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Abstract

As an ecological niche, the mammalian intestine provides the ideal habitat for a variety of

bacterial microorganisms. Purportedly, some commensal genera and species offer a benefi-

cial mix of metabolic, protective, and structural processes that help sustain the natural

digestive health of the host. Among these sort of gut inhabitants is the Gram-positive lactic

acid bacterium Lactobacillus ruminis, a strict anaerobe with both pili and flagella on its cell

surface, but also known for being autochthonous (indigenous) to the intestinal environment.

Given that the molecular basis of gut autochthony for this species is largely unexplored and

unknown, we undertook a study at the genome level to pinpoint some of the adaptive traits

behind its colonization behavior. In our pan-genomic probe of L. ruminis, the genomes of

nine different strains isolated from human, bovine, porcine, and equine host guts were com-

piled and compared for in silico analysis. For this, we conducted a geno-phenotypic assess-

ment of protein-coding genes, with an emphasis on those products involved with cell-surface

morphology and anaerobic fermentation and respiration. We also categorized and examined

the core and accessory genes that define the L. ruminis species and its strains. Here, we

made an attempt to identify those genes having ecologically relevant phenotypes that might

support or bring about intestinal indigenousness.

Introduction

In terms of ecological preference, the mammalian gastrointestinal (GI) tract is a hospitable

biological niche for many different microorganisms, offering both mesophilic growing tem-

peratures and a continual supply of nutrients and fluids [1]. Then again, the digestive system

also has some challenging obstacles to circumvent, such as the high acidity of gastric juices, the

emulsifying activity of bile, the recurring renewal of the mucosal epithelium, and the physical

churning and peristalsis of the upper and lower intestines [2]. Accordingly, individual gut-

dwelling bacteria have had to evolve a genome capacity that provides the phenotypic plasticity

for the adaptive strategies considered necessary for surviving and enduring these environmen-

tal conditions. Accompanying this, the diverse assortment of bacterial genera and species
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residing in the intestine have come together to form a quasi-functioning communal unit (bet-

ter known as a gut microbiota) that generates an intertwined network of symbiotically mutual-

istic relationships [3], which as an unintended outcome also provides ancillary benefits to the

human or animal host [1, 4, 5]. Stemming from various adaptations and traits, this microbial

consortium is mainly populated with so-deemed “intestinal friendly” commensals and occa-

sional probiotics, although in some dire situations it can as well contain invading pathogens or

opportunistic pathobionts [6]. Owing to the inherent properties of each bacterial type, gut col-

onization can be classified according to duration and longevity, and thus defined as either

autochthonous (indigenous) or allochthonous (transient) [7, 8]. However, despite the GI tract

being perceived as an open two-ended ecosystem, oxygen levels are variable and highly depen-

dent on location, with graded concentrations running longitudinally and radially through the

length of the intestine [9]. This subsequently delivers a range of microoxic-anoxic microenvi-

ronments for bacterial growth, which can be found scattered throughout various pocketed

regions of the lumen and microvilli [9]. Predictably, some of the more prevalent bacteria in the

early development of the gut microbiota are the facultative and strict anaerobes [10], with

most becoming strongly entrenched and persistent intestinal inhabitants [3].

The Gram-positive genus Lactobacillus is grouped with the lactic acid bacteria (LAB) and

includes upwards of 200 species (http://www.bacterio.net/lactobacillus.html). Noteworthy

among these is Lactobacillus ruminis [11, 12], a strict anaerobe and one of the few lactobacilli

to be described as “truly” autochthonous to the human and animal GI tract, as it persists dur-

ing the entire lifetime of a host [13, 14]. Here, L. ruminis prevails over other types of gut-tran-

sient lactobacilli [15], most significantly in pigs [16]. Metabolically, L. ruminis is itself

categorized with the obligate homolactic lactobacilli [17]. However, like many other gut bacte-

ria, L. ruminis has adapted its metabolism to the nutrient conditions of the intestinal lumen,

and through a capacity to utilize various carbohydrates [18, 19], it forages for energy as a pro-

digious saccharolytic fermenter. As cellular movement is uncharacteristic of most lactobacilli,

with just a dozen or so species exhibiting a motility phenotype [20], it is notable that amongst

these is L. ruminis. In particular are those strains obtained from bovine, porcine, and equine

gut sources, where a variable number of lengthy flagella are used for cell propulsion, this mani-

fested as either swimming in runs or swarming on solid surfaces [19, 21, 22]. As well, some

human strains represent non-motile variants, but where flagellar movement seems to be rein-

vigorated to a tumbling-type once L. ruminis is isolated again after repassage through gut-envi-

rons [22]. Interestingly, L. ruminis was recently revealed as only the second Lactobacillus
species whose cells jut out sortase-dependent pili [23]. As typically encountered with this type

of surface piliation, these elongated protrusions (called LrpCBA) display an archetypal multi-

subunit structure consisting of backbone, basal, and tip pilin-proteins [23]. Functionally, the

LrpCBA pilus has a strong adhesiveness toward extracellular matrix (ECM) proteins (collagen

and fibronectin) and intestinal epithelial cells [23], although unlike the SpaCBA [24–26] and

SpaFED [27] pili from the Lactobacillus rhamnosus species, it lacks a substrate affinity for

colonic mucus [23]. As a measure of eco-niche fitness, cell-surface morphologies like flagella-

tion and piliation can emerge as rather advantageous to the L. ruminis species in promoting its

permanent occupancy of the mammalian GI tract. For instance, these lengthy macromolecular

appendages would provide the means by which L. ruminis cells can physically reach and colo-

nize the concealed anoxic pockets of the highly folded epithelium in the upper intestine [23].

In addition, since some findings suggest that these particular flagellar and pilus structures

arouse opposite effects of host immune-cell responsiveness [21–23], they might have a homeo-

static counterbalancing role in the way L. ruminis is immuno-tolerated in the gut. Potentially,

such evasion of the immune system could be partly causal in supporting an autochthonous

and commensal lifestyle [23].
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Presently, all known L. ruminis isolates are derived from the gut milieu, with no evidence to

date suggesting this species dwells or can be sourced anywhere else, be it bodily or otherwise

(such as food, vegetation, or soil) [19]. This contrasts with various other individual Lactobacil-
lus species, which can be recovered from multiple host and environmental sources [28]. For

those species in the mammalian gut, most tend to be allochthonous types that are eventually

flushed out with the fecal stream [29–31]. Presumably, what causes the L. ruminis species to be

a gut-indigenous bacterium is largely borne out by its adaptive ability to exploit and sustain-

ably occupy a distinctly localized ecological niche in the host intestine. For this to occur, the L.

ruminis genome would have needed to evolve and encode a number of genetic traits to suit the

prevailing microenvironment. Here, in addition to overcoming certain physiological con-

straints for surviving within the GI tract (acidity, variable oxygen levels, and highly carbohy-

drous content), L. ruminis has acquired the necessary phenotypes for adhering to intestine-

specific epithelial tissues, e.g., as provided by its LrpCBA piliation [23]. While some lactobacilli

have a mucoadhesive nature that would favor cellular binding to the gut mucosal epithelium

[32], the corresponding outer mucus layer is subject to regular removal and revitalization [33],

thereby making any related bacterial occupation only temporary and short-term. By contrast,

L. ruminis has taken another approach to gut habitation and eluded such a transitory fate by

not only being an ineffective mucus binder, but having instead targeted its primary adhesion

to ECM proteins [23], which represents the more hidden parts within the undulated epithelial

lining where the routine shedding of cells is less a hindrance to colonization. Such tactical

adaptation underscores the niche fitness advantage of cellular movement, as the flagellated

motility of L. ruminis will help facilitate reaching this type of location for adhesion and subse-

quent growth, and by analogy, much in the same way that some pathogens can invade the gut

[34].

At an in silico level, predictions from genomic data should be useful in pinning down some

of the possible molecular mechanisms underlying L. ruminis gut autochthony. To date, just a

few studies concerning the comparative genomics of L. ruminis have been published, but these

are either broadly based [21] or involve a genetic emphasis on carbohydrate utilization and

motility [18, 19]. Nonetheless, for our present study of L. ruminis, we instead opted to perform

a pan-genomic probe into the natural adaptations that lie behind its colonization of the GI

tract, and thus determine to what extent they involve genome evolvability and diversity. Here,

the accompanying geno-phenotypic assessment takes a two-pronged approach that focuses on

the cell-surface morphology and the anaerobic fermentative and respiratory processes, as each

might contribute to the intestinal indigenous lifestyle of L. ruminis. To this end, the L. ruminis
pan-genome was compiled from nine different genomes, three of which we had sequenced,

and the rest retrieved from the public NCBI database. Further, these genomes originated from

both ruminant and non-ruminant hosts. Ultimately, by using data from the pan-genome of L.

ruminis, we categorized the essential core and dispensable accessory genes that define this bac-

terial species and its strains, and as well uncovered the commonality of some ecologically perti-

nent phenotypes that potentially contribute to a gut-autochthonous character.

Materials and methods

Genome sequencing, assembly, and annotation

L. ruminis bovine strains PEL65 (also called DSM 20403 or ATCC 27780) and PEL66 (also

called DSM 20404 or ATCC 27781) were purchased from the DSMZ culture collection (Braun-

schweig, Germany). Porcine strain GRL1172 was obtained from our in-house culture collec-

tion (Department of Veterinary Biosciences, University of Helsinki). High-throughput next-

generation sequencing of the genomes from the PEL65, PEL66, and GRL1172 strains was
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carried out at the Institute of Biotechnology (University of Helsinki, Finland) using a standard

approach described previously [35]. Briefly, L. ruminis cells were grown and pelleted [23], and

their genomic DNA extracted with commercial kits. Shearing of genomic DNA into random

fragments (3 μg per 100 μl) was performed with a Covaris S2 acoustic sonicator (Covaris Inc.,

USA). In a 50-μl volume, DNA fragments were then fractionated into uniform 1.2-kb sizes

using magnetic carboxyl beads, as done previously [36], followed by end polishing and 454 Y-

adapter ligation using the method of the manufacturer (Roche/454 Life Sciences, USA). Emul-

sion PCR was employed for amplifying the genomic libraries, which were sequenced using the

Roche Genome Sequencer FLX+ system. Following this, sequence reads were assembled de
novo into contigs with GS Assembler software (Roche/454 Life Sciences, USA). Draft assemblies

of the genome sequences were submitted to GenBank with accession numbers MRYP00000000

(PEL65), MRYQ00000000 (PEL66), and MRYO00000000 (GRL1172). For generating the pan-

genome assembly, an additional six L. ruminis genomes (strains DPC 6830, DPC 6832, ATCC

25644, SPM0211, S23, and ATCC 27782) were retrieved from the NCBI RefSeq database (as of

July 2016). For those genomes in the database with more than one sequenced version, a repre-

sentative one was randomly chosen, this having been done to avoid any potential skewing of the

data output. Draft genome assemblies of the PEL65, PEL66, and GRL1172 strains were anno-

tated individually by using the RAST (Rapid Annotation using Subsystem Technology) auto-

matic annotation pipeline [37], with some minor manual curation being done afterward. Pre-

existing gene annotations were downloaded and used for the six genome sequences obtained

from the NCBI RefSeq database.

Orthologous gene identification

Orthologous genes were identified as an all-to-all gene comparison of every L. ruminis genome

using a BlastP algorithm [38] with a BLOSUM62 default-scoring matrix and an E-value cut-off

set to 10−4. Normalizing of the raw BLAST hit scores against the maximum possible score

(defined here as the self-hit score for each gene) was performed. As the BLAST score ratio val-

ues (SRV) can then be in a 0–100 range, this will better reflect the “hit quality” as opposed to

the raw BLAST bit-scores [39]. Correspondingly, orthologs represent two loci if a mutual pair-

wise reciprocal best BLAST hit (RBBH) is obtained, and if the SRV is� 35 for each of the hits.

Determination of the pan-, core, and accessory genomes

The pan-genome was estimated by additive comparisons of the various L. ruminis genomes, in

which collections of non-orthologous loci are consecutively added to the set of genes from a

reference genome (GRL1172) randomly selected for pan-genome assembly. Estimation of the

core genome involved a succession of reductive comparisons between the various L. ruminis
genomes, with these representing the orthologous loci in the nine genomes. Functional classifi-

cations were assigned to the putative core proteins by performing a BLAST search against

sequences in the COG (clusters of orthologous groups) database (https://www.ncbi.nlm.nih.

gov/COG/) [40]. The accessory genome, which instead represents the non-orthologous loci in

the pan-genome, consists of those genes shared by a minimum of two L. ruminis genomes, but

not all them. Unique (or strain-specific) genes are a subset of accessory genes and appear in

only one of the genomes. Comparative analyses that generated orthology-related data were

done with EDGAR software [41]. Development plots of the pan-genome and core genome for

the nine L. ruminis strains were computed using R statistical programming language and

Heap’s Law. Estimated values for the κ, γ, and α parameters were extracted from a graphical

curve optimized for a nonlinear least square fit of the genome data [42, 43]. In-house scripts

were used when deemed necessary.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0175541 April 17, 2017 4 / 26

https://www.ncbi.nlm.nih.gov/COG/
https://www.ncbi.nlm.nih.gov/COG/
https://doi.org/10.1371/journal.pone.0175541


Comparative phylogenomic analysis

Genomic relatedness between or among the nine L. ruminis strains was assessed for evolution-

ary relationships using an earlier described phylogenetic tree reconstruction method [35, 44].

Here, a core genome phylogeny was inferred using the approach taken by Zbodnov and Bork

(2007) [45], wherein orthologous genes in different genomes are identified according to their

protein homology predictions. For this, MUSCLE [46] was used to construct multiple genome

alignments of the in-common core genes, and subsequent to the concatenation of the align-

ment blocks, GBLOCKS [47] was used for deleting away the sequence gaps and misaligned

sections. Unrooted neighbor-joining phylogenetic tree building of the multiple genome align-

ments was done using PHYLIP [48].

In silico protein prediction

In silico estimates for the proteinaceous architecture of the L. ruminis cell surface were done

using openly available protein prediction tools, either with an online server or when down-

loaded. In some instances, in-house scripts were used to complement the various algorithmic

predictions. For all protein prediction programs, loci from the entire pan-genome were ana-

lyzed, but with the exclusion of predicted products whose primary structure is� 45 amino

acids. When discrepancies arose, manual inspection of the prediction data output was per-

formed. Depending on which of the predictive analyses was undertaken, some data output

was sorted into either the core or accessory genomes. For identifying N-terminal (classical)

secreted proteins, predictions for the occurrence of Sec-dependent and twin-arginine translo-

cation (Tat) signal peptides were made using SignalP 4.1 (http://www.cbs.dtu.dk/services/

SignalP/) [49] and TatP 1.0 (http://www.cbs.dtu.dk/services/TatP/) [50], respectively. For the

SignalP predictions, default settings for Gram-positive bacteria and a cut-off score of� 0.45

were used. Non-classical secreted proteins were identified by using the SecretomeP 2.0 predic-

tion program (http://www.cbs.dtu.dk/services/SecretomeP/) [51]. For this, those proteins hav-

ing a recommended SecP score of� 0.5 were judged to be potentially secreted. TMHMM 2.0

(http://www.cbs.dtu.dk/services/TMHMM/) [52] was used to identify which protein loci are

encoding transmembrane helical regions and PRED-LIPO (http://biophysics.biol.uoa.gr/

PRED-LIPO/) [53] was used to predict any putative lipoproteins. Detection of possible sor-

tase-dependent proteins (SDPs) was done with the CW-PRED method (http://bioinformatics.

biol.uoa.gr/CW-PRED/) [54], which predicts the presence of an intact C-terminal LPXTG (or

LPXTG-like) cell wall-anchoring domain.

Results and discussion

General attributes of the L. ruminis genomes

L. ruminis genome sequences of nine gut isolates were used and analyzed in this study. Here,

genomes were sourced from bovine (n = 3), human (n = 3), porcine (n = 2), and equine (n = 1)

hosts, these representing both the ruminant and non-ruminant digestive systems. Among the

genomic sequences, six genomes (DPC 6830, DPC 6832, ATCC 25644, SPM0211, S23, and

ATCC 27782) were obtained from the NCBI RefSeq database, whereas we supplied the remain-

ing three genomes (GRL1172, PEL65, and PEL66) via high-throughput sequencing. For this lat-

ter set of genomes, the assembled draft sequences were initially annotated using an automated

pipeline for gene identification, and then afterward improved by extra manual curation. Plas-

mid DNA sequence was excluded from this annotation process. A list of the annotated genes

predicted for the three newly sequenced genomes is given as supporting information (S1 Table),

with each genomic sequence having been deposited into GenBank (see Materials and Methods
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for accession numbers). Summarized in Table 1 are the general attributes of the nine genomes

used for compiling the L. ruminis pan-genome. Despite the fact the majority of these genomes

are draft assemblies, with only the one from the bovine ATCC 27782 strain being sequenced to

completion; they still represent suitably good quality sequence data for conducting genomic

comparisons. Here though, the average coverage of the genome sequencing ranges widely from

16-fold (GRL1172) to 1500-fold (SPM0211), but this can be largely attributed to the use of vari-

ous sequencing platforms. Moreover, the number of contigs in the assembled genomes is spread

out between one and 422 (as in ATCC 27782 and S23, respectively). L. ruminis genome sizes

range between 1.91 (S23) and 2.17 (SPM0211) Mbps, and then averaging out at 2.04 Mbps.

While the sizes of the genomes from the porcine and bovine hosts are each closely similar, the

human-derived genomes show greater size variability. Even so, the GC base pair content for the

nine genome sequences varies only slightly and is between 43.1 and 43.7%. Further, whereas the

number of identified open reading frames (ORFs) in the nine genomes ranges from 1845 to

2194, those predicted to encode proteins number between 1686 and 2105. This equates to an

averaged overall difference of 17.3 and 22.1%, respectively. As these data suggest a reasonable

similarity in the genomes of the strains, L. ruminis can be regarded as a genetically homoge-

neous species.

Reconstructed phylogeny of L. ruminis genomes

Because the natural habitat of the L. ruminis species seems restricted to the gut milieu, we

decided to conduct a phylogenetic reconstruction to gauge whether any genomic relatedness is

reflected in a particular type of host source. For this, a phylogenomic tree of the nine L. ruminis
strains was built using a multiple alignment of the 1234 loci (proteins) from the core genome.

As shown in Fig 1, the various L. ruminis genomes sort out into distinct clades that are based on

the host-derived origin of each isolate. Here, it was surprising to see a closer phylogenetic rela-

tionship between the genomes of the human and bovine L. ruminis strains, as this would imply

a recent and common ancestry, this despite the host-gut origins being divergent. Specifically,

Table 1. Overview of the L. ruminis genome sequences in this study.

Strain GRL1172 DPC 6830 DPC 6832 ATCC 25644 SPM0211 S23 ATCC 27782 PEL65 PEL66

Gut

Source

Porcine Porcine Equine Human Human Human Bovine Bovine Bovine

BioProject PRJNA357347 PRJNA239217 PRJNA219505 PRJNA31499 PRJNA67675 PRJNA219503 PRJNA70721 PRJNA357347 PRJNA357347

Platform Roche 454 GS

FLX

Illumina HiSeq

2000

Illumina HiSeq

2000

Roche 454 GS

FLX

Illumina GA

IIX

Illumina HiSeq

2000

Roche 454 GS

FLX a

Roche 454 GS

FLX

Roche 454 GS

FLX

Status Draft Draft Draft Draft Draft Draft Complete Draft Draft

Coverage 16x 329x 1382x 39.72x 1500x 658x 28x 18x 20x

Contigs 83 89 128 58 12 422 1 65 54

Size b

(Mbps)

2.02 2.04 1.94 2.11 2.17 1.91 2.07 2.06 2.02

G+C (%) 43.3 43.3 43.1 43.7 43.7 43.7 43.5 43.4 43.4

ORFs c 2165 1975 1897 2072 2127 1845 2035 2194 2170

Proteins d 2105 1825 1755 1968 2013 1686 1836 2104 2086

Reference This study [19] [19] Unpublished [55] [19] [21] This study This study

a Illumina HiSeq 2000 sequencing was also done for 22.5 Mb data and gave 217-fold coverage.
b Average genome size is 2.04 Mbps.
c Average number of ORFs is 2053.
d Average number of proteins is 1930.

https://doi.org/10.1371/journal.pone.0175541.t001
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humans utilize a monogastric digestive system, and one that is more similar to those found in

pigs and horses [2]. By contrast, ruminant herbivores like cattle have a multi-chambered stom-

ach, where nearly total digestion of grazed plant cellulose occurs in the reticulorumen pouch [2,

56]. From an ecological perspective, these two compartmentalized gastric niche locales would

presumably offer different evolutionary challenges to the gut-dwelling L. ruminis species, and at

a genome level likely demand that strains have a characteristic set of geno-phenotypes for adapt-

ing to such environments. However, based on Fig 1, it is rather unexpected that the phyloge-

nomic lineage of the human L. ruminis strains would not be nearer to that of the porcine- and

equine-derived isolates. Thus, even though L. ruminis phylogenomics support the various iso-

lates as being host-source specific, there is no apparent commonality amongst the gene content

of the core genome that causes a clear lineage distinction between the ruminant-derived strains

and those isolated from non-ruminating monogastric hosts. For the latter, it seems that the evo-

lutionary potential of the L. ruminis genome is not selectively shaped or constrained by a distin-

guishably dominant factor in these two differing gut habitats.

Assembling the L. ruminis pan-genome

For our study, a pan-genome was created using the genomes of the nine L. ruminis strains

described in Table 1. Here, the total genetic repertoire was deduced from computed BLAST

score ratio values (SRVs), these having been determined within the EDGAR software frame-

work. The L. ruminis pan-genome is estimated to contain 4301 protein-related genes (Fig 2

and S1 Table), and thus the genetic pool maintained by this species is slightly more than

Fig 1. Phylogenetic tree analysis of the L. ruminis genomes. Unrooted phylogenies of the L. ruminis genomes were

based on the multiple sequence alignment of core proteins and constructed with the neighbor-joining tree-building algorithm

(see Materials and Methods for details). Names of the L. ruminis strains from which each genome is derived are shown. Four

distinct phyletic clades were identified based on host-gut source (human, bovine, porcine, or equine) and are indicated

accordingly.

https://doi.org/10.1371/journal.pone.0175541.g001
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double (2.2-fold) the average number of 1930 predicted protein loci for the nine genomes.

When a Heap’s Law calculation (for a description, see [42, 43, 57, 58]) is extracted from a plot

of the pan-genome gene number versus the number of L. ruminis genomes being considered

(Fig 3), the α-value that was obtained is only 0.63. As α is < 1, this convincingly implies that

the pan-genome is very much open [42, 43, 57, 58] and any related accessible gene pool is far

from being completely characterized for the L. ruminis species. As a mathematical extrapola-

tion, the pan-genome curve shows no signs of leveling out and appears to project unlimited

gene content (Fig 3). On the other hand, as the curve trajectory of the development plot for the

core genome is sharply lowered to a plateau, it seems evident that there is a progression toward

a stable number of core genes (Fig 3). This underscores the importance of the gene content in

the accessory genome for the environmental adaptability of the L. ruminis species (see forth-

coming sections for more details).

Core genome of L. ruminis

The various loci of the pan-genome that are deemed crucial and necessary for the self-sustain-

ability of a bacterial cell are what encompass the core genome of a particular species. In gen-

eral, among the predicted ORFs for the core genes are those assigned to basic housekeeping

functions and regulatory mechanisms. These broadly cover the different catabolic and meta-

bolic pathways for the cellular production, transport, utilization, and degradation of nucleic

acids, ribosomes, and proteins, but as well, other compounds or molecules such as carbohy-

drates, amino acids, and lipids [42, 43, 57, 58]. Predictably, the core genome of L. ruminis (S1

Table) mirrors the established consensus, with its collection of loci falling into a similar set of

categories described above and as are now itemized in Fig 4. Here, the COG (clusters of

Fig 2. Pan-genome of the nine L. ruminis strains. A flower-plot depicting the gene content in the pan-

(4301), core (1234), and accessory (3067) genomes of L. ruminis is shown. The number of strain-specific

genes per genome is shown in the flower petals. Names for each L. ruminis strain are indicated. Annotated

core and accessory genes are provided in the S1 Table.

https://doi.org/10.1371/journal.pone.0175541.g002
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orthologous groups) distribution of the core genes illustrates how the corresponding putative

proteins are assigned and classified according to their possible function. For these COG classifi-

cation estimates, some of the functional categories that emerge with the higher percentage of

core genes are predictable and include those dealing with the transport and metabolism of car-

bohydrates (8%), amino acids (8%), and nucleotides (5%), the biogenesis of the cell envelope

(5%), and as well various translational (11%), transcriptional (5%), and DNA replication-related

(6%) processes. However, there is also a large number of core loci that are categorized with mul-

tiple classifications (9%), general function predictions (11%), and unknown functions (10%). Of

particular interest, given that L. ruminis strains have a proclivity for flagellated cellular move-

ment, it is both expected and logical that a certain proportion (2%) of the core genome would

be devoted to a functional classification for cell motility (see latter section for more details). As

for its overall estimated size, the L. ruminis core genome converges to 1234 protein-encoding

loci (Fig 2 and S1 Table), which equates to just 28.7% of the pan-genome size (4301) and, paren-

thetically, to about two-thirds the average number of protein genes (1930) for the nine genomes

of the pan-genome (Table 1). This relatively low number of core loci implies that this species

retains a wide-ranging genome structure, which by inference, would mean that the accompa-

nying accessory or dispensable genome is somewhat large sized.

Accessory genome of L. ruminis

In addition to having a conserved genetic core, the L. ruminis pan-genome includes a supple-

mentary pool of loci, with these encompassing the so-called accessory genome and reflecting

the diversity of this lactobacillar species. While the accessory genes correspond to those that

are partly shared (at least two genomes but not all) or unique (strain-specific), and are often

dispensable, some tend to help customize bacterial strains for adaptation and survival in cer-

tain environmental settings and therefore might be causally linked to a particular ecological

lifestyle or habitat [42, 43, 57, 58]. Based on our estimates, the L. ruminis accessory genome is

itself rather amply sized and consists of 3067 protein genes (Fig 2 and S1 Table), which, by

Fig 3. Size prediction for the L. ruminis pan- and core genomes. New gene numbers in the pan- and core

genomes are plotted against the number of added L. ruminis genomes. Each fitted curve was generated using

the median values for the number of new genes.

https://doi.org/10.1371/journal.pone.0175541.g003
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calculation, is nearly 2.5-fold greater than that of the core genome and close to covering 70%

of the pan-genome gene pool. By comparison, in our previous pan-genome study of L. rham-
nosus [35], a species that has adapted to a broad range of ecological habitats, the corresponding

accessory genome was found to represent ~57% of the genes in the pan-genome. Nonetheless,

the relatively high accessory gene content for L. ruminis is reflective of the genetic diversity

that would be needed by this species to subsist in a specific yet physically dynamic locale like

the mammalian gut.

Among the loci of the accessory genome there exist those that are unique and specific to an

individual L. ruminis strain. For these genes, their numbers per genome are provided in Fig 2,

the most being found with the human SPM0211 strain (209 loci) and the least from two bovine

isolates (19 and 38 loci in ATCC 27782 and PEL66, respectively). The overall number of strain-

specific genes adds up to 973, which proportionally accounts for 31.7% of the accessory genome.

By far the majority of these unique loci have annotations for hypothetical proteins (S1 Table),

and as most variation then lies with unknown and uncharacterized functionalities, it is difficult

to correlate any type of adaptive role or benefit for the nine different L. ruminis strains. None-

theless, for a few of the strains some of their unique loci are annotated with a variety of pre-

dicted functions in transport and metabolism, but recognizably as well, for those involved with

the lateral transfer of genes, i.e., phage-related proteins, transposases, and mobile elements

(S1 Table).

Fig 4. Functional classifications of the L. ruminis core genome. COG (clusters of orthologous groups) functional

classifications were assigned to the putative proteins of the L. ruminis core genome as described in Materials and Methods.

Various core proteins were categorized according to 21 COG functional assignments as a percent of the total number of predicted

proteins in the core gene pool. Results are shown as a pie chart, with the names and abbreviations for the COG categories and the

corresponding percentages (%) indicated.

https://doi.org/10.1371/journal.pone.0175541.g004
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Proteinaceous content within the cell-surface architecture of L. ruminis

Universally, the outer surface morphology of Gram-positive bacteria encompasses a complex

mix of different proteinaceous and carbohydrous structures (for detailed reviews, see [59–62]).

Typically, when bacteria confront the peripheral environment, it is presumed that their sur-

face-exposed features will have certain protective or aggressive functions, and thus involve a

variety of cellular binding, recognition, and signaling actions. In the subsections that follow,

the pan-genome was used to reveal the cell-surface architecture of L. ruminis, with an overall

emphasis on the predicted proteinaceous character. This specifically includes an examination

of the loci encoding classical and non-classical secretory proteins, transmembrane proteins,

lipoproteins, LPXTG-anchored surface proteins, and the flagellar and chemotaxis proteins.

Here, an effort was made to assess whether any variations in these cell surface-related proteins

can define the ecological niche preference of each individual L. ruminis strain.

Classical and non-classical secretory proteins. Various proteins that populate the outer

surface of Gram-positive bacteria entail some sort of signaling peptide to help facilitate their

translocation across the cell envelope barrier. For instance, the route of N-terminal signaled

“classical” protein secretion can occur through either the Sec-dependent or twin-arginine

translocation (Tat) pathways. Then again, some secreted proteins use “non-classical” pathways

and do so without any obvious signal peptides. For our in silico predictions, the SignalP [49],

TatP [50], and SecretomeP [51] programs were used to discriminate the number and type of

exported proteins utilizing the classical pathways from those that are secreted by non-classical

means. Predicted primary structures of loci from all nine L. ruminis genomes were individually

processed per genome and the output analyzed afterward. Data from the SignalP and TatP pre-

dictions were also sorted into either the core or accessory genomes.

According to the SignalP results (S2 Table), it appears that classically secreted proteins

requiring a Sec-signal peptide account for a maximum of only 75 putative loci (ATCC 25644).

Among these protein genes, an estimated 33–48 belong to the core genome (equivalent to 2.7

to 3.9%, respectively). Of note, we attribute the range in pooled core genome number as a gen-

eral inconsistency with in silico prediction programs. For example, with SignalP, this can also

partly originate from some of the “secreted” protein loci unexpectedly lacking a deduced pri-

mary structure for an intact N-terminal region, which causes them to be missed and not pre-

dicted. For the Sec-signaled proteins that are encoded by non-core loci, these number from six

to 29 genes and average out to less than one percent of the accessory genome (S2 Table). Pre-

diction estimates using the TatP method indicate that there is a minimum of 15 (DPC 6832)

and a maximum of 38 loci (SPM0211) with encoded proteins that would have the sequence

potential for a Tat signal peptide (S3 Table). Of these, the designated core genes are between

11 (ATCC 27782 and DPC 6830) and 14 (PEL65 and S23), whereas those loci that make up the

accessory genome range from three to 26 in number (DPC 6832 and SPM0211, respectively).

By comparison, the SecretomeP prediction data gives an approximation of loci for non-classi-

cally secreted proteins that is at least ten-fold greater in number. In total, there are between

526 and 841 putative loci whose encoded products presumably use one or other unconven-

tional routes for exporting proteins that do not have a typical N-terminal signaling peptide (S4

Table). While these numbers of protein loci might appear high, we consider them to be accept-

able given that the recommended SecP score (� 0.5) for indicating secretion was used in our

determinations [51].

Our survey of the corresponding annotations for the putative classical and non-classical

secretory proteins indicates that for both these types many of them have some link to a recog-

nizable extracellular function. In the context of cellular adhesion, one of the non-classically

secreted proteins is worthy of mention (S4 Table). Here, it might be envisioned that active
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expression of the core gene annotated as fibronectin-binding protein (Fbp) (GRL1172_498,

HMPREF0542_10570, LRC_RS05075, LRN_0851, PEL65_1842, PEL66_466, P869_04425,

LRU_00261, and LRP_1613) might contribute to the gut autochthony of the various L. ruminis
strains. Fibronectin is an ECM glycoprotein found near the surface of epithelial cells and can

serve as a target or attachment site for many types of bacteria, including a variety of Lactobacil-
lus species [63, 64]. For the binding of L. ruminis cells to gut-localized fibronectin, this might

be mediated through the Fbp, along with the LrpCBA pilus, which has been shown to have

similar substrate specificity [23]. As with other lactobacillar counterparts [35, 65], L. ruminis
Fbp is atypical from those in pathogens and is seen to lack any familiar signaling domains at its

C- or N-termini, thus explaining why this protein was detected with the SecretomeP method.

Transmembrane proteins. In Gram-positive bacteria, many of the proteins that are being

exported through the cell envelope also possess hydrophobic regions that facilitate membrane

insertion, but as well, where other regions extend beyond the cell wall to the outer surface.

These transmembrane proteins (as they are classified) contain one or more membrane-span-

ning helical regions whose hydrophobicity allows them to be embedded in the cytoplasmic

membrane. Functionally, Gram-positive transmembrane proteins have varied purposes, these

ranging from the metabolism of macromolecules (polysaccharides, nucleic acids, proteins, and

lipids) to different cellular signaling processes and gene regulation activities [60]. By using the

TMHMM algorithm [52], which predicts the presence of transmembrane helices (TMHs), we

were able to gauge which of the L. ruminis genes from the pan-genome are representing puta-

tive transmembrane proteins (S5 Table). In total, we found there were between 308–480 hits

(DPC 6832 and ATCC 25644, respectively) for protein loci that are predicted to encode trans-

membrane helical regions, but where 222–341 of these predictions are for proteins containing

two or more TMHs. While not unexpected, functional annotations for these transmembrane

proteins were in line with other Gram-positive bacteria. Interestingly, the maximum number

of predicted TMHs per encoded protein was found to be 14, and of these integral membrane

proteins they accounted for five to eight loci, most of which were annotated as various mem-

bers of the transporter protein family.

Among the transmembrane protein hits, we identified an ORF in two human strains

(HMPREF0542_11925 from ATCC 25644 and P869_03355 from S23) that encodes for a possi-

ble fucose permease (FucP) [66]. This transporter protein is responsible for the cellular uptake

of fucose, a hexose sugar commonly found as a glycan component of the mucin proteins form-

ing the mucus layer of the gut epithelium, and which for certain bacteria can serve as an energy

substrate instead of glucose should nutrients become limiting [67]. Noticeably, none of the

two genomes contains the gene encoding for an α-fucosidase, the enzyme that would hydro-

lyze the release of fucose from the mucus glycan chain as found with Bifidobacterium bifidum
[68]. This can explain the findings of another study where fucosidase activity was not detected

in the ATCC 25644 and S23 strains [19]. Even so, fucose could instead be available as scav-

enged remnants in the gut, and subsequently absorbed into the cells via the putative fucose

permease transporter. Thus, with the possibility of having the transport machinery that enables

cells to feed on spent intestinal mucus, this can be regarded as a habitat-specific fitness advan-

tage for these two human strains of L. ruminis. Interestingly, despite the fact that mucus-lined

intestines are a universal feature of mammals, the fucose permease-encoding gene is not

shared by the genomes of the other host-derived L. ruminis strains, and thus it belongs to the

accessory genome.

Lipoproteins. Lipoproteins in Gram-positive bacteria represent a functionally diverse

group of membrane proteins (transporters, enzymes, adhesins, and receptors) that protrude

outwardly from their covalent anchoring at the interface region between the cytoplasmic

membrane and the peptidoglycan layer of the outer cell wall [60]. Bioinformatically, Gram-
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positive lipoproteins can be readily recognized based on their so-called lipobox, a pattern of

residues ([LVI]-[AST]-[GA]-C) in the C-region of its N-terminal secretion signal sequence

that serves as the cleavage recognition site for signal peptidase II [60]. In our pan-genomic

survey of L. ruminis, loci encoding putative lipoproteins were identified for the presence of a

lipobox using the PRED-LIPO prediction program [53], wherein a total of between 16 and 30

genes had been uncovered (S6 Table). After sorting into the core and accessory genomes, 12–

19 core and four to 13 non-core genes were found to exist. Aside from a few hypothetical pro-

tein annotations, the majority of the predicted lipoprotein genes are annotated with functions

as ABC transporter proteins (or otherwise related), these including a variety of potential sub-

strate binding abilities. Given their essential role in the exchange of metabolic products, such

putative lipoproteins can be regarded as a necessary feature of the various L. ruminis strains

and their evolved capacity to utilize the nutrient richness of the gut environment.

LPXTG-anchored surface proteins. Often exposed on the cell surface of many different

Gram-positive genera and species are various types of proteins whose covalent cell wall anchor-

ing relies on the action of transpeptidyl enzymes called sortases. Such sortase-dependent proteins

(SDPs) require the presence of a C-terminal signaling region that includes a five-residue recogni-

tion and cleavage motif (LPXTG), which is itself followed by a stretch of aliphatic amino acids

and a tail end of positive-charged residues (for detailed reviews, see [60, 62, 64]). To identify any

potential loci for SDPs within the nine L. ruminis genomes, we made use of the CW-PRED algo-

rithm, a Hidden Markov Model (HMM)-based tool that predicts the occurrence of LPXTG (or

LPXTG-like) domains [54]. The output of these predictions revealed that per genome there is a

minimum of three and maximum of seven hits for SDP loci. For these, each of the corresponding

primary structures was visually inspected for an intact LPXTG domain region, whereupon one

hit was judged an artifact and subsequently rejected. In total, nine types of SDPs were found, of

which three loci are part of the core genome, with the six others being associated with the acces-

sory genome (S7 Table). Surprisingly, although it is common for SDPs to also have a Sec-signal

peptide at the N-terminus, not all of these nine protein loci were recognized within our SignalP

prediction data (S2 Table). On the other hand, largely due to the predicted presence of an intact

LPXTG domain, each of these genes was identified by using the TMHMM method (S5 Table).

Amongst the designated core genes (S7 Table), we had identified those encoding for the

backbone (LrpA) and tip (LrpC) pilin subunits of the LrpCBA pilus [23]. As our earlier work

revealed the LrpCBA pilus is a macromolecular structure and assembled from three different

protein subunits [23], it was unexpected that the gene for the basal LrpB pilin would not be

found in the core genome, particularly since the three LrpCBA pilin subunits are encoded by

loci that are clustered and expressed together as a fimbrial operon (called lrpCBA) [23]. Of the

nine L. ruminis genomes encompassing the core genome, the genome from the ATCC 27782

strain was identified as being the source of this discrepancy. After manually checking the

NCBI database where the ATCC 27782 genome sequence is deposited, we found the corre-

sponding LrpB locus tag (LRC_RS00315) had its ORF hidden as a pseudogene. Previously,

under an old locus tag (LRC_00610), amino acid sequence for this ORF was attainable and

upon inspection we found it represented a truncated version that was missing about 40 resi-

dues at the N-terminus, including those for a secretion signal peptide. Further, we noticed that

this shortened LrpB primary structure results from an insertion of two adenines along the lrpB
coding sequence, thus producing a reading-frameshift change. Relatedly, it is worth mention-

ing we had previously observed that for the DPC 6832-sourced LrpB pilin, there is a shift in

the reading-frame of its deduced primary structure, which we found is due to a missing cyto-

sine in a serine codon [23]. Consequently, during the annotation process the LrpB pilin was

detected as two ORFs and had been assigned separate locus tags (LRN_0080 and LRN_0081).

Despite the fact that LRN_0081 was confirmed as having the entire LPXTG domain region, it
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was the LRN_0080 ORF that became aligned with the other-sourced LrpB loci in the L. ruminis
pan-genome, which for us led to another inconsistency during our interpretation of these

results. However, for both types of detected nucleotide alterations, it is unclear if they arose

from a genuine indel mutation or as an unintentional mistake in DNA sequencing. In all likeli-

hood, there is the possibility that the lrpB gene would instead be better placed within the core

genome of L. ruminis.
As for the third core gene whose ORF was predicted as having a LPXTG domain, it had

been given various annotations (S7 Table), but none offered any sort of functional description

other than being a cell wall-anchored protein. Since the amino acid identity between the vari-

ous-sourced versions of this LPXTG surface protein is quite high (92.7–100%), we examined

whether any homology occurs with recognized binding domains. Here, no hits were obtained

from a Pfam search (at http://pfam.xfam.org; [69]) when using the HMPREF0542_11626

sequence of ATCC 25644. However, when performing a BlastP search of the NCBI database

with the same primary structure, it was revealed that some similarity to the MucBP (Mucin-

Binding Protein; pfam06458) domain exists, suggesting this cell wall-anchored protein might

adhere to mucosal substrates. This possibility comes as somewhat unexpected, as previously

we found that L. ruminis cells show little binding affinity for mucus [23].

Regarding the LPXTG-domained protein loci found within the accessory genome (S7 Table),

three of them appear to be strain-specific (LRP_348 in porcine DPC 6830, and P869_01660 and

P869_04430 in human S23). As far as any Pfam-predicted functions, no noteworthy matches were

obtained from a database search, which is expected considering that all three genes are annotated as

hypothetical protein. Also of note, two additional accessory genes are each common to two different

strains. However, whereas the LRP_1521 (from DPC 6830) and PEL65_242 (from PEL65) ORFs

are assigned with a starch-debranching pullulanase function, the LRU_00897 and P869_09985

ORFs (from the human SPM0211 and S23 strains, respectively) have less revealing hypothetical

protein annotations. Likewise, annotations for the remaining non-core loci (P869_01660 and

P869_04430 from the S23 strain) are also functionally uninformative, as both corresponding prod-

ucts have been designated as a hypothetical protein. Based on the annotations of these various

accessory genes, nothing can be adequately deduced about their prospective roles in the gut-niche

specialization of L. ruminis.
Of parenthetical interest, our finding that L. ruminis ATCC 27782 encodes for a maximum

number of three SDPs seems to be in conflict with an earlier genomics study that had predicted

the occurrence of ten such proteins in this bovine strain [21]. The loci in common with our study

are those for the LrpA and LrpC pilus proteins (conceivably as well for LrpB) and LRC_RS00370,

but no others were detected. Concerning the additional six loci identified in the other study [21],

our examination of their predicted primary structures revealed that none have the C-terminal

characteristics for a complete LPXTG domain region (S8 Table). Moreover, we noticed that for

four of them (LRC_01690, LRC_16530, LRC_16780, and LRC_16790), they no longer exist in the

NCBI database after the ATCC 27782-derived genome had been provided with new locus tags.

With the above in mind, it would seem that the potential variety of SDPs is not too exten-

sive on the outer surface of the L. ruminis species. However, of the modest number of predicted

SDPs, those that assemble into the LrpCBA pilus are likely to be advantageous and important

for the adhesion of L. ruminis cells to the gut epithelium, and presumably for their inherent

autochthonous character as well. Yet, one cannot exclude the possibility that among the other

LPXTG-domained proteins whose function is not known, there still might be a useful adhesive

role during host colonization. Further, given the host niche environment of the L. ruminis spe-

cies, its nutritional sustenance weighs heavily on the ability to degrade and utilize various com-

plex carbohydrates, particularly as found in the gut of herbivorous livestock [2, 56]. Thus, it

comes as no surprise that two of the L. ruminis genomes (from bovine PEL65 and porcine
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DPC 6830) encode for a SDP whose putative function is a starch-acting pullulanase enzyme,

though still somewhat puzzling that it is not more widespread among the genomes of the other

animal-derived strains.

Flagellar and chemotaxis proteins. Often found on bacterial cell surfaces are long flagel-

lar structures, and while these peripheral features primarily provide the driving force for cellu-

lar movement, they are also known to contribute to adhesion, biofilm assembly, and immuno-

responsiveness (for detailed reviews, see [70, 71]). As mentioned beforehand, certain L. rumi-
nis strains display a motility function (swimming, swarming, or tumbling) where one or more

flagella are used. Presumably, the type of movement would be controlled as a response to exter-

nal stimuli, which characteristically consists of numerous interactions between so-called che-

motaxis proteins [70, 71]. As flagellation and chemotaxis are both complex processes that

involve a large number of different proteins with a variety of functions, this would be reflected

by the gene content of the L. ruminis pan-genome.

Among the pan-genome loci that are clearly annotated as having a flagellar-related func-

tion, there are an estimated 39 core genes, along with an additional nine accessory genes (S9

Table). From this it is evident that the genetics of L. ruminis flagellation is not open to much

variation and that there is a highly conserved commonality in the genes needed for encoding

the structural constituents and biosynthesis of a flagellum. Here, a majority of L. ruminis
genomes (GRL1172, ATCC 25644, ATCC 27782, DPC 6832, PEL65, and S23) have only a sin-

gle non-core flagellar gene, with one of the genomes (DPC 6830) having none at all. At a

molecular level, this suggests that from strain-to-strain the flagella are structured and assem-

bled quite similarly, and that any fundamental divergence from this in form or function is

unlikely to be supported by the varying gene content within the accessory genome.

For the loci of the pan-genome that encode the chemotaxis proteins, there are a total of 16

core genes whose annotation predicts an involvement with flagellar chemotactic responses

(S10 Table). The most conspicuous of these loci are those having functional annotations for

regulating the frequency of tumbling, a phenomenon manifested when the rotation of the fla-

gellum switches from an anti-clockwise to clockwise direction [70, 71]. Correspondingly, the

L. ruminis core genome includes variously annotated loci for the cytoplasmic CheA, CheB,

CheC, CheD, CheR, CheW, and CheY proteins. Found also prominent among the core genes

are those encoding for a number of transmembrane methyl-accepting chemotaxis proteins

(MCPs). These sensory receptor proteins are localized on the outer surface of bacterial cells

and operate through the detection and binding of chemoattractants or chemorepellents in the

surrounding environment [70, 71]. Ordinarily, this leads to a signaled activation of the Che

proteins involving cyclical methylation and demethylation, and which ultimately controls

tumbling behavior [70, 71]. It is thus clear that MCPs would be obligatory for the active func-

tioning of the L. ruminis flagella. Interestingly, of the three to six non-core loci predicted to

encode chemotaxis proteins most are having MCP annotations. Thus, for each of the various

L. ruminis strains encompassing the pan-genome, there could be the functional potential for

flagella to respond to differing stimuli that are representative of the intestinal milieu. Indeed,

this might reflect a phenotype evolvability that tailors the adaptation of a L. ruminis strain to

the specific environmental conditions in a particular host gut. Incidentally, it is tempting to

speculate that the oddly resuscitated tumbling motility observed with the ATCC 25644 human

strain in vivo [22] might rest with one or more anomalous or possibly defective chemotaxis

proteins. This in itself can be seen as an alternative explanation to an earlier proposed model

involving the transcriptive regulation of a flagellin gene [22].

Successful bacterial colonization in the host GI tract can be construed as the logical precon-

dition of cellular persistence, and which can lead to an indigenous lifestyle. For the L. ruminis
species, its potential for flagellar chemotactic movement is advantageous and can play a key
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adaptive role in occupying the gut autochthonously. For instance, through a response to cer-

tain attractants, flagella would likely be able to propel cells toward a favorable niche location

containing abundant nutrients, reduced oxygen levels, and optimal attachment sites, such as

what can be found throughout the folded crevices of the inner intestinal walls. Presumably, in

reaching these deep and concealed locales, flagellum-directed motility will have helped prevent

L. ruminis cells from becoming washed out along with the transiting luminal contents. Further,

because chemotactic flagella are also able to sense and recognize repulsive stimuli, L. ruminis
would be equipped to avoid the less ecologically hospitable aspects of the host intestine (e.g.,

oxygenated regions). By being flagellated on the outer cell surface, the various L. ruminis
strains will have evolved an effective molecular strategy that supports an ecological adaptation

to a very specific gut microenvironment, which can be viewed as also promoting a characteris-

tic autochthonous presence within a given host.

Fermentative and respiratory eco-fitness of anaerobic L. ruminis

In genomic terms, a strict gut anaerobe like the L. ruminis species has adapted itself remarkably

well to the constraints of an oxygen-free ecological niche. However, owing to its intolerance of

oxygen, L. ruminis should emulate the physiology of other obligately anaerobic bacteria by not

producing the antioxidant enzymes that protect cells from reactive oxygen radicals [9]. Expect-

edly, none of the loci in the pan-genome of L. ruminis was found to be annotated as coding for

superoxide dismutase and catalase, the enzymes responsible for degrading the superoxide radi-

cal and hydrogen peroxide, respectively (S1 Table). Thus, to be able to flourish under deoxy-

genated conditions, L. ruminis will have had to evolve the metabolic fitness to absorb energy

substrates through either fermentative processes, anaerobic respiration, or possibly both.

Fermentation. Enough experimental evidence already exists to indicate that L. ruminis
maintains an obligately homofermentative metabolism [17]. For this, cells will undergo lactic

acid fermentation to generate cellular energy in a process that breaks down one molecule of

glucose to yield two molecules of lactate [72]. Genomically, obligate homolactic bacteria are

distinguished by the presence of fructose-1,6-bisphosphate (FBP) aldolase, a key glycolytic

enzyme of the Embden-Meyerhof-Parnas (EMP) pathway through which hexose sugars are

metabolized [72]. Our analysis of the L. ruminis pan-genome indicates that each of the nine

strains has an ORF whose predicted product is annotated as a FBP aldolase (Fig 5A), which

makes it part of the core genome (S1 Table). Further inspection of the pan-genome revealed

that the annotated loci encoding all other EMP pathway enzymes, including lactate dehydroge-

nase for catalyzing the conversion of pyruvate to lactate, are as well found in the core-gene

pool (Fig 5A). With such pathway-related genes in the core genome, this not only highlights

an essential physiological role, but it also provides the genetic basis for the homolactic fermen-

tation profile characteristically observed in L. ruminis cells.

Other Lactobacillus species are classified as either facultative or obligate heterofermenters

and will instead metabolize glucose using the phosphoketolase (PK) pathway, but whereby lac-

tate, ethanol, and CO2 are the end products [72–74]. In fact, the PK pathway is the same

means that some lactobacilli use for fermenting pentose sugars [72]. One example is Lactoba-
cillus sakei, which can grow on ribose as the sole source of carbon and energy [75]. In order for

this to occur, ribose must be transported into the cytoplasm and then become phosphorylated.

In L. sakei, these processes necessitate the involvement of an operon (rbsUDK) encoding the

ribose transporter (RbsU), D-ribose pyranase (RbsD), and ribokinase (RbsK) proteins, and

whose expression is regulated by the RbsR repressor protein [75]. In the case of L. ruminis, its

own ability to catabolize ribose is the subject of conflicting studies, one reporting that it occurs

in the bovine strain NRIC 1689 (also called ATCC 27780 or PEL65) [76], but another
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concluding that the same isolate along with several other strains shows no growth on this pen-

tose sugar [18]. In this latter study [18], it was suggested that because the gene for a putative

transaldolase (one of the enzymes in the pentose phosphate pathway) is not found in the

genome of two strains (ATCC 27782 and ATCC 25644), this can be inferred as the possible

reason why ribose is non-fermentable by L. ruminis. However, given that the foremost func-

tion of the pentose phosphate pathway is an anabolic one, a missing transaldolase enzyme

might not necessarily represent an adequate explanation, particularly since pentose fermenta-

tion by heterolactic bacteria is mainly through the PK pathway [72].

To tackle this discrepancy, we examined our pan-genome data (S1 Table) to determine

whether L. ruminis contains the genes that encode the necessary enzymes for a PK pathway.

Loci for the full repertoire of PK pathway enzymes were detected in the L. ruminis core

genome (Fig 5B), but with the exception of the all-important pentose-cleaving phosphoketo-

lase, which was not found in the genome of the DPC 6832 strain. Of related interest, following

the completion of this article, we became aware that the phosphoketolase gene is present in the

L. ruminis DPC 6832 genome after its locus tags in the NCBI database were reassigned. None-

theless, while it remains uncertain that these gene products are actively expressed and partici-

pate in a functional pathway that ferments pentose sugars, one might begin to speculate and

Fig 5. Schematic outline of the putative homolactic and heterolactic fermentative pathways in L. ruminis. Depicted is the

glycolytic metabolism that can occur during homolactic fermentation via the Embden-Meyerhof-Parnas (EMP) pathway (A) or

heterolactic fermentation via the phosphoketolase pathway (PK) (B). Included are the various pathway reactions with their

precursor metabolites and enzymes. Shown in the insets are the names of the glycolytic enzymes, either numbered (1–11) or

alphabetized (a-e) along with the locus tags of their putative genes in the nine L. ruminis genomes. Enzymes that overlap in both

pathways are numbered similarly.

https://doi.org/10.1371/journal.pone.0175541.g005
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reconsider whether L. ruminis is suitably placed in a group that contains obligately homofermenta-

tive lactobacilli. Yet, on the other hand, an examination of the L. ruminis pan-genome for the

genes encoding the proteins involved with mediating active ribose transport had revealed that

while annotated genes for the ribokinase (GRL1172_644, HMPREF0542_10159, LRC_RS07720,

LRN_1311, PEL65_950, PEL66_2068, P869_06985, LRU_01270, and LRP_932) and ribose operon

repressor (GRL1172_1281, HMPREF0542_12070, LRC_RS08440, LRN_1438, PEL65_1929,

PEL66_741, P869_08795, LRU_01112, and LRP_465) proteins were identified within the core

genome, those for the ribose transporter and D-ribose pyranase proteins were not present. Though

other factors can be involved, one can justifiably argue the lack of growth on ribose by L. ruminis
strains that others had observed [18] might be more attributed to the missing components of the

ribose transport machinery. This in turn would serve to lessen any legitimacy that the bovine iso-

late of L. ruminis (NRIC 1689) is a ribose-fermenting strain [76]. Thus, if it is the situation that

ribose (or xylose [18]) cannot be utilized by L. ruminis, it raises the question as to which type of

pentose sugar would be transported into the cell and processed through a prospective PK pathway.

However, were it otherwise to be shown that a particular L. ruminis strain can as well undergo a

heterofermentative metabolism via the PK pathway using various pentose and hexose sugar sub-

strates, this can be seen as an adaptive gain or benefit when competing in the gut microcosm, as it

would offer a wider access to fermentable carbon and energy sources, particularly during periods

of fluctuating nutrient availability. Presumably, the potential capacity for cellular growth using a

more mixed fermentative metabolism would further help support the perpetuity of L. ruminis colo-

nization within the host gut.

Anaerobic respiration. Contrary to their namesake, certain members of the LAB also

have the genetic means of obtaining energy by respiration, whereupon lactate is no longer the

main end product, but then provided that an exogenous source of both heme and menaqui-

none is available beforehand to cells [77]. In an anoxic environment, the absence of oxygen

precludes its use as the terminal electron acceptor in the respiratory chain, and thus other oxy-

anionic compounds must be used instead, and for which a corresponding oxidoreductase

enzyme is considered indispensable [78, 79]. Thus far, among the LAB only a few have the

minimal number of necessary genes for an anaerobic respiratory metabolism, such as when

either nitrate (Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus reuteri [80])

or fumarate (Enterococcus faecalis [81]) is used as the final electron acceptor.

Generally, for bacteria that respire anaerobically using nitrate, this ability can be identified

at the genomic level by the clustering of genes (narGHI operon) for a nitrate reductase com-

plex, which itself consists of three subunits (NarG, NarH, and NarI) and is membrane-bound

[78]. Still, for other bacteria, a single locus that encodes a monomeric soluble nitrate reductase

can as well be found, and presumably, this form would represent the smallest structural and

functional unit that mediates nitrate reduction [78]. Gene prediction within the L. ruminis
pan-genome shows no evidence of what resembles the narGHI operon, but there is one ORF

with a nitrate reductase annotation (LRC_RS08915 from ATCC 27782) (S1 Table). However, a

closer inspection of its primary structure had revealed this ORF is likely mis-annotated. Based

on the domain assignments from the Pfam database [69] (data not shown), the putative pro-

tein product of this ORF actually belongs to the amidinotransferase family, which as well

includes the arginine deiminase enzyme. It should be noted that orthologous genes from other

genomes in the pan-genome have these two types of annotations. Evidently, there is no genetic

rationale in L. ruminis for carrying out anaerobic nitrate respiratory growth.

In contrast, our analysis of the pan-genome data did seem to indicate the possibility of

fumarate respiration in L. ruminis (S1 Table). Here, we found ORFs in the core genome

(GRL1172_1261, HMPREF0542_10777, LRC_RS01705, LRN_0304, PEL65_229, PEL66_1400,

P869_08075, LRU_02203, and LRP_1424) whose annotation suggests that they encode for a
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fumarate reductase (Fig 6), the key enzyme allowing the use of fumarate as the terminal oxidant

during anaerobic respiratory growth [79]. Following a BlastP search, we were more convinced of

this identity, as its primary structure shows strong similarity with the flavocytochrome c fumarate

reductases from other types of bacteria (data not shown). Since bacterial fumarate reductases are

able to exist as both a membrane-bound or soluble enzyme, this is also differentiated in the way

they are encoded in the genome. For instance, fumarate reductase in Escherichia coli is located on

the inner surface of the cytoplasmic membrane and consists of four different subunits that form

the catalytic (FrdA and FrdB) and membrane-embedded (FrdC and FrdD) domains, with their

corresponding genes encoded within the frdABCD operon [79]. Alternatively, for the genus She-
wanella, fumarate reductase is a soluble periplasmic enzyme, existing as a monomer and thus

encoded by a single gene [79]. Likewise, in the LAB E. faecalis, it is recognized that only one gene

encodes its fumarate reductase [81]. As for the putative fumarate reductase we uncovered in L.

ruminis, its locus is not part of a gene cluster, thus suggesting that this enzyme is monomeric.

Since the L. ruminis fumarate reductase gene was not found amongst our SignalP or TMHMM

prediction data (S1 and S5 Tables, respectively), but was identified when using the SecretomeP

program (S3 Table), it is reasonable to assume that this enzyme is not membrane-bound, and

perhaps might even be non-secretable and confined to the cytoplasm. Nonetheless, even though

anaerobic respiration is regarded as less energetically efficient than aerobic respiration, it still

yields more energy than when bacterial cells use fermentative processes and, by comparison, will

lead to increased cellular biomass and long-term survival [82]. In terms of metabolic versatility,

any putative capacity of L. ruminis to respire anaerobically on fumarate instead of undergoing

lactic acid fermentation would likely represent a competitive edge over the other non-respiring

intestinal bacteria and a potential fitness benefit for autochthonous growth in the gut.

Fig 6. Schematic representation of the fumarate reductase-catalyzed reaction. Shown is the reaction

catalyzed by fumarate reductase, where the reduction of fumarate to succinate is coupled with the oxidation of

menaquinol to menaquinone. Included are the nine locus tags for the putative fumarate reductase gene found

present in the L. ruminis core genome.

https://doi.org/10.1371/journal.pone.0175541.g006
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Conclusions

In this present study, we used the pan-genomic approach to take an in silico appraisal of what

might be the molecular basis for L. ruminis gut autochthony. Obviously, from the outset, there

seems little doubt that the overall genetics behind the autochthonous growth of L. ruminis cells

is multifaceted and involves many different physiological properties operating both indepen-

dently and synergistically within the influencing context of the intestinal milieu, which itself

includes a myriad of microbe-microbe and microbe-host interactions. Nonetheless, in an effort

to puzzle out these underlying geno-phenotypes, we focused our attention on certain genes and

proteins associated with the cellular surface morphology and fermentative/respiratory metabo-

lism, which can be viewed collectively as ecologically relevant host colonization determinants in

L. ruminis. For this, we have proposed plausible scenarios for how each of these molecular traits

might have a functional role in making L. ruminis better adapted to the host intestine, such that

a sustained colonization takes precedence over an impermanent one, and its “realized” niche is

occupied instead of one that is directly associated with food, and thus transient. In all probabil-

ity, there is a combination of proteinaceous surface structures, along with possible extra energy-

generating pathway alternatives for an anaerobic metabolism, that help provide L. ruminis cells

with a high fitness for the deoxygenated folds of the intestinal inner lining. Such genomic adap-

tations distinguish L. ruminis as a gut-persistent bacterium, but as well, an ecological specialist.

However, even though the genetic content inferred from the pan-genome would indicate that L.

ruminis is a rather resourceful and adaptable bacterium, it remains unclear why any number of

strains has not yet been recovered from anoxic habitats other than the gut. This is suggestive

that any inherent genomic plasticity is not meant for this species to spread out into new and dif-

ferent ecological territories. Rather instead, it might be more intended for the ability of the L.

ruminis genome to quickly respond and adapt when changes occur in the dynamic intestinal

environment and/or amidst the competitive microcosm of gut bacteria. Thus, despite being

restricted to a particular niche locale, L. ruminis has evolved to its present status using a geneti-

cally resilient but flexible genome. Here, one can reasonably argue the point that by having an

open and strong potential for acquiring different adaptive phenotypes, this will help L. ruminis
cells perpetuate their autochthonous colonization of the GI tract.

Supporting information

S1 Table. Predicted gene content of the L. ruminis pan-genome. Compiled from the nine L.

ruminis genomes is a list of locus tags and their functional annotations that define the gene

content of the pan- (4301), core (1234), and accessory (3067) genomes. Locus tags of core

(gray highlight) and strain-specific accessory (green highlight) genes are indicated.

(XLSX)

S2 Table. SignalP-predicted proteins in the L. ruminis pan-genome. Protein sequences pre-

dicted from the loci in the L. ruminis pan-genome were analyzed by the SignalP 4.1 algorithm

(http://www.cbs.dtu.dk/services/SignalP/) using the default settings for Gram-positive bacteria

and a cut-off score of� 0.45. Predicted products of� 45 amino acids were excluded from the

analysis. Locus tags for genes with SignalP hits are listed per L. ruminis genome. Core genes

are highlighted in gray and accessory genes are without highlights. A numerical summary of

core and accessory genes with SignalP hits is provided. (For one-to-one orthologous corre-

spondence between the genomes, refer to the S1 Table.)

(XLSX)

S3 Table. TatP-predicted proteins in the L. ruminis pan-genome. Sequences from the pre-

dicted products of the genes in the L. ruminis pan-genome were analyzed using the TatP 1.0
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program at default settings (http://www.cbs.dtu.dk/services/TatP/). Predicted products

of� 45 amino acids were omitted from the analysis. Locus tags of core (highlighted in gray)

and accessory (no highlights) genes with TatP hits are listed according to each L. ruminis
genome. Total numbers of core and accessory genes with TatP hits are included. (For one-to-

one orthologous correspondence between the genomes, refer to the S1 Table.)

(XLSX)

S4 Table. SecretomeP-predicted proteins in the L. ruminis pan-genome. Predicted products

of the loci in the L. ruminis pan-genome were screened for non-classical secreted proteins by

using the SecretomeP 2.0 program set at default (http://www.cbs.dtu.dk/services/SecretomeP/

). Predictions with the recommended SecP score of� 0.5 identified possibly secretable pro-

teins. Proteins of� 45 amino acids were not part of the analysis. Listed are gene locus tags for

each L. ruminis genome and their corresponding SecP score. The total number of SecP hits per

genome is provided. (For one-to-one orthologous correspondence between the genomes, refer

to the S1 Table.)

(XLSX)

S5 Table. TMHMM-predicted proteins in the L. ruminis pan-genome. Putative gene-prod-

sucts from the L. ruminis pan-genome were examined for the presence of transmembrane heli-

cal regions by using the TMHMM 2.0 algorithm with default settings (http://www.cbs.dtu.dk/

services/TMHMM/). Proteins of� 45 amino acids were not included in the predictive analysis.

Listed per L. ruminis genome are the gene locus tags and their corresponding number of pre-

dicted transmembrane helices (TMHs). The total number of TMHMM hits for each genome is

given. (For one-to-one orthologous correspondence between the genomes, refer to the S1

Table.)

(XLSX)

S6 Table. PRED-LIPO-predicted proteins in the L. ruminis pan-genome. Predicted gene-

products from the L. ruminis pan-genome were analyzed by the PRED-LIPO program (default

settings) (http://biophysics.biol.uoa.gr/PRED-LIPO/) to identify putative lipoproteins. Pro-

teins of� 45 amino acids were not used in the predictive analysis. Locus tags of core and

accessory genes (gray and no highlights, respectively) with PRED-LIPO hits are listed for each

L. ruminis genome. The total number of PRED-LIPO hits as per core and accessory genome is

shown. (For one-to-one orthologous correspondence between the genomes, refer to the S1

Table.)

(XLSX)

S7 Table. CW-PRED-predicted proteins in the L. ruminis pan-genome. For predicting pos-

sible sortase-dependent proteins (SDPs), the L. ruminis pan-genome loci were analyzed by the

CW-PRED program (default settings) (http://bioinformatics.biol.uoa.gr/CW-PRED/), which

detects the presence of an intact C-terminal LPXTG cell wall-anchoring domain. Proteins

of� 45 amino acids were left out of the analysis. Locus tags of genes with CW-PRED hits and

their corresponding annotations are listed for each L. ruminis genome. CW-PRED hits for

core-gene locus tags are highlighted in gray. Amino acid sequence for the predicted C-terminal

LPXTG domain regions (beginning with the LPXTG motif in red font) is included. (For one-

to-one orthologous correspondence between the genomes, refer to the S1 Table.)

(XLSX)

S8 Table. Predicted sortase-dependent proteins in the genome of L. ruminis ATCC 27782.

Listed are the gene locus tags of predicted sortase-dependent proteins (SDPs) in the genome of

the bovine-derived L. ruminis ATCC 27782 strain, as reported by Forde and colleagues (see
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[21]) (�), and as presently available in the NCBI database (��) and used in the present study.

Locus tags for SDP loci that were part of the L. ruminis core genome are highlighted in gray.

Provided is the amino acid sequence for all putative SDPs 21, with the LPXTG-like motifs indi-

cated by red font.

(XLSX)

S9 Table. Putative flagellum-related proteins in the L. ruminis pan-genome. Locus tags of

flagellum-related genes along with their respective annotations are identified manually and

listed for each L. ruminis genome. Locus tags for genes belonging to the core genome are

highlighted in gray. Total numbers of flagellum-related core and accessory genes are included.

(XLSX)

S10 Table. Putative chemotaxis-related proteins in the L. ruminis pan-genome. Locus tags

of chemotaxis-related genes and their corresponding annotations are found by hand and listed

for each L. ruminis genome. Gray highlighting indicates those gene locus tags in the core

genome. The total number of chemotaxis-related core and accessory genes is provided.

(XLSX)
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