haplotyping problem [62, 76].
We modeled it as a job scheduling problem and present different algorithms
to solve it.

The exact algorithms were designed together by Veli Mäkinen,
Alexandru Tomescu and me. I also contributed with the analysis of
the 2-approximation algorithm, and with the supervision of Sebastian
Wilzbach, who implemented the exact algorithm and ran the experiments.

Chapter 2

Preliminaries

In this chapter we introduce some basic concepts in computer science that
will be used through this thesis.

2.1 Strings

A string is a finite sequence of characters over an alphabet Σ = {1, 2, .., σ}.
We denote S[1..n] a string of length n, and we use S[i] to signify the i-th
character of S. We denote by S[i..j] a substring of S starting at position i
until position j, both inclusive. Any substring S[1..i] (starting from the first
character) is called a prefix of S, and any substring S[i..n] (including the
last character) is called a suffix of S. We say that T is a subsequence of S if
we can obtain T by deleting any number of characters from S. Conversely,
we say that S is a supersequence of T .

For example, S = GATTACA is a string of length 7, and S[3..5] = TTA
is a substring of S and T = GTTC is a subsequence of S obtained by
eliminating the second, fifth and seventh characters. S[5..7] = ACA is a
suffix of S and S[1..4] = GATT is a prefix of S.

2.2 Edit distance and sequence alignment

There are many definitions of distances between two strings. A simple,
yet versatile definition is edit distance, defined as the minimum number of
edit operations required to transform one string into the other. Different
sets of allowed operations lead to different distances. For instance, the
Levenshtein distance considers substitutions, deletions and insertions as the
possible operations. It is possible to generalize the Levenshtein distance by

7

8 2 Preliminaries

assigning different costs to each operation and then defining the distance
as the minimum-cost required to transform one string into the other.

A closely related concept is sequence alignment. A pair-wise alignment
(or simply an alignment, when it is clear from the context) of A and B
is a pair of sequences (SA, SB) such that SA is a supersequence of A, SB

is a supersequence of B, |SA| = |SB| = n is the length of the alignment,
and all positions which are not part of the subsequence A (respectively B)
in SA (respectively SB), contain the gap symbol ′−′, which is not present
in the original sequences. Given a cost function C (a, b) to transform the
character a into b, the cost of a pair-wise alignment is defined as

S (SA,SB) =

n∑
i=1

C (SA[i],SB[i]).

The weighted edit distance is defined as

S (A,B) = min{
n∑

1=1

C (SA[i],SB[i]) : (SA,SB) is an alignment of A and B}.

An alignment that achieves that value is called an optimal alignment. It
is possible to use a similarity function instead of a cost function, in which
case the minimum is replaced by a maximum, and the resulting measure
is the similarity between strings A and B. A rich variety of models exist,
considering inversions, translocations, non-linear costs for gaps, etc [26].

2.3 Graphs and trees

A directed graph G = (V,E) is a pair of sets comprising the set of vertices
V = {v1, v2, . . . , v|V |} (also called nodes) and the set of edges E ⊆ V × V
(also called arcs). An edge (u, v) ∈ E is called an arc from u to v and we
say that u and v are adjacent. When we consider (u, v) ≡ (v, u) we say
that the graph is undirected, otherwise we call it a directed graph.

A path of length p is a sequence of nodes u1u2 . . . up such that consec-
utive nodes are connected by an arc, i.e. for all 1 ≤ i < p it holds that
(ui, ui+1) ∈ E. We say that u1 and up are connected. A cycle is a path of
length at least two from a node to itself. A graph that contains no cycle is
called acyclic.

A tree is a graph where any two vertices are connected by exactly one
path. A rooted tree is a graph when a specific node is designated as root.
Unless stated otherwise, we will assume all the trees are directed and rooted.

2.4 Flow networks 9

2.4 Flow networks

A flow network is a directed graph where the edges have a capacity c(u, v)
and can be assigned a flow value f(u, v) ≤ c(u, v) Some vertices can be
designated as sources and some others can be designated as sinks.

A valid flow is characterized by the flow conservation property: the
total amount of flow entering a node must be equal to the total amount
of flow exiting the node, with the exception of sources, which only have
outgoing flow, and sinks, which only have incoming flow. More precisely
for all nodes u ∈ V that are neither a source nor a sink, it holds that∑

(x,u)∈E

f(x, u) =
∑

(u,y)∈E

f(u, y)

The maximum flow problem is, given a flow network, find a valid flow
that is maximum. A classical solution to the max-flow problem is the
Ford-Fulkerson algorithm [35], which relies on the notion of residual net-
work. Given a network (G,V), the residual network (Gr, Vr) is the network
with the same nodes and edges, capacities cr(u, v) = c(u, v) − f(u, v) and
fr(u, v) = 0. The Ford-Fulkerson algorithm finds an augmenting path in
the residual network and adjusts the flow network along the same path so
as to increase the total flow. When there is no augmenting path left in the
residual network, the flow found is maximum. Assuming integral capacities
(so that the flow increases at least by one unit each augmentation step), the
running time is O(|E||ϕ∗|), where E is the set of arcs of the flow network
and |ϕ∗| is the value of the maximum flow.

2.5 String matching and text indexing

Given a text T [1..n] and a pattern P [1..m], typically with m � n, the
string matching problem is to find all the occurrences of P in T . This is
sometimes called a locate query, while a count query is only to find the
number of such occurrences, and an existential query asks whether this
number is zero or not.

When the text is available for preprocessing the scenario is known as
indexed string matching. Sometimes these indexes are called full-text in-
dexes to highlight their difference from the indexes used in natural language
that assume a text made of words or other structures. In this section we
will assume, without loss of generality, that the text T [1..n] is terminated
with a unique character T [n] = $ which is lexicographically smaller than

10 2 Preliminaries

any other character.1 In the following we review the foundational full-text
indexes.

2.5.1 Suffix tree

A trie is a tree used to represent a set of strings. Each edge is labeled with
a character, and for every node no two out-going edges can have the same
label. Then each node v uniquely represents the string spelled by the path
from the root to v. It follows that if a string S is represented by a node v
in the trie, then all the prefixes of S are also represented, precisely by the
nodes in the path from the root to v.

A suffix trie is a trie where all the leaves represent the suffixes of the
text. All the proper substrings of T are represented by an internal node.
Given a text T [1..n] and a query pattern P [1..m], the suffix trie of T can
be used to solve the string matching problem as follows: starting from the
root, if there is no edge labeled with P [1] we know that P does not occur
in T . If such an edge exists, we descend through it and repeat the process
for P [2] and so on until P [m]. If at the end of this process we are in a
node, all the leaves that are reachable from that node corresponds to the
positions in T where P occurs. The suffix trie uses O(n2 log n) bits, and it
can solve the string matching in time O(|P |).

The suffix tree [96] is a compressed representation of the suffix trie,
where all the unary paths are compacted, and the edges are labeled with
the corresponding strings, encoded as a pair of pointers to the text. The
resulting data structure requires O(n log n) bits of space and it solves the
counting problem in O(|P |) time and the locate problem in O(|P | + occ)
time assuming a constant size alphabet, in which case both of the times
are optimal.

2.5.2 Suffix array

The suffix array [65] of T , is the permutation of [1..n] that corresponds
to the lexicographical order of the suffixes of T . More formally, it holds
that T [SA[i]..n] < T [SA[i+ 1]..n]. It is worth noting that the suffix array
corresponds to the values in the leaves of the suffix tree from left to right.

The suffix array uses ndlog ne bits and offers a functionality similar to
that of the suffix tree, with a moderate slowdown: counting the occurrences

1 Assuming that the strings terminate with the special symbol $, lexicographical
smaller than any other character, is commonly adopted to avoid the special case when
a suffix is a prefix of another suffix. For instance, this is needed to guarantee that the
suffix trie of T [1..n] has exactly n leaves.

2.6 Compressed full-text indexes 11

of P can be done in O(|P | log n), and reporting their occ locations takes
O(|P | log n+ occ) time.

Compared to the suffix tree, the suffix array significantly reduced the
space usage, however, in certain domains the ndlog ne bits are still pro-
hibitive.

2.6 Compressed full-text indexes

The quest for reducing the space usage of the indexes took a big leap
with the development of compressed full-text indexes. Here, the indexes
take advantage of the compressibility of the text itself, and the goal is
to obtain indexes whose space requirement is proportional to the size of
the compressed representation of the text, while still providing the search
capabilities of the indexes mentioned in the previous section. Another way
of seeing this is as a compressed representation of the text that can be
rapidly searched.

There are many approaches to design compressed full-text indexes. For
instance, it has been noted that repetitions in the text translate into runs
in the suffix array, which can be exploited to compress it. Many compressed
suffix arrays have been developed based on this and similar ideas [39, 6, 72].

A related although different approach is based on the Burrows-Wheeler
Transform (BWT), which was originally designed for text compression. The
BWT is a reversible transformation of the text which usually is easier to
compress than the text itself [12]. Later, Ferragina and Manzini discovered
that the BWT can be used to solve the string matching problem [30]. It is
possible to emulate the suffix array using the BWT to find the suffix array
interval corresponding to the occurrences of the query pattern.

There is a large family of FM-Indexes, depending on the precise repre-
sentation of the BWT and other supporting data structures. For instance,
the alphabet-friendly FM-index [32] requires nHk(T) + o(n log σ) bits2 and
it can count the occurrences of P in T in time O(|P | log σ). For detailed
descriptions and different approaches to compressed text indexes we refer
the reader to a comprehensive survey [72].

2 Hk(T) is the kth-order entropy of T , and nHk(T) is the space in bits used by a
statistical compression model that uses contexts of length k. In the worst case (random
text), Hk(T) = log σ and this term is equal to the plain encoding of the text.

12 2 Preliminaries

Chapter 3

Analysis of Relative Lempel Ziv
with Artificial References

Almost forty years have passed since Abraham Lempel and Jacob Ziv pub-
lished the so-called LZ77 and LZ78 algorithms [100, 101]. Today, they
remain central to data compression: Those algorithms and their deriva-
tives are at the core of widely used compression tools like zip, gzip, 7zip,
image formats like GIF and PNG, and also in modern libraries like Brotli
and Zstandard used to speed-up web browsing.

These algorithms are still actively researched [2, 7, 34, 25], and new
variants are still being proposed to address new challenges [51, 56]. Rel-
ative Lempel Ziv (RLZ) [56] is a recent variation of LZ77 that has been
particularly successful in the compression of highly repetitive collections.

In this section we review the contributions of Paper I, where the com-
pression achieved by using RLZ with artificial reference construction is
analyzed both from a theoretical and from a practical perspective.

3.1 LZ77 and Relative Lempel Ziv

In the literature there are slightly different versions of the LZ77 parsing. We
will adopt the following one: given a text T [1..n], the LZ77 parsing of T is
a partitioning T = T 1T 2 . . . T z such that for 1 ≤ i ≤ z, with pi =

∑i−1
j=1 |T j |

it holds that either:

• T i is a character that does not occur in T [1..pi] or

• T i is the longest string that is simultaneously a prefix of T [pi + 1..n]
and a substring T [1..pi]

13

14 3 Analysis of RLZ with Artificial References

We will call the former literal phrases and the latter copying phrases.
Both types of phrases can be represented as pair of integers (pos, len).
For copying phrases, pos is the position in T [1..pi] in which T i occurs and
len = |T i| is its length. For literal phrases pos = 0 and len is the binary
representation of the new character.

The above definition is sometimes referred to as greedy LZ77 parsing
because, parsing from left to right, the next phrase is always the longest
possible. The greedy parsing always produces the minimum number of
phrases [78], however, when the output size is considered under different
encoding schemes, more sophisticated non-greedy parsings are needed to
achieve optimality [33].

Although several linear-time algorithms for computing the LZ77 pars-
ing are known (c.f. [78]), there is ongoing research on how to improve the
practical efficiency [50, 49]. An important challenge is the scenario where
the text to be processed is too big to fit in memory. One strategy is to make
efficient use of external memory [51]. Another is to introduce changes into
the algorithm, such as a user-defined parameter to bound the distance be-
tween a phrase and its source. This approach, known as fixed window LZ77,
has been used since the early days of Lempel-Ziv algorithms, and it remains
present in popular tools such gzip. However, when the repeated substrings
are too distant in the text, this model will achieve little compression.

In 2010, Kuruppu, Puglisi and Zobel introduced Relative Lempel Ziv
(RLZ), a novel variation of LZ77 originally designed for compression of
genomes. In RLZ, in addition to the text to be compressed, there is
another text called the reference (or the dictionary), which is expected
to be much shorter than the text. Similar to LZ77, the text is greed-
ily parsed into phrases, but now the phrases correspond to occurrences
in the dictionary instead of the text itself. More precisely, given a text
T [1..n] and a dictionary D[1..d], and assuming that T [1..i− 1] has already
been parsed, the next phrase corresponds to the largest T [i..j] such that
T [i..j] = D[pos..pos+ j− i+ 1] for some pos. The dictionary is also part of
the output, and the phrases can be codified as pairs (pos, len) analogously
to LZ77.

3.2 Artificial reference for RLZ

In collections where all the documents are highly similar to each other,
taking any of the documents as a reference should produce a decent level of
compression. Paradigmatic examples of this are genomic databases where
all the stored sequences are individuals from the same species. However,

3.3 Theoretical analysis 15

there are datasets that are still highly compressible but without such a
homogeneous structure. In the latter setting, it is possible to build an
artificial reference [44], by sampling substrings from the entire dataset and
concatenating them. This approach has exhibited excellent performance in
practice [44, 91, 61].

In the following sections we review the contributions of Paper I, where
we analyzed the functioning of RLZ compression using artificial reference.

3.3 Theoretical analysis

We begin with an intuitive view about the artificial reference RLZ. Con-
sider a somewhat short substring of the text: on the one hand, if it is
frequent enough it is likely to be sampled and thus be part of the reference.
Therefore, all its occurrences can be represented as a single pair (pos, len)
and will use little space. On the other hand, if it is not so frequent all its
occurrences can be encoded literally without consuming much space. The
rest of this section presents a formal analysis of this reasoning.

Consider a string T [1..n] over an alphabet of size σ whose LZ77 parse
consists of z phrases. Given integers k and `, let us sample k substrings
of length ` from T and concatenate them, appending the first and last `
characters of T , to obtain the reference. This takes O(k` log σ) bits.

For our analysis we use a partition of T into O(n/`) blocks of length
at most `/2 such that O(z log n) of them are distinct, for 2 ≤ ` ≤ n. A
previous result by Gawrychowski [37] shows that such a partition exists
when there is a grammar of size z log n that represents T ; moreover, it is
possible to obtain such a grammar from the LZ77 representation of T [83].

Let us consider the ith distinct block, whose frequency is fi. The prob-
ability that one of its occurrences is completely included in some of the

sampled substring is at least 1−pi, where pi =
(

1− fi`
2n

)k
. In that case, all

of its occurrences are stored using O(fi log(k`)) bits in total. Otherwise,
they are stored literally using O(fi` log σ) bits.

Let b = O(z log n) be the number of distinct blocks. The expected size
in bits of the RLZ parse is:

O
(

b∑
i=1

fi(1− pi) log(k`) +

b∑
i=1

fipi` log σ

)
≤ O

(
n log(k`)

`
+ ` log σ

b∑
i=1

fipi

)

16 3 Analysis of RLZ with Artificial References

Since 1 − x ≤ e−x, we have pi =
(

1− fi`
2n

)k
≤ 1

efik`/2n
so
∑b

i=1 fipi ≤∑b
i=1

fi
efik`/2n

, which is concave and, thus, maximum when all the distinct
blocks occur equally often. Therefore, calculation shows

` log σ

b∑
i=1

fipi =
n log σ

eΩ(k/z logn)
.

Summing up, we obtain the following theorem:

Theorem 3.1 (Paper I) If we randomly sample and concatenate k blocks
of length ` from the dataset to form an artificial reference, then the expected
total size in bits of the RLZ encoding (i.e., the reference and the parse
together) is bounded by

O
(
k` log σ +

n log(k`)

`

)
+

n log σ

eΩ(k/z logn)
.

It follows that the following conditions guarantee good (expected) com-
pression:

1. k`� n,

2. log(k`)� ` log σ,

3. k = ω(z log n).

The first condition states that the reference should be sufficiently smaller
than T . The second condition states that a pointer to the reference should
be sufficiently smaller than the literal encoding of the string that it is repre-
senting. The third condition is more interesting, as it reveals an asymmetry:
choosing k, say, a tenth larger than optimal should not increase the size
of the encoding by more than about a tenth, however, choosing k a tenth
smaller than optimal could drastically worsen compression.

A careful selection of the sampling values k and ` leads to the following
result:

Corollary 3.1 (Paper I) If we randomly sample and concatenate k =
z log2+ε n blocks of length ` =

√
n/k, then the expected total size of the

RLZ encoding is O
(
(nz)1/2 log2+ε n

)
Which shows that if LZ77 compress well, then RLZ with an artificial refer-
ence can compress well too.

3.4 Experimental analysis 17

3.4 Experimental analysis

In our experimental study, we considered different 1GB collections con-
taining web crawls, protein sequences or synthetic datasets. Their detailed
description is given in Paper I. We built an artificial reference by picking
values of k and ` and then concatenating k randomly sampled substrings
of length ` from the dataset, storing the resulting reference in k` log σ bits.
Then we ran the RLZ algorithm, and stored the phrases using log(k`) bits
for pointers and log ` bits for phrase lengths. We used two different regimes
to choose the k and ` values:

• Fixed length used a fixed a value of ` and tried different values of k.

• Corollary 1 used the values of k and ` prescribed by Corollary 3.1,
using varying estimates of z.

The points representing the total size for each sampling scheme are con-
nected by lines, and below each of them we plot an extra point representing
the size used only by the reference. As a baseline, we included the size of
the LZ77 encoding using 2 log n bits for each phrase.

In Figures 3.1 and 3.2 we reproduce the results from Paper I. The
curves we obtained are in accordance with Theorem 3.1: there is a sharp
drop on the left, corresponding with the expected damage to compression
by using too small k values. In this area increasing the number of samples
significantly improves compression. At some point, the curves start to
rise roughly parallel to the reference size, which increases linearly. This
improves the understanding of why the reference pruning [91, 61] approach
works: it is much safer to oversample in the beginning than to undersample.

18 3 Analysis of RLZ with Artificial References

 0

 100

 200

 300

 400

 500

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

O
u

tp
u

t
s
iz

e
 (

M
B

s
)

K/Z

Gov21GB

LZ77
L =3000
L =1000
L =100

Corollary 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

O
u

tp
u

t
s
iz

e
 (

M
B

s
)

K/Z

Proteins

LZ77
L =3000
L =1000
L =100

Corollary 1

Figure 3.1: Size in bits of RLZ compression using different artificial references on two
1GB collections: Gov21GB is part of a web crawl from the TREC collection, and Proteins
is a set of protein sequences obtained from the Swissprot database. Different regimes for
constructing the reference are shown for each collection: fixed length of samples of size
3000, 1000, and 100 characters each, and varying amounts (k value) for each of them.
The strategy proposed by Corollary 1 is also used. The curves show the total size of the
encoding as a function of k/z. The red horizontal line is the size of the LZ77 encoding
as a baseline.

3.4 Experimental analysis 19

 0

 100

 200

 300

 400

 500

 600

 0 2e−05 4e−05 6e−05 8e−05 0.0001 0.00012 0.00014 0.00016

O
u

tp
u

t
s
iz

e
 (

M
B

s
)

K/Z

English

LZ77
L =3000
L =1000
L =100

Corollary 1

 0

 200

 400

 600

 800

 1000

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

O
u

tp
u

t
s
iz

e
 (

M
B

s
)

K/Z

Rep1GB

LZ77
L =3000
L =1000
L =100

Corollary 1

Figure 3.2: Size in bits of RLZ compression using different artificial references on two
1GB collections: English is a concatenation of English text from the Gutenberg Project,
and Rep1GB is a very repetitive synthetic file made of 400 copies of a random 25MB
string. Different regimes for constructing the reference are shown for each collection:
fixed length of samples of size 3000, 1000, and 100 characters each, and varying amounts
(k value) for each of them. The strategy proposed by Corollary 1 is also used. The curves
show the total size of the encoding as a function of k/z. The red horizontal line is the
size of the LZ77 encoding as a baseline.

20 3 Analysis of RLZ with Artificial References

Chapter 4

CHICO: A Compressed Hybrid
Index for Repetitive Collections

Given a text T [1..n] and a query pattern P [1..m], the string matching
problem is to find all the occurrences of P in T . This is a central problem
in computer science, and the variant where T is available to be preprocessed
is called the indexed pattern matching problem.

Since it became evident, in the 80s [17], that indexed string matching
is relevant for analysing biological sequences, bioinformatics has played an
important role in pushing the development of the field. To increase applica-
bility of index data structures there has been a continuous effort to reduce
their size while retaining strong search capability. A classic example is the
Suffix Array [65], which uses much less space than the Suffix Tree [96], and
can provide the same functionality when augmented appropriately [1]. This
trend has led to the development of a whole research area, compressed in-
dexing [72], where the idea is to build an index that uses space proportional
to a compressed representation of the text. Particularly important results,
like the FM-Index [30, 31], are based on the Burrows-Wheeler transform
(BWT) [12]. Those indexes are currently at the heart of widely-used read
aligners such as BWA [60] and BowTie2 [57].

A recent trend in this context is indexing repetitive collections. The mo-
tivation again is nurtured from bioinformatics: projects like 1000 genomes
and UK10K are examples of highly repetitive collections where providing
pattern matching functionalities can be valuable.

In this chapter we present CHICO, the contribution of Paper II. CHICO
is a compressed index for approximate string matching that combines
Lempel-Ziv algorithms with the FM-Index to efficiently handle very large
and repetitive collections.

21

22
4 CHICO: A Compressed Hybrid Index for Repetitive

Collections

4.1 Kernelization

CHICO is an improved version of the Hybrid Index of Ferrada, Gagie,
Hirvola and Puglisi [29]. Their strategy is to find a kernel string that is, on
a highly repetitive collection, much shorter than the input text and that it
is also enough to solve the approximate pattern matching problem in it.

This index takes as an input the text, its LZ77 parsing, and also upper
bounds M and K for the pattern lengths and edit distances respectively.
The kernel text KM,K is defined as the subsequence of T that retains only
characters within distance M+K−1 from their nearest phrase boundaries.
Figure 4.1 illustrates. Characters not contiguous in T are separated in
KM,K by K + 1 copies of a special separator #.

To understand why the kernel string suffices to solve existential queries
it is useful to adopt the following definitions: A primary occurrence is an
(exact or approximate) occurrence of P in T that spans two or more LZ77
phrases. A secondary occurrence is an (exact or approximate) occurrence
of P in T that is entirely contained in one LZ77 phrase. Farach and Tho-
rup [28] noted that every secondary match is an exact copy of a previous
(secondary or primary) match, and Kärkkäinen and Ukkonen [52] described
how to find the secondary occurences from the primary occurrences, using
the structure of the LZ77 parse.

From the definition of the kernel string it is easy to see that any sub-
string of T with length at most M + K that crosses a phrase boundary
in the given parse of T has a corresponding and equal substring in KM,K .
Therefore, all the primary occurrences of patterns will be found in KM,K ,
given the bounds M on the pattern length and K on the edit distance.

To locate all the occurrences in T , including secondary occurrences,
additional data structures are needed. First, the positions of the phrases
boundaries in the original text and their counterparts in the kernel string
are stored. Using them it is possible to locate primary occurrences in T
from their locations in KM,K . Then, phrases (pos, len) of the parsing can be
represented as triplets (x, y) → w where (x = pos, y = pos + len) is called
source, and w is the position in the text where the phrase starts. We will
not provide the details of the representation nor the exact process to report
the secondary occurrences, but the general idea is to work recursively as
follows: for each occurrence to be reported, the data structure is queried to
find all the phrases whose sources entirely contain said occurrence. That
implies that there is another occurrence to report, corresponding to a copy
of the current occurrence, which is then also processed recursively.

4.2 LZ77-relaxed parsings 23

4.2 LZ77-relaxed parsings

CHICO introduces the notion of LZ77-relaxed parsings1. This is a general-
ization of LZ77 achieved by dismissing two constraints. Firstly, the parsing
does not need to be greedy. That is, a copying phrase does not need to
be as long as possible – any previous factor is admissible. Secondly, literal
phrases can be more than one character long. Observe that this defines a
class of parsings that includes the greedy LZ77 parsing.

Paper II improves the Hybrid Index by allowing the use of any LZ77-
relaxed parsing to build the kernel string. The main consequence is that
now the content of the literal phrases always goes to the kernel string. The
extra cost that this modification generates to the index is a bitmap of size
z that indicates with a 1 the literal phrases and is 0 elsewhere. This is
needed due to the introduction of literal phrases that represent strings and
not merely single characters.

4.3 Reducing the number of phrases

From the definition of the kernel string it follows that all the phrases shorter
than 2M will be added entirely to the kernel string. Using an LZ77-relaxed
parsing we can get rid of those vacuous phrases.

To reduce the number of phrases we first transform all phrases whose
length is smaller than 2M into literal phrases. Then, every time that two
literal phrases are adjacent they are merged. In Figure 4.1 it is easy to see
that this process will not alter the contents of the kernel string.

It would be possible to use a specialized Lempel-Ziv parser that is aware
of M so it avoids copying phrases shorter than 2M . Alternatively, if the
parsing is obtained by a general-purpose parser, the phrase reduction can
be quickly computed in a single pass.

4.4 Faster construction with RLZ

The use of LZ77-relaxed parsings not only allowed us to reduce the number
of phrases but also brought the possibility of faster construction by using
RLZ parsing. In its original definition the RLZ parsing does not fall into
the LZ77-relaxed parsing category, as it introduces a new element, the
dictionary. However, it is possible to modify the greedy LZ77 algorithm
in a way that almost results in the RLZ algorithm. We will use an LZ77

1In Paper II this is called LZ77 valid parsing. Here we opt for relaxed parsing to avoid
any confusion with LZ77

24
4 CHICO: A Compressed Hybrid Index for Repetitive

Collections

#K #K #K #K #K

FM-Index(Kernel String)

Figure 4.1: Schematic view of the construction of the kernel string. Vertical lines
represent the phrase boundaries of an LZ77 parsing. All the characters within
distance M +K − 1 to some phrase boundary are kept for the kernel string, while
everything else is discarded. Note that the shorter phrases are going entirely to
the kernel.

parsing, where each new phrase is the longest factor within a prefix of T .
This is equivalent to computing the greedy LZ77 parsing of the given prefix,
and then computing the RLZ parsing of the rest of the text using the said
prefix as a dictionary.

It is clear that this approach will work well when the text is repetitive
and homogeneous: if T corresponds to the concatenation of 1000 human
genomes, then any prefix longer than one human genome will make a good
reference to compress the rest of the collection.

4.5 In practice

We implemented the index in C++ making use of the Succinct Data Struc-
ture Library 2.0.3 (SDSL) [38] for most of the component succinct data
structures.

We indexed the kernel text using an SDSL implementation of the FM-
Index. As this FM-Index does not offer native support for approximate
string matching, our experimental study used only exact queries.

To explore different trade-offs we studied different alternatives for the
LZ77 factorization, all of them specialized in repetitive collections.

• LZscan [49], an in-memory algorithm that computes the LZ77 pars-
ing.

• EM-LZscan [51] an external memory algorithm to compute the LZ77
parsing

• RLZ based on the RLZ of Hoobin et al. [44], which we modified
according to Section 4.4, using KKP [50] to compute the LZ77 parsing
of the reference.

4.5 In practice 25

• PRLZ Our parallel version of the previous one, implemented using
OpenMP.

For each of them we ran the phrase reduction phase of Section 4.3. The
first method is the preferred one when there is enough memory to construct
the LZ77 parsing in memory, otherwise, any of the others three methods
may be used.

In Paper II we compared CHICO against other indexes for repetitive
collections using datasets from the pizzachili corpus, using LZscan to build
the index. The results shows that it is competitive in terms of index size and
query time, while clearly dominating the alternatives in terms of indexing
time.

In larger collections we first compared the EM-LZscan and RLZ con-
struction methods, observing that using RLZ the index can be built more
than 50 times faster, with little impact on the size index. Table 4.1 repro-
duces the results in one of those collections. Then we compared the parallel
version of RLZ against the sequential one. The results of one of those ex-
periments is reproduced here in Table 4.2. Finally, we tested our index in
a 2.4TB collection2 that took about 12 hours to index and in which exact
occurrences of query patterns were found in less than 100ms .

2 The DNA collections used to test scalability were supposed to be “x versions of
human chromosome y”. However, due to a regrettable mistake in Paper II this is not the
case. The misuse of an external tool to generate the data resulted on genetic variants
being greedily applied to the first genome with no overlapping variants, generating a col-
lection with some genomes containing most of the variants, and many identical genomes.
As a consequence, although those experiments prove that the method can handle large
collections, the resulting times and spaces do not reflect the behavior on a proper collec-
tion of genomes. In the next chapter this is handled properly, so e.g. Table 5.1 gives a
better idea of the behavior of CHICO on real data.

26
4 CHICO: A Compressed Hybrid Index for Repetitive

Collections

Size Build time Query Time (ms)
(bpc) (min) |P | = 50 |P | = 70

EM-LZ 0.00126 4647 18.16 14.90

RLZ0.5GB 0.0060 143 55.28 46.67
RLZ1GB 0.0047 65 50.30 40.72

Table 4.1: Different parsing algorithms to index collection CHR21, a 90GB syn-
thetic collection made of DNA. The first row shows the results for EM-LZ, which
computes the LZ77 greedy parsing. The next rows show the results for the RLZ
parsing using prefixes of size 500MB and 1GB. The size of the index is expressed
in bytes per char, the building times are expressed in minutes, and the query times
are expressed in milliseconds. Query times were computed as an average of 1000
query patterns randomly extracted from the collection.

Size Build time (min) Query Time (ms)
(bpc) LZ Parsing Others P=50 P=70

RLZ1GB 0.00656 308 51 225.43 178.47
PRLZ1GB 0.00658 22 55 224.04 181.21

Table 4.2: Results using RLZ and PRLZ to parse CHR14, a 201 GB synthetic
collection made of DNA. Query times were computed as an average of 1000 query
patterns randomly extracted from the collection.

Chapter 5

Pan-Genome Read Alignment to
Improve Variation Calling

An important motivation that we have discussed in previous chapters is read
alignment, where short NGS reads are mapped to a (much larger) genomic
reference. In essence, to do read alignment is to solve approximate pattern
matching.

Among the many applications of read alignment [57], here we focus on
variation calling, the process of characterizing an individual’s genome by
finding how it differs from a reference. The standard approach is to obtain
a set of reads from the donor, to map them to a single reference genome
using a read aligner, and analyzing the read pile-up to infer the variants
that occur in the donor’s genome.

However, our current knowledge about the human genome is
pan-genomic [19]: after the first human genome was sequenced, the cost
of sequencing has decreased dramatically, and today many projects are
curating huge genomic databases.

In this chapter we present the contribution of Paper III, a new frame-
work for variant calling with short-read data utilizing a pan-genomic ref-
erence. As an intermediate result we provide a fully scalable pan-genome
read aligner based on the index of Chapter 4.

5.1 Pan-genome indexing

As DNA repositories keep growing the term pan-genome is being used more
frequently [66, 87, 88, 19] – even getting media coverage [81, 73] – although
not always with the same meaning. A recent attempt for a broad definition
states that a pan-genome is any collection of genomic sequences to be ana-

27

28 5 Pan-Genomic Variation Calling

Figure 5.1: Four different representations of a pan-genome that corresponds to the
same set of individuals. Top left: a reference sequence plus a set of variants to
specify the other individuals. Top right: a (directed acyclic) graph representation.
Bottom left: a multiple sequence alignment representation, Bottom right: a set of
sequences representations.

lyzed jointly or to be used as a reference [19]. Once we adopt this general
definition for pan-genomic reference, we are left with two closely related
questions: how to represent a pan-genomic reference, and how to index
it. Previous efforts can roughly be categorized into three classes: one can
consider (i) a graph representing a reference and variations from it, (ii) a
set of reference sequences, or (iii) a modified reference sequence. See Paper
III for a review on these approaches [86, 84, 46, 21, 24, 71, 29, 23, 64].

The simple class (ii) model, a set of sequences, has been actively studied
from a computer science perspective, achieving good results in terms of time
and space efficiency using scalable methods. Unfortunately, unlike classes
(i) and (iii), it has not been tested for enhancing variation calling. Here we
aim to fill this gap. We do it by adopting a multiple sequence alignment
representation of the pan-genome. On the one hand, it is easily transformed
into a set of sequences and vice versa. On the other hand, similarly to class
(i) and (iii), the multiple sequence alignment has enough structure to make
it an attractive choice for a reference.

5.2 Pan-genomic references to improve variant calling 29

5.2 Pan-genomic references to improve variant
calling

In this section we present our framework for variation calling using read
alignment to a pan-genomic reference. First we give an overview, and then
we dwell on the relevant details. Figure 5.2 illustrates our scheme.

Our approach represents the pan-genome reference as a multiple se-
quence alignment (Figure 5.1 bottom left). We index the underlying set
of sequences in order to align the reads to the pan-genome. After aligning
all the reads to the pan-genome we perform a read pileup on the multiple
sequence alignment of reference genomes. The multiple sequence alignment
representation of the pan-genome lets us extract a linear ad hoc reference
easily. Such a linear ad hoc reference represents a possible recombination
of the genomic sequences present in the pan-genome that is closer to the
donor than a generic reference sequence. The ad hoc reference is then fed
to any standard read alignment and variation detection workflow. Finally,
we need to normalize our variants: after the previous step, the variants
are expressed using the ad hoc reference instead of the standard one. The
normalization step projects the variants back to the standard reference.

In the following sections we provide a detailed description of each com-
ponent of our workflow.

5.2.1 CHIC aligner

We developed CHIC aligner, an extended version of the previous chapter’s
index. Using it we can perform read alignment to the set of sequences
that makes the pan-genome. Recall that CHICO indexes a set of sequences
using a recent data structure called hybrid index [29]. The hybrid index
uses the Lempel-Ziv compression algorithm to factor out repetitions in the
sequences and builds a sequence containing only the non-repetitive content.
This sequence has been called kernel sequence, because to solve the pattern
matching problem in the whole sequence, it is enough to solve it in the
kernel sequence. In addition to the kernel string and its index, CHIC aligner
also stores the phrase boundaries, and some auxiliary information. This
is necessary to project the coordinates of the alignments from the kernel
string to the original sequences. Different algorithms from the Lempel-Ziv
algorithms can be used to construct the index, leading to different trade-
offs. Among them we chose Relative Lempel-Ziv (RLZ) [56] because of its
many virtues for the pan-genome scenario: it offers a very fast construction
algorithm with moderate memory requirement and little compromise in the
size of the index. Furthermore it can be easily run in parallel. Once the

30 5 Pan-Genomic Variation Calling

Figure 5.2: Schematic view of our PanVC workflow for variation calling, including a
conceptual example. The pan-genomic reference comprises the sequences GATTATTC,
GATGGCAAATC, GTTTACTTC and GATTTTC, represented as a multiple sequence
alignment. The set of reads from the donor individual is GTTT, TTAA, AAAT and
AATC. CHIC aligner is used to find the best alignment of each read. In the example,
all the alignments are exact matches starting in the first base of the third sequence, the
third base of the first sequence, the seventh base of the second sequence, and on the eight
base of the second sequence. After all the reads are aligned, the score matrix is computed
by incrementing the values of each position where a read aligns. With those values, the
heaviest path algorithm extracts a recombination that takes those bases with the highest
scores. This is the ad hoc genome which is then used as a reference for variant calling
using GATK. Finally the variants are normalized so that they are using the standard
reference instead of the ad hoc reference.

5.2 Pan-genomic references to improve variant calling 31

kernel sequence is built, CHIC aligner indexes it with a standard read
aligner, such as Bowtie2 or BWA.

A feature that CHIC aligner has in common with some previous indexes
for pan-genomes is that during indexing time, a context size M is given as
a parameter. This sets an upper bound for the read length that can be
aligned. In all our experiment we use M = 120.

CHIC aligner interface is compatible with other reads aligners: the
input is a multi-fasta file with the input genomes and the alignments are
output in the SAM format [59]. Our index offer two main reporting modes
for the alignments: The first one looks for the best alignment in the kernel
string and only its projection back to the original input is reported. The
second one also looks only for the best match in the kernel string. Then
its projection to the input is reported, and also all possible repetitions of
such alignment are reported as well. Those can be combined with Bowtie2
(or BWA) reporting options, and instead of looking for the best match in
the kernel string, it is possible to report all occurrences, or the best k ones,
where k is a user-defined parameter. In our experiments we report only
the best alignment, as it is expected that many repetitions occur in the
pan-genomic context.

5.2.2 Pan-genome representation

As discussed in Section 5.1, we represent the pan-genome as a multiple
sequence alignment and we index the underlying sequence using CHIC
aligner. To transform one representation into the other and to be able
to map coordinates we store bitmaps to indicate the positions where the
gaps occur. Consider our running example of a multiple alignment

GATTAAT--TC

GATGGCAAATC

GTTTACT--TC

GATT--T--TC

We may encode the positions of the gaps by four bitvectors:

11111110011

11111111111

11111110011

11110010011

Let these bitvectors be B1, B2, B3, and B4. We extract the four sequences
omitting the gaps, and preprocess the bitvectors for constant time rank

32 5 Pan-Genomic Variation Calling

and select queries [48, 16, 68]: rank1(Bk, i) = j tells the number of 1s in
Bk[1..i] and select1(Bk, j) = i tells the position of the j-th 1 in Bk. Then,
for Bk[i] = 1, rank1(Bk, i) = j maps a character in column i of row k in
the multiple sequence alignment to its position j in the k-th sequence, and
select1(Bk, j) = i does the reverse mapping, i.e. the one we need to map
a occurrence position of a read to add the sum in the coverage matrix.

These bitvectors with rank and select support take n+o(n) bits of space
for a multiple alignment of total size n [48, 16, 68]. Moreover, since the
bitvectors have long runs of 1s (and possibly 0s), they can be compressed
efficiently while still supporting fast rank and select queries [79, 72].

5.2.3 Heaviest path extraction

After aligning all the reads to the multiple sequence alignment, we extract a
recombined (virtual) genome favoring the positions where most reads were
aligned. To do so we propose a generic approach to extract such a heaviest
path on a multiple sequence alignment. We define a score matrix S that
has the same dimensions as the multiple sequence alignment representation
of the pan-genome. All the values of the score matrix are initially set to 0.

We use CHIC aligner to find the best alignment for each donor’s read.
Then we process the output as follows. For each alignment of length m
that starts at position j in the genome i of the pan-genome, we increment
the scores in S[i][j], S[i][j + 1] . . . S[i][j +m− 1]. When all the reads have
been processed we have recorded in S that the areas with highest scores
are those where more reads were aligned.

Then we construct the ad hoc reference as follows: we traverse the score
matrix column wise, and for each column we look for the element with the
highest score. Then, we take the nucleotide that is in the same position
in the multiple sequence alignment and append it to the ad hoc reference.
This procedure can be interpreted as a heaviest path in a graph: each cell
(i, j) of the matrix represents a node, and for each node (i, j) there are
N outgoing edges to nodes (i + 1, k), k ∈ {1, . . . , N}. We add an extra
node A with N outgoing edges to the nodes (1, k), and another node B
with N ingoing edges from nodes (L, k). Then the ad hoc reference is the
sequence spelled by the heaviest path from A to B. The underlying idea
of this procedure is to model structural recombinations among the indexed
sequences.

A valid concern is that the resulting path might contain too many alter-
nations between sequences in order to maximize the weight. To address this
issue we propose an algorithm to extract the heaviest path, constrained to
have a limited number of jumps between sequences (see Paper III, Supple-

5.2 Pan-genomic references to improve variant calling 33

ment B). However, in our experiments we noticed that the unconstrained
version presented in this section performs well.

It is worth noting that as opposed to a graph representation of the
pan-genome where the possible recombinations are limited to be those pre-
existing in the pan-genome, our multiple sequence alignment representation
can also generate novel recombinations by switching sequences in the middle
of a pre-existing variant. This happens in our example in Figure 5.2, where
the ad hoc reference could not be predicted using the graph representation
of the same pan-genome shown in Figure 5.1.

5.2.4 Variant calling

Variant calling can be in itself a complex workflow, and it might be tailored
for specific type of variants (SNVs, Structural Variants), etc. We aim for a
modular and flexible workflow, so any workflow can be plugged in it. The
only difference is that we will feed it the ad hoc reference instead of the
standard one. In our experiments, we used GATK [4] version 3.3, following
the Best Practices: first we aligned the reads to the reference using BWA,
and next we used Picard to sort the reads and remove duplicates. Then
we performed indel realignment using GATK RealignerTargetCreator and
IndelRealigner, and finally we called variants using GATK HaplotypeCaller
using parameters genotyping mode = DISCOVERY, standemit conf = 10

and textttstandcall conf = 30.

5.2.5 Normalizer

Finally we need to normalize our set of variants. To do so we apply the
variants to the ad hoc reference, so that we obtain an alignment between
the ad hoc reference and the predicted sequence. The metadata generated
in the preprocessor stage – while extracting the heaviest path – includes an
alignment between the standard reference and the ad hoc reference. Using
those, we can run a linear-time algorithm to obtain an alignment between
the standard reference and the predicted sequence. From this alignment,
we can generate a vcf file that expresses the predicted sequence as a set of
variants from the standard reference.

34 5 Pan-Genomic Variation Calling

5.3 Experiments

5.3.1 Read alignment

The experiments on CHIC aligner have two purposes. The first one is to
study to what extent including more sequences in the reference pan-genome
increases the number of mapped reads. The second one is to measure the
cost of having such a large pan-genome reference. We built pan-genome
references that consist of 21 and 201 different human genomes. These were
built using only the consensus GRCh37, or the consensus plus 10, or plus
100 individuals from the 1000 genomes project [89]. We generated them
using two haplotypes from each individual.

To carry out our experiment in a realistic set we aligned the reads from
a new donor who is not part of the pan-genome reference. Thus, we took
a sample of 106 paired-end reads from a recent study on the genome of a
Mongolian individual [5]. We measured the indexing time for each pan-
genome reference, the size of the resulting index and the total time to align
the reads to the reference. Also we report the number of mapped reads.
As a baseline, we compare against Bowtie2 using a single human genome
as a reference. The results are shown in Table 5.1.

Indexing Alignment

Aligner Input size Time Index Size Time Mapped reads

BOWTIE21 2.7GB 1h 3.708GB 5.32s 782883

CHIC21 57GB 5h 25GB 2m 785552
CHIC201 540GB 35h 180GB 24m 786026

Table 5.1: Scalability of CHIC aligner. Time required to build the index, to align
a set of 106 paired-end reads, and the number of unaligned reads. BOWTIE21
indexes the human reference, CHICx indexes x different versions of the human
genome (only numbered chromosomes).

The results show that the time needed to align the reads to the pan-
genomic reference are larger than in the single reference scenario, however
they are good enough to be used by practitioners. Increasing the number
of references has the desired effect of increasing the number of reads that
are successfully mapped.1 In the next section we explore the impact of this
for variant detection.

1 The results in Table 5.1 differ from the results in Paper III because the tool used
to generate the multiple sequence alignment in Paper III applied the variants greedily to
the first genomes without overlapping variants. For this reason the index size and the
times are larger here, but also the number of reads mapped is higher.

5.3 Experiments 35

5.3.2 Variation calling

Our experimental setup for variation calling consists of a hidden donor
genome, out of which a set of sequencing reads is given as input to the vari-
ation calling prediction workflows. We considered the following approaches
for variation calling:

• MSAchic. This is our PanVC framework, using CHIC for read align-
ment.

• MSAbase. Here we implemented a PanVC version that does not rely
on CHIC aligner, but instead, uses BWA to align the reads against
each sequence in the pan-genomic reference.

• GRAPH. We considered a previous approach [86] that uses a DAG to
represents the pan-genomic reference, and modified it to extract an
ad hoc reference, so that we can use it within PanVC.

• GATK. As a baseline, we considered GATK workflow [4] that aligns
the reads against a reference genome using BWA and analyses the
resulting read pileup.

The first three methods use reference sets of 20, 50 and 100 genomes.
The GATK baseline method is limited to use only one reference.

Our experiments focus on variation calling on complex regions with
larger indels and/or densely located simpler variants, where significant im-
provements are still possible. The reason for that is that graph-based pan-
genome indexing has been already thoroughly evaluated [86] for mapping
accuracy on human genome data. From those results one can infer that on
areas with isolated short indels and SNVs, a regular single-reference based
indexing approach with a highly engineered alignment algorithm might be
already sufficient.

Therefore, we based our experimental setup on the analysis of highly-
polymorphic regions of the human genome [45, 53] that was created in a
previous study [86]. This test setup consists of variation-rich regions from
93 genotyped Finnish individuals (1000 genomes project, phase 1 data).
The 93 diploid genomes gave us a multiple alignment of 186 strains plus
the GRCh37 consensus reference. This multiple alignment is obtained by
applying the variants greedily to the first genome without other overlapping
variants. We chose variation-rich regions that had 10 SNVs within 200
bases or less. The total length of these regions was 2.2 MB. To produce the
ground-truth data for our experimental setup, we generated 221559 100bp

36 5 Pan-Genomic Variation Calling

single-end reads from each of the Finnish individuals giving an average
coverage of 10x.

All the evaluated methods output variation calling results that are pro-
jected with respect to the standard reference genome. Our hidden donor
genome can also be represented as a set of variants with respect to the
standard reference genome. This means that we can calculate the standard
prediction success measures such as precision and recall. For this, we chose
to define the prediction events per base, rather than per variant, to tolerate
better invariances of variant locations as have been found to be critical in
a recent study [98].

In addition to precision and recall, we also compute the unit cost edit
distance of the true donor and the predicted donor. This is defined as
the minimum amount of single base substitutions, insertions, or deletions
required to convert the predicted donor into the true donor. Here the
sequence content of the true donor is constructed by applying its set of
variants to the standard reference and the sequence content of the predicted
donor is constructed by applying the predicted variants to the standard
reference. See Paper III for more details on the evaluation metrics.

As our experiments are on human data, where genomes are diploids,
the heterozygous variants may overlap, which causes some changes to the
evaluation measures above. That is, when applying the variants to the
reference, we omit variants that overlap already processed ones, and the
result is thus a single sequence consisting of all compatible variants. We
follow this approach also when computing the precision and recall measures
to make the “per base” prediction events well-defined. The results are
illustrated in Tables 5.2 and 5.3. Row GATK of Table 5.2 stands for the
GATK workflow. Row MSA + GATK of Table 5.2 stands for the multiple
sequence alignment -based pan-genome indexing scheme specified in the
Methods section to produce the ad hoc reference. Row Graph +GATK
of Table 5.2 is using the graph-based indexing of [86], where the ad hoc
reference component is specified in the Methods section.

The columns in both tables refer to predictions after using GATK with
the standard reference, and after using ad hoc references produced using
different size sets of reference genomes in pan-genome indexing. The results
are averages over 10 donors.

5.3 Experiments 37

Pan-genome reference size

1 20 50 100

GATK 74695.9 - - -
MSAbase + GATK - 2885.5 1956.9 1204.7
MSAchic + GATK - 1349.3 1117.4 1099.3
Graph +GATK - 3230.4 3336.8 2706.9

Table 5.2: Edit distance from the predicted donor sequence to the true donor. The
average distance between the true donors and the reference is 95193.9.

Measure GATK 20 50 100

SNV Precision 0.992161 0.997355 0.996913 0.996348
SNV Recall 0.904897 0.996721 0.997528 0.997554
Indel Precision 0.364853 0.994608 0.994906 0.994804
Indel Recall 0.0624981 0.961927 0.973369 0.982674

Table 5.3: Precision and recall of our method MSAbase compared to GATK.

Measure GATK 20 50 100

SNV Precision 0.992161 0.998585 0.998863 0.998773
SNV Recall 0.904897 0.997098 0.998695 0.999072
Indel Precision 0.364853 0.996514 0.99731 0.997778
Indel Recall 0.0624981 0.982659 0.985723 0.985958

Table 5.4: Precision and recall of our method MSAchic compared to GATK.

38 5 Pan-Genomic Variation Calling

Chapter 6

Diploid Alignments

Genomes are frequently abstracted as single linear sequences. A basic
problem in comparative genomics is to compute the edit distance between
genomes. That is, to find the minimum number of editions, insertions or
deletions needed to transform one genome into another. To take into ac-
count more convoluted biological processes, different distances have been
proposed, such as the inversion distance [42], the inversion-indel distance [97],
and DCJ-indel distance [99, 9], to name a few.

However, human genomes are diploid, as we inherit two independent
versions of our genome from each parent. Unfortunately it is quite difficult
to obtain the exact content of each of those two sequences. In practice, the
genotyping process identifies variants that are present in an individual’s
genome, but it does not necessarily identify to which of the two sequences
each variant belongs. The process to assign each variant to each of those
sequences is known as haplotype phasing.

In this chapter we first review the proposal of Paper IV that mod-
els diploid genomes as pair-wise alignments. This representation leads to
a generalization of edit distance (and related concepts such as sequence
alignment and sequence similarity) that accounts for unknown haplotype
phases. Furthermore, we review the proposal of Paper V that extends this
representation to model the haplotype phasing problem.

6.1 Sequence alignment and recombinations

Recall that a pair-wise alignment (or simply an alignment, when it is clear
from the context) of sequences A and B is a pair of sequences (SA, SB) such
that SA is a supersequence of A, SB is a supersequence of B, |SA| = |SB| = n
is the length of the alignment, and all positions which are not part of the

39

40 6 Diploid Alignments

subsequence A (respectively B) in SA (respectively SB), contain the gap
symbol ′−′, which is not present in the original sequences.

Given a similarity function C (a, b) that assets the similarity between
two characters, the similarity of a pair-wise alignment is defined as

S (SA,SB) =
n∑
i=1

C (SA[i],SB[i]).

The similarity of two sequences is then defined as

S (A,B) = max{
n∑

1=1

C (SA[i],SB[i]) : (SA,SB) is an alignment of A and B}.

An alignment that achieves that value is called an optimal alignment. It
is possible to use a cost function instead of a similarity function, in which
case the maximum is replaced by a minimum, and the measure is a distance
between A and B. In particular, the unit cost function is defined as 0 when
the arguments are two identical characters, and 1 otherwise. When unit
cost is used the result is the edit distance between A and B, which stands for
the minimum number of insertions, deletions or substitutions to transform
one sequence into the other.

We say that (SA
′
, SB

′
) is a recombination of an alignment (SA,SB) if

both alignments have the same length n and there exists a binary string
P (for phase) such that SA

′
[i] = SA[i] and SB

′
[i] = SB[i] if P [i] = 0, and

SA
′
[i] = SB[i] and SB

′
[i] = SA[i] if P [i] = 1. We say that the characters are

swapped in the positions in which P [i] = 1. We denote this recombination
relation by (SA

′
,SB

′
)<(SA,SB).

6.2 Diploid to diploid similarity

6.2.1 A general model

Given two pair-wise alignments (SA,SB) and (SX ,SY) that represent two
diploid genomes, we define the diploid to diploid similarity as the sum of
the optimal similarity scores by components, given by the best possible
recombination of both diploids. More formally:

Sd−d((S
A,SB), (SX , SY)) = max{S (A′, X ′) + S (B′, Y ′) :

(SA
′
, SB

′
)<(SA,SB) ∧ (SX

′
, SY

′
)<(SX ,SY))}

Now we propose an alternative formulation of the problem that can be
seen as an extension of the DAG path-alignment considered for progressive

6.2 Diploid to diploid similarity 41

a g t g g a a a

a c - g g c c a

a c - g g a a a

a g t g g c c a

a - c g g a a a

a g t a g c c a

SA :

SB :

SA′
:

SB′
:

SX :

SY :

(a)

a
1 2

g

c

2

1

t

1

2

g
1 2

g
1 2

a

c

1

2

a

c

1

2

a
1 2

a
1 2

g

1

2

c

t
2

1

g

a
2

1

g
1 2

a

c

1

2

a

c

1

2

a
1 2

(b)

Figure 6.1: (a) Pair-wise alignment (SA, SB) for sequences A = agtggaaa and B =

acggcca. A recombination SA′
and SB′

is obtained by interchanging the shaded areas.
The corresponding bitvector is I = 01100000. A pair-wise alignment (SX , SY) is shown
for sequences X = acggaaa and Y = agtagcca. The diploid to diploid distance between
(SA, SB) and (SX , SY) is 0 + 1 = 1, and is obtained using the recombination (SA′

, SB′
).

The plain unit cost edit distance between (A,B) and (X,Y) is 2 + 3 = 5. The plain
unit cost edit distance between (A,B) and (Y,X) is 3 + 2 = 5. The synchronized diploid
to diploid distance between (SA, SB) and (SX , SY) is 3. (b) DAG representation for
the same input. From each DAG two covering paths are extracted, meaning that every
node is visited by at least one path. The paths corresponding to the optimal solution are
labeled with numbers 1 and 2 in each graph.

42 6 Diploid Alignments

multiple sequence alignment [58, 63]. The main difference is that in our
case the input is a pair of pair-wise alignments instead of multiple sequence
alignments.

First we consider a labeled DAG representation of a diploid alignment
that can be constructed by levels. In the 0th level of the DAG there is
a single source node s0, and then we create levels 1 to n adding edges
from every node in level i towards every node in level i + 1 as follows. If
SA[i] = SB[i] we put a single node in level i, and if SA[i] 6= SB[i] we put
two nodes in level i. Figure 6.1 shows an example.

Let G1 and G2 be two labeled DAGs each representing a pair-wise
alignment. The covering alignment problem is to find two paths A and
B that cover all nodes of G1, and two paths X and Y that cover all nodes
of G2, such that S (A,X) + S (B, Y) is maximum over all path-covers of
G1 and G2. It is easy to see that this is equivalent to the diploid to diploid
alignment problem.

In Paper IV we did not provide any algorithms nor complexity bounds
for this problem, although the brute force solution that considers all pos-
sible recombinations yields to an exponential time algorithm. Very recent
work has proved that this problem is NP-Hard [82].

In the following sections we explore alternative formulations that have
polynomial time solutions.

6.2.2 Diploid to pair of haploids similarity

Given a pair-wise alignment (SA,SB) and two sequences X and Y , the
diploid to pair of haploids similarity is defined as the sum of the optimal
similarity scores by components given by the best possible recombination
of the diploid genome. More formally:

Sd−hh((SA, SB), (X,Y)) = max{S (A′, X) + S (B′, Y) :

(SA
′
,SB

′
)<(SA,SB)}

To compute the diploid to pair of haploids distance, we proceed as
follows. We store values Vi,j,k for 1 ≤ i ≤ |X|, 1 ≤ j ≤ |Y |, and 1 ≤ k ≤ n,
such that Vi,j,k stands for the diploid to pair of haploids distance between
the alignment (SA1..k,S

B
1..k) and the sequences X1..i, Y1..j . For the sake of

simplicity we first show the recurrence when SA[k] = SB[k] = c ∈ Σ:

6.2 Diploid to diploid similarity 43

Vi,j,k = min{ C (Xi, c) + C (Yj , c) + Vi−1,j−1,k−1 , (6.1.1)

C (′−′, c) + C (Yj , c) + Vi,j−1,k−1 , (6.1.2)

C (Xi, c) + C (′−′, c) + Vi−1,j,k−1 , (6.1.3)

C (′−′, c) + C (′−′, c) + Vi,j,k−1 , (6.1.4)

C (Xi,
′−′) + Vi−1,j,k , (6.1.5)

C (Yj ,
′−′) + Vi,j−1,k } (6.1.6)

Expression (6.1.1) stands for a match or substitution; expressions (6.1.2)
to (6.1.4) stand for insertions either into X, Y , or both; and expressions
(6.1.5) and (6.1.6) stand for deletion from X or Y . We do not include the
case for simultaneous deletion from X and Y because it can be obtained
by first deleting a character from X, and then from Y .

When a = SA[k] 6= SB[k] = b we have to consider symmetric cases:

Vi,j,k = min{ C (Xi, a) + C (Yj , b) + Vi−1,j−1,k−1 , (6.2.1)

C (Xi, b) + C (Yj , a) + Vi−1,j−1,k−1 , (6.2.2)

C (′−′, a) + C (Yj , b) + Vi,j−1,k−1 , (6.2.3)

C (Xi, a) + C (′−′, b) + Vi−1,j,k−1 , (6.2.4)

C (′−′, a) + C (′−′, b) + Vi,j,k−1 , (6.2.5)

C (′−′, b) + C (Yj , a) + Vi,j−1,k−1 , (6.2.6)

C (Xi, b) + C (′−′, a) + Vi−1,j,k−1 , (6.2.7)

C (′−′, b) + C (′−′, a) + Vi,j,k−1 , (6.2.8)

C (Xi,
′−′) + Vi−1,j,k , (6.2.9)

C (Yj ,
′−′) + Vi,j−1,k } (6.2.10)

Now we have twice as many expressions for matches/substitutions (6.2.1
and 6.2.2), twice as many conditions for insertions (6.2.3 to 6.2.8), and the
same number of conditions for deletions (6.2.9 and 6.2.10). When a = b
those duplicated equations become redundant and we recover the previous
formulation. Also it would be possible to formulate simplified recursions
when there is a gap in the alignment (that is, either a or b equals ′−′),
however those are also particular cases of the general formulation, given
that C (′−′,′−′) = 0.

To compute the Sd−hh distance using dynamic programming we fill a
table with Vi,j,k values in time O(|X||Y |n). To find the actual alignment, we
need to carry a bitvector P while doing the traceback process. P is initially
empty. Every time we take a transition that decreases k we prepend a 0
(respectively a 1) to P , if we choose an expression from 6.2.1, 6.2.3, 6.2.4,
or 6.2.5 (respectively 6.2.2, 6.2.6, 6.2.7, or 6.2.8). With this bitvector P we
identify the recombination (SA

′
, SB

′
) that generated the optimal alignment,

signaling with a 1 the positions where a recombination is done.

44 6 Diploid Alignments

Because the model assumes that there is no prior knowledge about the
correct phasing of the variants, the recombinations do not have any penalty.
It is easy to modify the recurrences to account for a penalty for each re-
combination, should we apply the model under different assumptions.

6.2.3 Synchronized diploid to diploid alignment

In this section we present a different way to simplify the diploid to diploid

alignment. First we will introduce some concepts. We say that (SÂ, SB̂) is a
recombined superalignment of an alignment (SA,SB) if there exist sequences
SA

′
and SB

′
that are obtained by removing gaps from the same positions in

SÂ and SB̂, and it holds that (SA
′
,SB

′
)<(SA, SB). We denote this relation

by (SÂ,SB̂)<S(SA,SB). In the following we resort to distance modeling to
describe a speed-up.

Synchronized diploid to diploid distance:1

Given two pair-wise alignments (SX ,SY) and (SA,SB) of length n1 and
n2 respectively, the synchronized diploid to diploid distance is defined as

Ssync((S
A, SB), (SX ,SY)) = min{S (SÂ,SX̂) + S (SB̂,SŶ) |

∀l ∈ {1, . . . , |SÂ|} ∃ w, z such that:

(SÂ1..l, S
B̂
1..l)<S(SA1..w,S

B
1..w) ∧ (SX̂1..l,S

Ŷ
1..l)<S(SX1..z,S

Y
1..z))}

6.2.3.1 A quadratic time algorithm

We compute values Dw,z for w ∈ {1, . . . , n1}, z ∈ {1, . . . n2}, where Dw,z

stands for the synchronized diploid to diploid distance between alignments
(SX1..w,S

Y
1..w) and (SA1..z,S

B
1..z). The recurrence is a direct generalization of

the standard edit distance computation, with the additional possibility of
recombination.

Dw,z = min{ Dw−1,z−1+C (SXw , S
A
z) + C (SYw , S

B
z) , (6.3.1)

Dw−1,z−1+C (SXw , S
B
z) + C (SYw , S

A
z) , (6.3.2)

Dw,z−1 +C (′−′, SAz) + C (′−′,SBz) , (6.3.3)

Dw−1,z +C (SXi ,
′−′) + C (SYj ,

′−′) } (6.3.4)

1In Paper IV the formalization of synchronized diploid to diploid alignment and the al-
gorithms to compute it are built using the concept of guiding function. Here we formalize
it in a different way, but the resulting algorithms are equivalent.

6.2 Diploid to diploid similarity 45

Diploid to Pair of Haploids Synchronized Diploid To Diploid
Cubic Algorithm Matrix Diagonals

Length Mutations Distance Time Distance Time Distance Time

1000 21 21 19.190 21 0.040 21 0.001
2000 47 43 154.030 47 0.110 47 0.010
4000 85 79 1219.060 85 0.650 85 0.020
8000 174 - - 172 1.790 172 0.070
10000 218 - - 216 2.820 216 0.180
20000 408 - - 403 11.080 403 0.580
40000 777 - - 750 44.290 750 1.170
80000 1578 - - 1531 177.200 1531 4.630
100000 1994 - - 1935 276.960 1935 11.500

Table 6.1: The distance between pairs of diploids computed by our three algo-
rithms, and the time (in seconds) used for the computation. The cubic algorithm
is our implementation of the diploid to pair of haploids algorithm, Synchronized -
Matrix is the straightforward implementation of the synchronized diploid to diploid
distance, and Synchronized - Diagonals is the O(ND) time implementation of the
same algorithm using the doubling diagonals technique.

Synchronized - Diagonals Levenshtein

Length Variations Mutations Distance Time Distance Time

10000 100 7 7 0.006 52 0.010
20000 227 18 18 0.020 139 0.052
30000 338 33 33 0.064 241 0.138
40000 434 36 36 0.096 272 0.214
50000 538 46 46 0.140 367 0.362
60000 637 50 50 0.230 448 0.528
70000 742 67 67 0.274 529 0.850
80000 839 73 73 0.370 562 1.066
90000 960 91 91 0.550 697 1.570
100000 1089 109 109 0.688 762 2.198
1000000 10127 990 990 58.978 7676 376.320

Table 6.2: A number of variations were applied to the reference genome, and blocks
of size 200 were recombined freely. After that, random mutations were introduced
with probability 0.001. We show the distances and times (in seconds) obtained
by our synchronized diploid to diploid distance algorithm and by the Levenshtein
distance.

46 6 Diploid Alignments

6.2.3.2 An O(ND) time algorithm for unit costs

The same technique [93, 69] used for the computation of the Levenshtein
distance of strings to achieve O(ND) running time, where D is the final
distance can be applied here. The key observation is:

Lemma 6.1 Let (SA, SB) and (SX , SY) be two alignments, and let Dw,z

be the synchronized diploid to distance costs computed as before. Then
∀0 ≤ w ≤ n1, 0 ≤ z ≤ n2 it holds Dw,z > Dw−1,z and Dw,z > Dw,z−1 .

Proof. It is enough to observe the second and third elements in expres-
sions 6.3.3 and 6.3.4. The only situation that could contradict the lemma
is if there is an i such that SAi = SBi =′ −′, or analogously, a j such that
SXj = SYj =′ −′. As such a situation does not add any information to
an alignment we can easily remove all such positions before computing the
distance without altering either the alignments or the resulting distance. 2

Assume for simplicity of exposition that |n1| = |n2| = n and we store
values Dw,z in a table. We also assume all the edit operations have unitary
cost. We want to test if the distance between (SA,SB) and (SX , SY) is
smaller than a threshold t or not. That is, we want to test if DN,N ≤ t
for some threshold t. Diagonals j − i ∈ {−t/2,−t/2 + 1, . . . , 0, 1, . . . , t/2}
are sufficient to consider in the computation, as any path using a diagonal
outside this zone must use more than t operations that have cost 1, leading
to an alignment with a cost higher than t. Starting with t = 1 and doubling
this value until DN,N does not decrease any more gives the optimal answer,
and the final area where the computation is done is of order O(ND); the
previous zone sizes form a geometric series, so the computation done inside
them is of the same order as the computation inside the final zone.

6.2.4 In practice

In Paper IV we presented an implementation of the algorithms of Sec-
tion 6.2.2 and Section 6.2.3. They were implemented using unit cost, so
they measure distance between alignments. Here we reproduce the main
results. In Table 6.1 the three algorithms are compared using inputs of size
up to 104, and in Table 6.2 we compared the O(ND)-time algorithm against
an implementation of the Levenshtein distance as a baseline in inputs of
size up to 106.

6.3 Haplotyping through diploid alignment 47

a g c c a c a

- g c t a c a

a g - - g c a c a

a g a g g c a t a

a g - - c t a c a

a g a g g c a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

- g c c a c a

a g c t a c a

a g a - g c a c a

a g - g g c a t a

a g - g g c a c a

a g a - c t a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

Figure 6.2: On the left we show how the pair-wise alignments would be if we knew
the correct phasing of the three individuals. On the right, the same individuals
are presented, but the haplotype phasing is not known a priori. We assume a
similarity function that scores 1 for equal characters, and −1 for indels and mis-
matches. The colored recombinations show the sequences M ′

1 (hatched blue), F ′
1

(solid green) from the recombination that gives the optimal alignment. The haplo-
typing similarity of the trio is S(AGCTACA, AGCTACA)+S(AGAGGCATA, AGAGGCATA) =
7+9 = 16. The binary strings associated to the recombinations are PM = 1001110,
PF = 110100011 and PC = 000111000. Note that the latter corresponds to the
predicted phase for the child genome. It is also important to note that none of
the binary strings signal evolutionary recombinations, as they account for phasing
errors in the input data.

6.3 Haplotyping through diploid alignment

All the previous models are tools to measure similarity between genomes.
Those are modeled either as a diploid or as pair of haploids, and the models
account for different extents of recombination. Their aim is to compare
individuals where heterozygous and homozygous variations are known, but
there is no knowledge about the correct phasing of the variations.

In this section we extend one of them, the diploid to pair of haploids,
to propose a formulation for the haplotype phasing problem in a setting
where the parents’ genotypes are also known.

6.3.1 The similarity model

Let (SM1 ,SM2),(SF1 ,SF2) and (SC1 , SC2) be three pair-wise alignments, of
length LM , LF and LC respectively. Those represent the diploid sequences
of the mother, father and child, and we call the three of them a mother-
father-child trio (m-f-c trio).

We define the haplotyping similarity of an m-f-c trio, H(m-f-c), as the
maximum pair-wise similarity between one of the sequences of the mother
and one of the sequences of the child, plus the pair-wise similarity between
the other child sequence and one of the father sequences, assuming that
haplotype phasing has not been performed. This means that we need to al-

48 6 Diploid Alignments

low free recombination in each pair-wise alignment to let the model discover
the real phase. More formally:

H(m-f-c) = max{S(M ′1, C
′
1) + S(F ′1, C

′
2) : (SM

′
1 ,SM

′
2)<(SM1 ,SM2)

∧ (SF
′
1 , SF

′
2)<(SF1 , SF2) ∧ (SC

′
1 ,SC

′
2)<(SC1 ,SC2)}

Figure 6.2 shows an example optimal alignment of a m-f-c trio.

6.3.2 Dynamic programming algorithm

In this section we present our algorithm to compute the m-f-c similar-
ity. We propose a dynamic programming formulation that computes val-
ues Hi,j,k,m,f,c with i ∈ {1, . . . , LM}, j ∈ {1, . . . , LF }, k ∈ {1, . . . , LC},
m ∈ {1, 2}, f ∈ {1, 2} and c ∈ {1, 2}. The value in Hi,j,k,m,f,c stands for
the similarity score between (SM1 [1..i],SM2 [1..i]), (SF1 [1..j],SF2 [1..j]), and
(SC1 [1..k],SC2 [1..k]), with the additional constraint that the last character
of the mother alignment is swapped if and only if m = 1, the last char-
acter of the father alignment is swapped if and only if f = 1 and the last
character of the child alignment is swapped if and only if c = 1.

We first consider the particular case when the input alignments contain
no gaps. That is, SC1 = C1, SC2 = C2, SF1 = F1, etc. It is possible to
compute those values recursively as follows:

Hi,j,k,m,f,c = max

Hi−1,j,k,∗,f,c + s(′−′,Mm[i]) if i > 1
Hi−1,j,k−1,∗,f,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k],′−′) if i, k > 1
Hi,j−1,k,m,∗,c + s(′−′, Ff [j]) if j > 1
Hi,j−1,k−1,m,∗,∗ + s(Cc[k],′−′) + s(Cc⊕1[k], Ff [j]) if j, k > 1
Hi−1,j−1,k−1,∗,∗,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j]) if i, j, k > 1

Where Hi,j,k,∗,∗,∗ = max{m,f,c}∈{1,2}3{Hi,j,k,m,f,c} considers all the 8
valid subproblems where the previous last characters could have been
swapped or not, and similarly when only one or two ∗ symbols are present.
With c⊕ 1 we mean 2 if c = 1 and 1 otherwise.

The first and third cases correspond to the scenarios where the last
character of the mother (respectively, of the father) is not aligned with
any character of the child, and therefore a gap symbol is inserted. The
second and fourth cases corresponds to the scenarios where one of the last
characters of the child is aligned with one of the last characters of the
mother (respectively, of the father), and the other character of the child
is not aligned, therefore, a gap is inserted. The fifth case is the scenario
where the last character of one of the child sequences is aligned with one
of the last sequences of the mother, and the last character of the other

6.3 Haplotyping through diploid alignment 49

child sequence is aligned with the last character of one of the sequences
of the father. In Paper IV we presented the pseudo code detailing how to
handle the cases where there is a gap in the input. Here we summarize it
in Algorithm 1.

- g c c a c a

a g c t a c a

a g a - g c a c a

a g - g g c a t a

a g - g g c a c a

a g a - c t a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

i

k

j j + 1

Hi,j+1,k,1,2,2 = max{Hi,j,k,1,∗,2} = Hi,j,1,k,1,2,2

Hi,j,k,1,2,2 = max{Hi−1,j−1,k−1,∗,∗,∗}+ s(c, c) + s(g, g)

Figure 6.3: Example showing two steps of the dynamic programming algorithm.
First for the computation of Hi,j+1,k,1,2,2 we highlight the characters that need
to be considered. As the j + 1 character of the father sequence that is being
considered is a gap, the recursion returns the previous value of j, keeping all the
parameters constant, except for the sequence of the father that can be considered
(line 10 of Algorithm 1.) For the computation of Hi,j,k,1,2,2 the previous values
indicated by lines 6,7,11,12, and 14 need to be considered. Those correspond to all
possible combinations of alignments between the highlighted characters (allowing
some of them to be ignored, but not all of them).

6.3.3 From m-f-c similarity to haplotype phasing

Once all the values Hi,j,k,m,f,c are computed, it is enough to trace back the
path that originated the optimal score to obtain the optimal alignment.
We notice that if we collect the three last indexes m, f and c from the path
we will obtain the recombination binary strings for the mother, father, and
child. In particular, the latter gives us the phasing of the child diploid that
maximizes the similarity of the m-f-c trio. In the example of Figure 6.2 the
binary strings are PM , PF and PC ; the last one being the phasing of the
child diploid.

6.3.4 In practice

A straightforward implementation would require O(n3) time and O(n3)
memory as well, because we need to traceback the table to retrieve the

50 6 Diploid Alignments

Algorithm 1 Haplotyping similarity of an m-f-c trio. The algorithm cor-
responds to the dynamic programming implementation of the recurrence
presented in Section 6.3.2, modified to handle the gaps in the input se-
quences properly.

1: function HaploidSimilarity(M1,M2, F1, F2, C1, C2)
2:

3: H[0, 0, 0, ∗, ∗, ∗] ← 0
4: SetGlobal(H,M1,M2,F1,F2,C1,C2)
5: for i← 0 to LM do
6: for j ← 0 to LM do
7: for k ← 0 to LM do
8: for m← 1 to 2 do
9: for f ← 1 to 2 do

10: for c← 1 to 2 do
11: H[i, j, k,m, f, c] ← HValue(i,k,k,m,f,c)

12: return maxH[Lm, Lf , Lc, ∗, ∗, ∗]

1: function HValue(i, j, k,m, f, c)
2: value ← − inf
3: if i > 0 then
4: if Mm[i] =′ −′ then
5: return max{H[i− 1, j, k, ∗, f, c]}
6: value ← max{value,H[i− 1, j, k, ∗, f, c] + s(′−′,Mm[i])}
7: value ← max{value,H[i− 1, j, k− 1, ∗, f, ∗] + s(Cc[k],Mm[i]) +
s(Cc⊕1[k],′−′)}

8: if j > 1 then
9: if Ff [i] =′ −′ then

10: return max{H[i, j − 1, k,m, ∗, c]}
11: value ← max{value,H[i, j − 1, k,m, ∗, c] + s(′−′, Ff [j])}
12: value ← max{value,H[i, j − 1, k − 1,m, ∗, c] + s(Cc[k],′−′) +

s(Cc⊕1[k], Ff [j])}
13: if j > 1 & > 1 then
14: value ← max{value,H[i − 1, j − 1, k − 1,m, ∗, c] +

s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j])}
15: return value

6.3 Haplotyping through diploid alignment 51

phasing. In Paper V we decided to implement the checkpoint method [77],
a flexible variant of Hirschberg’s algorithm [43] that allows our algorithm
to run in O(n3) time using O(n2) memory.

The experiments presented in Paper V used simulated data for m-f-c
trios. The mother genome started from a 1000bp long sequence randomly
extracted from human chromosome 21. Different types of variations were
inserted at random positions, and then we simulated a recombination of
that pair-wise alignment to obtain the child chromosome that is inherited
from the mother. For the recombination process we choose recombination
points at random. We did this analogously to simulate the father, and the
chromosome that the child inherits from the father.

The variations planted on the parents were as follow: point mutations
consisted of SNPs and single nucleotide deletions. Then we introduced long
indels (larger than 50 base pairs). In the case of insertions, those consisted
of random base pairs. We also inserted short tandem repeats [95] consisting
of insertions of lengths between 20 and 60 repeating a sequence between 2
and 6 base pairs. After the recombination has been simulated to generate
the child sequences, we introduced de novo point mutations.

In addition to all the previous parameters, we also introduced random
errors over all the sequences at the end, to take into account errors during
the sequencing of the sequences and during variant calling to discover the
genotype patterns that constitute the inputs of our algorithm.

We studied the quality of our phasing algorithm by measuring how
sensible it was with respect to each of the parameters. We measured the
percentage of positions that were incorrectly phased by our method, For
each different type of variation, the ratio ranged between 0 and 15%. We
considered the following three scenarios with regard to the error ratios: a
very optimistic one, were the genotyping was done without errors (0%),
a moderated scenario where error ratio is 5%, and a pessimistic scenario
where the error ratio is 15%. The time used for haplotyping each simulated
trio was less than a hour. The results are shown in Figure 6.4.

52 6 Diploid Alignments

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

n
g
ly

 p
h
a
s
e
d
 s

it
e
s
 (

%
)

long indels (%)

Sensibility to long indels

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

n
g
ly

 p
h
a
s
e
d
 s

it
e
s
 (

%
)

sort tandem repeats (%)

Sensibility to sort tandem repeats

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

n
g
ly

 p
h
a
s
e
d
 s

it
e
s
 (

%
)

parents point mutations (%)

Sensibility to parents point mutations

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

n
g
ly

 p
h
a
s
e
d
 s

it
e
s
 (

%
)

de novo point mutations (%)

Sensibility to de novo point mutations

0% errors
5% errors

10% errors

Figure 6.4: The percentage of incorrectly phased positions versus the mutation
ratio. For every graphic we include three levels of random noise. The two first
plots (above) show the behavior against long indels and short tandem repeats. The
third plot (below left) shows the behavior against point mutations in the parents
and the fourth plot (below right) shows de novo variants.

Chapter 7

Read Pruning as Interval
Scheduling

The work in this chapter is motivated by a read-based approach to hap-
lotype phasing called the minimum error correction problem (MEC) [62].
This formulation analyzes a set of NGS reads aligned to a reference genome
and it aims for a consistent separation of them into two sets, each one as-
sociated with one of the haplotypes. Naturally, such separation does not
always exist, because the sequencing and alignment processes are vulner-
able to errors. Therefore, the MEC formulation looks for the minimum
number of corrections to the reads to achieve the desired separation.

Although the MEC problem is known to be NP-hard [15], there is a
recent tool, released under the name of WhatsHap, that implements a prac-
tical algorithm [76] to solve MEC in O(2k−1N) time. This is particularly
useful because the running time is exponential only in k, the maximum
number of reads covering any position of the genome, while the dependency
on N ,the length of the genome, is only linear and there is no dependence
on the read length.

Unfortunately this time complexity makes the algorithm feasible only
for small values of k. In practice, WhatsHap addresses this issue by ran-
domly pruning reads from positions with a too high coverage. This may
lead to some positions having a too low coverage for accurate results. The
ideal situation for MEC to achieve a meaningful solution would be to have
a high number of reads evenly distributed through the genome.

In this chapter we present the contribution of Paper VI : we formulate
the problem of read pruning such that the maximum read coverage is less
than a given parameter k, while keeping the minimum coverage across
all genomic positions as high as possible. We point out that this read
pruning problem can be formulated as a job scheduling problem, however

53

54 7 Read Pruning as Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 7.1: An instance of interval scheduling maximizing minimum coverage in
which 8 intervals are given and k = 2 machines are available to execute them.
Observe that in all solutions to this problem three disjoint intervals of length 5
need to be removed, leading to a solution that executes 5 jobs and the number
of idle machines is never greater than 1. In the solutions to the classical interval
scheduling with given machines problem, the two intervals of length 7 are removed
both in the case when all intervals have the same profit, and in the case when the
profit of an interval equals its length.

in a different fashion than the most commonly studied variants of this
problem. We propose two exact solutions to this problem that run in time
O(n2 log k/ log n) and O(nk log k), respectively, where n is the number of
reads. Additionally, we give a 2-approximation algorithm that runs in
O(n log n) time.

7.1 Interval scheduling

In the interval scheduling problem the input is a set of jobs, such that each
of them has a specific time interval in which it needs to be carried out by
any of the available machines. In the simplest variant of this problem each
machine is always available, it can process at most one job at a time and the
jobs are processed without interruptions. The task is to find the minimum
number of machines needed to process all the jobs [54]. It is possible to
solve this problem in O(n log n) time [40].

A well-studied variant is interval scheduling with given machines, also
known as the k-track assignment problem or interval scheduling on identical
machines. In this setting the number of available machines is k and there
is a profit associated with the execution of each job. The task here is to
find a set of jobs that maximize the total profit. There are solutions to this
variant that run in polynomial time [3, 8]. Other variants are known to
be NP-hard: for example when each job can be executed only by a given
subset of machines [3], or when each machine is available during a specified
time interval [11]. We refer the reader to comprehensive surveys [54, 55]
for further references.

Most previous work has focused on maximizing a profit obtained by
executing jobs, or minimizing the resources used. On the other hand, our
formulation can be seen as one that minimizes a notion of idleness.

7.2 Problem formulation 55

7.2 Problem formulation

First we introduce some useful definitions. We say that an interval [si, fi)
covers a point p if p ∈ [si, fi). Given a set of intervals S = {[si, fi) : i ∈
{1, . . . , n} | 0 ≤ si < fi ≤ N} and a point p we define the coverage of p as
covS(p) = |{[si, fi) ∈ S|[si, fi) covers p}|. The maximum coverage of S is
defined as maxcov(S) = maxp∈[0,N)covS(p) and the minimum coverage of
S as mincov(S) = minp∈[0,N)covS(p). Now we can formalize the problem:

Problem 7.1 (Paper VI)
Interval scheduling maximizing minimum coverage
INPUT. A set S = {[si, fi) : i ∈ {1, . . . , n} | 0 ≤ si < fi ≤ N} of
intervals and an integer k.
TASK. Find an S′ ⊆ S that maximizes mincov(S′), subject to
maxcov(S′) ≤ k and

Figures 7.1 and 7.2 illustrate the problem. In the read pruning context
S represents the set of n NGS reads, each one mapped to positions si to
fi, and N is the length of the genome.

7.3 Exact solution

In this section we show how to reduce the problem to a maximum flow
problem. We first show that Problem 7.1 can be reduced to its decision
version with a logarithmic slowdown. Then we reduce the decision version
to a max-flow problem. Finally we show an improved running time by using
an ad-hoc max-flow algorithm.

7.3.1 Reduction to the decision version

The decision version of Problem 7.1 is as follows:

Problem 7.2 (Paper VI)
Interval scheduling with bounded coverage
INPUT. A set S = {[si, fi) : i ∈ {1, . . . , n} | si < fi} of intervals,
and integers k, t.

56 7 Read Pruning as Interval Scheduling

TASK. Decide if there exists an S′ ⊆ S such that maxcov(S′) ≤ k and
mincov(S′) ≥ t, and if yes, output such S′.

If we have an algorithm A that solves Problem 7.2 we can use it to solve
Problem 7.1 using exponential search as follows. We first observe that if
Problem 7.2 admits a solution for a given t = t′, it also admits a solution
for all t ∈ {0, . . . , t′}. We use the algorithm A for t = 1, t = 2, t = 4, . . .,
until we find a tl where for tr := 2tl the decision problem no longer have
a solution. Then by binary searching on decision problem instances with
t ∈ [tl..tr] we obtain the minimum coverage t = OPT of the optimal solution
to the maximization problem. This leads us to the following result.

Lemma 7.1 Given an algorithm that solves Problem 7.2 in time f(n), it
is possible to solve Problem 7.1 in time O(f(n) log OPT), where OPT is the
minimum coverage of an optimal solution to Problem 7.1.

7.3.2 Reduction to max-flow

Now we reduce Problem 7.2 to a max-flow problem. Figure 7.2 shows an
example. Let s = mini∈{1,...,n} si and f = maxi∈{1,...,n} fi. We build a
graph GS,k,t, possibly having parallel arcs, using the set of vertices V (G) =
{s − 1, f + 1} ∪ {si, fi : i ∈ {1, . . . , n}}. The only source of the graph is
the vertex s − 1, and the only sink is f + 1. For every vertex i in V (G)
other than f + 1, we add the arc (i, j) to E(G) where j is the successor of
i in V (G). We call these backbone arcs. The backbone arcs (s − 1, s) and
(f, f + 1) receive capacity k, and the other backbone arcs have capacity
k − t. Additionally, for every interval [si, fi) ∈ S, we add the arc (si, fi)
with a capacity of 1 to E(G). We call these interval arcs.

Theorem 7.1 shows that computing the max-flow on GS,k,t is equivalent
to solving Problem 7.2.

Theorem 7.1 (Paper VI) Problem 7.2 admits a solution on an instance
(S, k, t) if and only if the max-flow in GS,k,t has value k, and this solution
can be retrieved from any integral max-flow on GS,k,t.

The full proof can be found in Paper VI. The idea is to show that the
flow passing through an interval arc is equivalent to the selection of that
arc in the solution S′. The capacity k − t imposed on the backbone arcs
not incident to s− 1 or to f + 1 implies that for any p ∈ [s, f) we have at
most k − t intervals not covering p, thus at least t intervals covering p.

7.3 Exact solution 57

Because GS,k,t has O(n) vertices and arcs, it is possible to use a spe-
cialized max-flow algorithm [75] that leads to the following corollary.

Corollary 7.1 Problem 7.2 is solvable in time O(n2/ log n) by solving the
max-flow problem on GS,k,t.

Combining Corollary 7.1 and Lemma 7.1 we obtain the following result:

Corollary 7.2 Problem 7.1 is solvable in time O(n2 log OPT/ log n), where
OPT, OPT ≤ k, is the minimum coverage of an optimal solution.

7.3.3 Improving the running time

Now we show an alternative solution using an ad-hoc max-flow algorithm
that improves the running time when k = o(n/ log n).

The Ford-Fulkerson algorithm is a textbook method to find max-flows
(see e.g. [20, Section 26.2]). It works by finding an augmenting path in the
residual network of the graph and then adjusting the flow network along the
same path to increase the total flow. When there is no augmenting path left
in the residual network, the flow found is a maximum. Assuming integral
capacities, the flow increases at least by one unit on each augmentation
step, thus the running time is O(|E||ϕ∗|), where E is the set of arcs of the
flow network and |ϕ∗| is the value of the maximum flow.

Let us consider what occurs when Ford-Fulkerson is run on GS,k,t, the
resulting network from the reduction of Sec. 7.3.2. We observe that a flow
of value k − t can be sent through the backbone arcs from source to sink.
That is, we can initialize the network with a flow of value k − t, and run
Ford-Fulkerson from that initial feasible flow. We need at most t ≤ k
augmentation steps, each requiring O(n) time. Therefore we obtain the
following result.

Theorem 7.2 Problem 7.2 is solvable in time O(nk).

Again, combining this theorem and Lemma 7.1 we obtain the following
result:

Corollary 7.3 Problem 7.1 is solvable in time O(nk log OPT), where OPT,
OPT ≤ k, is the minimum coverage of an optimal solution.

58 7 Read Pruning as Interval Scheduling

7.4 An O(n log n)-time approximation algorithm

In this section we propose an approximation algorithm that runs in time
O(n log n). The approximation ratio is k

bk/2c , which for k even is a
2-approximation algorithm. First we present some concepts that are used
in this section.

We generalize the definition of minimum coverage to intervals as
mincovS([si, fi)) = minp∈[si,fi)covS(p). When an interval has minimum
coverage smaller or equal to bk/2c we say that such an interval is crucial ;
otherwise, we call it expendable. The following result is the key idea behind
the approximation algorithm.

Lemma 7.2 Given an input (S, k) to the interval scheduling maximizing
minimum coverage problem (Problem 7.1), and a point p, if covS(p) = k′ >
k, there at least k′ − k intervals covering p that are expendable.

The full proof can be found in Paper VI. The idea is to reason by
contradiction: to claim that there are less than k′− k expendable intervals
covering p is equivalent to claim that there are more than k crucial intervals
covering p. If we assume this, we can prove that at least one of those
intervals cannot really fulfill the definition of a crucial interval.

To solve the problem, the algorithm maintains a set of candidate in-
tervals S∗ which is initialized as S. For every interval its maximum and
minimum coverage is computed, detecting the crucial intervals, which will
never be removed from S∗.

Then, the intervals’ delimiters are traversed from left to right. When-
ever a delimiter p is found to have coverage k′ greater than k, k′−k intervals
covering p are removed from S∗. By Lemma 7.2, we know that among the k′

intervals covering p, there are at least k′− k intervals that are expendable,
so we can delete those safely. After each deletion, the coverages are updated
and if needed new intervals are marked as crucial. Because the algorithm
never removes crucial intervals, (and the optimal solution to Problem 7.1
is bounded by k), the approximation ratio is ρ = k

bk/2c .

In Paper VI we further describe the data structures for the algorithm to
run in O(n log n) time. The main idea is to use a perfect binary search tree
as a one-dimensional range search tree (as explained, e.g. in [22, Section
5.1]). The interval delimiters are stored in the leaves, and the tree is also
annotated with information about the coverage of the delimiters and the
intervals. All the above leads us to the following result.

7.4 An O(n log n)-time approximation algorithm 59

Theorem 7.3 (Paper VI) There is an O(n log n) time approximation al-
gorithm to Problem 7.1 that finds a solution with minimum coverage at least
bk/2c
k OPT, where OPT is the minimum coverage of an optimal solution.

60 7 Read Pruning as Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10

(a)

−1 0 1 2 3 4 6 8 10 11
≤3 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤3

≤1

≤1 ≤1

≤1

≤1

≤1

(b)

−1 0 1 2 3 4 6 8 10 11
3 2 0 0 1 0 1 1 3

0

1 1

1

1

1

(c)

Figure 7.2: An example for the reduction of Problem 7.2 to a max-flow problem.
In Figure 7.2(a) an instance (S, k, t) of Problem 7.2 consisting of 5 intervals, where
we assume k = 3 and t = 1. One solution is obtained by removing the interval
[0, 8). In Figure 7.2(b) the graph GS,k,t whose arcs are labeled by capacities. In
Figure 7.2(c) a maximum flow of value 3 in GS,k,t; the arc labels now indicate
their flow values. Notice that the arc (0, 8) has a flow value of 0.

Chapter 8

Discussion

In this thesis we have presented different contributions to sequence analy-
sis: improved algorithms, data structures and models for different kinds of
sequence alignment, and different models for genotyping and haplotyping
problems.

For each subject that we have studied, there are still many open ques-
tions leading to interesting routes for new research. Here I attempt to
systematically discuss the contributions of this thesis with an emphasis of
directions for future work

Chapter 3. We presented a theoretical analysis – supported by an
experimental study – of the Relative Lempel-Ziv compression algorithm
when it uses an artificial reference.

Although our analysis shed some light on this, there are still open ques-
tions. For instance, we still do not know how tight the analysis is. Another
concern is that the sampling parameters prescribed by our analysis are
given in terms of z, which depends on the behavior of LZ77, and if we
could run LZ77 then we would not need RLZ in the first place. However,
it is possible to estimate z more efficiently than by computing the LZ77
parse [80]. Lastly, although our experimental results qualitatively match
the theoretical predictions, the constant within the big-O expressions are
still unknown. Whether those can be estimated efficiently, or by a differ-
ent analysis is an interesting way to further develop the results from this
chapter.

Chapter 4. In this chapter we presented an improved, scalable version
of the Hybrid Index [29]. This index is specially promising for genomic
data because of how smoothly it handles approximate pattern matching
in repetitive collections. Our modifications allowed this method to use
different Lempel-Ziv factorizations to build the index, including RLZ. We
introduced a parallel version of RLZ that permitted the building of an index

61

62 8 Discussion

for a 2.4TB collection in about 12 hours.

An open challenge is to test CHICO in large collections lacking an obvi-
ous reference. This could be the case if we want to index a large collection
of genomes from different species; or in information retrieval when indexing
large web crawls. CHICO can be actually built for those collections using
external memory to build the greedy LZ77 parsing, however this approach
would damage the construction speed. The research question here would
be how to integrate RLZ with an artificial reference into the hybrid index.
A different direction is to explore the relaxed LZ77 parsing further, for
instance, designing a specialized parser for the hybrid index.

Chapter 5. In this chapter we proposed a framework for variant call-
ing using a pan-genomic reference, which was represented as a multiple
sequence alignment. We adapted the index of Chapter 4 to develop a read
aligner for pan-genomic references.

Although we show that our read alignment scales to pan-genomes made
of thousands of human genomes, we still have not tested the full variation
pipeline in such a setting. Another problem that we have not explored
deeply enough is the construction of the pan-genome itself; there is no
unique way to generate the multiple sequence alignment for the set of ref-
erences, moreover, to obtain an optimal multiple sequence alignment is
known to be a difficult problem. Finally, when we extract the ad-hoc ref-
erence we do it by extracting a heaviest path from our pan-genome. It is
possible to select not one, but the two heaviest paths, so as to extract a
diploid reference.

Chapter 6. The contribution of this chapter is more general: we
pose a model of sequence alignment where the objects to align are pair-
wise alignments themselves. We represent diploid individuals as pair-wise
alignments to account for recombinations and phasing errors. We also
extended this model to family trios, were we use it to solve a haplotyping
problem.

As for the application to solve the haplotyping problem, the natural
follow-up is to test our approach with real data. Regarding the more general
diploid alignment model, there may be applications in different domains.
For instance, we have not explored yet how this generalization of alignment
could be integrated into short read alignment.

Chapter 7 The work in this chapter is motivated by a read-based
approach to haplotype phasing, which require a preprocessing of the input
to prune the reads. We modeled this read pruning problem as an interval
scheduling problem, where instead of maximizing a profit, we keep the
minimum coverage as high as possible.

63

Directions for future work in this topic comprise different optimizations
models within our interval scheduling model. For instance, it would be
possible to keep our current target function, and add a secondary criterion
to optimize, such as the average coverage.

64 8 Discussion

References

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–
86, 2004.

[2] A. Al-Hafeedh, M. Crochemore, L. Ilie, E. Kopylova, W. F. Smyth,
G. Tischler, and M. Yusufu. A comparison of index-based Lempel-
Ziv LZ77 factorization algorithms. ACM Computing Surveys, 45(1):5,
2012.

[3] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start
and end times. Discrete Applied Mathematics, 18(1):1–8, 1987.

[4] G. A. Auwera et al. From FastQ data to high-confidence variant calls:
the genome analysis toolkit best practices pipeline. Current Protocols
in Bioinformatics, 2013.

[5] H. Bai, Guo, et al. The genome of a Mongolian individual reveals
the genetic imprints of Mongolians on modern human populations.
Genome biology and evolution, 6(12):3122–3136, 2014.

[6] D. Belazzougui, V. Mäkinen, and D. Valenzuela. Compressed suffix
array. In Encyclopedia of Algorithms, pages 386–390. 2016.

[7] D. Belazzougui and S. J. Puglisi. Range predecessor and Lempel-Ziv
parsing. In Proc. 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2053–2071. SIAM, 2016.

[8] K. I. Bouzina and H. Emmons. Interval scheduling on identical ma-
chines. Journal of Global Optimization, 9(3-4):379–393, 1996.

[9] M. D. V. Braga, E. Willing, and J. Stoye. Genomic distance with DCJ
and indels. In Proc. 10th Workshop on Algorithms for Bioinformatics
(WABI), pages 90–101, 2010.

65

66 References

[10] S. R. Browning and B. L. Browning. Haplotype phasing: ex-
isting methods and new developments. Nature Reviews Genetics,
12(10):703–714, 2011.

[11] P. Brucker and L. Nordmann. The k-track assignment problem. Com-
puting, 52(2):97–122, 1994.

[12] M. Burrows and D. Wheeler. A block-sorting lossless data compres-
sion algorithm. Technical Report 124, Digital Equipment Corpora-
tion, 1994.

[13] W. Chen et al. Genotype calling and haplotyping in parent-offspring
trios. Genome research, 23(1):142–151, 2013.

[14] Z.-Z. Chen, F. Deng, and L. Wang. Exact algorithms for haplo-
type assembly from whole-genome sequence data. Bioinformatics,
29(16):1938–1945, 2013.

[15] R. Cilibrasi, L. Van Iersel, S. Kelk, and J. Tromp. On the complexity
of several haplotyping problems. In Proc. 5th Workshop on Algo-
rithms for Bioinformatics (WABI), pages 128–139. Springer, 2005.

[16] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Canada, 1996.

[17] B. Clift, D. Haussler, R. McConnell, T. D. Schneider, and G. D.
Stormo. Sequence landscapes. Nucleic Acids Research, 14(1):141–
158, 1986.

[18] F. S. Collins, M. Morgan, and A. Patrinos. The Human Genome
Project: lessons from large-scale biology. Science, 300(5617), 2003.

[19] Computational Pan-Genomics Consortium. Computational pan-
genomics: status, promises and challenges. Briefings in Bioinfor-
matics, 2016.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009.

[21] A. Danek, S. Deorowicz, and S. Grabowski. Indexing large genome
collections on a PC. PLoS ONE, 9(10), 2014.

[22] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer,
1998. Second edition.

References 67

[23] S. Deorowicz, A. Danek, and S. Grabowski. Genome compression:
a novel approach for large collections. Bioinformatics, 29(20):2572–
2578, 2013.

[24] A. Dilthey et al. Improved genome inference in the MHC using a
population reference graph. Nature Genetics, 47:682–688, 2015.

[25] H. H. Do, J. Jansson, K. Sadakane, and W.-K. Sung. Fast relative
Lempel–Ziv self-index for similar sequences. Theoretical Computer
Science, 532:14–30, 2014.

[26] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

[27] Exome Aggregation Consortium. Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536(7616):285–291, Aug. 2016.

[28] M. Farach and M. Thorup. String matching in Lempel-Ziv com-
pressed strings. Algorithmica, 20(4):388–404, 1998.

[29] H. Ferrada, T. Gagie, T. Hirvola, and S. J. Puglisi. Hybrid indexes for
repetitive datasets. Philosophical Transactions of the Royal Society
A, 372, 2014.

[30] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. 41st Annual Symposium on Foundations of
Computer Science (FOCS), pages 390–398. IEEE, 2000.

[31] P. Ferragina and G. Manzini. Indexing compressed text. Journal of
the ACM, 52(4):552–581, 2005.

[32] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-
friendly FM-index. In Proc. 11th International Symposium on
String Processing and Information Retrieval (SPIRE), pages 150–
160. Springer, 2004.

[33] P. Ferragina, I. Nitto, and R. Venturini. On the bit-complexity of
Lempel-Ziv compression. In Proc. 20th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 768–777. SIAM, 2009.

[34] J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka. Approx-
imating LZ77 via small-space multiple-pattern matching. In Proc.
23rd Annual European Symposium on Algorithms (ESA), pages 533–
544. Springer, 2015.

68 References

[35] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[36] E. Garrison et al. FreeBayes. https://github.com/ekg/freebayes,
2016.

[37] P. Gawrychowski. Faster algorithm for computing the edit distance
between SLP-compressed strings. In Proc. of the 19th Symposium on
String Processing and Information Retrieval (SPIRE), pages 229–236,
2012.

[38] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to prac-
tice: Plug and play with succinct data structures. In Proc. 13th
International Symposium on Experimental Algorithms, (SEA), pages
326–337, 2014.

[39] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In Proc. 14th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 841–850. SIAM, 2003.

[40] U. I. Gupta, D.-T. Lee, and J.-T. Leung. An optimal solution for
the channel-assignment problem. IEEE Transactions on Computers,
11(C-28):807–810, 1979.

[41] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
1997.

[42] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1–27, 1999.

[43] D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6):341–343,
1975.

[44] C. Hoobin, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv factoriza-
tion for efficient storage and retrieval of web collections. Proceedings
of the VLDB Endowment, 5(3):265–273, 2011.

[45] R. Horton et al. Variation analysis and gene annotation of eight MHC
haplotypes: The MHC Haplotype Project. Immunogenetics, 60(1),
2007.

References 69

[46] L. Huang, V. Popic, and S. Batzoglou. Short read alignment with
populations of genomes. Bioinformatics, 29(13):361–370, 2013.

[47] International Human Genome Sequencing Consortium. Initial se-
quencing and analysis of the human genome. Nature, 409(6822):860–
921, 2001.

[48] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th
Annual Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

[49] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lightweight Lempel-
Ziv parsing. In Proc. 12th International Symposium on Experimental
Algorithms (SEA), pages 139–150, 2013.

[50] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv
factorization: Simple, fast, small. In Proc. 24th Annual Symposium
on Combinatorial Pattern Matching (CPM), pages 189–200. Springer,
2013.

[51] J. Karkkainen, D. Kempa, and S. J. Puglisi. Lempel-Ziv parsing
in external memory. In Proc. 24th Data Compression Conference
(DCC), pages 153–162. IEEE, 2014.

[52] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-
size index structures for string matching. In Proc. 3rd South American
Workshop on String Processing (WSP). Citeseer, 1996.

[53] E. Khurana et al. Integrative annotation of variants from 1092 hu-
mans: Application to cancer genomics. Science, 342(6154), 2013.

[54] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. Spieksma.
Interval scheduling: A survey. Naval Research Logistics, 54(5):530–
543, 2007.

[55] M. Y. Kovalyov, C. Ng, and T. E. Cheng. Fixed interval schedul-
ing: Models, applications, computational complexity and algorithms.
European Journal of Operational Research, 178(2):331–342, 2007.

[56] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv com-
pression of genomes for large-scale storage and retrieval. In Proc.
17th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 201–206. Springer, 2010.

70 References

[57] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with
Bowtie 2. Nature methods, 9(4):357–359, 2012.

[58] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–64, Mar. 2002.

[59] H. Li. A statistical framework for SNP calling, mutation discovery,
association mapping and population genetical parameter estimation
from sequencing data. Bioinformatics, 27(21):2987–2993, 2011.

[60] H. Li and R. Durbin. Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760,
2009.

[61] K. Liao, M. Petri, A. Moffat, and A. Wirth. Effective construction of
relative Lempel-Ziv dictionaries. In Proc. of the 25th International
Conference on World Wide Web (WWW), pages 807–816. Interna-
tional World Wide Web Conferences Steering Committee, 2016.

[62] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strate-
gies for the single nucleotide polymorphism haplotype assembly prob-
lem. Briefings in bioinformatics, 3(1):23–31, 2002.

[63] A. Löytynoja, A. J. Vilella, and N. Goldman. Accurate extension
of multiple sequence alignments using a phylogeny-aware graph algo-
rithm. Bioinformatics, 28(13):1684–1691, 2012.

[64] S. Maciuca, C. del Ojo Elias, G. McVean, and Z. Iqbal. A natu-
ral encoding of genetic variation in a Burrows-Wheeler transform to
enable mapping and genome inference. In Proc. 16th Workshop on
Algorithms for Bioinformatics (WABI), volume 9838, pages 222–233.
Springer, 2016.

[65] U. Manber and G. Myers. Suffix arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[66] D. Medini, C. Donati, H. Tettelin, V. Masignani, and R. Rappuoli.
The microbial pan-genome. Current opinion in genetics & develop-
ment, 15(6):589–594, 2005.

[67] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computabil-
ity of models for sequence assembly. In Proc. 7th Workshop on Algo-
rithms for Bioinformatics (WABI), pages 289–301. Springer, 2007.

References 71

[68] J. I. Munro. Tables. In Proc. 16th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTC), pages
37–42, 1996.

[69] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(1-4):251–266, 1986.

[70] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-
Scale Algorithm Design. Cambridge University Press, 2015.

[71] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and
retrieval of highly repetitive sequence collections. Journal of Compu-
tational Biology, 17(3):281–308, 2010.

[72] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):Article 2, 2007.

[73] C. Offord. The pangenome: Are single reference genomes dead?
http://www.the-scientist.com/?articles.view/articleNo/
47510/title/The-Pangenome--Are-Single-Reference-Genomes-

Dead-/. Accessed: 2016-01-17.

[74] J. O’Rawe et al. Low concordance of multiple variant-calling
pipelines: practical implications for exome and genome sequencing.
Genome medicine, 5(3):1, 2013.

[75] J. B. Orlin. Max Flows in O(nm) Time, or Better. In Proc. of
the 45th Annual ACM Symposium on Theory of Computing (STOC),
pages 765–774, New York, NY, USA, 2013. ACM.

[76] M. Patterson et al. WhatsHap: Haplotype assembly for future-
generation sequencing reads. In Proc. 18th Annual International
Conference on Research in Computational Molecular Biology (RE-
COMB), volume 8394, pages 237–249, 2014.

[77] D. R. Powell, L. Allison, and T. I. Dix. A versatile divide and con-
quer technique for optimal string alignment. Information Processing
Letters, 70(3):127–139, 1999.

[78] S. J. Puglisi. Lempel-Ziv compression. In Encyclopedia of Algorithms,
pages 1095–1100. Springer, 2016.

[79] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 233–242, 2002.

http://www.the-scientist.com/?articles.view/articleNo/47510/title/The-Pangenome--Are-Single-Reference-Genomes-Dead-/
http://www.the-scientist.com/?articles.view/articleNo/47510/title/The-Pangenome--Are-Single-Reference-Genomes-Dead-/
http://www.the-scientist.com/?articles.view/articleNo/47510/title/The-Pangenome--Are-Single-Reference-Genomes-Dead-/

72 References

[80] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. D. Smith. Sublinear
algorithms for approximating string compressibility. Algorithmica,
65(3):685–709, 2013.

[81] A. Regalado. Rebooting the human genome. https:

//www.technologyreview.com/s/537916/rebooting-the-human-
genome/. Accessed: 2016-01-17.

[82] R. Rizzi, M. Cairo, V. Mäkinen, and D. Valenzuela. Diploid alignment
is NP-hard. arXiv preprint arXiv:1611.05086, 2016.

[83] W. Rytter. Application of Lempel-Ziv factorization to the approxima-
tion of grammar-based compression. Theoretical Computer Science,
302(1–3):211–222, 2003.

[84] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann,
S. Gesing, O. Kohlbacher, and D. Weigel. Simultaneous alignment
of short reads against multiple genomes. Genome Biology, 10:R98,
2009.

[85] J. Schröder, S. Girirajan, A. T. Papenfuss, and P. Medvedev. Im-
proving the power of structural variation detection by augmenting
the reference. PLoS ONE, 10(8), 2015.

[86] J. Sirén, N. Välimäki, and V. Mäkinen. Indexing graphs for path
queries with applications in genome research. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 11(2):375–388,
2014.

[87] H. Tettelin et al. Genome analysis of multiple pathogenic isolates of
Streptococcus agalactiae: implications for the microbial pan-genome.
Proceedings of the National Academy of Sciences of the United States
of America, 102(39):13950–13955, 2005.

[88] H. Tettelin, D. Riley, C. Cattuto, and D. Medini. Comparative ge-
nomics: the bacterial pan-genome. Current opinion in microbiology,
11(5):472–477, 2008.

[89] The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature, 526(7571):68–74, Sept. 2015.

[90] The UK10K Consortium. The UK10K project identifies rare variants
in health and disease. Nature, 526(7571):82–90, Sept. 2015.

https://www.technologyreview.com/s/537916/rebooting-the-human-genome/
https://www.technologyreview.com/s/537916/rebooting-the-human-genome/
https://www.technologyreview.com/s/537916/rebooting-the-human-genome/

References 73

[91] J. Tong, A. Wirth, and J. Zobel. Principled dictionary pruning for
low-memory corpus compression. In Proc. 37th Annual International
ACM Conference on Research and Development in Information Re-
trieval (SIGIR), pages 283–292, 2014.

[92] TrueSeq. http://web.archive.org/web/20170108115446/http:
//www.illumina.com/clinical/illumina clinical laboratory/

trugenome-clinical-sequencing-services.html. Accessed:
2016-01-17.

[93] E. Ukkonen. Algorithms for approximate string matching. Informa-
tion and control, 64(1):100–118, 1985.

[94] J. C. Venter et al. The sequence of the human genome. Science,
291(5507), 2001.

[95] J. L. Weber and C. Wong. Mutation of human short tandem repeats.
Human molecular genetics, 2(8):1123–1128, 1993.

[96] P. Weiner. Linear pattern matching algorithms. In Proc. of the
14th Annual Symposium on Switching and Automata Theory (FOCS),
pages 1–11. IEEE, 1973.

[97] E. Willing, S. Zaccaria, M. D. V. Braga, and J. Stoye. On the
inversion-indel distance. BMC Bioinformatics, 14(S-15), 2013.

[98] R. Wittler, T. Marschall, A. Schönhuth, and V. Mäkinen.
Repeat- and error-aware comparison of deletions. Bioinformatics,
31(18):2947–2954, 2015.

[99] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of
genomic permutations by translocation, inversion and block inter-
change. Bioinformatics, 21(16):3340–3346, 2005.

[100] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on information theory, 23(3):337–
343, 1977.

[101] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on information theory,
24(5):530–536, 1978.

http://web.archive.org/web/20170108115446/http://www.illumina.com/clinical/illumina_clinical_laboratory/trugenome-clinical-sequencing-services.html
http://web.archive.org/web/20170108115446/http://www.illumina.com/clinical/illumina_clinical_laboratory/trugenome-clinical-sequencing-services.html
http://web.archive.org/web/20170108115446/http://www.illumina.com/clinical/illumina_clinical_laboratory/trugenome-clinical-sequencing-services.html

74 References

	Introduction
	DNA and genetic variation
	NGS and variation calling
	Outline of the contributions
	Original papers and individual contributions

	Preliminaries
	Strings
	Edit distance and sequence alignment
	Graphs and trees
	Flow networks
	String matching and text indexing
	Suffix tree
	Suffix array

	Compressed full-text indexes

	Analysis of Relative Lempel Ziv with Artificial References
	LZ77 and Relative Lempel Ziv
	Artificial reference for RLZ
	Theoretical analysis
	Experimental analysis

	CHICO: A Compressed Hybrid Index for Repetitive Collections
	Kernelization
	LZ77-relaxed parsings
	Reducing the number of phrases
	Faster construction with RLZ
	In practice

	Pan-Genome Read Alignment to Improve Variation Calling
	Pan-genome indexing
	Pan-genomic references to improve variant calling
	CHIC aligner
	Pan-genome representation
	Heaviest path extraction
	Variant calling
	Normalizer

	Experiments
	Read alignment
	Variation calling

	Diploid Alignments
	Sequence alignment and recombinations
	Diploid to diploid similarity
	A general model
	Diploid to pair of haploids similarity
	Synchronized diploid to diploid alignment
	In practice

	Haplotyping through diploid alignment
	The similarity model
	Dynamic programming algorithm
	From m-f-c similarity to haplotype phasing
	In practice

	Read Pruning as Interval Scheduling
	Interval scheduling
	Problem formulation
	Exact solution
	Reduction to the decision version
	Reduction to max-flow
	Improving the running time

	An O(n logn)-time approximation algorithm

	Discussion
	References
	Original articles
	Acknowledgements
	Original Papers
	Contents
	Introduction
	Preliminaries
	Analysis of Relative Lempel Zivwith Artificial References
	CHICO: A Compressed Hybrid Index for Repetitive Collections
	Pan-Genome Read Alignment to Improve Variation Calling
	Diploid Alignments
	Read Pruning as Interval Scheduling
	Discussion
	References

