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We report on the energy-momentum correlators obtained with recent numerical simulations of the
Abelian Higgs model, essential for the computation of cosmic microwave background and matter
perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our
parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space
and time, and for the first time we are able to simulate strings with a constant physical width in both the
radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation
functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher
in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the
behavior of the correlators across cosmological transitions and discover that the correlation functions
evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new
method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other
methods previously used. The new method is more consistent, easier to implement, and significantly more
accurate.
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I. INTRODUCTION

Cosmic strings [1–4] are relics of the phase transitions
occurring in the earliest stages of the Universe, predicted in
many well-motivated models of high energy particle
physics and cosmology [5–7]. Increasingly accurate
observations of the cosmic microwave background
(CMB) [8–11] and increasingly robust theoretical predic-
tions [12–19] have established that strings do not contribute
more than a few percent to the temperature perturbations,
corresponding to an upper bound on the symmetry-
breaking scale of about 4 × 1015 GeV. The majority of
the temperature perturbations can be accounted for by an
inflationary model with scalar spectral index ns ¼ 0.968�
0.006 and tensor-to-scalar ratio r < 0.12 (95% C.L.) [20].
Since the contribution of defects to CMB temperature

fluctuations is small, accurate measurements of the CMB
polarization channels acquire major importance, especially
B-modes, where strings could still contribute at the same
level as inflation. Recently, the BICEP2 [21] collaboration
released the first measurement of a B-mode signal at
angular scales relevant for early universe physics. A careful
cross-correlation with Planck data showed strong evidence

that its origin was galactic dust: no significant evidence
for tensor modes was found [22]. In any case, the signal
cannot be entirely produced by cosmic defects [23–25].
Nevertheless, these works and others [26–29] highlight the
sensitivity of B-mode measurements to strings and other
topological defect models. Indeed, further progress in
constraining or detecting strings from the CMB will come
from future B-mode data and experiments at small angular
scales.
The continuing improvement in data motivates us to

reduce the remaining theoretical uncertainties in the cosmic
string CMB calculations. In previous works, we calculated
energy-momentum and CMB power spectra contributions
from cosmic string networks using field theory simulations
of the Abelian Higgs (AH) model [28,30,31]. The principal
uncertainties in this approach are due to approximations
used to handle a field theory in an expanding universe,
modeling of the strings across cosmological transitions
between the radiation, matter andΛ eras, and extrapolations
to large times and small angular scales.
The aim of a numerical simulation is to compute the

unequal time correlators (UETCs) of the energy-momentum
tensor of the strings, from which CMB power spectra can be
computed [2,32–35]. The UETC approach has been widely
used in field theory simulations, and in recent years, it has
also been adapted to other cosmic string simulation schemes
such as the unconnected segment model (USM) [36] and the
Nambu-Goto (NG) approximation [37].
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In this paper, we present updated energy-momentum
correlations obtained from the largest field theory simu-
lations performed to date. Thanks to a considerable
increase in computational resources and in their program-
ming management through the LATField2 [38] framework,
significant progress has been possible. These improve-
ments enabled us to tackle the challenges outlined above.
We have been able to increase the size of the simulation box
from 10243 to 40963 lattice sites (“4k” simulations), so that
we cover a patch of the Universe 64 times bigger than in
[31], and to simulate for 4 times longer. Therefore, some of
the scales that could only be accessed by extrapolation in
previous works can now be directly simulated.
The first uncertainty mentioned above comes from the

requirement that we simulate a massive field theory in an
expanding universe. While the cosmic string core width is
set by the mass scale of the field theory and remains
unaltered by the expansion, the field equations are solved
on lattices with comoving coordinates. As the Universe
expands the comoving string width shrinks. At some point
in the evolution the comoving string width becomes less
than the separation of adjacent lattice points, and we can no
longer resolve the string core on the grid.
An effective proposal to avoid that situation has been to

change the equation of motions so that the cosmic strings
have an artificially growing physical core width, so that
they can be resolved on a comoving lattice throughout the
simulation [30,39]. It was shown that the uncertainties
thereby introduced were less than those originating from
the limited volume and time of the simulations. However,
the great increase in both volume and time of the simu-
lations demand a reexamination of the core growth tech-
nique. Our new resources have made it possible to simulate
string networks following the true equations of motion for
both matter and radiation eras, at the cost of some dynamic
range, as the system takes longer to settle into its scaling
evolution. We find that, as argued previously, the
differences in the UETCs with and without core growth
are small, in the range 10-20% near the peak of the
correlators.
The new simulations extend the wave-number range

of previous measurements both at low and high wave
number. We measure correlators at the horizon scale more
accurately, and we are able to measure directly at values of
k a factor of 4 higher than before, which we had previously
reached only by extrapolation. We confirm the power-law
behavior of the scalar correlators at large wave numbers,
although the behavior of the vector and tensor correlators is
less clear. We provide fits to the UETCs in closed form
which can be used for modeling purposes.
We also address the modeling of the cosmological

transitions in our simulations, not only the transition from
radiation to matter but also that to a universe dominated by
a cosmological constant. We perform the first simulations
of Abelian Higgs strings across cosmological transitions,

essential for checking and improving previous modeling.
We find that string networks evolve in a close to adiabatic
way across the radiation-matter transition; their properties
are at all times close to those of a network simulated with a
constant expansion rate equal to the instantaneous rate.
We introduce a new technique for deriving the source

functions for Einstein-Boltzmann integrators, which are a
crucial step in the pipeline for calculating CMB and matter
perturbations, and a source of significant uncertainty in the
past. We call our new method fixed-k UETC interpolation.
We compare it to previous methods [30,40], finding that it
is significantly more accurate.
The paper is structured as follows. In Sec II, we

summarize the AH model and the UETC formalism,
detailing the field theory simulations and scaling. We show
how we merge the data from our simulations and correct for
the effects of the finite string width in Sec III and we
describe in Sec IV the three methods for deriving transition-
era source functions from the correlators, including our new
one, comparing to new numerical simulations of transition-
era correlators. We discuss and conclude in Sec V. Two
appendixes contain a comparison of the new ETCs with
those in Ref. [31] and a table of fitting functions which can
be used to model the UETCs.

II. MODEL AND METHOD OVERVIEW

We simulate local cosmic strings based on the simplest
field theory model that contains them: the Abelian Higgs
model, which has a Uð1Þ gauge symmetry. Following the
notation used in previous works, we define the Lagrangian
density as:

L ¼ −
1

4e2
FμνFμν þ ðDμϕÞ�ðDμϕÞ − λ

4
ðjϕj2 − ϕ2

0Þ2; ð1Þ

where Dμ ¼ ∂μ þ iAμ and Fμν ¼ ∂μAν − ∂νAμ, and where
e and λ are dimensionless coupling constants. In a spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mology with scale factor a and choosing the temporal
gauge (A0 ¼ 0), the equations of motion read

ϕ̈þ 2
_a
a
_ϕ −DjDjϕ ¼ −a2

λ

2
ðjϕj2 − ϕ2

0Þϕ; ð2Þ

_F0j − ∂iFij ¼ −2a2e2Imðϕ�DjϕÞ; ð3Þ

where F0i ¼ _Ai, which are supplemented with the Gauss
law constraint

−∂iF0i ¼ −2a2e2Imðϕ� _ϕÞ: ð4Þ

In these equations, the dot represents derivatives with
respect to the conformal time, and the spatial derivatives
are taken with respect to the comoving coordinates.
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As mentioned in the introduction, in order to be able to
simultaneously resolve the width of the string and the
expansion of the Universe in comoving coordinates, the
equation of motion can be modified so that the physical
width grows, and the comovingwidth does not shrink as fast
as it should [30,39,41]. One can also allow for nonstandard
damping terms to preserve the decay of proper momentum
of a straight string. The modified equations are then

ϕ̈þ rϕ
_a
a
_ϕ −DjDjϕ ¼ −a2sϕ

λ

2
ðjϕj2 − ϕ2

0Þϕ; ð5Þ

_F0j þ rA
_a
a
F0j − ∂iFij ¼ −2a2sAe2Imðϕ�DjϕÞ: ð6Þ

with rϕ, rA, sϕ and sA constants.
This method will certainly violate energy conservation,

and also runs the risk of violating Gauss’s law. However, if
we derive the field equations from a gauge-invariant action
with time-dependent coupling constants, Gauss’s law will
be maintained [30,31]. Writing the time varying coupling
constants as

λ ¼ λ0
a2ð1−sÞ

; e ¼ e0
a1−s

; ð7Þ

where we call s the core growth parameter, leads to the
equations

ϕ̈þ 2
_a
a
_ϕ −DjDjϕ ¼ −a2s

λ0
2
ðjϕj2 − ϕ2

0Þϕ; ð8Þ

_F0j þ 2ð1 − sÞ _a
a
F0j − ∂iFij ¼ −2a2se20Imðϕ�DjϕÞ: ð9Þ

These equations preserve Gauss’s law and reduce to the
true field equations when s ¼ 1. We can write the Gauss
law preserving parameters in Eqs. (5), (6) as rϕ ¼ 2,
rA ¼ 2ð1 − sÞ, sϕ ¼ sA ¼ s. We note that the Abelian
Higgs simulations of Ref. [41] took rϕ ¼ 2, rA ¼ 0 and
sϕ ¼ sA ¼ 0, which violate Gauss’s law.
With the help of the core growth parameter we can write

the comoving string width as:

w ¼ w0

as
: ð10Þ

If s ≤ 1, the strings have growing physical width. However,
the string mass per unit length and tension is preserved, and
therefore the string dynamics are unaffected for configu-
rations where the width can be neglected. The extreme case
is given by s ¼ 0 in which the width of the string is
constant in comoving coordinates. Extensive testing
showed that taking s ¼ 0was an acceptable approximation,
with errors which were subdominant to those introduced by
the finite size and finite duration of the simulations [30].

The evolution of the string network perturbs the back-
ground spacetime; those perturbations evolve and affect the
contents of the Universe, eventually creating CMB anisot-
ropies. In contrast to the inflationary perturbations, which
were seeded primordially and then evolve “passively,”
defects induce perturbations actively during their whole
existence. Those are estimated to be roughly of the order of
the magnitude of Gμ, where G is Newton’s constant and μ
the string tension. Current bounds onGμ constrain its value
to be below 10−6 [10,18,25,37]. The gravitational back-
reaction experienced by the network is not taken into
account, since its magnitude is of order ðGμÞ2.
Energy-momentum correlations are an effective statistical

tool used to describe defect induced perturbations. Indeed,
the unequal time correlators of the energy-momentum tensor
are the only object needed to derive the power spectrum of
CMB anisotropies. UETCs are defined as follows:

Uλκμνðk; τ; τ0Þ ¼ hT λκðk; τÞT �
μνðk; τ0Þi; ð11Þ

where T αβðk; τÞ is the AH energy-momentum tensor.
In principle, considering all possible degrees of freedom

of the energy-momentum tensor (11), there seem to be
1
2
10ð10þ 1Þ ¼ 55 such correlators that would be functions

of five variables (three components of k plus 2 times).
Fortunately, rotational symmetry simplifies the problem
considerably and reduces the UETC group to five inde-
pendent correlators that depend on three variables: k (the
magnitude of k), τ and τ0.
The correlations are calculated between projected com-

ponents of the energy-momentum tensor,

Saðk; tÞ ¼ Pμν
a ðkÞT μνðk; τ0Þ; ð12Þ

where Pμν
a ðkÞ project onto scalar, vector and tensor parts.

In principle, there are two of each, but the two vector and
the two tensor components are related by parity for a
symmetric source like Abelian Higgs strings. Hence, we
may consider that the indices a, b take four values corre-
sponding to the independent components of the energy-
momentum tensor: two scalar, one vector and one tensor. We
will denote the scalar indices 1 and 2 (corresponding to the
longitudinal gauge potentialsϕ andψ), thevector component
with “v” and the tensor component with “t.”
Thus, we can write

Uabðk; τ; τ0Þ ¼
ϕ4
0ffiffiffiffiffiffi
ττ0

p 1

V
Cabðk; τ; τ0Þ; ð13Þ

where ϕ0 is the symmetry breaking scale, V a formal
comoving volume factor, and the functions Cabðk; τ; τ0Þ
defined by this equation are dimensionless. Note that the
scalar, vector and tensor contributions are decoupled for
linearized cosmological perturbations, and therefore cross
correlators between them vanish, except in the scalar
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sector: hence, the five independent correlators. Note also
that the definition of Cvv is different by a factor ðkτÞ2 from
that in Ref. [31].
The UETCs give the power spectra of cosmological

perturbations when convolved with the appropriate Green’s
functions. In practice, they are decomposed into a set of
functions derived from the eigenvectors of the UETCs,
which are used as sources for an Einstein-Boltzmann
integrator. The power spectrum of interest is reconstructed
as the sum of power spectra from each of the source
functions.
A further simplification occurs when the times τ and τ0

are both in epochs during which the scale factor grows with
the same constant power of conformal time. In this case, the
correlation functions do not depend on k, τ and τ0
separately, but only on kτ and kτ0. This behavior is called
scaling, and scaling correlators can be written

Uabðk; τ; τ0Þ ¼
ϕ4
0ffiffiffiffiffiffi
ττ0

p 1

V
C̄abðk

ffiffiffiffiffiffi
ττ0

p
; τ0=τÞ: ð14Þ

Here, the overbar represents the scaling form of the
UETC in a FLRW background. We will sometimes
write z ¼ k

ffiffiffiffiffiffi
ττ0

p
, r ¼ τ0=τ. An alternative pair of scaling

variables is x; x0 ¼ kτ; kτ0. A scaling UETC will have
eigenvectors which depend on k and τ only through the
combination x.
Scaling is an immensely valuable property, as it allows to

extrapolate numerical simulations to the required cosmo-
logical scales. However, perfect scaling is not a feature of
the true UETCs, as the Universe undergoes a transition
from radiation-dominated to matter-dominated expansion
during times of interest, and more recently to accelerated
expansion. Hence the UETCs also depend explicitly on τeq
and τΛ, the times of equal radiation and matter density, and
equal matter and dark energy density. Exploring UETCs
with broken scaling, and improving our previous method of
accounting for cosmological transitions, are an important
part of this paper.

III. UETCs FROM THE SIMULATIONS

In this section, we present the details of the numerical
simulations from which the UETC data were collected and
how the data were merged into a set of ten scaling UETCs,
five each in the matter and radiation eras. These merged
scaling UETCs are the inputs for the next section, in which
the eigenvector decomposition methods are discussed.

A. Simulation details

The data were obtained from two years of production on
the supercomputers Monte Rosa and Piz Daint, the two
largest systems of the Swiss National Supercomputer
Center (CSCS). On both of those systems, we have used

34816 cores/MPI processes, 32768 for computation and
2048 for efficient output operations.
The field equations were evolved on 40963 lattices with

comoving spatial separation of dx ¼ 0.5 and time steps of
dt ¼ 0.1, in units where ϕ0 ¼ 1. The simulation volume
therefore has comoving size L ¼ 2048. The couplings were
λ0 ¼ 2 and e0 ¼ 1, chosen so that the mass of the gauge
and scalar fields, λϕ0=

ffiffiffi
2

p
and

ffiffiffi
2

p
eϕ0, are the same, and

equal to
ffiffiffi
2

p
ϕ0 at the end of the simulation. The inverse

mass of the fields sets the length scale of the string width.
With these couplings, the mass per unit length of the string
in the continuum is μ ¼ 2πϕ2

0.
We performed seven individual runs in pure radiation

and in pure matter-domination eras to determine the scaling
form of the UETCs, for two values of the string core growth
parameter, s ¼ 0 and s ¼ 1 (see Sec. II for the definition
of s). We also performed runs across the radiation-matter
cosmological transitions on 10243 lattices, with s ¼ 0. In
total, we used UETCs from 28 4k and 35 1k production
runs. Each 4k run took approximately 400k core hours.
In the initial field configuration, only the scalar field is

nonzero, and set to be a stationary Gaussian random field
with a power spectrum

PϕðkÞ ¼
A

1þ ðkLϕÞ2
; ð15Þ

with A chosen so that hjϕ2ji ¼ ϕ2
0, and Lϕ ¼ 5ϕ−1

0 .
The UETCs cannot be calculated until cosmic strings are

formed and reach their scaling configuration. These early
phases contain a huge amount of excess energy induced by
the random initial conditions, therefore we smooth the field
distribution by applying a period of diffusive evolution

_ϕ ¼ DjDjϕ −
λ

2
ðjϕj2 − ϕ2

0Þϕ; ð16Þ

F0j ¼ ∂iFij − e2Imðϕ�DjϕÞ; ð17Þ

between the start time of the simulation τstart ¼ 50 and a time
τdiff ¼ 70. The time step was 1=30, in units where ϕ0 ¼ 1.
We follow the same technique as in Ref. [30] to accelerate

the formation of the strings in the s ¼ 1 case, by setting s
negative, so that the cores of the strings grow with the
comoving horizon until a time τcg, staying at most 1=10 of
the horizon size at all times. The cooling and the core growth
optimize the speed of approach to a scaling field configu-
ration. The run is stopped soon after half a light-crossing
time of the simulation volume, to ensure there are no
artefacts from the periodic boundary conditions.
With our current computing power we are able to get

scaling string configurations following the real equations of
motion, i.e., equations with s ¼ 1, even in the matter era
where the string width shrinks as the square of conformal
time in comoving coordinates. However, in general, the
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closer the evolution to the true dynamics, the larger the
initial relaxation period where UETCs cannot be collected,
and the shorter the period during which they exhibit
scaling. Conversely, s ¼ 0 simulations reach the scaling
regime much more quickly: in our current simulation box
s ¼ 0 simulations scale for a period 4 times longer than
s ¼ 1 networks.
We measure the UETC by recording the mean value of

Cabðk; τref ; τÞ for wave vectors binned in the range
2πðn − 1Þ=L < jkj ≤ 2n=L (1 ≤ n < Nb), withNb¼3458,
and 150 logarithmically spaced times between τref and
τend ¼ 1100. The wave number of the nth bin kn is set to the
mean value of jkj in that bin. Table I shows the values of
τref taken.
We also record the equal time correlators (ETCs) at each

time the UETC is evaluated, with which we can monitor the
quality of the scaling. Perfect scaling would mean that the
ETCs collapse to a single line when plotted against x ¼ kτ.
As mentioned above, the network takes some time to relax
to scaling, and in the s ¼ 1 case we see some evidence that
the vector ETCs depart from scaling towards the end of the
simulation, which we believe is a lattice resolution effect.
We, therefore, conservatively take UETC data up to a time
τmax. Table I also shows τmax and derived parameters which
describe the dynamic range of the simulation.
Despite the modest scaling range of the s ¼ 1 simu-

lation, it is enough to characterize the region around the
peak of the UETCs. This region contains the ETC obtained
at the reference time and its surrounding area, where the
maximum correlation within the network is set. Although it
does not supply all the information required for a CMB
calculation, it gives the major contribution to the power
spectra. In contrast, because s ¼ 0 simulations scale earlier
and for a longer period of time, they probe higher time
ratios and larger length scales.

We will see that the s ¼ 0 and s ¼ 1 ETCs are very
similar, when networks with the same string separation are
compared. This similarity motivates a newmerged structure
for the UETCs, incorporating contributions from simula-
tions with maximum fidelity and with maximum dynamic
range: the s ¼ 1 measurements establish the central part of
the UETCs, while the s ¼ 0 are used at large time ratios and
large length scales (low kτ).

B. Scaling

In the merging process, special care must be taken
concerning the role of the simulation time parameter
τsim. Simulations for different values of the core growth
parameter follow different equations of motion (see Eqs. (8)
and (9) which depend explicitly on s). In addition, each
simulation starts from different initial conditions and
applies different amounts of core growth, depending on
the expansion rate and the value of s (see Table I). For these
reasons, one cannot directly compare simulations with
different s at the same simulation time τsim.
Hence, it is better to define the “physical” time based on

the state of the string network itself, and in particular to use
a length scale in the network. Specifically, the comoving
string separation ξ has been identified as a useful quantity
to determine compatible simulation stages. The string
separation is defined in terms of the mean string length
Ls in a horizon volume V as

ξ ¼
ffiffiffiffiffi
V
Ls

s
: ð18Þ

The mean string length is usually derived by directly
measuring the comoving length of each string (see details
in [30,31,42–44]). One way of obtaining the length of
string is by summing the number of plaquettes pierced by
strings. Such plaquettes are identified from the winding of a
gauge-invariant phase around them [42]. We correct the
“Manhattan” length so obtained by a factor π=6 [43]. An
alternative way, and the one we use in this work, is to use
local field theory estimators to get the above ratio. In our
case, we employ the mean Lagrangian density L̄, with

Ls ¼ −L̄V=μ: ð19Þ

We show the measured values of ξ inferred from the mean
Lagrangian density in the matter era in Fig. 1.
As we found in previous works, the asymptotic behavior

of the string separation is very close to linear,

ξ → βðτsim − τoffsetÞ; ð20Þ

where τoffset is the time offset of the ξ curve (see Fig. 1). The
time offset as well as the slope of ξ in the linear regime are
different for each realization due to the random initial

TABLE I. Core growth time τcg, and the value of the core
growth parameter s during the core growth phase of the
simulation. Also given are UETC reference times τref , the
maximum time at which data are taken for the UETC τmax,
the ratio between the two rmax, and the minimum and maximum
values of x ¼ kτref , xmin and xmax, for each of the sets of 4k
simulations in the radiation and matter eras, without (s ¼ 1) and
with (s ¼ 0) the string core growth approximation. Times are
given in units where ϕ0 ¼ 1.

Model s ¼ 1 s ¼ 0

Cosmology Radiation Matter Radiation Matter

τcg 204 366 – –
scg −1 −0.5 – –
τref 450 600 200 200
τmax 600 800 1100 1100
rmax 1.33 1.33 5.5 5.5
xmin 1.38 1.84 0.61 0.61
xmax=103 4.90 6.53 2.18 2.18

ENERGY-MOMENTUM CORRELATIONS FOR ABELIAN … PHYSICAL REVIEW D 93, 085014 (2016)

085014-5



conditions. We define the mean slope β as the average of all
different slopes from different realizations. Numerical
values of the slopes can be found in Table II.
Simulations at same ξ can be considered to be at the

same stage of the evolution. Hence, in order to merge the
UETCs from different runs, they should be converted to
functions of ξ and ξ0 rather than τsim and τ0sim, according to

CðξÞ
ab ðk; ξ; ξ0Þ ¼ CðsimÞ

ab ðk; τsim; τ0simÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τsimτ

0
sim

ξξ0

s
: ð21Þ

Besides allowing comparison of the s ¼ 0 and s ¼ 1
networks, it is found that the variance between simulations

of the ETCs CðξÞ
ab ðk; ξ; ξÞ plotted against kξ is thereby

reduced.

C. UETC merging

The schematic representation of which UETC contrib-
utes to the merged UETC can be found in Fig. 2, displayed
in the variables

zξ ¼ k
ffiffiffiffiffiffi
ξξ0

p
and rξ ¼ ξ0=ξ: ð22Þ

Figures 3 and 4 show how each simulation contributes to
the merged UETC: the s ¼ 1 simulations provide the
central part of the correlation and the s ¼ 0 simulations
extend it to higher time-ratios. The numerical values of the
limits of the different regions in the merged UETC can be
found in Table III.
The resulting UETC is shown in the upper pane of Fig. 5,

viewed along the zξ axis. It can be seen that the s ¼ 0 and
s ¼ 1 UETCs differ by less than 20% at the junction at rlimξ ,

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

FIG. 1. Average string separation ξ from s ¼ 1 (top line) and
s ¼ 0 (bottom line) simulations in the matter era, with ξ obtained
from the Lagrangian length measure (19). Shaded regions
correspond to the 1σ and 2σ deviations from the mean value
obtained by averaging over all seven realizations. We also
included the linear fit of the function (dashed black line) where
the time intervals fitted have been τsim ∈ ½600; 800� (s ¼ 1) and
τsim ∈ ½500; 1100� (s ¼ 0).

TABLE II. Values of the slope of the average string separation
[see Eq. (20)]. In the s ¼ 1 case, the time intervals used to fit
the function are τsim ∈ ½600 800� for matter and τsim ∈ ½450 600�
for radiation. In the s ¼ 0 case, the time intervals are
τsim ∈ ½500 1100�, both for matter and radiation. The quantity
βW is obtained by measuring the string length using the number
of plaquettes pierced by strings (see text), whereas βL is obtained
by using the Lagrangian density (19).

s ¼ 1 s ¼ 0

Radiation Matter Radiation Matter

βW 0.265� 0.005 0.277� 0.009 0.244� 0.005 0.247� 0.008
βL 0.254� 0.005 0.261� 0.008 0.234� 0.006 0.235� 0.008

1/4.8 1/3 0.5 1/1.26 1 1.26 2 3 4.8

100

101

102

103

FIG. 2. Top view of the scheme of the merged UETC. ETCs
and its surroundings are covered by s ¼ 1 simulations, while
s ¼ 0 are used to extrapolate data both to large time ratios and
very large scales. The variables are defined in Eq. (22).

FIG. 3. The C11 correlator in the matter era, simulated with
s ¼ 1, in the ðzξ; rξÞ region indicated in Fig. 2 and Table III.
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demonstrating that the s ¼ 0 simulations capture the near-
equal time energy-momentum correlations rather well.
The equal-time correlations are also close. A comparison

of the ETCs and the relative factor between them,

γabðzξÞ ¼
Cðs¼1;ξÞ
ab ðzξ; 1Þ

Cðs¼0;ξÞ
ab ðzξ; 1Þ

; ð23Þ

can be found in Fig. 6. One can see that the s ¼ 0 ETC is
approximately 20% higher near the peak, although it dips
below the s ¼ 1 ETC at higher kξ where the correlators
are small.
The normalization factor γabðzξÞ is applied to the UETC

of the s ¼ 0 case, we call this procedure ETC normaliza-
tion. Therefore, the final representation of the merged
UETCs for zξ > 1.29expðjlnðrξÞjÞ reads as:

Cðtot;ξÞ
ab ðzξ; rξÞ
¼ Cðs¼1;ξÞ

ab ðzξ; rξÞθðlnðrlimξ Þ − jlnðrξÞjÞ
þ γabðzξÞCðs¼0;ξÞ

ab ðzξ; rξÞθðjlnðrξÞj − lnðrlimξ ÞÞ: ð24Þ

FIG. 4. The C11 correlator in the matter era, simulated with
s ¼ 0, in the ðzξ; rξÞ region indicated in Fig. 2 and Table III.

TABLE III. Mean string separations ξ at τref and τmax, the ratio
between the two, and the minimum and maximum values of
xξ ¼ kξðτrefÞ, xmin

ξ and xmax
ξ , for simulations in the radiation and

matter eras, without (s ¼ 1) and with (s ¼ 0) the string core
growth approximation. Lengths are given in units where ϕ0 ¼ 1.

Model s ¼ 1 s ¼ 0

Cosmology Radiation Matter Radiation Matter

ξðτrefÞ 146.7 198.0 55.8 55.9

ξðτmaxÞ 183.3 248.4 269.5 270.1

rmax
ξ 1.26 1.26 4.83 4.83

xmin
ξ 0.45 0.60 0.17 0.17

xmax
ξ =103 1.60 2.16 0.61 0.61

FIG. 5. Merged scalar CðξÞ
11 matter correlator. The upper pane

shows the C11 before ETC normalization, whereas the lower pane
represents the final merged and normalized case.
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FIG. 6. Upper pane: ETCs corresponding to the CðξÞ
11 for s ¼ 0

(green line) and s ¼ 1 (black line), in the matter era. The lower
pane represents the correction factor γ11ðkξÞ between them.
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Here the values of zξ are defined from the s ¼ 0 simu-
lations, with the values of the s ¼ 1 UETCs obtained by
interpolation. The normalized and merged C11 is plotted in
the lower pane of Fig. 5.
It is remarkable that the normalization of the ETC

produces a UETC which is close to continuous at the
merging boundary rlimξ . This means that the width of the
UETCs, which depends on the speed with which the strings
move, is very similar.
Finally, we use s ¼ 0 UETC data in the range

0.17 < zξexpð−jlnðrξÞjÞ < 1.29, normalized by the aver-
age of γabðzξÞ in the first six bins, weighted by the number
of k values contributing to each bin, or

Cðtot;ξÞ
ab ðzξ; rξÞ ¼ γ̄abC

ðs¼0;ξÞ
ab ðzξ; rξÞ: ð25Þ

The values of γ̄ab are given in Table IV.

D. UETC fitting and small-scale correction

We extend the small scale correction performed in [31]
(see Sec. IIID). There it was argued that equal-time
correlators decay on small scales (deep inside the horizon,
kτ ≫ 1, but above the scales at which the string width
becomes relevant) approximately as 1=kτ (1=kξ in terms of
the string separation scale).
In Fig. 7, we show power-law fits of kξCðξÞ over the

range kξ ∈ ½15; 90� (s ¼ 0) and kξ ∈ ½15; 70� (s ¼ 1),
denoted by vertical lines, giving the numerical values of
the power law in Table V. We have been able to confirm that
the power law is a reasonable fit to our current ETCs, for
both s ¼ 0 and s ¼ 1 simulations, although the power law
is less clear for the vector and tensor cases.
The power-law behavior applies between the string

separation scale ξ and the string width w. In our simu-
lations, the ratio ξ=w reaches a maximum of approximately
300. In the true Universe, the power-law behavior would
hold for much longer as the string width at late times is over
50 orders of magnitude smaller than the string separation.
Thus using the extrapolation to very high kξ could be used
to improve our estimates of the scaling functions at high
values of kτ.
We use the information of the decay trend to correct the

behavior of the UETCs at high values of the binned wave
numbers kn, covering scales between the string width and
the lattice spacing. We conservatively do not extrapolate the

UETCs beyond the wave vectors contained in the simu-
lations. The UETCs are in any case very small at high kτ.
To do so, we follow the procedure presented in [31] and

define the attenuation level:

Rðk; ξÞ ¼ QðkξÞp
CðξÞðkξ; 1Þ ð26Þ

where Q and p represent constants of the power-law fit.
This is a measure of how far the equal time correlators

are from their corresponding power-law form. As men-
tioned above, the power-law form is not clear for the tensor
and vector ETCs in either s ¼ 0 or s ¼ 1 simulations, and it

TABLE IV. Normalization factor γ̄ab for low zξ s ¼ 0 data,
obtained from weighted average of the first six bins of γabðzξÞ.

C11 C12 C22 Cvv Ctt

Matter 0.76 0.42 0.77 0.94 0.91
Radiation 0.71 0.60 0.73 1.23 0.89
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FIG. 7. Power law fit for all five correlators for s ¼ 0 at the end
of the simulation τsim ≈ 1100 (upper pane) and s ¼ 1 at the end of
the scaling regime τsim ≈ 800 (lower pane). Both cases corre-
spond to the matter era. Fitting ranges lie between the vertical
lines: kξ ∈ ½15; 90� for s ¼ 0 and kξ ∈ ½15; 70� for s ¼ 1. In both
pictures, the color election is the same, the uppermost line is the
ETC of C11, the middle pair of lines correspond to C22 (black
line) and jC12j (grey line) and finally the lower pair of lines are
Cvv (grey line) and Ctt (black line).
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is conceivable that there are contributions from the massive
radiation which prevent it from ever appearing. Still larger
simulations are required to establish the asymptotic form of
the vector and tensor ETCs at high kτ. The power laws are
at least clear for the scalar correlators.
As the UETCs are quadratic functions relating two

separate times, we apply the correction in the following
manner:

CðξÞ
c ðk

ffiffiffiffiffiffi
ξξ0

p
; ξ0=ξÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðk; ξÞRðk; ξ0Þ

p
CðξÞðk

ffiffiffiffiffiffi
ξξ0

p
; ξ0=ξÞ;

ð27Þ

whenever kξ > 30, for every rξ (see the upper dashed line
in Fig. 2).
We show the set of final UETCs in the matter era in

Fig 8. Note that there is no extrapolation in rξ: the UETCs
are set to zero for jlnðrξÞj > lnðrmax

ξ Þ.
Finally, we transform back from ξ to a scaling time

variable τ, by noting that ξ and τ are proportional at large
times. Hence, we use Eq. (20) to write τ ¼ ξ=β. Our
estimates of the scaling UETCs are, therefore,

C̄abðk
ffiffiffiffiffiffi
ττ0

p
; τ=τ0Þ ¼ β−1CðξÞ

ab ðk
ffiffiffiffiffiffi
ξξ0

p
=β; ξ=ξ0Þ; ð28Þ

where β is the mean slope obtained from the s ¼ 1
simulations, as given in the βL row of Table II. In
Appendix B, we provide an approximate fit to the global
shape of all UETCs.

IV. EIGENVECTOR DECOMPOSITION AT
COSMOLOGICAL TRANSITIONS

All the information needed to obtain the power spectra of
CMB and matter perturbations is encoded in the UETCs
[32–34]. In general, a UETC is a function of three variables

Cðk; τ; τ0Þ; ð29Þ

and the correlator is nonvanishing in the region

τi ≤ ðτ0; τÞ ≤ τ0; ð30Þ

where τ0 is the current (conformal) time, and τi is the
time at which the defect-forming phase transition
takes place.
The UETCs, which are real and symmetric, can be

decomposed into their eigenfunctions cnðk; τÞ defined
through

Z
τ0

τi

dτ0Cabðk; τ; τ0Þcnbðk; τ0Þ ¼ λnðkÞcnaðk; τÞ: ð31Þ

For vector and tensor modes, this procedure is straightfor-
ward to implement. For the scalar case, however, the
correlation between the two potentials is nonzero and
needs to be taken into account. We do this by combining
the C11, C12 and C22 into a double-sized matrix as

�
C11 C12

CT
12 C22

�
; ð32Þ

and the first half of the resulting eigenvectors correspond to
the ϕ perturbations, and the second half to the ψ perturba-
tions (see e.g. [30] for details).
Note that the eigenvalues λn, which are real and

positive, are functions of the wave vector k. As the domain
is finite, there are a countable infinity of eigenvalues
for each wave vector. The UETC is recovered through
the sum

Cabðk; τ; τ0Þ ¼
X
n

λncnaðk; τÞcn�b ðk; τ0Þ: ð33Þ

Formally, the power spectra and cross-correlations of a
perturbation in a cosmological variable Xa can be written

TABLE V. Values of the parameters p andQ as defined in Eq. (26) for each correlator in matter and radiation, and
for s ¼ 0 and s ¼ 1 at τ ¼ τend. The top line gives the value of p and the second of log10 Q. The fitting range for the
values are the same as in Fig. 7, except for the s ¼ 1 radiation case, where the range is kξ ∈ ½10; 60�.

s ¼ 1 s ¼ 0

Radiation Matter Radiation Matter

C11
−0.22� 0.01 −0.14� 0.01 −0.14� 0.01 −0.10� 0.01
2.78� 0.01 2.60� 0.02 2.60� 0.02 2.47� 0.01

C12
−0.60� 0.02 −0.48� 0.03 −0.51� 0.03 −0.43� 0.03
2.89� 0.03 2.56� 0.06 2.66� 0.06 2.37� 0.06

C22
−0.37� 0.02 −0.29� 0.03 −0.40� 0.03 −0.34� 0.03
2.63� 0.03 2.35� 0.07 2.51� 0.07 2.26� 0.07

Cvv
−0.134� 0.005 −0.11� 0.01 −0.059� 0.006 −0.059� 0.003
1.662� 0.008 1.49� 0.03 1.35� 0.01 1.23� 0.02

Ctt
0.076� 0.004 0.009� 0.003 0.045� 0.003 0.021� 0.003
1.153� 0.007 1.25� 0.02 1.183� 0.008 1.21� 0.01
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hXaðk; τÞXb
�ðk; τÞi ¼ ϕ4

0

V

X
n

λnInaðk; τÞIn�b ðk; τÞ; ð34Þ

where the contribution of each linear term, Inaðk; τÞ, is

Inaðk; τÞ ¼
Z

τ

τi

dτ0GX
abðk; τ; τ0Þ

cnbðk; τ0Þffiffiffiffi
τ0

p ; ð35Þ

and GX is the Green’s function for the quantity X. The
integration is performed numerically, using a modified
version of one of the standard Einstein-Boltzmann (EB)

integrators CMBEASY [45], CLASS [46,47], or CAMB
[48]. Hence, if UETCs are decomposed into their eigen-
functions, they can be used as sources for an EB solver, and
the power spectra reconstructed by taking the sum of the
power spectra obtained for each eigenfunction, weighted by
the eigenvalue. In practice, the square root of the eigenvalue
(which should be positive) and the eigenfunction are
combined together into an object we call the source
function.
The EB time integration range is generally much larger

than the range of any conceivable defect simulation.
However, the scaling property of the UETCs allows us

FIG. 8. Full set of merged scaling UETCs the matter era, calculated from the average of 7 s ¼ 0 and 7 s ¼ 1 runs.
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to reconstruct the eigenvectors in an economical way.
Scaling means that

Cabðk=σ; στ; στ0Þ ¼ Cabðk; τ; τ0Þ; ð36Þ

and therefore scaling UETCs can be written as a function of
two variables, which when diagonalising are most conven-
iently chosen to be x ¼ kτ, x0 ¼ kτ0,

Cabðk; τ; τ0Þ ¼ C̄abðx; x0Þ: ð37Þ

As before, the overbar represents the scaling form of the
UETC in a FLRW background.
Strictly speaking, scaling is broken by τeq and τΛ, but

given that UETCs decay quickly for ðx; x0Þ ≫ xp, where the
peak of the UETC is xp ¼ Oð10Þ, they will closely
approximate radiation era scaling UETCs for k ≫ xpτ−1eq ,
matter era scaling UETCs for xpτ−1Λ ≫ k ≫ xpτ−1eq , and
Λ-era UETCs for xpτ−1Λ ≫ k. The eigenfunctions of the
scaling UETCs will approximate the true eigenfunctions
under the same conditions. Scaling eigenfunctions are
functions of kτ, and so we infer that the eigenfunctions
of the true UETCs will be well approximated by radiation
era scaling eigenfunctions for τ ≪ τeq, by matter era scaling
eigenfunctions for τeq ≪ τ ≪ τΛ, and Λ-era scaling eigen-
functions for τΛ ≪ τ.
These observations underlie our discussion of methods

to construct the true eigenfunctions from the scaling
UETCs, which are derived from numerical simulations
as discussed above. We will discuss two existing methods,
based on interpolating between sets of eigenfunctions in
time, and introduce a third, which interpolates between
UETCs in k space. The new method is superior: it
reproduces better the actual (nonscaling) UETC during
the radiation-matter transition, which we have measured for
the first time, and also maintains the orthogonality of the
approximate eigenfunctions.

A. Simple eigenvector interpolation

In the simple eigenvector interpolation method
[30,31,34], scaling UETCs are extracted from radiation
and matter cosmologies separately. Each correlator is
diagonalized to obtain two sets of eigenfunction.
The diagonalization proceeds by sampling the numeri-

cally measured UETCs C̄abðx; x0Þ at a number of values of
x in the range available from the numerical simulations. For
the results from our 4k simulations we took Ni ¼ 2048
linearly spaced values in the interval 0.6 ≤ ðx; x0Þ ≤ 2300.
The two sets of eigenvectors, one from the radiation era

and one from the matter era, are ordered by the magnitude
of their eigenvalues, so that the first ones correspond to the
most important contributions. We assume that the eigen-
vectors ordered by eigenvalue size form matching pairs,
and choose the relative sign by requiring that the scalar

product of the two eigenvectors is positive. Through this
pairing we then define the source function for the EB
integrator as

ffiffiffiffiffi
λn

p
cnðk; τÞ ¼ eðτÞ

ffiffiffiffiffi
λRn

q
cRn ðxÞ þ ð1 − eðτÞÞ

ffiffiffiffiffiffi
λMn

q
cMn ðxÞ:

ð38Þ

The eigenvector interpolation function eðτÞ is taken to be
[30,31],

eðτÞ ¼ 1

1þ χ½aðτÞ� ; ð39Þ

where χ½a� ¼ aΩm=Ωr is the ratio between the density
fractions of radiation and matter at the given value of the
scale factor.
For a given k, the source function is defined only at a set

of times which are in general not those used by the EB
integrator. The values of

ffiffiffiffiffi
λn

p
cnðk; τÞ at an arbitrary time τ

are found by spline interpolation, with all eigenfunctions
set to zero at τ ¼ 0 and for x > 2000.
The transition from matter domination to Λ domination

can be treated equivalently, in a manner which we discuss
later.
Recently some inconsistencies of this approach have

been highlighted [40]. First, the signs of a set of eigen-
vectors are undetermined, and so a rule must be applied to
decide on the relative sign when interpolating between a
radiation-era eigenvector and a matter-era one.
As described above, the nth radiation and the nth matter

eigenvectors are matched, and their relative sign chosen so
that their scalar product is positive. Abrupt jumps in the
shape of the functions are reduced, although the qualitative
similarity between the two matched eigenvectors does not
hold in all cases.
However, if one goes beyond the nth to nth eigenvector

sign matching and explores the whole eigenvector scalar
product space, usually there are cases where the nth
eigenvector in radiation has the biggest scalar product
(≈1) with the mth eigenvector in matter (n ≠ m). Even
worse, for the higher eigenvectors there is often no clear
partner and the matching scheme breaks down.
Even if eigenvectors can be paired off successfully, the

set of interpolated source functions are not in general
orthonormal, and therefore not eigenvectors. Finally, the
numerically determined eigenvalues can be negative, which
means that an arbitrary procedure must be developed to
deal with the square root of the eigenvalues in the definition
of the source function.

B. Multistage eigenvector interpolation

A second method of generating a set of source functions
[40] (see also [33]), which we call multi-stage eigenvector
interpolation, improves on simple eigenvector interpolation
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by generating a set of linear combinations of the pure
radiation and pure matter UETCs, whose eigenvectors
can be more easily matched. We write the “transition”
UETCs as

Ci
RMðkτ; kτ0Þ ¼ fiC̄Rðkτ; kτ0Þ þ ð1 − fiÞC̄Mðkτ; kτ0Þ;

ð40Þ

with 0 ≤ i ≤ NU, f0 ¼ 1, fiþ1 < fi, and fNU
¼ 0. For

every transition UETC Ci
RM we will have a set of

orthonormal eigenvectors. We can have as many transition
UETCs as we want: in practice we choose NU so that there
is no arbitrariness in the eigenvector matching left: the
scalar products between the ith and the (iþ 1)th sets of
eigenvectors are close to one or close to zero. Each set of
eigenvectors cni ðkτÞ can then be uniquely mapped to its
neighbors i − 1 and iþ 1, with i ¼ 0 being the pure
radiation eigenvectors and i ¼ NU the pure matter
eigenvectors.
We then divide up the radiation-matter transition era

into NU þ 1 intervals with a set of NU times τi, and
define a monotonically decreasing interpolating function
fðτÞ, which will define the linear combination in (40)
according to

fi ¼ fðτiÞ: ð41Þ

We discuss the interpolating function in Sec. IV D.
The transition basis functions cnðk; τÞ are then defined

from the set of eigenvectors cni ðkτÞ with the help of a set of
indicator functions JiðτÞ

J0ðτÞ ¼
�
1 0 ≤ τ ≤ τ1

0 otherwise
;

JiðτÞ ¼
�
1 τi ≤ τ ≤ τiþ1

0 otherwise
;

JNU
ðτÞ ¼

�
1 τNU

≤ τ ≤ ∞
0 otherwise

: ð42Þ

The source functions are then

ffiffiffiffiffi
λn

p
cnðk; τÞ ¼

XNU

i¼0

JiðτÞ
ffiffiffiffiffiffiffi
λn;i

p
cni ðxÞ; ð43Þ

We see that the simple eigenvector interpolation is related
to multi-stage interpolation with NU ¼ 1, and would be
identical with a step function eðτÞ.
This process can also be generalized in the obvious way

to take into account the transition from matter domination
to Λ domination.
Before discussing the choice of the function fðτÞ, we

study how the eigenvectors evolve with f, the parameter
determining the linear combination of the UETCs

according to Eq. (40). In particular, we can check that a
radiation eigenvector evolves into a unique matter eigen-
vector. We can also plot the value of the corresponding
eigenvalue. As each eigenvector is uniquely associated to
its eigenvalue, and as the eigenvalues evolve also in a
continuous way with f, the order of matching eigenvectors
can only change if the associated eigenvalues cross along
their evolution. However, the eigenvalues of a Hermitian
matrix which is a continuous function of a parameter f do
not in general cross, unless a symmetry appears at a
particular value of f. Hence we can expect that the
eigenvectors can be uniquely ordered and matched by their
eigenvalues.
In order to illustrate this point, we show explicitly an

example in Fig. 9, where we consider the 34th and 35th
eigenvalues of the tensor correlator. Judging only by the
scalar product method of the corresponding eigenvectors,
the eigenvector corresponding to the larger eigenvalue on
the left (34th) has the largest dot-product with the eigen-
vector of the lowest eigenvalues on the right (35th).
Following the eigenvalue evolution, they appear to cross.
If we split this time region into three intervals, and perform
a UETC interpolation, we find exactly the same situation
(thin grey lines). However, if we split the time region into
more intervals (in our example, 18) to perform the UETC
interpolation, the crossing of the eigenvalues is avoided.
This is apparent in the eigenvalue evolution: the lines repel
(thick black lines).
We conclude that we can select an eigenvector cni

unambiguously in the sum (43), and that corresponding
eigenvectors can be found by ordering them by eigenvalue

0.1695 0.17 0.1705 0.171
10.965

10.967

10.969

FIG. 9. Evolution of the 34th and 35th eigenvalues of the tensor
correlator, as a function of the interpolation parameter f
[Eq. (40)]. The thin grey lines show eigenvalue crossings, which
happen when the time region is divided into few intervals (in this
case, three intervals). The thick black line, on the other hand,
represents the situation when the time region is divided into 18
intervals. It is apparent that the eigenvalues avoid crossing each
other, as they should.
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λn;i, and that there is no ambiguity about the construction of
the source function

ffiffiffiffiffi
λn

p
cnaðk; τÞ. However, the source

functions are still not orthogonal, a property which is
possessed by the eigenfunctions of the true UETC, and
numerical eigenvalues can still be negative. We will see
how the third method addresses these two problems in the
next section.

C. Fixed-k UETC interpolation

Going back to the true (nonscaling) UETCs Cabðk; τ; τ0Þ
we see that it is natural to think of them as symmetric
functions of τ and τ0 for a given k. They contain the full
information about the cosmic transitions, and can be
discretized and then diagonalized as discussed above.
This approach also fits very naturally into the scheme used
by Einstein-Boltzmann codes, which solve the perturbation
equations with an outer loop over k and an inner time
integration for fixed values of k.
In fixed-k UETC interpolation, we construct approxi-

mations to Cabðk; τ; τ0Þ from the scaling matter and
radiation sources, at each value of k. The relative mixture
of matter and radiation UETCs is determined by τ=τeq and
τ0=τeq. First, we display how a real UETC changes with k in
Fig. 10. The figure shows C11 obtained from our seven
transition era simulations, plotted against ðτ=τeq; τ0=τeqÞ,
for the values of kτeq ≃ 600, 10 and 1.
To obtain this graph, we simulated string networks at

intermediate stages of the radiation-matter transition, where
the scale factor evolves as

aðτÞ ¼ aeq

��
ð

ffiffiffi
2

p
− 1Þ

�
τ

τeq

�
þ 1

�
2

− 1

�
: ð44Þ

These 1kð10243Þ numerical simulations had the same
Lagrangian parameters as the 4k simulations, with lattice

spacing dx ¼ 0.5, core growth parameter s ¼ 0, and the
same τstart and τdiff . There is limited range between the time
when correlator data-taking starts at τref ¼ 150 and the end
of the simulation τend ¼ 300, so each simulation spans only
a part of the transition. UETC and ETCs are written at
Nτ ¼ 50 logarithmically spaced intervals between
these times.
We performed five independent simulations for seven

values of τeqðNτeq ¼ 7Þ, so that the simulations covered
most of the transition epoch. Table VI shows the values of
τeq and the time periods that we have simulated, five of
which are used in Fig. 12. We also give the expansion rate
parameter

αðτÞ ¼ d ln a
d ln τ

: ð45Þ

In Fig. 10, data are taken from the unique UETC which
contains a value of k whose product with each of the seven
values of τeq is nearest to the chosen values 600, 10 and 1.
For each of these three values of kτeq, we therefore have a
Nτeq × Nτ array. We plot this array with τ0 ¼ τref , and also
its transpose.
The general behavior as a symmetric function peaked

near ðτ=τeq; τ0=τeqÞ ∼ ð10=kτeq; 10=kτeqÞ is clear. It is also
clear that the height of this peak makes a smooth transition
from higher values at kτeq ≫ 1, where the UETC resembles
the UETC in a radiation-dominated universe, to lower
values at kτeq ≪ 1, where the UETC resembles the UETC
in a matter-dominated universe.
A proposal for the UETCs which models this behavior

across the radiation-matter transition is

Cabðk; τ; τ0Þ ¼ f

� ffiffiffiffiffiffi
ττ0

p

τeq

�
C̄M
abðkτ; kτ0Þ

þ
�
1 − f

� ffiffiffiffiffiffi
ττ0

p

τeq

��
C̄R
abðkτ; kτ0Þ: ð46Þ

This is manifestly symmetric in τ, τ0. It approximates the
UETC in the entire region ττ0 ∼ τ2eq by the linear

FIG. 10. The UETC C11 plotted for values of kτeq nearest to
600, 10 and 1, obtained from the radiation-matter transition
simulations listed in Table VI.

TABLE VI. Selected parameters for simulations across the
radiation-matter transition. The parameters are τeq in units of ϕ−1

0 ,
the ratio of the reference time τref for UETC data-taking and the
simulation end time τend to τeq, and the expansion rate parameters
α ¼ d ln a=d ln τ at τref and τend. In the simulations with constant
α (see Sec. IV D), we take the value of α at τref .

τeq 600 300 150 80 40 10 3
τref=τeq 0.25 0.5 1.0 1.875 3.75 15 50
τend=τeq 0.5 1.0 2.0 3.75 7.5 50 100
αðτrefÞ 1.05 1.09 1.17 1.28 1.44 1.76 1.91
αðτendÞ 1.09 1.17 1.29 1.44 1.60 1.86 1.95
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combination of pure radiation and pure matter era scaling
correlators at extreme values of τ=τeq. At sufficiently
unequal times bracketing τeq, the true UETC may depart
significantly from the model, but this should not matter in
practice as the UETC is very small there for any value of k.
We will see in Sect. IV F that of the UETCs reconstructed
from the source functions, the fixed-k UETC interpolation
method gives the most accurate results.
We note that the source functions for the EB integrators

at a given k are now just the eigenvectors of these model
UETCs, multiplied by the square root of the associated
eigenvalues, and so they are indeed orthogonal, unlike in
the previous two methods. In Fig. 11, we show the first
three source functions extracted by this method as a
function of τ=τeq, for kτeq ¼ 1000, 1 and 10−3. The
corresponding UETCs are therefore largest in the radiation,
transition, and matter eras respectively. It can be seen that
the source functions are indeed peaked in different ranges
of τ, at around τ ∼ 10=k, and that the peak amplitude
decreases as k gets smaller, consistent with the matter-era
UETCs having a smaller amplitude that the radiation
era ones.

D. Interpolating functions f ðτÞ and fΛðτÞ
We adopt the recipe given in [40] to define the function

such that it should reproduce the equal-time correlators
Eabðk; τÞ ¼ Cabðk; τ; τÞ. First we define

fabðk; τÞ ¼
ERM
ab ðk; τÞ − ĒM

abðkτÞ
ĒR
abðkτÞ − ĒM

abðkτÞ
∀k; ð47Þ

where ĒRðkτÞ and ĒMðkτÞ are the scaling ETCs in the
radiation and matter eras respectively, and ERMðk; τÞ is the
true ETC during the transition.
We will see that the functions fabðk; τÞ extracted from

our simulations are consistent with being independent of k
and thus the above definition will reproduce Eq. (40) when
evaluated at equal times. We will also see that it is a good
approximation to take the same function fðτÞ for each of
the five ETCs.
We extracted ETCs from 1k simulations with τeq ¼ 3,

10, 40, 150 and 300, and used Eq. (47) to compute the
function fðτÞ. Figure 12 shows the results obtained for
correlators E11 and Evv. The five grey shaded regions
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FIG. 11. First (black solid line), second (green dotted line) and third (blue dash-dotted line) source functions for kτeq ¼ 1000, 1 and
0.001 from left to right. The two left figures show scalar ϕ (upper pane) and ψ (lower pane) components, whereas the top-right figure is
for vector and the bottom-right one for tensors.
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represent the raw transition functions (47) obtained during
the five transition periods simulated. The two grey levels
indicate 1σ and 2σ deviations from the mean value
calculated averaging over a set of wave vectors much less

than the inverse string width: 0.12 < jkj < 2. We also
include in the pictures the best-fit line (solid red line)
obtained fitting data using the following functional form:

fðτÞ ¼
�
1þ ζ

τ

τeq

�
η

: ð48Þ

The narrowness of the shaded regions confirms the initial
assumption of the scale independence of the function.
Table VII shows the mean values and standard deviations

for the parameters of Eq. (48); it is clear that the transition
applies in a very similar form for all correlators, implying
that they evolve in a similar way across the transition. In
order to simplify further calculations, we consider the
following function as the radiation-matter transition
UETC interpolation function that applies equally to all
correlators of the Abelian-Higgs cosmic string model:

fðτÞ ¼
�
1þ 0.24

τ

τeq

�
−0.99

; ð49Þ

We note that the function (49) is almost the square root of
the interpolation function for large-N self-ordering scalar
fields obtained in [40]

fNðτÞ ¼
�
1þ 1

4

τ

τeq

�
−2
: ð50Þ

The conjecture [40] that the interpolation function is
universal is therefore not supported by our findings.
We also compared the transition-era ETCs at time τn with

scaling ETCs evaluated with a constant expansion rate
parameter αðτnÞ. We performed five simulations with
constant α chosen to coincide such that the expansion rate
fell within the range of expansion rates explored by our
simulations across the radiation-matter transition (values
can be found in Table VI). Defining

fαabðk; τÞ ¼
Ēα
abðkτÞ − ĒM

abðkτÞ
ĒR
abðkτÞ − ĒM

abðkτÞ
; ð51Þ

we can plot the average values of fαab in Fig. 12, where the
five points (black dot points with corresponding 1σ bars
obtained from k-averaging) come from the constant expan-
sion rate simulations.
Interestingly, the best-fit function lies almost on top of

the constant expansion rate points fα. We therefore con-
clude that the string network reacts quickly to changes in
the expansion rate, and we can treat the ETCs as being
adiabatic: in other words, the properties of the string
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FIG. 12. UETC interpolation functions derived from simula-
tions performed during the radiation-matter transition (thick grey
line). The five patches correspond to simulations with τeq ¼ 3,
10, 40, 150 and 300. The shaded regions represent the 1σ and 2σ
deviations from the mean value of the function obtained from
Eq. (47) calculated from the averaging over k. In the upper pane,
the correlator used is E11, while in the lower pane is Evv. The red
line, in both cases, corresponds to the function expressed in
Eq. (49). The black points (with error bars) correspond to
constant α simulations, which would mimic the adiabatic
cosmology transition.

TABLE VII. Mean values together with the standard deviations for the parameters ζ and η of Eq. (48) needed to
reproduce the radiation-matter transition.

Parameters E11 E12 E22 Evv Ett Mean and σ

ζ 0.232� 0.006 0.244� 0.012 0.246� 0.010 0.242� 0.006 0.203� 0.010 0.235� 0.004
η −1.01� 0.02 −1.01� 0.04 −1.03� 0.03 −0.96� 0.01 −1.10� 0.05 −0.984� 0.008
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network at any given time during the radiation-matter
transition corresponds well to the properties of a scaling
network at the same instantaneous expansion rate. In
principle, we expect the same behavior for other types
of defects, therefore, a good approximation could be found
by performing a series of smaller/shorter simulations at
intermediate constant expansion rates.

E. Matter-Λ interpolation

We also applied the same procedure to incorporate the
effects of the accelerated expansion of our Universe,
extending our analysis to the matter-Λ transition. In a
Λ-dominated universe, one expects the string velocity to

decay and the network effectively to freeze with a length
scale ξfr.
We computed in [49] the metric perturbations induced by

a straight string moving with a velocity v, and from the
expressions in that article we can see that for v → 0 the
scalar potential ψ as well as the vector perturbations vanish,
while the scalar potential ϕ and the tensor perturbations
remain finite. Based on this we expect that the tensor and
the E11 UETCs do not vanish, while E12, E22 and Evv go
to zero.
Therefore, the counterpart of Eq. (47) is

fabðk; τÞ ¼
EMΛ
ab ðk; τÞ − ĒΛ

abðkτfrÞ
ĒM
abðkτÞ − ĒΛ

abðkτfrÞ
; ð52Þ

where τfr is a time derived from the length scale ξfr of a
frozen string network in de Sitter space, and
ĒΛ
12 ¼ ĒΛ

22 ¼ ĒΛ
vv ¼ 0. We show the decay of the correla-

torsEMΛðk; tÞ in Fig. 13, based on simulations evolving in a
ΛCDM background. These simulations covered mainly the
late matter dominated era and the beginning of the dark
energy domination. Table VIII shows the cosmological
parameters at the end of each of the regimes simulated. We
have been able to go farther towards the ΛCDM singularity
where the conformal time reaches its asymptotic de Sitter
value, and where therefore the scale factor diverges as a
function of τ (around τ ≈ 1.35τ0 for a value of
Ωm ¼ 0.315). As our estimate of the de Sitter correlators,
we measure the functions ĒMΛ

11 and ĒMΛ
tt at τend ¼ 1.33, and

take τfr ¼ β−1ξfr, where β is the slope of the relation
between time and network length scale [see Eq. (20)], and
we use its value during the matter era, given in Table II.
The interpolation functions related to each of the different

correlators can be fitted by the following set of functions:

fΛðτÞ ¼
�
1þ ζ

�
τ

τ0

�
η
�
; ð53Þ

where the best fits of the parameters ζ and η for each case are
shown in Table IX. It can be seen that there is greater
variation in the parameters than in the radiation-matter case.
Note that Ett changes little during the transition and so the
errors in ftt are very large. Hence it is a good approximation
not to interpolate Ett at all.
We can anticipate that the effect of taking into account a

ΛCDM background cosmology will slightly decrease the
amplitude of the late time correlators. Consequently, this
decay will affect the power spectra at lower multipoles,

TABLE VIII. Values of the current conformal time τ0 in
simulation time units, the ratio of the reference time τref for
UETC data-taking and the simulation end time τend to τ0. Also
given are the cosmological parameters Ωm and Ωr at the end of
each simulation across the matter-Λ transition.

τ0 300 225
τref=τ0 0.5 0.665
τend=τ0 1 1.33
ΩmðτendÞ 0.315 1.29 × 10−4

ΩrðτendÞ 9.24 × 10−5 2.81 × 10−9
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FIG. 13. Matter-Λ UETC interpolation function for different
correlators plotted against the conformal time relative to current
time (τ0), from top Evv and bottom E11. The other two scalar
correlators, E12 and E22, lie roughly between the two red lines.
The different shades correspond to 1σ and 2σ confidence limits,
and the red line corresponds to the best fit.

TABLE IX. Best-fit values for parameters ζ and η in Eq. (53) corresponding to the matter-Λ transition function.

Parameters E11 E12 E22 Evv Ett

ζ −0.302� 0.003 −0.276� 0.003 −0.292� 0.003 −0.241� 0.001 –
η 5.2� 0.1 5.4� 0.1 5.3� 0.1 5.63� 0.03 –
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decreasing the contribution at scales that entered late the
horizon.

F. Comparison of interpolation methods

In this section, we compare simple and multistage
eigenvector interpolation, as used in [30] and [40], with
the fixed-k UETC interpolation introduced in this paper.
We perform the comparison by reconstructing the UETC
from the interpolated source functions

Crcðk; τ; τ0Þ ¼
X
n

λncnðk; τÞc�nðk; τ0Þ: ð54Þ

This is then compared with a measured transition correlator.
We choose an intermediate stage of the radiation-matter
transition, 1 < τ=τeq < 1.5 and restrict the analysis to
scales around the peak of the correlator (8.3 < kτ < 30),
where the most important contribution is encapsulated.
Note that though the eigenvectors of the time-interpolated
UETCs do not strictly form an orthonormal set, their
product forms an effective UETC; see Eq. (54). Time
evolving eigenvectors for the eigenvector interpolation
method, in turn, are calculated using (38) and (39).
We show in Fig. 14 the relative difference of the

reconstructed UETC using 128 eigenvectors for the scalar
C11 function for the three proposed methods. There can be
seen that the resemblance of the fixed-k interpolation to the
real case is the highest and is clearly better than the multi-
stage eigenvector interpolation method, which is in turn
better than simple eigenvector interpolation. The values of
the relative differences at z ¼ 10, near the peak of the
UETCs, are approximately 0.03, 0.09, and 0.2 respectively.

V. DISCUSSION AND CONCLUSIONS

In this work, we compute the unequal time correlators
(UETCs) from numerical simulations of Abelian Higgs
strings, and describe and implement a new method of
deriving source functions from them. Those source func-
tions can be used by source-enabled versions of Einstein-
Boltzmann integrators to obtain CMB and matter
perturbations.
Our numerical simulations have been improved consid-

erably from our previous works due to improvements in
both the hardware resources and the software used. The
Abelian Higgs code uses the recently released LATfield2
[38], allowing the efficient numerical integration of the
field equations in parallel, and portable parallel fast-Fourier
transforms on large grids.
Our new production runs took place on lattices of 40963

sites, distributed over 34816 CPUs, a great improvement
over our previous lattice sizes of 10243 [31]. Bigger lattices
mean larger dynamical ranges: our simulations cover a
larger portion of the evolution of the Universe, both in
space and time. As the space simulated is 64 times larger,

FIG. 14. Relativedifferenceof the reconstructed scalarC11UETC
with respect to the measured UETC. The UETCs are reconstructed
using three differentmethods: simple eigenvector interpolation (first
pane), multi-stage eigenvector interpolation (second pane) and
fixed-k UETC interpolation (third pane). In the simple eigenvector
interpolationmethod, the interpolating function is (39), whereas for
the multistage eigenvector interpolation at the correlator level, we
use (49). Only the region around the peak of the correlator, 1=1.5 <
r < 1.5 and8.3 < kτ < 30, is shown.Note that in order to represent
the relative difference as neatly as possible, we remove values
greater than 1 from the two top pictures.
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we can obtain more accurate statistics. A factor of 4 longer
evolution time allows for a more accurate study of the
scaling of the network, and we can explore regions of the
UETCs that could only be reached by extrapolation in
previous work. Not only that, one of our key approxima-
tions in earlier works, string core growth, can be dropped,
and thus the true equations of motion have been solved, for
the first time in the matter era. We confirm the extrapo-
lations from our older simulations.
In summary, our new UETC measurements span a much

larger time ratio than in previous Abelian Higgs string
simulations when using string core growth, and solve the
true equations of motion over a long enough period to
achieve scaling and measure the UETCs. We have com-
bined two complementary sets of simulations, one with
string core growth, and one with the true equations of
motion, to obtain our final correlation functions.
Close to the peak of the UETCs, at near-equal times, we

use the simulations with the true equations of motion.
Outside this region we use the simulations with string core
growth. In order to merge the UETCs, their normalization
at equal times was matched, but no other adjustment was
necessary. The new UETCs are consistent with our pre-
vious measurements near the peak of the correlators, reach
the horizon scale for the first time, and confirm the power-
law behavior of the correlators at large wave numbers. The
normalization is slightly higher in the high wave-number
tails, due to a small increase in the string density.
Numerical simulations of Abelian Higgs strings across

cosmological transitions have been performed for the first
time. The radiation-matter transition is particularly impor-
tant for the accurate computation of CMB perturbations at
around a degree scale. We also performed simulations
across the matter-Λ transition, important for large angular
scales. We have introduced and investigated a new method
for calculating the source functions for Einstein-Boltzmann
integrators, which better accounts for cosmological tran-
sitions. The method is more accurate than two previous
methods [30,40], and is also consistent with the underlying
idea of decomposing the UETC into its component eigen-
vectors. It is also easier to implement.
Armed with the new simulations and an improved

procedure to overcome the difficulties of the cosmological
transitions, we can compute new and more accurate
predictions for the temperature and polarization anisotro-
pies in the CMB due to cosmic strings, which wewill report
in a future publication.
Since our article appeared in the e-print archive, further

work has been done using the unconnected segment model
to approximate the cosmic string network [50]. The free
parameters of themodel can be tuned tomimic the TT power
spectrum of anAbelianHiggs network, and the resulting BB
spectrum also agrees quite well. There are differences in
detail: for example, the tensor contributions appear low, and
it would be interesting to investigate further.
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APPENDIX A: EQUAL TIME CORRELATORS

In this appendix, we show the ETCs in the pure radiation
and pure matter era simulations, compared to those we
found in Ref. [31]. We recall that the simulations reported
in this work have 4 times the spatial volume and run for 4
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FIG. 15. Equal time correlators in the radiation era for the
simulations described in this work (grey), compared with those
obtained in the smaller simulations of Ref. [31] (blue). The times
shown are τ ¼ 450, 500, 550 and 600 (in units of ϕ−1

0 ), with the
grey shaded regions showing 1σ and 2σ fluctuations over seven
realizations at τ ¼ 600. The blue shaded regions show the
fluctuations for three realizations at τ ¼ 300.

DAVID DAVERIO et al. PHYSICAL REVIEW D 93, 085014 (2016)

085014-18



times as long as the previous ones, and solve the true field
equations [s ¼ 1 in Eqs. (8) and (9)] rather than those with
the core growth approximation (s ¼ 0). There are now
seven realizations in each case, rather than three. We also
use a different method for extracting the scaling form of the
ETCs, detailed in Sec. III.
In Figs. 15 and 16, it can be seen that the shapes of the

correlation functions are very similar, with small differences
in normalization at kτ beyond the peak, although the peak
positions are consistent. This could be evidence that for even
greater accuracy we should distinguish between the string

correlation length (which sets the peak position) and the
string separation (which sets the amplitude via the string
density). The largest difference is for the radiation era vector
ETC, which is lower by about 20% at the peak.
In Ref. [31], we argued that, from s ¼ 1 radiation era

simulations and s ¼ 0.5 matter era simulations, the core
growth approximation was not a significant source of error.
Now that we are able to perform s ¼ 1 simulations in both
matter and radiation eras, the consistency of the two sets
ETCs demonstrates that 10243 simulations at s ¼ 0

with lattice spacing Δx ¼ 0.5ϕ−1
0 give a reasonable

approximation to the correlation functions, to within about
20% at the peak. The smaller simulations do not however
give an accurate measurement of the super-horizon ETCs,
whose mean values differ by up to O(1) in the case of E11.
We also recall that the quality of the ETCs provides a

scale-dependent test of the scaling hypothesis for the string
network. If the network is scaling properly, the ETCs
should be a function of kτ only, and the ETCs from
different times in the simulation should collapse onto a
single line when plotted against this variable. It is clear that
the scaling around the peak over the time intervals from
which data are taken (Table I) is very good. Scaling is
violated for wave numbers near the inverse string width,
and we do not use these scales for the UETC construction.
This is not an important source of error for CMB calcu-
lations, as the ETCs are extremely small at high kτ.

APPENDIX B: GLOBAL MODELING
OF THE UETCs

In this appendix, we provide global fits that describe the
merged UETCs obtained with our simulations. We first fit
only the equal-time part and then extend the fits to take into
account the temporal decoherence properties as well. A fit
for the full UETCs can be obtained by simply combining
the two fitting functions. These fits are not optimized to
give the best possible interpolation, but rather to minimize
the number of free parameters while still allowing for a
reasonable representation.
In order to perform the fits, the 1σ fluctuations were found

with 10 bootstrap samples from the 7 s ¼ 0 and the 7 s ¼ 1

FIG. 16. Equal time correlators in the matter era for the
simulations described in this work (grey), compared with those
obtained in the smaller simulations of Ref. [31] (blue). The times
shown are τ ¼ 600, 666, 733 and 800 (in units of ϕ−1

0 ), with the
grey shaded regions showing 1σ and 2σ fluctuations over seen
realizations at τ ¼ 800. The blue shaded regions show the
fluctuations for three realizations at τ ¼ 300.

TABLE X. The numerical values of the fits of the ETC shown in Fig. 17 to Eq. (B1).

Parameters E11 mat E11 rad E22 mat E22 rad E12 mat E12 rad Evv mat Evv rad Ett mat Ett rad

a0 49.7 51.9 111 137 14.6 33.8 0.45 1.6 12.7 11.6
a2 0.290 0.77 0.046 0.96 0.64 1.3 0.21 0.42 — —
a4 0.0076 0.030 0.0024 0.0077 0.0017 0.013 — — — —
zp 14.2 11.9 15.5 13.8 15.4 12.8 12.0 11.4 37.5 44.1
d 1.14 1.23 1.28 1.34 1.18 1.51 1.05a 1.13a 1.39b 1.40b

w 362 394 340 363 294 389 332 354 395 416
δ 4.0 3.9 3.1 3.0 2.7 2.7 4.4 4.2 5.2 4.9
ω — — — — 0.0030 0.0029 — — — —

aFit to EðxÞ ¼ ða0 þ a2x2Þ=½ð1þ ðx=zpÞ2þdÞð1þ ðx=wÞδÞ�
bFit to EðxÞ ¼ a0=½ð1þ ðx=zpÞdÞð1þ ðx=wÞδÞ�
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realizations. The statistical error bars are the smallest at highk
as there are many more modes there than on large scales. To
avoid having those scales (which probe the string structure
rather than the scaling UETCs) dominate the fits, and to have
more uniform error bars, we scale the ‘raw’ standard devia-
tions from the bootstrap by

ffiffiffi
k

p
and re-estimate the overall

error amplitude simultaneously with the fitting parameters.

1. Fits of the ETCs

Looking at the equal-time line of Fig. 8, we see that we
generally expect a plateau on super-horizon scales, kτ ≲ 1,
possibly a peak around the horizon scale, and then a decay
for kτ ≫ 1. From Fig. 7, we gather that the high-kτ decay
consists of a power-law and then faster decay once we hit
the string scale, that can also be modeled with a power law.
Based on these considerations, we propose the following
fitting functions for the final ETCs EðxÞ ¼ Cðz; r ¼ 1Þ of
Eq. (28) (with x≡ kτ, x0 ≡ kτ0, z≡ k

ffiffiffiffiffiffi
ττ0

p
and r ¼ τ=τ0):

EðxÞ ¼ a0 þ a2x2 þ a4x4

ð1þ ðx=zpÞ4þdÞð1þ ðx=wÞδÞ cosðωxÞ: ðB1Þ

Here w ≫ zp so that d gives the cosmologically relevant
decay law while δ is relevant inside the string core. Not all
ETCs require all parameters. The oscillation frequency ω
only applies to E12, it is zero for all other ETCs. The vector
ETCs are well modeled only with the constant and
quadratic term in the numerator and we set a4 ¼ 0,
correspondingly we use 2þ d for the decay exponent in

the denominator. The tensor ETCs are well described even
by just a constant numerator, and for this reason we only
use d as the exponent in the denominator.
The ETCs that we fit were obtained at the reference times

τref listed in Table I for s ¼ 1. The large-scale behaviour is
independent of this choice thanks to scaling, but the string
width is not. For cosmological applications, the string
width should be much smaller than the horizon scale, which
means that one should set w → ∞ in this case.

2. Fits of the decoherence functions

We define the decoherence functions D as

Dðx; x0Þ ¼ Cðx; x0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞEðx0Þ

p
: ðB2Þ

Together with the ETCs they parameterize the full UETCs.
The functions D describe how the UETCs decohere away
from the equal-time line, and are defined such that
Dðx; xÞ ¼ 1. We also find that on super-horizon scales
(z ≪ 1) their width is constant in r, while on subhorizon
scales their width instead is constant in jx − x0j (i.e.,
inversely proportional to z).
The correlation functions are symmetric under x ↔ x0,

which corresponds to r ↔ 1=r, combined with complex
conjugation. The UETCs are in fact real, so the conjugate
need not be taken. The exception is D12 which is the cross-
decoherence function of the two scalar sources, and does
not need to be symmetric. To allow for this, we introduce a
peak location parameter rp, which is equal to unity for all

FIG. 17. Fits of the ETCs EðkτÞ of the source functions at the reference time to the function given in Eq. (B1). The solid curves show
the measured ETCs and the dashed curves the fits, for the numerical values given in Table X.
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other decoherence functions. The cross-decoherence func-
tion is also different from the others as we define it through
D12ðx; x0Þ ¼ C12ðx; x0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11ðxÞE22ðx0Þ

p
. The equal-time

line D12ðx; xÞ quantifies then the correlation between the
sources for ϕ and ψ at equal times, which is not unity in
general. However, it can be straightforwardly computed
from the ETC fits given above.
The fitting formula that we use for the correlation

functions is then

Dðz; rÞ ¼ ð2þ AÞ½rα þ r−α þ Aexpfð0.5Δ=σÞβg�−1 ðB3Þ

where we set Δ ¼ zjlog rj to obtain the correct scaling of
the decay width for z ≫ 1. The correlation functions also
show small residual oscillations, however they are small
and not well measured in our simulations asD decays quite
rapidly away from the equal time line, and we decided to
neglect these oscillations in the fits given here.

For D12 we took

D12ðz; rÞ ¼ ðrαp þ r−αp þ AÞD12ðz; 1Þ

×

��
r
rp

�
α

þ
�
r
rp

�
−α

þ Aexpfð0.5Δ=σÞβg
�
−1

ðB4Þ
We show the correlation functions and the fits in Fig. 18

for the matter dominated evolution of the Universe. The
correlation function during radiation domination look
qualitatively similar. The fitting values are given in
Table XI for both epochs.
As mentioned earlier, in order to reconstruct the full

UETCs for cosmological purposes, one combines the ETCs
and the correlation functions by setting

Cðx; x0Þ ¼ Dðx; x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞEðx0Þ

p
: ðB5Þ

In this situation, one should also set w ¼ ∞ in the ETC
parametrization.

TABLE XI. The numerical values of the fits of the correlation functions shown in Fig. 18 to the functions (B3),(B4). All the correlation
functions except D12 are symmetric, which implies that the peak shift is absent, rp ¼ 1.

Parameters D11 mat D11 rad D22 mat D22 rad D12 mat D12 rad Dvv mat Dvv rad Dtt mat Dtt rad

α 3.3 2.5 2.8 2.3 4.0 2.4 2.6 2.8 2.8 3.6
rp — — — — 1.5 1.9 — — — —
A 6.5 2.5 0.30 0.20 26 16 0.37 0.68 0.27 0.27
σ 2.0 1.6 1.4 1.3 3.0 0.18 0.98 1.3 0.65 0.70
β 2.0 2.0 1.4 1.4 3.6 3.0 1.4 1.7 0.85 0.95

FIG. 18. Fits of the correlation functions Dðz; rÞ of the matter era source functions as a function of r for a range of values of z, to the
functions (B3), (B4). The solid curves show the measured correlation functions and the dashed curves the fits, for the numerical values
given in Table XI.
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