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Abstract 1 

An energy balance decomposition of temperature changes is conducted for 2 

idealized transient CO2-only simulations in the fifth phase of the Coupled Model 3 

Intercomparison Project (CMIP5). The multimodel global mean warming is 4 

dominated by enhanced clear-sky greenhouse effect due to increased CO2 and 5 

water vapour, but other components of the energy balance substantially modify 6 

the geographical and seasonal patterns of the change. Changes in the net surface 7 

energy flux are important over the oceans, being especially crucial for the muted 8 

warming over the northern North Atlantic and for the seasonal cycle of warming 9 

over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to 10 

smooth the gradients of temperature change and reduce its land-sea contrast, but 11 

they also amplify the seasonal cycle of warming in northern North America and 12 

Eurasia. The three most important terms for intermodel differences in warming 13 

are the changes in the clear-sky greenhouse effect, clouds, and the net surface 14 

energy flux, making the largest contribution to the standard deviation of annual 15 

mean temperature change in 34%, 29% and 20% of the world, respectively. 16 

Changes in atmospheric energy flux convergence mostly damp intermodel 17 

variations of temperature change especially over the oceans. However, the 18 

opposite is true for example in Greenland and Antarctica, where the warming 19 

appears to be substantially controlled by heat transport from the surrounding sea 20 

areas.  21 

 22 

KEYWORDS: temperature change, energy budget, atmospheric heat 23 

convergence, surface energy flux, CMIP5  24 

 25 

26 
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1. Introduction 27 

Increases in CO2 and other greenhouse gases make the atmosphere less 28 

transparent in the thermal infrared area, thus reducing the outgoing longwave 29 

radiation (OLR). The resulting surplus of energy warms the surface and the lower 30 

atmosphere. This warming increases OLR, thereby reducing the energy imbalance 31 

(e.g. Houghton 2015). However, the outcome of this process in terms of the 32 

resulting near-surface temperature change is affected by several feedbacks that 33 

alter the fluxes of energy in the climate system.  34 

 35 

The equilibrium global and annual mean temperature response to increasing CO2 36 

is commonly analysed in terms of the water vapour, lapse rate, cloud and surface 37 

albedo feedbacks (Hansen et al. 1984; Flato et al. 2013). Typically the results are 38 

expressed in terms of feedback factors that relate the change in the top-of-the-39 

atmosphere (TOA) radiation balance to the near-surface temperature change. 40 

However, it is also possible to diagnose the contributions of the direct CO2 forcing 41 

and the feedbacks to the temperature change (Dufresne and Bony 2008; hereafter 42 

DB08), although the nonlinearity of the problem makes this decomposition 43 

mathematically non-unique (Caldwell et al. 2016). In energy balance analysis of 44 

transient climate change, ocean heat uptake must be included in addition to the 45 

processes that regulate the equilibrium warming (Gregory and Mitchell 1997; 46 

DB08). 47 

 48 

When considering temperature change at regional scales, the effects of 49 

atmospheric energy transport also need to be implicitly or explicitly included (e.g. 50 

Boer and Yu 2003). Recently, two techniques have been proposed for diagnosing 51 

the energetic contributors to regional temperature change: the surface energy 52 

budget approach of Izumi et al. (2015; herafter IBH15) and the climate feedback-53 

response analysis method (CFRAM) introduced by Lu and Cai (2009). 54 

 55 

IBH15 applied their method to ensemble mean temperature changes from six 56 

models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). 57 

The warming in simulations with quadrupled CO2 was found to be strongly 58 

dominated by increased clear-sky downward longwave (LW) radiation, which was 59 
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partly compensated by a widespread increase in latent heat flux and reduced clear-60 

sky downward shortwave (SW) radiation mainly caused by increased water vapor 61 

absorption in the atmosphere. Similar findings with signs reversed applied to 62 

simulations for the Last Glacial Maximum, but the change in surface albedo 63 

contributed much more to the glacial cooling than to the CO2-induced warming. 64 

In both cases, variations in the clear-sky downward LW radiation dominated the 65 

geographical variations of temperature change, although several other terms also 66 

contributed. 67 

 68 

In CFRAM, the temperature changes associated with each individual process are 69 

solved in the atmosphere-surface column, using a one-dimensional energy balance 70 

equation that incorporates the local and non-local effects of temperature change 71 

on the LW radiation transfer. Taylor et al. (2013) used this method to show that 72 

the polar amplification of the simulated CO2-induced warming in the NCAR 73 

CCSM4 model was mostly due to the surface albedo feedback. Sejas et al. 74 

(2014a) used the same method to analyse the seasonal cycle of temperature 75 

changes in the same model. In particular, they demonstrated the importance of 76 

ocean heat storage changes in shifting the maximum of polar warming from 77 

summer (when the albedo feedback is greatest) to late autumn and winter. 78 

 79 

CFRAM and the IBH15 surface energy balance approach both have their 80 

strengths and limitations. CFRAM is more detailed in terms of the processes 81 

considered, but requires a relatively sophisticated calculation of radiative transfer 82 

which makes it more challenging to apply to a large ensemble of model 83 

simulations. The IBH15 method is more straightforward and only requires a 84 

limited number of two-dimensional model fields. On the other hand, as this 85 

approach is entirely based on the surface energy budget, the results are 86 

disconnected from studies that use the TOA radiation balance for analysis of 87 

global mean temperature change. The strong dominance of the clear-sky 88 

downward LW radiation in explaining the magnitude and patterns of surface 89 

temperature change may also be regarded as a complicating feature. Separation 90 

between cause and effect is difficult in this case, because much of the downward 91 

LW radiation originates from the lowest atmospheric layers whose temperature is 92 

closely correlated with the surface temperature (Zhao et al. 1994).  93 
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 94 

Here, we propose an alternative method for studying the energy balance 95 

contributions to regional temperature change. The method was introduced in 96 

Räisänen and Ylhäisi (2015; hereafter RY15) but is here refined for its treatment 97 

of SW radiation. Only two-dimensional surface and TOA model output is needed, 98 

which makes the method convenient to apply to large ensembles of model 99 

simulations. On the other hand, the diagnostics obtained from this method are 100 

easier to compare with the traditional global TOA radiation balance approach than 101 

is the case with a surface energy budget method.  102 

 103 

We apply our method to idealized transient CO2 experiments from 16 CMIP5 104 

models, analysing both the multimodel mean changes and the contributions of 105 

different energy balance processes to the intermodel differences in temperature 106 

change. A general finding from our research is that the energetics of temperature 107 

change are highly regionally variable. For example, while cloud feedbacks have 108 

been identified as the main uncertainty in the global mean temperature change 109 

(Flato et al. 2013, Vial et al. 2013), their contribution is not dominant in all 110 

seasons and all areas.   111 

 112 

The model output used for the study is detailed in Section 2. The energy balance 113 

framework is described in Section 3. The results are covered in Section 4, starting 114 

from global and regional annual mean temperature changes and then proceeding 115 

to the seasonality of the changes in selected regions. In the end of the section, the 116 

role of atmospheric energy transport changes in modulating the temperature 117 

changes is discussed in some more depth. The main conclusions are presented in 118 

Section 5. 119 

  120 

2. Data sets and data processing 121 

Monthly data for 16 CMIP5 models were used: ACCESS1-3, BCC-CSM1-1, 122 

BCC-CSM1-1-m, CanESM2, CESM1-BGC, GFDL-CM3, INM-CM4, IPSL-123 

CM5A-MR, IPSL-CM5B-LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-124 

ESM-MR, MRI-CGCM3, NorESM1-M and NorESM1-ME, where the acronyms 125 

follow Table 9.1 in Flato et al. (2013). This includes all the models for which the 126 
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required variables could be retrieved both for the preindustrial control simulation 127 

(piControl) and the simulation with CO2 increasing 1 % per year compound 128 

(1pctCO2) until the quadrupling of CO2 in 140 years. Only one realization of these 129 

two simulations (r1i1p1) was used for each model. All the model data were 130 

interpolated to a common 2.5 × 2.5 degrees latitude-longitude grid using the 131 

Climate Data Operators (https://code.zmaw.de/projects/cdo) first-order 132 

conservative remapping (remapcon). 133 

  134 

The 15 variables used are listed in Table 1. In the energy balance analysis 135 

described in Section 3, their decadal monthly means from the 1pctCO2 and 136 

piControl simulations were first used to calculate the temperature change and its 137 

various components for each decade and month. Then the changes were averaged 138 

over the six decades centred at the doubling of CO2 (years 41-100).  139 

Conventionally, the transient climate response is defined using bidecadal means 140 

over the years 61-80 (Cubasch et al. 2001). A longer averaging period is preferred 141 

here because it helps to reduce internal variability, which would have a large 142 

effect on the monthly mean changes in the individual models if bidecadal means 143 

were used. However, the multimodel mean results are only modestly affected by 144 

this difference in periods. The multimodel global mean warming is 1.78 K for the 145 

years 61-80 and 1.82 K for the years 41-100. 146 

 147 

When calculating statistics for land and sea areas separately, a common land sea 148 

mask (from the National Centers for Environmental Prediction – National Center 149 

for Atmospheric Research reanalysis) is used. This choice is preferred for 150 

simplicity, even though it may induce some “leakage” between land and sea in the 151 

individual models. 152 

.  153 

3. Energy balance framework 154 

To relate the changes in surface air temperature with the atmospheric energy 155 

budget, a modified version of the method of RY15 was used. As discussed below, 156 

this method is rough in its treatment of LW radiation. However, the adoption of 157 

the approximate partial radiative perturbation (APRP) method (Taylor et al. 2007) 158 

allows a cleaner separation of shortwave (SW) radiative feedbacks than in RY15.  159 

https://code.zmaw.de/projects/cdo
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 160 

The rate of change of total energy in an atmospheric column is  161 

CGLS
t

E





 (1) 162 

where S is net SW radiation at the TOA, L outgoing LW radiation at the TOA, G 163 

net downward heat flux to the surface and C horizontal energy flux convergence 164 

in the atmosphere. To relate (1) with the surface air temperature T, we write    165 

4
TL

eff
  (2) 166 

where eff  is an effective planetary emissivity. eff is essentially a measure of the 167 

atmospheric greenhouse effect, although it is also to some extent affected by 168 

variations in the surface emissivity, the surface-to-air temperature difference, and 169 

short-term (below decadal monthly means) temperature variations. However, an 170 

inspection of the surface upwelling LW radiation in the CMIP5 models confirmed that 171 

these latter factors are generally unimportant for the changes in eff. Substituting 172 

(2) into (1), one obtains 173 

)(
4

t

E
CGST

eff



  (3)  174 

Letting now X = X2 – X1 denote the change in quantity X between two climates (1 = 175 

baseline CO2, 2 = increased CO2) and [X] the mean of these two, (3) gives  176 

4 4
( )  ( )

eff eff

E
T T S G C

t
II III

I IV

   


               


 (4)  177 

Finally, linearizing the left side of (4) as     178 

4 3
[ ] ( ) 4 [ ][ ]

eff eff
T T T D T         (5) 179 

allows one to decompose the simulated temperature change as 180 

T LW SW SURF CONV ERR

III III IV

         (6) 181 

where the terms I–IV in (4) have been divided by 3
4 [ ][ ]

eff
D T  . LW 182 

represents the temperature change caused by the change in eff and SW that due to 183 

the change in the net TOA SW radiation. SURF is negative when the net 184 

downward heat flux at the surface increases. CONV is evaluated as a residual of 185 
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the energy budget. RY15 denoted this term as CONV – STOR to emphasize that 186 

the changes in both the atmospheric horizontal energy flux convergence and local 187 

atmospheric storage are included. However, at least for annual means it is safe to 188 

assume that the change in energy flux convergence dominates (RY15). ERR 189 

results from the linearization in (5) but turns out to be very small (Section 4.1).          190 

 191 

eff in (2) is affected by atmospheric LW opacity and the vertical lapse rate of 192 

temperature, but is largely insensitive to vertically uniform temperature changes. 193 

Consequently, the coefficient D in (5) is a good approximation of the Planck 194 

feedback parameter. It has a multimodel global and annual mean value of 3.3 195 

Wm-2 K-1, whereas the Planck feedback parameter is close to 3.2 Wm-2 K-1 in both 196 

the CMIP3 and CMIP5 models (Soden and Held 2006; Flato et al. 2013). Thus, in 197 

the conversion from (4) to (6), an energy flux perturbation of 1 Wm-2 is typically 198 

equivalent to a 0.3 K change in temperature, although the precise value varies 199 

with month, model and geographic location.   200 

 201 

By using the TOA all-sky (rlut) and clear-sky (rlutcs) LW fluxes, LW is further 202 

divided into clear-sky and cloud radiative effect contributions. 203 

CRECLEAR
LWLWLW    (7) 204 

In broad terms, LWCLEAR incorporates the LW radiative forcing due to increasing 205 

CO2 together with the water vapour and the lapse rate feedbacks, whereas LWCRE 206 

represents the change in the LW cloud radiative effect (CRE). Unfortunately, 207 

LWCRE is a negatively biased approximation of the actual LW cloud feedback, 208 

because increases in CO2 and water vapor act to reduce the effect of clouds on the 209 

OLR (Section 4.1).  210 

 211 

The treatment of SW radiation is based on the APRP method. Using the TOA and 212 

surface all-sky and clear-sky SW fluxes and total cloudiness, the change in the 213 

TOA net SW radiation is divided to five components, which are further converted 214 

to the corresponding temperature changes as 215 

NLCLOUDALBEDOATMCLEARIN
SWSWSWSWSWSW 


  (8) 216 

The first term in (8) accounts for the change in the TOA incoming solar radiation 217 

(S in Eq. (6) of Taylor et al. 2007), whereas the next three terms represent the 218 
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changes in the SW radiative properties of the clear-sky atmosphere, surface 219 

albedo, and clouds (Eqs. (16a-c) of Taylor et al. 2007). Higher-order nonlinear 220 

effects are collected in the last term. Note that SWCLOUD represents, within the 221 

accuracy of the APRP method, the actual SW cloud feedback rather than the 222 

change in SW CRE. In particular, this avoids the aliasing of surface albedo and 223 

cloud change contributions in the SW radiation budget that affects the changes in 224 

SW CRE (Qu and Hall 2006; RY15). 225 

 226 

4. Results 227 

4.1 Global and local mean values 228 

 229 

The magnitude of the various terms in (6)-(8) is explored in Table 2. The first 230 

three columns give their multimodel annual means for the globe and land and sea 231 

areas separately. For the remaining columns, the absolute values of the terms are 232 

averaged over all individual models, months and grid boxes, so to avoid 233 

compensation between positive and negative values. We first note that SWIN, SWNL 234 

and ERR are negligible, with values of ≤ 10-3 K in all cases. ERR is much smaller 235 

than the linearization residuals in Taylor et al. (2013), Sejas et al. (2014a,b) and 236 

IBH15. This is achieved by conducting the linearization in (5) around the average 237 

of the baseline and perturbed temperatures rather than the baseline mean. 238 

 239 

The multimodel global annual mean warming of 1.82 K is dominated and actually 240 

exceeded by LWCLEAR (2.07 K). Other terms that enhance the warming include 241 

SWCLEAR-ATM (0.21 K), SWALBEDO (0.19 K) and SWCLOUD (0.13 K). The first of these 242 

reflects stronger absorption of solar near-infrared radiation by increased CO2 and 243 

water vapour, the second the effects of reduced snow and ice cover, and the third 244 

reduced cloud cover over many low-to-mid-latitude areas. The warming is 245 

counteracted by SURF (-0.39 K), due to ocean heat uptake during transient CO2 246 

increase, and LWCRE (-0.39 K).  247 

 248 

The global means for SURF and SWALBEDO are very close to those reported by  249 

DB08 for their sample of 12 CMIP3 models (transient temperature changes for 250 

“Albedo” and “OHU efficiency” in their Table 3). This results from the close 251 
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similarity between D in (5) and the Planck feedback parameter used to convert the 252 

energy flux perturbations to temperature changes in DB08. However, the sum of 253 

SWCLOUD and LWCRE (hereafter CLOUD) gives a net cloud contribution of -0.26 K, 254 

in stark contrast with the mean cloud feedback of 0.4 K found by DB08. Studies 255 

with CMIP5 models also support a predominantly positive net cloud feedback 256 

and, in particular, a positive LW cloud feedback in nearly all models (Tomassini 257 

et al. 2013; Vial et al. 2013; see also Fig. 7.10 of Boucher et al. 2013 and Table 258 

9.5 of Flato et al. 2013). This discrepancy arises because LWCRE is calculated 259 

directly from the change in the LW CRE, instead of a radiative kernel or a partial 260 

radiative perturbation approach that would explicitly isolate the effect of cloud 261 

changes (Soden et al. 2004). Increases in CO2 and water vapour make the above-262 

cloud atmosphere less transparent for LW radiation, thus making OLR less 263 

sensitive to the presence of clouds and reducing the LW CRE for unchanged 264 

cloud cover. The excessively negative cloud LW contribution also implies that 265 

LWCLEAR exaggerates the clear-sky LW contribution to the simulated warming. 266 

 267 

The annual multimodel mean warming is on the average 0.89 K larger over land 268 

(2.46 K) than sea (1.57 K). The largest contributor to this difference is SURF, 269 

which has little impact over land but cools the oceans by 0.53 K. LWCLEAR, 270 

SWCLOUD and SWALBEDO also increase the land-sea contrast (by 0.28, 0.25 and 0.12 271 

K, respectively). On the other hand, CONV moderates this contrast by 0.40 K, 272 

cooling land but warming the oceans. Anomalous heat transport from land to 273 

ocean develops during transient increase of atmospheric CO2, thus spreading the 274 

effect of the ocean heat uptake from the oceans to the continents (Lambert et al. 275 

2011).  276 

   277 

The terms LWCLEAR, SWCLEAR-ATM and SWALBEDO are nearly uniformly positive. 278 

Therefore, their multimodel global annual means also give a good idea of their 279 

typical local and monthly absolute values even for individual models (right half of 280 

Table 2). By contrast, LWCRE, SWCLOUD, SURF and CONV vary commonly in sign. 281 

They thus have much larger values in individual models, months and grid boxes 282 

than the multimodel global annual means would suggest. In particular, the mean 283 

absolute values of both SURF and CONV over ocean exceed 2 K.  284 

 285 
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To the extent that LWCRE and SWCLOUD are dominated by changes in cloud 286 

amount, a partial cancellation between them would be expected. Consistent with 287 

this, the sum of LWCRE and SWCLOUD (CLOUD) has in all columns of Table 2 a 288 

smaller magnitude than one or both of these terms individually. In the rest of this 289 

paper, we will therefore focus on CLOUD rather than its two parts. SURF and 290 

CONV also tend to oppose each other, particularly over the oceans, where SURF 291 

is much larger than over land. Combining (1), (4) and (6) gives   292 

( ) ( )
E

S L G C D SURF CONV
t

 
          

 
 (9) 293 

The compensation between SURF and CONV thus implies ( )S L G     294 

which means that the net TOA radiation balance changes typically less than the 295 

net surface energy flux. 296 

 297 

4.2 Annual mean temperature change 298 

 299 

The decomposition of the annual mean temperature change to its main 300 

components is depicted on maps in Fig. 1. Along with the multimodel mean (first 301 

column), two measures are used to characterize the intermodel relationship 302 

between the components and the total change T: correlation (second column) 303 

and the contribution to standard deviation (right column). The latter is defined as 304 

2

2

' '
( ')

( ')

i

i i i

T T
SDC r T

T

 
  



 (10) 305 

where the overbars indicate multimodel averages and the primes deviations from 306 

them. The last expression shows that SDCi is affected by both the correlation of 307 

the component i with the total temperature change (ri) and the intermodel standard 308 

deviation of this component. The SDCi:s are additive and sum up to the standard 309 

deviation of T. 310 

 311 

LWCLEAR widely dominates the multimodel mean warming (Fig. 1d). Its 312 

intermodel variations tend to be strongly correlated with T (Fig. 1e), and the 313 

highest correlations (> 0.9) mostly occur in those mid-to-high-latitude areas where 314 

the intermodel differences in T are large (Fig. 1c). These positive correlations 315 
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reflect, presumably to a large extent, the water vapour feedback that enhances the 316 

greenhouse effect most strongly in the models with the largest warming. Still, the 317 

SDC of LWCLEAR (Fig. 1f) falls clearly short of the standard deviation of T (Fig. 318 

1c), particularly at extratropical latitudes. Thus, LWCLEAR substantially amplifies 319 

intermodel differences in temperature change but may not generally be the 320 

ultimate driver of these differences. The spatial distribution of the multimodel 321 

mean warming is also not properly explained by LWCLEAR alone. 322 

 323 

SWCLEAR-ATM is small in the multimodel mean (Fig. 1g) and makes a minute 324 

contribution to intermodel variations in temperature change (Fig. 1i). However, it 325 

correlates positively with T particularly over the oceans (Fig. 1h), presumably 326 

because water vapor increases more in models with larger warming.  327 

 328 

SWALBEDO enhances the multimodel mean warming where snow and ice are 329 

reduced. Although modest when globally averaged, its contribution locally 330 

exceeds 2 K over (e.g.) the Barents Sea, the Hudson Bay and the Tibetan plateau 331 

(Fig. 1j). There is a strong positive intermodel correlation between SWALBEDO and 332 

T over the Arctic and Antarctic oceans and parts of the northern hemisphere 333 

extratropical continents (Fig. 1k), where this terms also substantially amplifies the 334 

intermodel standard deviation (Fig. 1l).    335 

 336 

CLOUD reduces the multimodel mean warming by over 1 K over the Southern 337 

Ocean and the northern North Atlantic (Fig. 1m), in both cases mainly due to a 338 

negative SW contribution associated with increased cloud cover. The largest 339 

positive values over the eastern tropical Pacific and the Arctic Ocean reflect an 340 

increase in the LW CRE, and are also connected to increased cloudiness. CLOUD 341 

is positively correlated with the simulated warming in most parts of the world 342 

(Fig. 1n), and its contribution to the intermodel standard deviation of T 343 

approaches that of LWCLEAR (Fig. 1o).  344 

 345 

SURF plays a large role over the oceans. Although its contribution is negative in 346 

most areas, the geographical variation is huge, ranging from a multimodel mean 347 

cooling of up to 10 K to the south of Greeland to a warming of 5 K in the Barents 348 

Sea (Fig. 1p). SURF and T are strongly correlated near the sea ice edge in both 349 
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hemispheres, as well as in the northwestern North Atlantic (Fig. 1q). In these 350 

regions, intermodel differences in temperature change are substantially amplified 351 

by changes in the net surface flux, or ultimately by sea ice and ocean circulation 352 

changes that regulate the net air-sea heat exchange (Fig. 1r).    353 

 354 

Over land, SURF is much smaller than over the oceans, with compensating 355 

positive and negative values in different months (see Fig. 4 for examples). Yet it 356 

does not fully average out in the annual mean. This is mainly due to changes in 357 

snowfall (which imply changes in the energy consumed by snow melt) and, 358 

primarily over Greenland and Antarctica, increased melting of glacier ice.  359 

 360 

As already seen from Table 2, CONV tends to oppose SURF over the oceans 361 

(Figs. 1s and 1p). For example, in the northern North Atlantic where the 362 

atmosphere loses heat to the surface, this is primarily compensated by increased 363 

heat flux convergence and the effect on the local temperature change is thus 364 

dampened. Therefore, CONV generally reduces the spatial gradients in warming 365 

over the oceans (compare Figs. 1s and 1a). In most areas, it also reduces the 366 

intermodel differences (Fig. 1u).   367 

 368 

CONV slightly reduces the multimodel mean warming in most land areas (Fig. 369 

1s). Exceptions include, among others, Greenland and eastern Antarctica. The 370 

Greenland and Antarctic ice sheets also stand out as areas with a substantial 371 

positive intermodel correlation between CONV and T (Fig. 1t). Thus, unlike in 372 

most parts of the world, changes in heat flux convergence act to amplify 373 

intermodel differences in temperature change over Greenland and Antarctica (Fig. 374 

1u).  375 

4.3 Seasonality of temperature changes 376 

 377 

The effect of the individual energy balance terms on the seasonality of the 378 

multimodel mean temperature change is studied in Fig. 2. The seasonality is  379 

measured here by the intermonthly standard deviation of T (Fig. 2a). The largest 380 

values in the Arctic and over the high-latitude Southern Ocean result from greater 381 

warming in late fall and winter than in summer, while the warming in summer 382 
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slightly exceeds that in winter in many lower-latitude regions (Christensen et al. 383 

2007).    384 

 385 

Figures 2c-h show the contributions of the main energy balance components to the 386 

intermonthly standard deviation of the temperature change, using the analogy of 387 

(10) but with intermodel variations replaced by intermonthly variations. LWCLEAR 388 

and CLOUD make major contributions to the change in seasonality in large parts 389 

of the world. SURF is also important in many areas, particularly over the Arctic 390 

Ocean and the high-latitude Southern Ocean, where sea ice is reduced. 391 

Conversely, SWALBEDO reduces the seasonality of temperature changes in the 392 

Arctic and over the high-latitude Southern Ocean. CONV is important in many 393 

regions but its contribution varies in sign. Notably, CONV strongly damps the 394 

seasonality of temperature changes over the Arctic Ocean but amplifies it 395 

immediately to the south in northern North America and Eurasia.   396 

 397 

To exemplify the factors that regulate the seasonality of temperature change and 398 

its intermodel differences, four oceanic and four continental regions are chosen 399 

for a closer study. See Fig. 2b for a map of the regions and Table 3 for their 400 

boundary coordinates. For each region, the left-hand-side panels in Figs. 3-4 show 401 

the contributions of the various energy balance terms to the multimodel mean 402 

temperature change, whereas the right-hand-side shows their contributions to the 403 

intermodel standard deviation. The latter are first calculated for each grid box 404 

separately and then averaged over the domain considered. This order of 405 

calculation avoids the systematic effect of the domain size (smaller standard 406 

deviations for larger domains) that would occur if calculating the area means 407 

before the standard deviations. Both the mean change and the standard deviation 408 

contributions vary within the regions, but the main area-averaged results were 409 

found to be robust to small changes in the delineation of the areas. Note, however, 410 

that the scales in Figs. 3-4 differ from region to region due to the widely varying 411 

magnitude of the mean warming and the intermodel differences.     412 

4.3.1 Examples for oceans 413 

 414 
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The multimodel mean warming over the Arctic Ocean (AO) (Fig. 3a) is strongly 415 

seasonal, ranging from 1 K in June and July to 9 K in November. This seasonality 416 

is driven primarily by SURF, which amplifies the warming in autumn and winter 417 

but strongly damps it in summer. Reduced ice cover allows the ocean to absorb 418 

more SW radiation during the summer, and this heat is released back to the 419 

atmosphere in autumn and winter when thinner and less extensive ice cover 420 

enhances the heat flux from the relatively warm ocean to the cold atmosphere 421 

(Sejas et al. 2014a). LWCLEAR and to some extent CLOUD also enhance the 422 

seasonality of the warming. SWALBEDO in isolation would induce a summer 423 

maximum of warming, but the resulting heat gain is stored by the ocean. CONV 424 

also damps the seasonality with a positive contribution in summer (when the 425 

Arctic Ocean warms less than the surrounding land areas) and a negative 426 

contribution from October to December (when the warming is greatest over the 427 

Arctic Ocean). In the annual multimodel area mean, both SURF and CONV nearly 428 

average out. 429 

 430 

In most cases, those energy balance terms that increase the multimodel mean 431 

warming also tend to increase the intermodel differences over the Arctic Ocean 432 

and vice versa (Fig. 3b). The main exceptions are SURF, which acts to increase 433 

the intermodel differences in all months except from May to July, and CONV, 434 

which reduces these differences throughout the year but most strongly in autumn 435 

and winter.  436 

 437 

The ensemble mean warming in the Northern North Atlantic (NNA) is small 438 

throughout the year, but with a minimum in late spring and a maximum in autumn 439 

and winter (Fig. 3c). It mainly represents a balance between large cooling due to 440 

SURF and warming by CONV, but LWCLEAR and CLOUD also make non-441 

negligible contributions. Both LWCRE and SWCLOUD are negative, but the latter 442 

dominates in spring and summer (not shown). In these seasons, cloud cover 443 

increases, presumably due to increased lower-tropospheric stability over a local 444 

minimum in the surface warming. Intermodel differences of temperature change 445 

in the northern North Atlantic are dominated by differences in SURF for most of 446 

the year, but in summer CLOUD makes the largest contribution (Fig. 3d). Again, 447 

CONV systematically reduces the intermodel differences.  448 
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 449 

In the Tropical East Pacific (TEP), the multimodel mean warming is about 40% 450 

smaller than the contribution of LWCLEAR alone (Fig. 3e). At the annual mean 451 

level, this is mostly due to CONV, i.e. increased atmospheric energy transport out 452 

of the region. However, although the simulated warming is nearly seasonally 453 

invariant, the contributions of the individual energy balance terms vary. During 454 

the northern winter and spring, LWCLEAR is mainly moderated by CONV, but in 455 

summer and autumn, SURF overtakes its role. CLOUD slightly enhances the 456 

multimodel mean warming in most of the year, but is also the main contributor to 457 

intermodel differences in temperature change (Fig. 3f). As in the previous regions, 458 

CONV strongly attenuates the intermodel differences in warming.  459 

  460 

The ensemble mean warming over the Southern Ocean (SO) is relatively small 461 

overall, but has its maximum during the local winter (Fig. 3g). As in the northern 462 

North Atlantic, SURF attenuates the warming but is counteracted by CONV, 463 

although both of these are smaller in magnitude. Similar to the northern North 464 

Atlantic, CLOUD also reduces the warming, particularly in the southern summer 465 

when increased cloud cover makes SWCLOUD strongly negative (not shown). 466 

CLOUD together with LWCLEAR seemingly explains the seasonal cycle of the 467 

warming, but the interpretation is complicated because several physically 468 

intermingled terms are important in the balance. The same applies to the 469 

intermodel differences in warming (Fig. 3h). In particular, although SWALBEDO acts 470 

to amplify these differences in spring and early summer, its influence is 471 

moderated by the simultaneous negative contribution from SURF. In those models 472 

and grid boxes in which the surface albedo decreases due to sea ice melting, the 473 

heat gain is stored in the ocean and has limited impact on the local surface 474 

temperature. This closely resembles the situation in the Arctic Ocean in the 475 

summer.            476 

4.3.2 Examples for land areas 477 

 478 

The ensemble mean warming in Siberia (SIB) is largest in early winter and 479 

smallest in summer (Fig. 4a). This seasonality is largely driven by CONV, which 480 

enhances the warming in the winter half-year but strongly reduces it from May to 481 
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August. The patterns in Fig. 2h suggest that this primarily reflects heat exchange 482 

with the Arctic Ocean, where the warming is larger than in Siberia in late autumn 483 

and winter but smaller in summer. Due to earlier snow melt, SWALBEDO 484 

substantially contributes to the warming in spring and early summer, but the 485 

resulting heat gain is counteracted by increased atmospheric energy divergence 486 

out of the area. SURF is also negative in April and May but positive in summer. 487 

Snowmelt occurs earlier in a warmer climate (e.g., Räisänen 2008), and the 488 

associated energy sink is thus enhanced (reduced) early (late) in the melting 489 

season. 490 

 491 

SWALBEDO makes a large contribution to intermodel differences in temperature 492 

change in Siberia in spring and early summer (Fig. 4b), but this is largely 493 

compensated by a negative contribution from CONV in the same season. By 494 

contrast, CONV slightly amplifies the intermodel differences in late autumn and 495 

winter. In summer, CLOUD also increases the intermodel differences in 496 

temperature change. 497 

 498 

In Central Europe (CEU), CONV reduces the ensemble mean warming, keeping 499 

it below the contribution of LWCLEAR in most of the year (Fig. 4c). The exception 500 

is late summer (July-September), when a positive CLOUD contribution due to 501 

reduced cloudiness amplifies the simulated warming, thus explaining its annual 502 

maximum in this season. More strikingly, CLOUD strongly amplifies the 503 

intermodel differences in warming in the summer half-year, although being 504 

counteracted by CONV (Fig. 4d). In winter, CONV slightly enhances the 505 

intermodel differences in warming. 506 

 507 

In a surprising contrast with the seasonal cycle of LWCLEAR, the multimodel mean 508 

warming in Amazonia (AMZ) is slightly larger in the southern hemisphere winter 509 

and spring than in summer and autumn (Fig. 4e). This is largely due to CONV, 510 

which reduces the warming less in winter than in summer. Intermodel differences 511 

in warming in Amazonia are mainly attributed to LWCLEAR, CONV and CLOUD. 512 

They are largest during the southern winter and spring, when the contribution of 513 

CONV has its maximum.  514 

 515 
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The warming over Antarctica (ANT) is nearly seasonally uniform (Fig. 4g). This 516 

results fom a compensation between the seasonalities of CLOUD, SURF, CONV 517 

and SWCLEAR-ATM. Interestingly, SWCLEAR-ATM enhances the warming by up to 0.6°C 518 

during the Antarctic summer when solar radiation is abundant. Intermodel 519 

differences in temperature change over Antarctica are amplified by CONV 520 

throughout the year, although most strongly in the autumn and winter (Fig. 4h). 521 

Other major contributors to these differences include LWCLEAR and CLOUD.      522 

 523 

4.4 Discussion 524 

 525 

As shown above, different energy balance terms dominate the intermodel spread 526 

of temperature change in different seasons and areas. For a simple overview, Fig. 527 

5 identifies the terms that make the largest local contributions to the standard 528 

deviation of the annual mean temperature change based on the values shown in 529 

the third column of Fig. 1. LWCLEAR and CLOUD are the most prominent terms, 530 

making the largest contributions in 34% and 29% of the global area. CLOUD is 531 

important particularly over lower-latitude oceans, but is rarely the largest 532 

uncertainty over land. The third most important term in terms of the area of 533 

domination is SURF, being largest in 20% of the global area and 27% of the 534 

oceans. CONV dominates the uncertainty in 10% of the world, including parts of 535 

the Greenland and Antarctic ice sheets. SWALBEDO has a share of 8%, ranking as 536 

first e.g. in eastern Siberia, Tibet and parts of the Southern Ocean. A broadly 537 

similar picture arises if the dominance is counted on a monthly rather than annual 538 

basis, although CONV tends to grow more important in this case (not shown).    539 

  540 

Another aspect deserving discussion is the behaviour and physical interpretation 541 

of CONV. The first hypothesis that one can make is that CONV acts as diffusion-542 

like process, smoothing out the spatial gradients in temperature change (Boer and 543 

Yu 2003). This could happen under unchanged atmospheric circulation as eddies 544 

spread out regional differences in temperature change, but the circulation might 545 

also adjust to transport more energy from areas of larger warming to areas of 546 

smaller warming. Alternatively, circulation changes not directly related to the 547 

distribution of the near-surface warming could play a more active role in shaping 548 

the temperature response. 549 
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 550 

While not precluding the second alternative, our results give much more evidence 551 

for the first. First, Figs. 1a and 1s reveal that CONV frequently moderates the 552 

local extremes and gradients of T. Examples of this include the maximum in 553 

warming over the Barents Sea and the minima over the northern North Atlantic 554 

and the Southern Ocean, as well as the land-sea contrast of warming across 555 

several coastlines. As expected for a diffusion-like process, this tendency for 556 

compensation is stronger at small than large spatial scales. The global spatial 557 

correlation between T and CONV is only slightly negative (-0.22). However, it 558 

becomes more negative (-0.43) when large-scale features are filtered out from 559 

both fields by using a radius of 2000 km in the smoothing algorithm of Räisänen 560 

and Ylhäisi (2011) and retaining the small-scale component. 561 

 562 

Second, also consistent with the diffusion hypothesis, CONV more commonly 563 

reduces than amplifies the intermodel differences of temperature change (Figs. 1t-564 

u). It is the only term in our decomposition that does this in a globally averaged 565 

sense. However, this tendency is not globally uniform. The correlation between 566 

CONV and T is less regularly negative over land than oceans, and some land 567 

areas (most notably Greenland and Antarctica) stand out with a substantial 568 

positive correlation (Fig. 1t). 569 

 570 

There are two probable reasons for the stronger anticorrelation between CONV 571 

and T over the oceans. First, the homogeneity of the ocean surface suggests a 572 

tighter coupling between the surface and free tropospheric temperature changes 573 

than is the case over more heterogeneous land areas. Large local gradients in the 574 

surface air temperature change over the oceans would thus imply large gradients 575 

in the change of tropospheric temperatures, which would be dynamically 576 

unsustainable (Joshi et al. 2008). Second and perhaps more importantly, the sum 577 

of the other temperature change components (TREST = T - CONV) is much more 578 

variable over ocean than land areas (Fig. 6a), essentially due to the larger surface 579 

heat flux changes. Thus, there is a larger need for CONV to damp this variability 580 

over the oceans. 581 

  582 
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A very strong anticorrelation prevails between CONV and TREST over most of the 583 

oceans and also over some land areas (e.g. the Tibetan Plateau) where the 584 

intermodel standard deviation of TREST is large (Fig. 6b). Conversely, areas with 585 

a local minimum in the intermodel variation of TREST are commonly associated 586 

with a weak or even positive correlation between CONV and TREST. Examples 587 

include the Sahara – Arabian desert, Australia, and most notably Greenland and 588 

Antarctica. For both Greenland and Antarctica, a striking contrast between modest 589 

local intermodel variations in TREST and much larger variations over the 590 

surrounding oceans suggests a remote control of CONV. A closer analysis reveals 591 

a negative intermodel correlation of CONV between the Antarctic continent and 592 

the Southern Ocean south of 60°S, and between Greenland and the northern North 593 

Atlantic, particularly the Labrador Sea (not shown). This suggests that the local 594 

warming over Antartica and Greenland is substantially modulated by heat 595 

transport from the surrounding oceans. 596 

 597 

5. Conclusions 598 

An energy balance decomposition was conducted for regional temperature 599 

changes resulting from a gradual doubling of atmospheric CO2 concentration in 600 

16 CMIP5 models. A simple method was applied that links the surface air 601 

temperature with the OLR by using an effective emissivity as a measure of the 602 

atmospheric greenhouse effect. The method is rough in its treatment of LW 603 

radiation, and can therefore not separate the effects of the direct CO2 forcing and 604 

the water vapour and lapse rate feedbacks from each other. SW radiative 605 

processes are treated in more detail using the APRP method (Taylor et al. 2007). 606 

Additionally, temperature changes due to the net surface flux and atmospheric 607 

energy flux convergence changes are calculated. The method only requires two-608 

dimensional model output for the surface and the TOA, and is therefore easy to 609 

apply to large ensembles of climate model simulations. 610 

 611 

As expected, the bulk of the simulated warming was found to be due to an 612 

enhanced clear-sky greenhouse effect. However, other components of the energy 613 

balance substantially modify the temperature change, particularly its geographical, 614 

seasonal and intermodel variations.  615 
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 616 

In particular, we found that changes in horizontal atmospheric energy flux 617 

convergence mostly act as a diffusion-like process, thus reducing horizontal 618 

gradients and intermodel differences in temperature change. This is the case 619 

especially over the oceans, but energy convergence changes also typically 620 

moderate the intermodel differences over those land areas where the net effect of 621 

the other terms would result in a large intermodel variation of warming. However, 622 

Greenland and Antarctica are important counter-examples. Intermodel variability 623 

in the other energy balance terms is relatively modest over both Greenland and 624 

Antarctica, but changes in the net surface energy flux and surface albedo make it 625 

much larger over the surrounding sea areas. Changes in energy flux converge act 626 

to spread the effects of this larger variability over Greenland and Antarctica, thus 627 

amplifying intermodel differences in temperature change over these ice sheets. 628 

 629 

Changes in the net surface heat flux reduce the multimodel global mean warming 630 

by 0.4 K, in close agreement with the value found by DB08 for the CMIP3 631 

models. Regionally, however, this contribution varies from a cooling of up to 10 632 

K over the northern North Atlantic to a warming of 5 K over the Barents Sea. As 633 

found earlier by Sejas et al. (2014a) by using the CFRAM method, changes in the 634 

net surface energy flux are also crucially important for the seasonal cycle of the 635 

warming over the Arctic Ocean.  636 

 637 

Several studies have identified cloud feedbacks as the largest uncertainty in global 638 

mean temperature change (Flato et al. 2013, Vial et al. 2013). Our analysis 639 

extends this finding by indicating that clouds commonly make the largest 640 

contribution to intermodel spread of regional temperature change over lower-641 

latitude oceans. However, changes in the clear-sky greenhouse effect (mainly over 642 

land) and the net surface energy flux (mainly over extratropical oceans) also 643 

dominate the intermodel spread in wide areas. 644 

 645 

Our energy balance approach provides an alternative to the CFRAM method (Lu 646 

and Cai 2009) and the surface energy budget method of IBH15. All these methods 647 

give different perspectives on the energetic causes of regional temperature 648 

change, but a direct comparison is difficult because of differences in the set of 649 
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processes that are explicitly included. The main advantages of the present method 650 

are (i) its relative simplicity and modest data needs, which are comparable with 651 

the IBH15 approach, and (ii) a partial although not perfect comparability with 652 

TOA radiation balance based studies of global mean temperature change, such as 653 

DB08. The most obvious weakness is the crude treatment of LW processes. This 654 

could be improved by an explicit modelling of LW radiative transfer, but at the 655 

cost of increasing the data needs and the complexity of the method.    656 

 657 

Acknowledgments 658 

We acknowledge the World Climate Research Programme's Working Group on 659 

Coupled Modelling, which is responsible for CMIP, and we thank the climate 660 

modeling groups for producing and making available their model output. For 661 

CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and 662 

Intercomparison provides coordinating support and led development of software 663 

infrastructure in partnership with the Global Organization for Earth System 664 

Science Portals. This work was supported by the Academy of Finland Centre of 665 

Excellence in Atmospheric Science – From Molecular and Biological processes to 666 

the Global Climate (project 272041). The two anonymous reviewers are 667 

acknowledged for their constructive comments. 668 

 669 

References  670 

Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20: 415-429 671 

Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P,  672 

Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK,  673 

Sherwood S, Stevens B, Zhang XY (2013) Clouds and Aerosols. In: Stocker 674 

TF et al (eds) Climate Change 2013: the Physical Science Basis. Cambridge 675 

University Press, pp 571-657 676 

Caldwell PM, Zelinka MD, Taylor KE, Marvel K (2016) Quantifying the sources 677 

of intermodel spread in equilibrium climate sensitivity. Journal of Climate 678 

29: 513-524 679 

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli 680 

RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, 681 

Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate 682 

Projections. In Solomon S et al (eds) Climate Change 2007: the Physical 683 

Science Basis. Cambridge University Press, pp 847-940 684 

Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper, 685 

SCB, Yap KS (2001) Projections of Future Climate Change. In: Houghton 686 



 22 

JT et al. (eds) Climate Change 2001: the Scientific Basis. Cambridge 687 

University press, pp 526-582 688 

Dufresne J-L, Bony S (2008) An assessment of the primary sources of spread of 689 

global warming estimates from coupled atmosphere-ocean models. J 690 

Climate 21: 5135-5144 691 

Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P,  692 

Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, 693 

Kattsov V, Reason C, Rummukainen M (2013) Evaluation of Climate 694 

Models. In: Stocker TF et al (eds) Climate Change 2013: the Physical 695 

Science Basis. Cambridge University Press, pp 741-866  696 

Gregory JM, Mitchell JFB (1997) The climate response to CO2 of the Hadley 697 

Centre coupled AOGCM with and without flux adjustment. Geophys Res 698 

Lett 24: 1943-1946 699 

Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) 700 

Climate sensitivity: Analysis of feedback mechanisms. In: Hansen JE, 701 

Takahashi T (eds) Climate Processes and Climate Sensitivity. Geophysical 702 

Monograph 29, Maurice Ewing Vol. 5, American Geophysical Union, pp. 703 

130-163 704 

Houghton J (2015) Global Warming. The Complete Briefing, 5th edition. 705 

Cambridge University Press, 380 pp 706 

Izumi K, Bartlein PJ, Harrison SP (2015) Energy-balance mechanisms underlying 707 

consistent large-scale temperature responses in warm and cold climates. 708 

Clim Dyn 44: 3111-3127 709 

Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms 710 

for the land/sea warming contrast exhibited by simulations of climate 711 

change. Clim Dyn 30: 455-465 712 

Lambert HF, MJ Webb, Joshi MM (2011) The relationship between land-ocean 713 

surface temperature contrasts and radiative forcing. J Climate 24: 3239-714 

3256 715 

Lu J, Cai M (2009) A new framework for isolating individual feedback processes 716 

in coupled general circulation climate models. Part I: formulation. Clim Dyn 717 

32: 873-885 718 

Qu X, Hall A (2006) Assessing snow albedo feedback in simulated climate 719 

change. J Climate 19: 2617-2630 720 

Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30: 307-319 721 

Räisänen J, Ylhäisi JS (2011) How much should climate model output be 722 

smoothed in space? J Climate 24: 867–880 723 

Räisänen J, Ylhäisi JS (2015) CO2-induced climate change in northern Europe: 724 

CMIP2 versus CMIP3 versus CMIP5. Clim Dyn 45: 1877–1897 725 

Sejas SA, Cai M, Hu A, Meehl GA, Washington W, Taylor PC (2014a) Individual 726 

feedback contributions to the seasonality of surface warming. J Climate 27: 727 

5653-5659 728 

Sejas SA, Albert OS, Cai M, Deng Yi (2014b) Feedback attribution of the land-729 

sea warming contrast in a global warming simulation of the NCAR CCSM4. 730 

Environ Res Lett 9: 124005 731 

Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean 732 

atmosphere models. J Climate 19: 3354-3360 733 



 23 

Soden BJ, Broccoli AJ, Hemler AS (2004) On the use of cloud forcing to estimate 734 

cloud feedbacj. J Climate 17: 3661-3665 735 

Taylor KE, Crucifix M, Braconnot P, Hewitt CD, Doutriaux C, Broccoli AJ, 736 

Mitchell JFB, Webb MJ (2007) Estimating shortwave radiative forcing and 737 

response in climate models. J Climate 20: 2530-2543 738 

Taylor PC, Cai M, Hu A, Meehl GA, Washington W, Zhang GJ (2013) A 739 

decomposition of feedback contributions to polar warming amplification. J 740 

Climate 26: 7023-7043 741 

Tomassini L, Geoffroy O, Dufresne J-L, Idelkari A, Cagnazzo C, Block K, 742 

Mauritsen T, Giorgetta M, Quaas J (2013) The respective roles of surface 743 

temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 744 

transient climate simulations. Clim Dyn 41: 3103-3126 745 

Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in 746 

CMIP5 climate sensitivity estimates. Clim Dyn 41: 3339-3362  747 

Zhao W, Kuhn WR, Drayson SR (1994) The significance of detailed structure in 748 

the boundary layer to thermal radiation at the surface in climate models. 749 

Geophys Res Lett 21: 1631-1634 750 

751 



 24 

Tables 752 

 753 

Table 1. List of the variables used 754 

 755 

CMIP5 Acronym  Long name 

tas  near-surface air (2-meter) temperature 

rsdt  TOA incident SW radiation 

rsut TOA outgoing SW radiation 

rlut TOA outgoing LW radiation 

rsds surface downwelling SW radiation 

rsus surface upwelling SW radiation 

rlds surface downwelling LW radiation 

rlus surface upwelling LW radiation 

hfls surface upward latent heat flux 

hfss surface upward sensible heat flux 

rsutcs TOA outgoing clear-sky SW radiation 

rlutcs TOA outgoing clear-sky LW radiation 

rsdscs surface downwelling clear-sky SW radiation 

rsuscs surface upwelling clear-sky SW radiation 

clt total cloud fraction 

TOA = top of the atmosphere; SW = shortwave; LW = longwave 756 

757 
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  758 

Table 2. Mean values (columns 1-3) and mean absolute values (columns 4-6) of the terms 759 

in Eqs. (6)-(8) (unit: K)   760 

 761 

 Global annual multimodel mean Absolute value of local monthly 

means in individual models 

 All Land Sea All Land Sea 

T  1.82  2.46 1.57 1.83 2.46 1.57 

CLEAR
LW  2.07 2.27 1.99 2.07 2.27 1.99 

CRE
LW  -0.39 -0.36 -0.41 0.69 0.64 0.72 

IN
SW  -2 × 10-4 -2 × 10-4 -2 × 10-4 7 × 10-4 9 × 10-4 7 × 10-4 

CLEAR ATM
SW


 0.21 0.26 0.19 0.22 0.27 0.21 

ALBEDO
SW  0.19 0.28 0.16 0.22 0.34 0.17 

CLOUD
SW  0.13 0.31 0.06 0.88 0.79 0.92 

NL
SW  -2 × 10-4 -4 × 10-5 -3 × 10-4 6 × 10-4 5 × 10-4 7 × 10-4 

SURF -0.39 -0.03 -0.53 1.62 0.38 2.12 

CONV 0.01 -0.28 0.12 1.74 0.97 2.05 

ERR -3 × 10-4 -3 × 10-4 -4 × 10-4 8 × 10-4 8 × 10-4 9 × 10-4 

CLOUD* -0.26 -0.04 -0.35 0.75 0.60 0.81 

SURF + CONV -0.38 -0.30 -0.41 0.90 0.88 0.90 

*CLOUD = LWCRE + SWCLOUD 762 

763 
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Table 3. The areas used in Figs. 3-4 764 

 765 

Area (acronym in Fig. 2b) Definition 

Arctic Ocean (AO) Sea (75°-90°N) 

Northern North Atlantic (NNA) Sea (50°-60°N, 10°-50°W)   

Tropical East Pacific (TEP) Sea (5°S-5°N, 80°-180°W)   

Southern Ocean (SO) Sea (50°-65°S) 

Siberia (SIB) Land (50°-75°N, 80°-180°E)   

Central Europe (CEU) Land (45°-55°N, 0°-30°E)   

Amazonia (AMZ) Land (20°S-5°N, 80°-40°W)   

Antarctica (ANT) Land (65°-90°S) 

 766 

767 
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Figures 768 

 769 

Fig. 1 Simulated annual mean temperature change T (row 1) and its decomposition 770 

(rows 2-7). Left: multimodel means. Middle: intermodel correlation between the 771 

individual components and T. Right: the standard deviation of T and the contributions 772 

of the individual components to it. The global area means are given in the top-right 773 

corner of the panels 774 
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 775 

Fig. 2 Intermonthly standard deviation of the multimodel mean temperature change (a) 776 

and the contributions of the six main temperature change components to it (c-h). Panel 777 

(b) shows the areas studied in Figs. 3-4, using the acronyms listed in Table 3 778 
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 779 

Fig. 3. Left: contributions of the six main temperature change components to multimodel 780 

mean monthly temperature changes in four oceanic regions (see the legend at the bottom; 781 

the total change is shown by the solid line). The last bar gives the annual mean values. 782 

Right: the corresponding contributions to intermodel standard deviation of temperature 783 

change, first evaluated at the grid box scale and then spatially averaged. See Fig. 2b and 784 

Table 3 for the definition of the areas 785 
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 786 

Fig. 4. As Fig. 3 but for four land areas 787 

 788 

 789 
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 790 

 791 

Fig. 5. The largest energy balance contributors to the standard deviation of annual mean 792 

temperature change 793 

 794 

 795 

Fig. 6. (a) Intermodel standard deviation of annual mean TREST. (b) Intermodel 796 

correlation between CONV and TREST.  797 


