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ABBREVIATIONS 

 
1D  First chromatographic dimension 
2D  Second chromatographic dimension 
ACN  Acetonitrile 
APCI  Atmospheric pressure chemical ionization  
APPI  Atmospheric pressure photoionization 
B/C  Branched and cyclic hydrocarbon fraction 
B-N  Bradbury-Nielsen gate 
2-tBPh  2-tert-Butylphenol 
2-tBPyr  2-tert-Butylpyridine 
β-car  β-Carotane 
DBE Double bond equivalence 
CENPES The Research Center of Petrobras (Centro de Pesquisas 

Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, 
Brazil) 

2,4,6-Col   2,4,6-Collidine 
CV  Compensation voltage 
2,6-DtB-4-MPh 2,6-Di-tert-butyl-4-methylphenol 
2,4-DtBPh  2,4-Di-tert-butylphenol 
2,6-DtBPh  2,6-Di-tert-butylphenol 
2,6-DtB-4-MPyr 2,6-Di-tert-butyl-4-methylpyridine 
2,6-DtBPyr 2,6-Di-tert-butylpyridine 
DH30 (or DiaH30) C30 17α-Diahopane 
N,N-DMA  N,N-Dimethylaniline 
DMS  Differential mobility spectrometry (= also FAIMS) 
EI  Electron ionization 
ESI  Electrospray ionization 
4-EA  4-Ethylaniline 
FAIMS  Field asymmetric waveform ion mobility spectrometry (= 

also DMS) 
FID  Flame ionization detector 
Gam  Gammacerane 
GC  Gas chromatography 
GC×GC Two-dimensional gas chromatography 
GC×GC-TOF-MS Two-dimensional gas chromatography – time-of-flight mass 

spectrometry 
H30  17α(H),21β(H)-Hopane 
H31R  C31 17α(H),21β(H)-homohopane 
IMS  Ion mobility spectrometry 
IMS-FP  Ion mobility spectrometer – faraday plate detector 
IMS-MS  Ion mobility spectrometer – mass spectrometer 
LC  Liquid chromatography 
m/z  Mass to charge ratio 
M30  Moretane, 17β(H),21β(H)-hopane 
3βMH31  C31 3β-Methylhopane 
MeOH  Methanol 
n-M-o-T   N-Methyl-o-toluidine 

9 

 

x-MBA  x-Methylbenzylamine (x = 2, 3, or 4) 
ONII  8α(H), 14α(H)-Onocerane 
ONIII  8α(H), 14β(H)-Onocerane 
PEA  2-Phenethylamine 
Ro(%)  Vitrinite reflectance 
RF  Radio-frequency 
RIP  Reaction ion peak 
SIM  Selected ion monitoring 
St  20S + 20R C27 5α,14α,17α-Cholestanes 
TeT24  C24 Tetracyclic terpane 
Tm  C27 17α-22,29,30-Trisnorhopane 
tR  Retention time 
TIMS  Trapped ion mobility Spectrometer  
Trx  Cx tricyclic terpane 
Ts  C27 18α-22,29,30-Trisnorneohopano 
TOF-MS  Time-of-flight mass spectrometry 
TWIMS  Traveling wave ion mobility spectrometry 
2,4,6-TtBPh 2,4,6-Tri-tert-butylphenol 
2,4,6-TNT  2,4,6-Trinitrotoluene 
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1. INTRODUCTION 

 

Mass spectrometry (MS) is a powerful analytical technique, which is used for the 

identification of unknown compounds and for the quantitation of known compounds in 

various types of samples [1]. It is used in many fields of science for these purposes, for 

example in pharmaceutical chemistry, environmental and food analysis, forensic science 

and industrial process analysis. The working principle of MS involves first the 

ionization of the compounds to be measured and the subsequent separation of the ions 

based on their differing mass-to-charge (m/z) ratios. Ionization can be carried out in 

atmospheric pressure or in a vacuum, but ion separation is always done in a vacuum. 

Production of m/z data is the key feature of MS, since it allows the determination of the 

molecular weight of a compound. The current mass spectrometers can measure very 

precisely the m/z ratios, which allows the determination of elemental composition of the 

analytes. However, the elemental composition of a compound does not necessarily give 

information about the chemical structure, since compounds can have the same elemental 

compositions, but different structures (isomeric compounds). One solution for this is the 

separation of isomeric compounds before the mass spectrometric analysis. In addition, 

mass spectrometric analysis of very complex samples, such as biological or crude oil 

samples, often requires additional pre-separation of the sample components for reliable 

analysis. 

The two most common pre-separation techniques used with MS are liquid 

chromatography (LC) [2] and gas chromatography (GC) [3]. However, they are not 

always sufficient for reliable compound identification, for example in complex samples 

containing isomeric compounds, which are not separated (co-elutes) in LC or GC. 

Therefore, alternative and advanced pre-separation techniques, such as ion mobility 

spectrometry (IMS) [4] and two dimensional gas chromatography (GC×GC) [5], that 

can be combined with MS, have been developed. Their analytical characteristics are 

studied in this thesis.  

Similar to MS, in IMS the compounds are first ionized and subsequently separated. 

However, in IMS the ion separation typically occurs in the gas phase under atmospheric 

pressure or in a reduced pressure, which is higher than in MS. The other main difference 

is that in IMS the ions are separated based on their shape (i.e. collision cross-section) 

11 

 

[4] instead of m/z ratios as in MS. In many cases IMS is more capable to separate 

isomers than MS. 

In GC×GC the main idea is to use two different column phases in line, for example, a 

non-polar column in the first dimension (1D) and a semi-polar column in the second 

dimension (2D). This results in GC×GC providing clearly higher peak capacity than one 

dimensional GC, and very complex samples, such as crude oil samples containing 

thousands of compounds, can be more efficiently separated into individual compounds 

[5-9]. This makes GC×GC-MS analysis more reliable than GC-MS analysis. 

 

1.1.1 Basic operation principles of ion mobility spectrometry 

 

The operation principle and main parts of the most common IMS, the drift tube, is 

presented in Figure 1. A drift tube IMS consists of an ion source, a desolvation region, a 

drift region, a detector, control electronics and software to run the instrument.  

Desolvation 
region

ld
 

Figure 1. Schematic diagram of a drift tube IMS (permission and courtesy of Alexey 
Sysoev, unpublished material). ld = length of the drift region, E = electric field, vdx = drift 
velocity of an ion, Kx = mobility coefficient of an ion and tdx = drift time of an ion. 

 

A typical measurement sequence has the following steps: After sample introduction 

the analyte molecules are ionized in an atmospheric pressure ion source and the ions are 

transferred to the desolvation area, where the ions are stored before they are pulsed with 

a Bradbury-Nielsen (B-N) gate [11] into the drift region. Next, the ions move by an 

electric field (typically 100-300 V/cm) across the drift region, in which a neutral gas 
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(e.g. nitrogen or air) is flowing in the opposite direction. After the IMS separation, the 

separated ions are usually detected with a faraday plate detector or with MS.  

 The separation of ions is based on their collisions with neutral gas molecules, which 

produce different drift times for ions with differing shapes, i.e. differing collision cross-

sections (cm2 or Å). For example, an ion with a small collision cross-section moves 

faster through the drift region than an ion with a larger collision cross-section. The drift 

velocity (vd, [cm/s]) of an ion through the drift region can be presented by Equations 1 

and 2 [4, 10]. 

 

vd = KE      (1) 
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where K = mobility coefficient (cm2V-1s-1), E = electric field in the drift region 

(V/cm), ld = length of the drift region (cm), td = drift time of the ion through the drift 

region (ms) and V = voltage drop over the drift region (V). 

The mobility coefficient (K) (Equation 2) is inversely proportional to collision cross-

section (Ω) [10] (Equation 3).  
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Where e = charge of electron (C), z = charge number, αc = correction factor for large 

molecules <0.02, N = drift gas density (molecules m-3), µ = reduced mass ion-neutral 

pair (g), k = Boltzmann’s constant (J/K), Teff = effective temperature of ion (K). 

 K is often presented as reduced mobility coefficient K0 according to Equation 4 [4]: 
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where, T = temperature (K) and P = pressure (Torr). 
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Even though mobilities in IMS are typically reported as reduced mobility (K0) values 

(Equation 4), which are normalized with standard pressure and temperature, variations 

in reduced mobility values are observed. This can be due to moisture or other impurities 

in the drift gas, or instrumental factors, such as an imperfect electric field or variation of 

the drift length. Due to these facts different compounds have been tested as reference 

compounds, which would allow standardization of mobilities. It has been observed that 

mobilities of compounds such as tetraalkylammonium halides [11] and 2,6-di-tert-

butylpyridine [12-14], are not much affected by moisture or other drift gas impurities. 

Therefore, these compounds can be used for comparison of different instruments as 

instrumental standards [15]. On the other hand, model compounds such as lutidine [16] 

and dimethyl methylphosphonate [12], which also respond to the quality (e.g. 

impurities) changes of the drift gas, can be used as mobility standards. All the above-

mentioned compounds are used as standards in positive ion mode measurements. 

Standard compounds, such as methyl salicylate [17] and 2,4,6-trinitrotoluene [18], to be 

used as mobility standards in negative ion mode, have also been presented. 

Ionization is the heart of an ion mobility spectrometer. Ions are generated in drift tube 

IMS commonly with a radioactive source (e.g. 63Ni) [19], electrospray ionization (ESI) 

[4, 11, 20-23], atmospheric pressure chemical ionization (APCI) [24, 25] or atmospheric 

pressure photoionization (APPI) [26-28]. All these techniques work under atmospheric 

pressure conditions, and can be considered as soft ionization techniques, which produce 

mostly protonated and deprotonated molecules with little fragmentation. Since APCI 

and APPI were used in this study, they are presented in more detail. 

IMS 
desolvation 

area

Corona needle

Ion swarm
Liquid sample
Nebulizer gas Ionization

area

Heated nebulizer

 
Figure 2. A schematic drawing of a typical atmospheric pressure chemical ionization 
source for IMS.  
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As shown in Figure 2, in a typical APCI ion source a liquid sample is pumped through 

a heated nebulizer, in which a vaporized sample stream is produced with the aid of heat 

and nebulizer gas [29]. Ionization reactions in APCI are initiated by corona discharge, 

which is obtained by conducting high voltage to a corona needle. The reactant ions in 

APCI depend on the solvent composition and reaction ions available in the ionization 

chamber, and components such as [H3O]+ and [NH4]+ ions are formed in positive ion 

mode, and [HO]-, [O3]- and [NOx]- ions in negative ion mode [30-34]. In IMS, the 

reactant ions settle to equilibrium in the desolvation area and typically, a cluster of ions, 

also called a reactant ion peak (RIP), is observed [4]. The most common analyte ions 

formed in the ionization reactions with the reactant ions and neutral analyte molecules 

in APCI are protonated molecules [M+H]+ in positive ion mode and deprotonated 

molecules [M-H]- in negative ion mode [4]. 

APPI ion source resembles the APCI ion source, except that in APPI an ultraviolet 

(UV) lamp is used to initiate the ionization instead of a corona needle. Often, APPI uses 

a dopant, an additional solvent, which is introduced to the ion source, in order to 

enhance the ionization of analytes. In APPI, the ionization sequence typically starts with 

the ionization of the vaporized solvent or dopant due to radiation emitted by the UV 

lamp. Various types of reactant ions can be formed in positive APPI, e.g., protonated 

molecules [S+H]+ or radical cations [S]+. of solvent and / or dopant [35]. In negative 

APPI, deprotonated molecules [S-H]- or negative molecular ions [S]-. of solvent and/or 

atmospheric gases are typically formed [36, 37].  Subsequent reactions of analytes with 

the reactant ions produce analyte ions; in positive APPI mainly radical cations M+. 

and/or protonated molecules [M+H]+, and in negative APPI negative molecular ions M-. 

and/or deprotonated molecules [M-H]-. 

The drift tube ion mobility instrument presented above is the main type of IMS 

instrument used nowadays, but many other types of instruments have been developed 

and are also commercially available. One of them is field asymmetric waveform ion 

mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS). The ion 

separation principle for FAIMS and DMS is the same [38], but the electrode in FAIMS 

has cylindrical geometry and in DMS planar geometry. The electric field can be varied 

quickly between high (~20 kV/cm) and low field (~1 kV/cm) using high radio-

frequency (RF) voltage also called dispersion or direct voltage (DV) (Figure 3) [39]. An 

additional superimposed direct current (DC) voltage, a so-called compensation voltage 
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(CV) is used to allow the passage of the desired ions through the electrode pair to the 

detector. Scanning the CV creates an analyte spectrum [40].   

 
Figure 3. The schematic picture of a field asymmetric waveform ion mobility 
spectrometry (FAIMS) or differential mobility spectrometry (DMS) represents the 
situation where the ion (marked with an asterisk) is collected onto the detector. 
Commonly, the drift gas flow is parallel to the analyte movement (from left to right). t1 = 
dispersion voltage (DV) at high field, t2 = DV at low field and DC = direct current 
(Reused with permission from ref. [4]) 

 

Another IMS approach, which has been combined with mass spectrometry is 

travelling wave ion mobility spectrometry (TWIMS, Waters Corp., Milford, MA, USA) 

[41, 42]. In TWIMS a low electric field is used to produce voltage waves (~20 V), 

which travel through a set of electrodes forming the drift region. Analyte ions are 

separated as the wave travels through the drift region under reduced pressure (~1 mbar), 

which is higher than the typical pressure inside a mass analyzer (<10-5 mbar). 

Recently a trapped ion mobility spectrometer (TIMS)-q-TOF instrument has been 

developed. In TIMS analyte ions are held stationary in the gas flow [43]. 

All the presented IMS instrument types have been combined with MS, (IMS-MS [4, 

20, 44]) or LC and MS (e.g. LC-FAIMS-MS [45] and LC-IMS-MS [46]). For instance, 

in biomolecule analysis, where samples are very complex, the IMS-MS combination has 

increased the component separation [47, 48] and a further increase is obtained with LC-

IMS-MS, as thousands of peaks have been separated with different retention times, drift 

times and m/z ratios from plasma proteome [49].  
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(CV) is used to allow the passage of the desired ions through the electrode pair to the 

detector. Scanning the CV creates an analyte spectrum [40].   

 
Figure 3. The schematic picture of a field asymmetric waveform ion mobility 
spectrometry (FAIMS) or differential mobility spectrometry (DMS) represents the 
situation where the ion (marked with an asterisk) is collected onto the detector. 
Commonly, the drift gas flow is parallel to the analyte movement (from left to right). t1 = 
dispersion voltage (DV) at high field, t2 = DV at low field and DC = direct current 
(Reused with permission from ref. [4]) 
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times and m/z ratios from plasma proteome [49].  
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1.1.2 Applications of ion mobility spectrometry 

 

The most important applications of traditional stand-alone IMS instruments are 

detection of explosives and chemical weapons [50-52]. Besides these, IMS is nowadays 

used in many fields of science [53, 54]. Ion mobility instruments are typically operated 

at atmospheric pressure, and therefore do not require heavy vacuum pumps as MS. Due 

to this, stand-alone ion mobility spectrometers are light enough for field applications, 

such as detection of chemical warfare agents [4], explosives [50], herbicides [55], 

pesticides [56] and organic volatile compounds [18]. IMS can also be used to detect 

specific compounds, such as ethanol in a fermentation process [57] or volatile 

compounds in food [58, 59], or identifying chemical classes of biologically relevant 

compounds, such as lipids, peptides and carbohydrates [60]. IMS instruments can also 

be used as detectors for GC [61]. The main applications of IMS-MS instruments are in 

metabolomics [62, 63], glycomics [63, 64] and proteomics [20, 49, 66]. Recently, 

TWIMS and IMS-MS instruments have been used to identify contaminants and 

additives in crude oil and gasoline samples, respectively [67, 68]. IMS-MS has been 

used to study the shape of model aromatic compounds that can be present in crude oils 

[69] and TWIMS has been used to produce information about sizes and shapes of 

compounds in the asphaltene fraction of crude oil [70]. 

In Table 1 are examples of situations where IMS is capable of separating isomers, e.g. 

hydrocarbons [71, 72], dihalogenated benzenes [73], terpenes [74] and anilines [75]. 

Isomers can be separated in IMS because they usually have different shapes and 

therefore different collision cross-sections. IMS separation before MS detection has 

been used to distinguish isomeric hydrocarbons [76] and polycyclic aromatic 

hydrocarbons [43], and to separate stereoisomers, such as cis- and trans-conformations 

of singly and doubly charged tryptic peptides [77]. However, it has been reported that 

singly protonated [M+H]+ ions of two peptide isomers do not necessarily have large 

enough differences in their shapes, and therefore they cannot be separated by IMS, but 

the doubly charged [M+2H]2+ ions of the same peptides can be [78]. Ionization of 

isomeric analytes can sometimes be enhanced by forming adducts (e.g. sodium, 

potassium or metal ions), which can be separated by IMS. For example, this has been 

done with sodium adducts of disaccharide-aldodols and trisaccharides [79], with 
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sodium, potassium and silver adducts of flavonoid diglycosides [80] and with sodium, 

silver, cobolt, copper, mercury and lead metal cation adducts of stereoisomers of methyl 

galactoside [76]. Separation of enantiomeric model compounds can be done by adding 

chiral modifiers (e.g. (S)-(+)-2-butanol) in the drift gas stream [81, 82]. The modifier 

reduces the drift time of both enantiomers, but for one enantiomer it is reduced more 

than for the other, which is assumed to be due to stronger interaction between the chiral 

centre of the enantiomer and the modifier. The TWIMS instrument has been used, e.g., 

to separate [M+H]+ ions of the isomeric 4-butylaniline and N-butylaniline [83], and in 

protein analysis [84]. In another study, it was observed that model isomeric steroid pairs 

of estradiols, androsterones and testosterones showed hardly any separation with 

TWIMS, but their p-toluenesulfonyl isocyanate derivatives resulted in better separation 

of α- and β-estradiols, 3α- and β-androsterones and 17β- and 17α-testosterones [85].  
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Table 1. Examples of isomeric compounds separated with IMS, FAIMS and TWIMS. 

Compound 
Drift gas and 
separation 
conditions 

Ionization IMS 
instrumentation Ref 

Hydrocarbons air Radioactive, APCI 
and APPI IMS-FPa [71,72] 

Dihalogenated 
benzenes air Radioactive, APCI 

and APPI IMS-FPa [73] 

Terpenes air Radioactive, APCI 
and APPI IMS-FPa [74] 

Anilines air Radioactive, APCI 
and APPI IMS-FPa [75] 

Hydrocarbons  b ESI IMS-MS [76] 
PAH N2 APPI Trapped IMS-MS [43] 
Tryptic peptides He ESI IMS-MS [77] 

Peptides N2
c ESI IMS-MS [78] 

Saccharides N2; Sodium 
adducts ESI IMS-MS [79] 

Flavonoid 
diglycosides 

N2; Cation 
adducts ESI IMS-MS [80] 

Model 
compounds 

N2; Chiral 
modifier ESI IMS-MS [81, 82] 

Hydrocarbons N2 APPI DMS-MS [86] 

Disaccharide N2; Cation 
adductsd ESI FAIMS-MS [87] 

Phthalic acids N2 or CO2 ESI FAIMS-MS [88] 
Model aniline 
compounds Ar or CO2 ESI TWIMS [83, 89] 

Protein N2 nano-ESI TWIMS [84] 

Steroids N2 or CO2
e ESI TWIMS [85] 

APCI, Atmospheric pressure chemical ionization; APPI, Atmospheric pressure 
photoionization; ESI, Electrospray ionization; IMS-MS, Ion mobility spectrometer – 
mass spectrometer; DMS-MS, Differential mobility spectrometry (= also FAIMS); 
TWIMS, Traveling wave ion mobility spectrometry; PAH, Polycyclic aromatic 
hydrocarbons; N2, nitrogen; He, Helium; CO2, carbon dioxide; Ar, Argon; a IMS-MS is 
used to confirm ion structures; b Metal cations Na+, Ag+, Co+2, Cu+2, Ca+2, Hg+2 and 
Pb+2; drift gases He, N2, Ar and CO2; c Doubly charged ions are separated; d Cations 
studied were H+, NH4

+, Li+, Na+, K+, Rb+, and Cs+; e p-toluenesulfonyl isocyanate 
derivatives of steroids 
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1.2 Basic operation principles and applications of two-dimensional gas 

chromatography – time-of-flight mass spectrometry 
 

Two-dimensional gas chromatography (GC×GC) is similar to the conventional one-

dimensional gas chromatography (GC) in the sense that the analyte compounds are 

separated in the gas phase by their interactions with a stationary phase on the column 

surface. The GC and GC×GC have three main components: (i) injector, (ii) column 

(inside the oven) and (iii) detector. The main additional parts in GC×GC are a 

modulator and a second column, which are located between the first column and the 

detector (Figure 4). 

 

Injector

Modulator LN2

1D

2D

to MS

 
Figure 4. Schematic diagram of a two-dimensional GC×GC instrument. Modulator LN2 
= cryogenic modulator which uses liquid nitrogen as a cold jet. 

 

There are various GC injectors for different kinds of samples. The split-splitless 

injector type is the most common due to the possibility to switch between two modes 

allowing for a wide concentration working range: split mode for highly concentrated or 

dirty samples and splitless mode for trace level analysis.  

GC columns for GC×GC have many options with different length, diameter and film 

material (stationary phase). A large amount of different materials and their 

combinations are available for stationary phases, but generally non-polar columns are 

suitable for separation of non-polar compounds and polar columns for separation of 

polar compounds. The separation in non-polar 1D column may be explained by the 

boiling point of the analyte. For example, 2,2-dimethylpropane with a more spherical 

shape has a lower boiling point (282.6±0.5 K) than pentane with a linear shape 
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(309.2±0.2 K), and therefore they are separated in 1D. In a semi-polar 2D column the 

separation is driven by interactions between analytes and the stationary phase of the 

column, where the polarity of the molecule has commonly a key role. A common 

combination of columns is a non-polar in the first dimension (1D) column and a semi-

polar in the second dimension (2D) column [90]. After the separation in the 1D column 

the sample compounds are continuously introduced by the modulator during the 

chromatographic run into the 2D column for further separation. Different kinds of 

modulators are available, and they are described elsewhere [90]. In a cryogenic 

modulator the sample compounds are held and then released, with a cold and a hot jet, 

resulting in a two-dimensional separation field (Figure 4) [91].  

Typical carrier gases are nitrogen, argon, helium, hydrogen and air. Linear velocity 

of the carrier gas has an important role in the efficiency of the chromatographic 

separation. Golay plots and van Deemter curves for each carrier gas are used to 

demonstrate the optimal linear velocities against the number of theoretical plates 

(resolution). For instance, hydrogen has the longest linear velocity range, but it is an 

expensive and flammable gas. Helium has the second longest linear velocity range after 

hydrogen, and therefore it is selected for applications, where a wide variety of 

compounds are to be analyzed with the same GC setup. 

For GC×GC, MS is a common detector, especially time-of-flight mass spectrometry 

(TOF-MS), which has the advantage of producing full mass spectral data with high 

frequency to ensure a sufficient number of data points for a good peak shape. 

 Different detectors can be attached to GC×GC, for example a flame ionization 

detector (FID). It is cheap, easy to maintain, and good for quantitative analysis with a 

large linear response range for organic compounds.  

In most GC×GC-MS instruments the analytes are ionized after the 2D separation by 

electron ionization (EI, 70 eV). The electrons collide with analyte molecules by 

knocking out an electron, and typically molecular ions M+. and their fragments are 

observed. EI is a stable and repeatable ionization technique with already existing large 

mass spectral libraries; the most important is the one by the National Institute of 

Standards and Technology (NIST) [92].  

GC×GC instruments have a high peak capacity [8], and therefore they are good for 

many kinds of applications in different fields of chemistry, such as environmental [93], 

food [94], metabolomics [95, 96], biological [97] and geological [98]. GC×GC is an 
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attractive tool for difficult analytical applications, and it is a good tool for screening 

complex samples in order to find compounds such as illegal drugs [99] and anabolic 

agents in doping control [100] and crude oil samples [101]. 

GC×GC-TOF-MS has been used in petroleum research to analyze different kinds of 

samples, the examples of which are presented in Table 2. 

 

Table 2. Examples of petroleum studies with GC×GC-TOF-MS. 
 Research topic Reference 
Fischer-Tropsch reaction [102] 
Extra heavy gas oil [103, 104] 
Heavy petroleum fraction [105, 106] 
Crude oils from Ceará Basin [107] 
Biodegradation of oils [108-110]  
Depositional paleoenvironmental conditions [111-113] 
Maturation of oils [114] 
Trace analysis [115] 
Modified white gasoline [116] 
Higher plant biomarkers in oils and rock extracts [101] 
Marine diesel fuel [117] 
Petroleum contaminated sediment [98] 
Sulfur compounds in diesel oils [118] 

 

In oil research, Fourier transform ion cyclotron resonance mass spectrometry (FT-

ICR-MS) is also an important instrument, which has been commonly used to analyze 

polar crude oil fraction or whole oil [119, 120]. In FT-ICR, without chromatographic 

separation, the geochemical evaluation is conducted based on accurate mass data, which 

can be used to determine the chemical compositions of each mass peak observed [121, 

122]. However, the isomers with the same chemical composition are not distinguished. 

An interesting compound group present in all crude oils are biomarkers that originate 

from living organisms which populated the earth a long time ago. They reflect different 

kinds of initial organic input material, environmental and diagenesis conditions, 

maturation and biodegradation during the crude oil formation process [123, 124]. 

Crude oil contains many isomeric hydrocarbons and the examples of important 

studies where isomers have been separated by GC×GC are illustrated in Table 3. Many 

of these isomers share the same retention time in 1D, and also share the same exact 

mass. These co-eluting isomers can be separated sometimes in 2D, for example C24 

tricyclic terpane and C24 demethylated tricyclic terpane, and C30R 25-norhomohopane 
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and C30 hopane are separated [108]. In some cases isomeric compounds have an 

increase in retention time in both 1D and 2D, for example the isomers of alkyl 

tetramantane [114]. The most important factors for isomer separation in GC×GC are the 

different properties of the stationary phase of the columns used.  

 

Table 3 Examples of studies where isomers have been separated in petrochemical 
samples with GC×GC.  
Isomers GC×GC column Ref 
C19–C24 tricyclic terpanes *HP-5 and BPX-50 [112] 

C27-C29 steranes *HP-5 and BPX-50 [112] 

C31-C35 hopane *HP-5 and *BPX-50 [108, 112] 

Oleanane *HP-5 and *BPX-50 [124] 

Alkyl tetramantanes *HP-5 and *BPX-50 [114] 
Branched alkanes *HP-1 and BPX-1701 [98, 117] 
Alkylcycloalkanes *HP-5 and BPX-50 [125] 
Dibenzothiophenes *HP-5 and BPX-50 [113] 
Triaromatic streroids *HP-5 and BPX-50 [113] 

Alkylpyrenes *HP-5 and BPX-50 [104] 
* The column where separation of isomers occurred. 
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1.2 Aims of the study 

 

The first part of the thesis discusses a negative mobility standard for IMS (Paper I), 

the separation of different ion structures with IMS (Paper II) and the factors affecting 

the separation of isomers in linear drift tube IMS (Papers I-III). The second part of the 

thesis discusses the geochemical assessment of Recôncavo Basin, Brazil (Paper IV) and 

new biomarkers detected with GC×GC-TOF-MS in Brazilian crude oils (Paper V).   

 

The specific aims of the thesis were the following: 

- Search for new negative IMS mobility standard by analysing sterically 

hindered phenols with negative APCI-IMS (Paper I) 

- Separate different ion structures of pyridine and naphthol compounds with 

positive APPI-IMS (Paper II)  

- The capability of IMS to separate isomers was studied with two phenolic 

(Paper I), two naphthol (Paper II) and eight amine (Paper III) isomers.  

- During the analysis, new peaks were observed in the IMS spectra. MS was 

applied to the study of the identity of these peaks (Papers I-III) 

- Distinguishing minor geological differences in the Recôncavo Basin (oil 

field), Brazil, with GC×GC-TOF-MS using β-carotane and other biomarkers 

(Paper IV) 

- Geochemical evaluation of selected Brazilian crude oils with GC×GC-TOF-

MS. Novel biomarkers were detected during the analysis and their tentative 

identification and geochemical significance were studied (Paper V). 
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2. EXPERIMENTAL 
 

2.1 Chemicals 

 

The solvents and gases used in the thesis are presented in Table 4, the analytes in 

Table 5 and analyte structures in Figures 5 and 6. All the analytes in the IMS 

experiments (Papers I-III) were first dissolved in solvents, according to Table 4, to 

achieve 5 mM stock solutions, which were further diluted to give 50 µM, 100µM and 

500 µM working concentrations. The isomeric amines studied in Paper III (Figure 6) 

were diluted further with methanol:toluene (95:5%) to give 50 and 100 µM solutions 

and following mixtures were prepared: Mix A (2,4,6-Col, N,N-DMA, n-M-o-T and 2-

MBA), Mix B (PEA, 4-EA and 2,6-DtBPyr) and Mix C (2-, 3-, 4-MBA, and 2,6-

DtBPyr). 

 

Table 4. The solvents and gases used in this thesis. 
Solvent / gas Purity Manufacturer Paper 
Acetonitrile  Lab-Scan, Dublin, Ireland I 
n-Hexane >95% Poch SA, Gliwice, Poland I & II 
n-Pentane >99% Fluka, Steinheim, Germany II 
Methanol HPLC grade Baker, Deventer, Holland II 
Toluene HPLC grade Lab-Scan, Dublin, Ireland II 
Toluene HPLC grade Baker, Deventer, Holland III 
Methanol HPLC grade Lab-scan, Dublin, Ireland III 
Dichloromethane, n-
hexane and 
methanol 

Chromatographic 
grade Tedia, Rio de Janeiro, Brazil IV & V 

Nitrogen NGLCMS20 nitrogen 
generator 99.5% 

 Labgas Instrument Co., 
Espoo, Finland I-III 

Bottled air (80% N2, 
20% O2) 4.0 AGA Ltd., Espoo, Finland I 
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Table 5. The standards used in this thesis. All the standards were purchased from 
Sigma-Aldrich (Steinheim, Germany) unless otherwise stated. 

Paper I Abbreviation Solvent / dopant Purity 
(%) 

2-tert-Butylphenol 2-tBPh Hexane >99 
2,4-Di-tert-butylphenol 2,4-DtBPh Hexane >99 
2,6-Di-tert-butyl-4-
methylphenol 2,6-DtB-4-MPh Hexane >99 

2,4,6-Tri-tert-butylphenol 2,4,6-TtBPh Hexane >98 
2,4,6-Trinitrotoluenea 2,4,6-TNT Acetonitrile 99 
2,6-Di-tert-butylpyridine 2,6-DtBPyr Hexane >97 
Paper II    

Pyridineb  Hexane and 
hexane:toluene (90:10%) >99.5 

1-Naphthol  Hexane and 
hexane:toluene (90:10%) >97 

2-Naphthol  Hexane and 
hexane:toluene (90:10%) >97 

2-tert-Butylpyridine 2-tBPyr Hexane and 
hexane:toluene (90:10%) >97 

2,6-Di-tert-butylpyridine 2,6-DtBPyr Hexane and 
hexane:toluene (90:10%) >97 

2,6-Di-tert-butyl-4-
methylpyridine 2,6-DtB-4-MPyr Hexane and 

hexane:toluene (90:10%) >98 

Paper III    
2,4,6-Collidineb 2,4,6-Col Methanol:toluene (95:5%) >99 
N,N-Dimethylaniline  N,N-DMA Methanol:toluene (95:5%) >99.5 
N-methyl-o-Toluidine n-M-o-T Methanol:toluene (95:5%) >95 
2-Phenethylamine PEA Methanol:toluene (95:5%) >99 
4-Ethylaniline 4-EA Methanol:toluene (95:5%) >98 
2-Methylbenzylamine 2-MBA Methanol:toluene (95:5%) >96 
4-Methylbenzylamine 4-MBA Methanol:toluene (95:5%) >97 
3-Methylbenzylamine 3-MBA Methanol:toluene (95:5%) >98 
2,6-Di-tert-butylpyridine 2,6-DtBPyr Methanol:toluene (95:5%) >97 
Papers IV-V 
n-tetracosane-D50

c  Dichloromethane >98% 
pyrene-D10

c  Dichloromethane  
a Supelco (Bellefonte, PA, USA), b Merck (Darmstadt, Germany) and c Cambridge 
Isotope Laboratories, Andover, MA, USA. 
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Figure 5. Compounds studied with IMS in Papers I and II. a = also studied in Papers I 
and III (modified from ref. [127]). 
 
 
 

Figure 6. Isomeric amines studied with IMS in Paper III. 
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2.2 Oil fractioning (Papers IV-V) 

 

The procedure for fractioning 20 crude oil samples in Paper IV was adopted from 

ref. [128]. Briefly, the LC fractionation was conducted by using a vertical glass column 

in atmospheric pressure to separate saturated, aromatic and polar fractions from crude 

oil. Approximately 100 mg of each oil sample was weighed with a calibrated analytical 

balance (± 0.1 mg) and dissolved in 500 µL of a dichloromethane solution with internal 

standard n-tetracosane-d50 at a concentration of 100 µg L-1. This sample solution was 

placed on the top of a glass column (dimensions 13 × 1 cm) packed with 3 g of Silica 

Gel 60 (particle size from 0.063 to 0.200 nm, Merck, Darmstadt, Germany), which was 

previously purified with hexane and activated in an oven at 120 °C for 12 hours. The 

samples were eluted into different fractions in the following order; saturated 

hydrocarbons with n-hexane (10 mL), aromatic hydrocarbons with n-

hexane:dichloromethane (80:20%, 10 mL) and polar compounds with 10 mL of 

dichloromethane:methanol (90:10%, 10 mL). The fractions were collected in 50 mL 

flasks, and the solvent was evaporated by a rotary evaporator under reduced pressure. 

Each fraction was then transferred to a 2 mL vial (pre-weighed) using dichloromethane, 

which was subsequently evaporated under a nitrogen gas flow (from bottle), after which 

the vial was weighed again. In the Paper V the 11 crude oil samples crude oils, from the 

north to the south regions of Brazil, were pre-fractionated to saturated hydrocarbon and 

aromatic fractions by CENPES (Centro de Pesquisas e Desenvolvimento Leopoldo 

Américo Miguez de Mello, Rio de Janeiro, Brazil). They were also classified by 

CENPES using proprietary classifying methods (Table 1). 

 

2.3 Separation of n-alkanes from branched and cyclic saturated hydrocarbons by 

urea adduct formation (Papers IV-V) 

 

In order to separate n-alkanes from branched (B) and cyclic (C) saturated 

hydrocarbon in the saturated hydrocarbon fraction, urea adducts of n-alkanes were 

formed, as has previously been presented in references [128, 129]. The saturated 

hydrocarbon fraction was dissolved in 1000 µL of n-hexane and a 500 µL aliquot was 

transferred to a test tube of 18×180 mm. 1 mL of acetone and 1 mL of n-hexane were 

added to the test tube, and the mixture was vortexed. To prepare a saturated solution of 
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urea, 30 g of urea was dissolved in 100 mL of methanol. The solution was stored in a 

refrigerator at 8 ° C. 1 mL of the saturated urea solution was added slowly to the test 

tube containing the saturated hydrocarbon fraction, and the immediate precipitation of 

urea crystals was observed. The test tube was heated in a water bath at 50 ° C to 

dissolve all the crystals and then cooled to room temperature for recrystallization of the 

urea. The crystallization was terminated in a freezer at -20 °C for 12 hours. After this, 

the solvent was evaporated under a nitrogen flow to obtain dried crystals, which were 

rinsed five times with 2 mL of n-hexane. The supernatant containing the B/C fraction, 

was transferred into a 30 mL balloon. The solvent was evaporated under reduced 

pressure and the urea crystals were dissolved in distilled water. To obtain the branched 

and cyclic hydrocarbon (B/C) fractions, liquid-liquid extraction of urea crystals was 

carried out with 2 mL of n-hexane. The organic layer was transferred to a 30 mL flask 

with a Pasteur pipette. This extraction step was repeated five times. The solvent was 

evaporated under reduced pressure and the B/C fraction was transferred to a previously 

weighed 2 mL vial and weighed again. The residue was dissolved in 500 µL of 

dichloromethane. 
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2.4 Ion mobility spectrometry instrumentation (Papers I-III) 

 

Measurements with IMS were conducted with a custom-made cylinder drift tube ion 

mobility spectrometry attached to a Sciex API300 triple quadrupole MS (Applied 

Biosystems-SCIEX, Concord, Ontario, Canada), which is referred to as IMS-MS 

(Figure 8), and with a similar drift tube attached to a faraday plate detector, which is 

referred to as IMS-FP. A more detailed description of these instruments can be found 

elsewhere; IMS-MS [44] and IMS-FP [29]. Briefly, both drift tubes have a similar 

design and the ion sources used in this study could be applied in both of the IMS 

instruments. The measurement parameters are summarized in Table 6.  

 

 

Figure 8. IMS connected to API300 MS (A) and to faraday plate detector (B): (1) ion 
source, (2) IMS drift tube, (3) control unit for IMS, (4) Sciex API300 triple quadrupole 
MS and (5) faraday plate (modified from ref [127]). 
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Table 6. Summary of IMS and MS parameters used in the study. The drift gas was 
nitrogen in all experiments, except in Paper III some of the experiments were carried 
out by using gas mixtures with varying proportions of nitrogen:argon and 
nitrogen:helium.  
 Parameter (Paper I) (Paper II) (Paper III) 
MS    
Declustering potential (V) 15-25 20-30 5 
Focusing potential (V) 180-200 130-220 130 
Entrance potential (V) 5 
IMS-MS    
Drift length (cm) 13.3 
Desolvation length (cm) 7.65 
Drift flow (L/min) ~2.4 
Gate opening time (µs) 300 
Drift field (V/cm) 270-378 316-363 316 
Desolvation field (V/cm) 230-260 272-303 304 
Reflector plate in APPI 
experiments (kV)  0.8-1.6 1 

Needle voltage1 (V) 1.3-1.5   
Needle voltage2 (V) 1.7-2.2   
IMS-FP    
Drift length (cm) - 13.85 
Desolvation length (cm) - 7.65 
Dirft flow (L/min) - 2.1 1.9-2.5 
Gate opening time (µs) - 100 200 
Drift field (V/cm) - 378 316 
Desolvation field (V/cm) - 378 316 
Reflector plate in APPI 
experiments (kV) - 2 

Needle volt. APCI (V) -  2.0-2.2 
1 nebulizer gas was nitrogen, 2 nebulizer gas was air (80:20 nitrogen:oxygen). 

 

The IMS-MS instrument was operated either at full scan mode, typically a mass range 

of m/z 30-300 or 50-500, or with selected ion monitoring (SIM) mode. In the MS full 

scan mode, both B-N gates in the IMS were open, and in SIM mode the gates were 

pulsed to obtain a mobility window, which is described in more details [44]. The drift 

times of two ions were typically monitored simultaneously. The gates and voltage of 

IMS were controlled by a LabVIEW (National Instruments, Austin, US) based on a 

custom-made program, and the data was collected with Analyst 1.4.1 (Applied 

Biosystems/MDS SCIEX, Concord, ON, Canada). The data was further processed with 

Microsoft Excel 2002 (Microsoft Corporation, Redmond, WA, USA) applying Equation 
31 

 

(4) to calculate reduced mobilities. The IMS-FP instrument was operated with one B-N 

gate. A similar custom-made program as used in IMS-MS was also used to control the 

IMS-FP instrument and data processing to combine 2000 mobility spectra together. The 

data was further processed in ChemStation rev. 10.02 (Agilent Technologies, Inc., Palo 

Alto, CA, USA) with custom-written macros to calculate reduced mobility values. 

A custom-made heated nebulizer was used to transfer the liquid sample to gas phase 

[29, 43, 130]. A syringe pump was used to deliver the liquid sample flow at a steady 

speed of typically 120-180 µL/h to the nebulizer (nitrogen or air) gas flow. 

The nitrogen gas for the nebulizer and drift gas was produced from compressed air 

and is described in Papers I and II. Additional measurements in Paper I were conducted 

using bottled air (80:20 % nitrogen:oxygen) as the nebulizer gas. Mainly, all the 

experiments were carried out nitrogen being the drift gas. Only some of the experiments 

in Paper III were carried out by using gas mixtures of nitrogen:argon and 

nitrogen:helium. All the measurements were conducted at ambient pressure, which was 

monitored with a pressure meter (Series 902; MKS Instrument, Andover, MA, USA). 

 

2.5 Temperature of ion mobility drift tube (Paper I) 

 

Most of the experiments were performed at room temperature, and when the drift tube 

was heated the temperature was calculated using 2,6-di-tert-butylpyridine as a 

thermometer compound. Briefly, since 2,6-DtBPyr is a sterically hindered and inert 

molecule, it has linear temperature dependence [12]. Taking into account that the 

mobility of a compound is proportional to temperature (Equation 4) when other 

parameters except T and td are constant, the Equation 4 can be reduced to Equation 5: 









T
K 273      (5) 

Where K is the mobility of 2,6-DtBPyr. 

The mobility value of 2,6-di-tert-butylpyridine without temperature and pressure 

correction measured in our laboratory, K2,6-DtBPyr = 1.63 cm2/Vs, at the room temperature 

(296 K). This was used as the calibration point for the calculations for the temperature 

range (296-335K) of the IMS drift tube. 
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(4) to calculate reduced mobilities. The IMS-FP instrument was operated with one B-N 
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2.5 Temperature of ion mobility drift tube (Paper I) 
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was heated the temperature was calculated using 2,6-di-tert-butylpyridine as a 
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T
K 273      (5) 

Where K is the mobility of 2,6-DtBPyr. 

The mobility value of 2,6-di-tert-butylpyridine without temperature and pressure 

correction measured in our laboratory, K2,6-DtBPyr = 1.63 cm2/Vs, at the room temperature 

(296 K). This was used as the calibration point for the calculations for the temperature 

range (296-335K) of the IMS drift tube. 
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2.6 Two-dimensional gas chromatography – time-of-flight mass spectrometry 

instrumentation (Papers IV-V) 

 

The GC×GC-TOF-MS analyses were performed using the same instrumental setup as 

in the references [112, 131] using a Pegasus 4D (Leco, St. Joseph, MI, USA) GC×GC-

TOF-MS, composed of an Agilent 6890 GC (Palo Alto, CA, USA) equipped with a 

secondary oven, a cryogenic modulator which uses liquid nitrogen for the cold jet and a 

Pegasus III (Leco, St. Joseph, MI, USA) TOF-MS (Figure 7). A DB-5 column (Agilent 

Technologies, Palo Alto, CA, USA), containing 5% phenyl–95% methylsiloxane (30 m, 

0.25 mm i.d., 0.25 µm df) was used as the first dimension column (1D). A BPX-50 

column (SGE, Ringwood, VIC, Australia), containing 50% phenyl–50% methylsiloxane 

(1.5 m, 0.1 mm i.d., 0.1 µm df) was used as the second dimension column (2D). The 2D 

column was connected to the TOF-MS inlet by a 0.5 m x 0.25 mm i.d. uncoated 

deactivated fused silica capillary, SGE mini-unions and Siltite™ metal ferrules of 0.1–

0.25 mm i.d. (Ringwood, VIC, Australia). 
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Figure 7. Modified GC oven: (1) 1D GC column, (2) added 2D oven and the 2D GC 
column and (3) cryogenic modulator between the two columns (A and B are tubes for 
cold and hot jets); in the small figure (3) the cryogenic modulator is rotated 90° towards 
the door of the GC oven.  

 

The GC conditions for the 1D include: splitless injection of 1 µL at 290 ºC, purge time 

of 60 s, and purge flow of 5 mL/min. Helium was used as the carrier gas at a constant 

flow rate of 1.5 mL/min. The primary oven temperature program began at 70 ºC for 1 

min, and was then increased to 170 ºC at 20 ºC/min, and further to 325 ºC at 2 ºC/min. 

The secondary oven temperature program was 10 ºC higher than the primary one. The 

modulation period was 8 s with a 2 s cold and hot pulses, and the cryogenic modulator 

temperature was set 30 ºC higher than the primary GC oven temperature program. The 

transfer line to the MS was set at 280 ºC, the electron energy in electron ionization (EI) 

was 70 eV, the mass range was m/z 50–600 and the ion source temperature 230 ºC. The 

detector was always set +50 V above the daily measured auto-tune value, and the 

acquisition rate was 100 spectra/s. Compound identification was performed by a 

comparison of mass spectra, retention time and elution order with data published in the 

literature. 
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2.8 Principle component analysis (Papers IV-V) 

 

The software package Statistica 8 (Statsoft Inc.) was used in all statistical calculations 

in this work. Principal Component Analysis (PCA) was based on the covariance matrix. 

All variables were mean centered and scaled by the sample standard deviation. 42 

geochemical parameters from 20 samples reported in Tables 10 and 11 (Paper IV) were 

used to create a matrix of the petroleum system in Recôncavo Basin. 42 parameters of 

maturity and source from 11 samples reported in Tables 12 and 13 (Paper V) were used 

to study correlations. Also these same 11 samples were evaluated by analysis of 101 

normalized peak areas: area of compounds / area of internal standard (Ac/Ais). 

 

3. RESULTS AND DISCUSSION  

 

3.1 Behavior of sterically hindered phenols in IMS-MS (Paper I) 

 

In Paper I, gas phase mobility properties of phenolic compounds with varying 

numbers of tert-butyl groups were studied with negative APCI-IMS-MS to determine 

their suitabilities as mobility standards (Figure 5). 2,4,6-trinitrotoluene was also 

included in this study as it has been used previously as a reference compound [18], and 

its behavior has been studied in more detail after our study [31]. The same set of 

phenolic compounds as used in this study has not been reported earlier in IMS literature.  

The measured mass spectrometric data show that all the compounds produced 

deprotonated [M-H]- molecules. In the negative ion APCI mass spectra measured for 2-

tBPh an oxygen insertion ion [M-H+O]- at m/z 165 was observed, in addition to the [M-

H]- ion at m/z 149. When air was used as the nebulizer gas, instead of nitrogen, this 

oxygen insertion ion was observed more clearly. A similar observation was made for 

2,4,6-TNT, since the oxygen adduct [M+O]- ion at m/z 243 was seen more clearly when 

the nebulizer gas was air. Table 7 illustrates other typical ions produced by 2,4,6-TNT: 

[M-NO]- at m/z 197, [M-H]- at m/z 226, M- at m/z 227, and with a lower intensity [M-

OH]- at m/z 210. All these 2,4,6-TNT ions observed are in line with ions reported in the 

literature [17, 31, 132]. In addition, ions at m/z 183 and 213 were observed sometimes 

in full scan MS spectra in the presence of the oxygen adduct ion. The formation of these 

ions could therefore be due to loss of one or two NO groups from the oxygen adduct 
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ion. However, in a recent article it was reported that the ion at m/z 213 is 1,3,5-

trinitrobenzenanion, which is produced in the degradation of 2,4,6-TNT by ozone in an 

APCI ion source [133]. With the current data, it is not possible to conclude which 

explanation is correct.  

The absolute reduced mobilities of selected identified analyte ions, at room 

temperature, are summarized in Table 7. Analytes produced more than one mobility 

peak due to dimerization or adduct formation. The variations in mobility values were 

typically <2%. The reduced mobility value of 2,4,6-TNT ion [M-H]- is within 2% 

agreement with values presented at the literature [31]. 

 

Table 7. Summary of reduced mobilities K0 (cm2/Vs) measured with negative APCI-
IMS-MS with nitrogen as the nebulizer gas. The standard compounds were dissolved in 
hexane, unless otherwise stated. The numbers represent the peak numbers in the 
order they appear in the mass-selected mobility spectra. The structures of the standard 
compounds are presented in Figure 5 (adapted from Paper I). 

Compound Mass 
(u) Ion formula Measured 

ion, m/z 
1st 
(K0) 

2nd 
(K0) 

3rd 
(K0) 

4th 
(K0) 

2-tBPh  150 [M-H+O]- 165a 1.63 1.13b    
[M-H]- 149 1.63 1.53 1.14b  

2,4-DtBPh  206 [M-H]-  205 1.34 1.29   
2,6-DtBPh  206 [M-H]- 205 1.43 1.37   
2,6-DtB-4-MPh  220 [M-H]- 219 1.36 1.29   
2,4,6-TtBPh  262 [M-H]- 261 1.23 1.18   

2,4,6-TNT  227 

[M+O]- 243a,c 1.53    
M- 227c 1.58d 1.53 1.35  

[M-H]- 226c 1.58 1.48 1.36  
[M-OH]- 210c 1.53    
[M-NO]- 197c 1.64 1.53 1.42 1.36 

a nebulizer gas was air; b dimer; c solvent ACN; d most likely the 13C isotope peak of the 
ion at m/z 226 

 

The compounds 2,6-DtBPh (Figure 9A), 2,6-DtBP-4-MPh and 2,4,6-TtBPh showed 

similar mobility peak patterns with two relatively large mobility peaks (Table 7). One 

requirement for the IMS instrumental standard is that the mobility value is independent 

of the IMS drift field. Therefore in our study, the variation in drift field (270-344 V/cm) 

was also tested for these three phenolic compounds. It was observed that all the reduced 

mobility values remained the same within the experimental error. However, the 

temperature variation (296-335 K) study done for 2,6-DtBP-4-MPh and 2,4,6-TtBPh 

showed that the intensity of the peak with a higher mobility value (1st peak in Table 7) 
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increased when the temperature increased. This is an indication that at least the lower 

mobility peak (2nd peak in Table 7) is an adduct ion, for example an adduct with O2 or 

NOx. However, no adducts were observed in the measured mass spectra. This is likely 

as they dissociate in the MS interface. 

 

 
Figure 9. Negative APCI-IMS-MS mass-selected ion mobility spectrum of (A) [M-H]- ion 
of 2,6-DtBPh at m/z 205, (B) [M-H]- and [M-H+O]- ions of 2-tBPh at m/z 149 (solid line) 
and m/z 165 (dotted line), respectively, (C) [M-NO]- and [M-H]- ions of 2,4,6-TNT at m/z 
197 (2nd peak is marked with asterisk, dotted line) and m/z 226 (solid line), respectively. 
The measurements were carried out in room temperature (296 K) using nitrogen as the 
drift and nebulizer gases (A, C) and using nitrogen as the drift gas and air as the 
nebulizer gas (B). # most likely the analyte dimer.  
 

The mass selected mobility spectra of the [M-H]- ion of 2-tBPh typically showed 

three peaks; one (2nd, Table 7, Figure 9B) peak due to the deprotonated molecule at m/z 

149, another peak (1st, Table 7, Figure 9B) due to the oxygen insertion ion [M-H+O]- at 

m/z 165 and the third one (3rd, Figure 9B, marked with #) most likely due to the analyte 

dimer. In tandem mass spectrometric measurements the oxygen insertion ion at m/z 165 

produced an ion at m/z 149 as a product ion (results not shown). Interestingly, the 
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oxygen insertion ion had a higher mobility than the lighter [M-H]- ion. This could be 

due to the fact that the [M-H]- ion exists initially as an adduct (e.g. O2 or NOx), which 

subsequently breaks down into the [M-H]- ion in the MS interface. An alternative 

explanation is that by the oxygen insertion a –OH group is formed in the ortho-position 

of the oxygen atom allowing for the formation of an internal hydrogen bond. Due to 

this, the internal hydrogen bond is shielding the charge, resulting in a decreased 

interaction of the [M-H+O]- ion with the drift gas compared to the [M-H]- ion. 

The two isomeric compounds, 2,4- and 2,6-DtBPh, both had two mobility peaks in the 

mass-selected ion mobility spectrum of the [M-H]- ion at m/z 205. As can be seen from 

Table 7, there is a clear difference, of about 0.1 units, in the reduced mobility values of 

both peaks when the mobility values of these two isomers are compared. This could be 

because, in the case of the ionized 2,4-DtBPh, the charge is exposed more to 

interactions with the drift gas than in the case of 2,6-DtBPh, which has two tert-butyl 

groups shadowing the ionization site (Figure 5). It was later observed that 2,4-DtBPh 

also formed a small quantity of dioxygen adduct [M+O2]- ions at m/z 238, which had the 

same reduced mobility (K0 = 1.29 cm2/Vs) as the second mobility peak of [M-H]- ion 

[134]. This indicates that the dioxygen adduct [M+O2]- is initially present in the 

ionization chamber and is broken down after the IMS analysis to form an [M-H]- ion. 

2,4,6-TNT produced several mass-selected mobility peaks (Table 7). The [M-H]- ion 

at m/z 226 showed three mobility peaks, of which the 1st peak (K0 = 1.58 cm2/Vs) had 

the highest intensity (Figure 9C). The [M-NO]- ion at m/z 197 produced four mobility 

peaks, of which the 1st and the 2nd (K0 = 1.64 cm2/Vs and K0 = 1.53 cm2/Vs, 

respectively) were the most intense. Interestingly, the 2nd mobility peak of [M-NO]- ion 

(marked with an asterisk in Figure 9C) shared the same mobility with [M-OH]- at m/z 

210, M- at m/z 227 and [M+O]- at m/z 243. This could be because in the drift tube the 

precursor ion [M+O]- moves across the drift region, forming the rest of the ions (m/z 

197, m/z 210 and m/z 227) at the MS interface after the IMS separation. Note, that even 

though the mass difference of the [M-H]- and the M- ions at m/z 226 and m/z 227, 

respectively, is only one mass unit, the mobility difference (K0 = 1.58 cm2/Vs and K0 = 

1.53 cm2/Vs, respectively) is relatively large. This supports the interpretation that the M- 

ion originates from the oxygen adduct ion [M+O]-. Also the mass difference between 

[M-H]- and [M+O]- ions is large enough to explain the mobility difference. 
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In summary, two isomeric phenols, 2,4-DtBPh and 2,6-DtBPh, could be separated 

with IMS-MS. Three of the phenols, namely 2,6-DtBPh, 2,6-DtB-4-MPh and 2,4,6-

TtBPh, produced typically two mobility peaks in the mass-selected mobility spectra 

measured for the [M-H]- ion. These three phenolic compounds behaved similarly under 

different measuring conditions and they could be used as instrumental standards 

alongside with 2,4,6-TNT. Further characterization is still required for example at 

higher drift tube temperatures. 
 

3.2 Separation of different ion structures with IMS (Paper II) 

 

The aim of the study in Paper II was to investigate the capacity of IMS to separate 

different ion structures of pyridine and naphthol compounds (Figure 5) in the gas phase. 

The ionization conditions in APPI were selected so that different ion structures, radical 

cation M+· and protonated molecule [M+H]+ ions, could be created for the same 

molecule. The MS literature has examples of how APPI can be used to produce 

different ion forms by altering the solvent and / or the dopant [36, 135, 136].  

When the analytes (Figure 5) were dissolved in hexane, APPI produced mainly 

protonated molecules [M+H]+ at m/z 145, 145, 192 and 206 for 1- and 2-naphthol, 2,6-

DtBPyr and 2,6-Dt-4-BPyr, respectively. However, when the analytes were dissolved 

into hexane:toluene (90:10%) they also produced radical cations M+· (m/z 144, 144, 191 

and 205). In the case of 2,6-DtBPyr and 2,6-Dt-4-BPyr, the M+· ions were observed 

together with unexpected dioxygen adducts [M+O2]+· at m/z 223 and m/z 237, 

respectively. Product ion mass spectra for the M+· and [M+O2]+· ions of 2,6-DtBPyr and 

2,6-DtB-4-MPyr produced similar fragment ions, expect that for the [M+O2] +· ion the 

first fragmentation step was the loss of O2. For pyridine and 2-tBPyr, both solvents 

efficiently produced only protonated molecules at m/z 80 and 136, respectively. In 

addition to the [M+H]+ ion, pyridine produced also a [M+91]+ ion at m/z 170, when 

hexane:toluene (90:10%) was used as the solvent. Further tandem MS inspections of the 

[M+91]+ ions structure indicated that it could be a benzyl cation adduct of pyridine. 

In the next step, the absolute reduced mobilities of most of the identified analyte ions 

were recorded (Table 8). The mobility values for the analyte ions, obtained with hexane 

and hexane:toluene (90:10%) solvents, were the same. The repeatability of the mobility 

measurements was evaluated by measuring the mass-selected reduced mobility values 
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for the [M+H]+ ion of 2,6-DtBPyr in hexane, because it has been previously used as a 

mobility standard [12]. The relative standard deviation for 2,6-DtBPyr was 0.7% (n = 

13, K0 = 1.49 cm2/Vs).  

Pyridine produced two main (1st and 2nd, Table 8) mobility peaks for the [M+H]+ ion 

with K0 = 2.04 (monomer) and 1.69 cm2/Vs (dimer), when hexane was used as the 

solvent. Interestingly, the use of hexane:toluene (90:10%) as the solvent produced an 

additional 3rd peak at K0 = 1.63 cm2/Vs at m/z 80 with nearly the same mobility (1.64 

cm2/Vs) as for the [M+91]+ ion at m/z 170. This is in line with the earlier tandem MS 

findings, suggesting that the m/z 170 ion is a benzyl cation adduct which is formed in 

the desolvation or ionization region of the IMS. 2-tBPyr produced a single mobility 

peak (K0 = 1.73 cm2/Vs) for the [M+H]+ with both hexane and hexane:toluene (90:10%) 

solvents. 

 

Table 8. Summary of the reduced mobilities K0 (cm2/Vs) measured with positive APPI-
IMS-MS. The standard compounds were dissolved in hexane or hexane:toluene 
(90:10%) and the values shown are based on measurements with both solvents. The 
numbers represent the peak numbers in decreasing mobility order. The structures of 
the standard compounds are presented in Figure 5 (adapted from Paper II). 

Compound Mass 
(u) 

Ion formula Measured ion, 
m/z 1st (K0) 2nd (K0) 3rd (K0) 

Pyridine  79 
[M+H]+ 80 2.04 1.69a 1.63b 
[M+91]+ 170b 1.64     

2-tBPyr  135 [M+H]+ 136 1.73     

2,6-DtBPyr  191 
M+• 191b 1.45     

[M+H]+ 192 1.50 1.45b,c   
[M+O2]+• 223b 1.45     

2,6-DtB-4-MPyr 205 
M+• 205b 1.38     

[M+H]+ 206 1.42 1.38b,c   
[M+O2]+• 237b 1.39     

1-Naphthol 144 
M+• 144 1.72     

[M+H]+ 145 1.68 1.50d 1.32d 

[M+H+10]+ 155 1.68   

2-Naphthol  144 
M+• 144 1.73   

[M+H]+ 145 1.67 1.50d 1.32d 

[M+H+10]+ 155 1.67     
a dimer, b peaks observed clearly only in hexane:toluene (90:10%), c most likely 13C 
isotope peak of the m/z 191 or 205 ions, and d minor peaks which are observed 
sporadically. 
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In summary, two isomeric phenols, 2,4-DtBPh and 2,6-DtBPh, could be separated 
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2,6-DtBPyr and 2,6-DtB-4-MPyr behaved similarly in the IMS analysis, and the 1st 

mobility peaks of their protonated molecules had higher mobilities (K0 = 1.50 and 1.42 

cm2/Vs, respectively) than the peaks of their radical cations (K0 = 1.45 and 1.38 cm2/Vs, 

respectively, Figure 10A). Their dioxygen adducts [M+O2]+· had the same mobilities as 

the radical cations (K0 = 1.45 and 1.39 cm2/Vs, within experimental error, Figure 10B). 

The mass difference for the protonated molecules and the dioxygen adducts could 

explain the mobility difference. 

 

 
Figure 10. Positive ion APPI mass-selected mobility spectra of 2,6-DtBPyr dissolved in 
hexane:toluene (90:10%). (A) M+· at m/z 191 (dotted line) and [M+H]+ at m/z 192 (solid 
line). (B) M+· (dotted line) and [M+O2]+· (solid line) at m/z 191 and m/z 223, respectively, 
shared the same mobility [127]. 
 

Interestingly, the radical cations of 1- and 2-naphthol at m/z 144 had higher mobilities 

(K0 = 1.72 and 1.73 cm2/Vs) than their protonated molecules at m/z 145 (K0 = 1.68 and 

1.68 cm2/Vs, Table 8). However, in the case of 2,6-DtBPyr and 2,6-DtB-4-MPyr the 

M+· had lower mobilities due to the formation of dioxygen adducts. This is because the 

[M+H]+ ions of 1- and 2-naphthol interact more with the residual water in the drift gas 

than the M+·, as similarly reported for anilines [74]. Additional support for our results is 

given by Fernández-maestre et al. who showed that the reduced mobility of [M+H]+ ion 

of 2,6-DtBPyr is independent of the water concentration in the drift gas [15].  

Additional mobility measurements were done for 2,6-DtBPyr with an APPI-IMS-FP 

instrument. These measurements showed the same mobility peaks for 2,6-DtBPyr as in 

the IMS-MS measurement, as well as an reaction ion peak (RIP). Typically, a FP 

detector measures all the ions, and therefore also a RIP is seen. With IMS-MS, the 

mobilities are measured only for selected analyte ions, and therefore a RIP is not seen. 
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A RIP is not necessarily observed with IMS-FP instruments either, for example 

Borsdorf et al. [70, 74] does not report a RIP in his APPI-IMS studies. This could be 

due to different sample introduction methods and ionization conditions. Borsdorf et al. 

introduced the analytes directly into the gas phase by heating the pure analytes without 

dissolving them in solvents. However, in our studies the analytes were introduced to the 

ionization chamber along with the solvent and / or dopant. 

To summarise, depending on the ionization conditions, 2,6-DtBPyr and 2,6-DtB-4-

MPyr efficiently produced both radical cations M+· and protonated [M+H]+ molecules. 

The radical cations M+· had longer drift times. Further analysis revealed the presence of 

dioxygen adduct ions [M+O2]+·, which also had the same mobility as the radical cations 

M+·. Since 2-tBPyr does not produce the dioxygen adduct, its formation is likely to be 

dependent on the presence of two tert-butyl groups on both sides of the nitrogen 

“locking” the dioxygen in the middle. In cases of 1- and 2-naphthols, the radical cations 

M+· had higher mobilities than the protonated molecules [M+H]+, which is opposite to 

2,6-DtBPyr and 2,6-DtB-4-MPyr. The [M+O2]+· formation of the M+· ions of 2,6-

DtBPyr and 2,6-DtB-4-MPyr increases the mass, and therefore both M+· and [M+O2]+· 

ions have lower mobilities than the [M+H]+ ions. 

  

3.3 Separation of isomeric amines with IMS-FP (Paper III) 

 

The aim of this study was to investigate how structural differences in isomeric 

compounds can affect their separation in IMS. Eight model isomeric amine standard 

compounds (Mr=121, C8H11N, Figure 6 and Table 9) were studied using positive APCI- 

and APPI-IMS-FP instrument. Literature reports mobility values for some of the amines 

used in our study, namely 4-ethylaniline [75], N,N-dimethylaniline [137, 138] and 2,4,6-

collidine [138-140], but the same set of isomeric amines measured in our study was not 

included to the previous studies.  

Mass spectrometric measurements showed that with APCI and APPI ionization 

techniques protonated molecules [M+H]+ at m/z 122 were formed for all the amines. 

2,6-DtBPyr was used as an instrumental standard and its [M+H]+ ion was observed at 

m/z 192. Reduced mobilities of the analytes measured with IMS-FP and some literature 

values are presented in Table 9. The reproducibility of mobility experiments was 
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evaluated using a mobility value for the 2,6-DtBPyr measured with APCI (n = 8, on two 

different days, K0 = 1.47 cm2/Vs), which had a standard deviation of 0.3%.  

Reduced mobility measured with APCI and APPI for 2,4,6-Col is well in line with 

values reported in the literature (1.82 [138, 139] and 1.84 cm2/Vs [140]). The mobility 

differences of N,N-DMA between our experiments and the values reported in the 

literature (Table 9) could be explained by a different drift tube design, different 

ionization conditions, or a higher drift tube temperature (323-473 K) than that used in 

our experiments (296 K). Karpas et al. [137, 138] used a 63Ni β ion source to produce 

[M+H]+ ions, and they reported two different mobility peaks for N,N-DMA. They were 

suspected to be due to different protonation sites in the molecule, i.e., the proton could 

be attached to the N atom or to the ring [137]. In our experiments, we observed only one 

mobility peak for all the amines. In the case of 4-EA one obvious explanation for the 

difference in the reported mobility values is the ion measured, i.e. radical cation by 

Borsdorf et al. [75] and protonated molecule in our study. 

Some amines had distinctly different mobility values, while others shared nearly the 

same mobilities (Table 9). The compound class had an important role in mobility 

values. For instance, compounds with a N-heterocyclic aromatic ring (2,4,6-Col, 1.81 

cm2/Vs), tertiary (N,N-DMA, 1.75 cm2/Vs) or secondary amines (N-M-o-T, 1.70 

cm2/Vs) had the highest mobility values and were separated clearly. The rest of the 

compounds were primary amines, which had lower mobilities (Table 9, Figure 11). It is 

suggested that the protonated -NH2 group (-NH3
+) interacts more with the drift gas, and 

therefore the primary amines had lower mobilities, whereas in tertiary and secondary 

amines the protonated group is more protected from interactions with the drift gas. This 

is a similar “shielding” effect, where two tert-butyl groups of 2,6-DtBPyr are protecting 

the charge in both sides of the protonated nitrogen [12, 15]. Interestingly, PEA and 4-

EA were separated (K0 = 1.62 and 1.58 cm2/Vs, respectively), which could be because 

the protonated PEA forms a “loop” via –NH3
+ interaction with the benzene ring. 

Therefore, it has a “closed” shape and is likely to interact less with the drift gas than the 

protonated 4-EA. The side chain of 4-EA is too short to form a “loop” leaving it with 

the “open” shape. In the IMS literature, protonated diamines and polyamines have been 

reported to form also a “loop” [141].  
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Table 9. Summary of the reduced mobility K0 (cm2/Vs) values for the isomeric amines 
(Mr = 121) and 2,6-di-tert-butylpyridine (Mr = 191) measured with an IMS-FP instrument 
using nitrogen as the drift gas. The mobility values have not been normalized with the 
mobility of 2,6-DtBPyr. The structures of the standard compounds are presented in 
Figure 6 (adapted from Paper III). 

Compound Abbreviation APCI [M+H]+ 
K0 (cm2/Vs) 

APPI [M+H]+ 
K0 (cm2/Vs)  

Literature values 
K0 (cm2/Vs) 

2,4,6-Collidinea 2,4,6-Col 1.81 1.80 1.82 [138, 139], 
1.84 [140], [M+H]+ 

N,N-
Dimethylanilinea  N,N-DMA 1.75 1.75 1.87 [137], 1.81 

[137, 138], [M+H]+ 
N-methyl-o-
Toluidinea n-M-o-T  1.70 1.69  

2-Phenethylamineb PEA 1.62 1.62  
4-Ethylanilineb 4-EA 1.58 1.58 1.77 [75], M+· 
2-
Methylbenzylaminec 2-MBA 1.61 1.61  

4-
Methylbenzylaminec 4-MBA 1.60 1.57  

3-
Methylbenzylaminec 3-MBA 1.60 1.58  

2,6-di-tert-
butylpyridined 2,6-DtBPyr 1.47   

a Measured from Mix A; b Measured from Mix B; c Measured individually; d Measured 
from Mix B and Mix C. 
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Figure 11. Positive APCI ion mobility spectra of mixtures of isomeric amines measured 
with IMS-Faraday plate detector (A, D) 1 = 2,4,6-Col, 2 = N,N-DMA, 3 = n-M-o-T and 4 
= 2-MBA, (B) 5 = PEA and 6 = 4-EA, and (C) Mix = 2-, 3-, and 4-MBA. In (A, C) the drift 
gas was nitrogen and in (D) 33% helium and 67% nitrogen. RIP = reaction ion peak, IS 
= 2,6-DtBPyr and the asterisk (*) indicates possible amine cluster ions.  

 

The most common drift gases are air and nitrogen. The change of the drift gas 

physical properties could result in better separation of the analytes that share the same 

mobility with nitrogen as the drift gas [142]. For example, chloroaniline and iodoaniline 

are not separated when nitrogen is used as drift gas, but when helium is used as drift gas 

they are clearly separated [142]. Therefore, in our experiments the drift gas was 

modified by mixing argon or helium to the nitrogen nitrogen in order to study if 

enhanced separation is obtained. The presence of heavier argon molecules shifted the 

mobilities of all the amines towards lower values, while in the presence of lighter 

helium molecules the mobility shifted towards higher values (Figure 12). Similar trends 

have been reported in the literature, where the mobility of compounds increased when 

helium was used as the drift gas instead of nitrogen, and decreased when argon was 
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used [138, 142]. However, the change of drift gas did not result in better separation of 

the unresolved compounds. 

 

 
Figure 12. Reduced mobility values of isomeric amines measured with positive APCI-
IMS-FP. The drift gas was nitrogen mixed with helium (A) or argon (B) (adapted from 
Paper III). 

 

As a summary, the isomeric amines formed protonated molecules [M+H]+ with both 

ionization techniques: APCI and APPI. 2,4,6-Col, N,N-DMA and n-M-o-T were 

separated clearly from each other with IMS, while the rest of the amines had mobility 

values very close to each other. However, PEA and 4-EA were separated. The major 

explanation for the different reduced mobilities is different shielding of the protonated 

nitrogen by the adjacent functional groups. In other words, the more protected the 

charge is e.g N-heterocyclic aromatic ring (2,4,6-Col) vs. primary amines, the less the 
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ionized analyte can interact with the drift gas, and therefore it can move faster through 

the drift tube. 

 

3.4 Geochemistry of Recôncavo Basin, Brazil, oils (Paper IV) 

 

Most of the crude oil samples from the Recôncavo Basin, Brazil, share similar 

biological source material and thermal maturation levels, therefore it is not easy to 

differentiate between them by using conventional analyzing techniques such as GC-MS. 

In Paper IV the differentiation of 20 oil samples from the Recôncavo Basin was made 

with GC×GC-TOF-MS. 

The Recôncavo Basin with an area of approx. 11500 km2 is located in Bahia, 

northeastern Brazil and it has started to form in the late Jurassic-early Cretaceous period 

[143]. Petroleum exploration of this basin, which is now in a mature stage, dates back to 

the 1930’s. Lacustrine shales are considered to be the predominant source rock units of 

the basin and the main reservoirs are pre-rift sandstones [144, 145].  

All the samples were measured using the GC×GC-TOF-MS instrument and the peak 

areas of geochemically interesting compounds were calculated from the measurement 

data. In addition to traditionally used geochemically interesting compounds (Paper IV), 

some non-conventional biomarkers were included in this study. The most significant 

variations in concentration between the oil samples were observed in geochemical 

compounds namely, β-carotane; 20S + 20R C27 5α,14α,17α-cholestanes; C30 17α-

diahopane; gammacerane; C31 17α(H),21β(H)-homohopane; C30 17α(H),21β(H)-

hopane; C31 3β-methylhopane; 8α(H), 14α(H)-onocerane; 8α(H), 14β(H)-onocerane; 

C24 tetracyclic terpane; and C26 tricyclic terpane. In total 52 geochemically interesting 

compounds were identified (excluding diamondoids). The peak areas of these 

compounds were used to calculate peak area ratios, which are typically called 

geochemical parameters. These parameters and their significance have been described 

by Peters et al. [123]. For example, in Paper IV the geochemical parameters provided 

information about different geochemical conditions, such as variations in biological 

source input material (Table 1 and 2, Paper IV) and the thermal stress conditions (Table 

3 and 4, Paper IV). Biodegradation of crude oil by bacteria can also alter the 

geochemical parameters. This information can be used in oil exploration to distinguish 

between different oil samples.  
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Based on the plots presenting geochemical ratios of β-carotane or gammacerane / C30 

17α(H),21β(H)-hopane (β-car / H30, Figure 13; Gam/H30, Figure 14) as a function of C30 

17α(H),21β(H)-hopane / 20S + 20R C27 5α,14α,17α-cholestanes (H30/St) ratio, it was 

observed that the samples with high ratios of β-car/H30 and Gam/H30 were mainly 

located in the central area of the basin. The presence of an elevated concentration of β-

carotane is associated with saline lacustrine paleoenvironments and the elevation in the 

concentration of gammacerane is commonly related to hypersalinity, highly specific for 

water-column stratification [123]. Our results (Figures 13 and 14) reveal that the salinity 

was not constant through time or throughout the whole ancient lake in the Recôncavo 

Basin. 
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To further simplify the large number of geochemical parameters, the statistical 

method, PCA was used to transform the complex results into a clear format. Figure 15 

shows PCA results where principle components 1 and 2 are presented on the x and y-

axis, respectively. Through this analysis only samples 253 and 274 were separated from 

the other samples. A further study of the results, showed that in the case of sample 253 

(Figure 16A) the ratios mainly responsible for the separation, according to the score 

contributions, were 8α(H), 14α(H)-onocerane / C30 17α(H),21β(H)-hopane (ONII/H30); 

8α(H), 14β(H)-onocerane / C30 17α(H),21β(H)-hopane (ONIII/H30); and C30 17α-

diahopane / C30 17α(H),21β(H)-hopane (DiaH30/H30). Onoceranes are associated with 

restricted basins in warm and humid tropical climates such as Brazil [112]. Their origin 

is unclear, but it is thought to be related to terrigenous dominated ferns and flowering 

plants [123]. Diahopanes are most likely formed by oxidation and rearrangement of 

hopenes [146]. For sample 274, the PCA score contributions showed that the ratios of 

C31 3β-methylhopane / C30 17α(H),21β(H)-hopane (3βMH31/H30); C24 tetracyclic 

terpane / C26 tricyclic terpane (TeT24/Tr26); and C31 17α(H),21β(H)-homohopane / C30 

17α(H),21β(H)-hopane (H31R/H30) mainly contributed to its separation (Figure 16B). 

The precursor of 3β-methylhopane is the 3β-methyl-hopanoid synthesized by several 

types of methanotrophic bacteria [147, 148] and the oils with 3βMH31/H30 ratio 1% are 

typically from lacustrine source rocks [111]. The geochemical significance of tri– and 

tetracyclic terpenes are discussed in the next chapter (Geochemistry and identification 

of compounds in Brazilian crude oils). The high H31R/H30 ratio is associated with 

marine and marine carbonate oils [123]. The oils 253 and 274 were distinguished from 

the rest of the oils mainly by non-conventional biomarker ratios. 
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Figure 15. PCA score plots of geochemical source parameters (adapted from paper 

IV). 
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Figure 16. Parameter contributions to sample 253 (a) and 274 (b) in the PCA score 

plot illustrated in Figure 15. The red box illustrates biomarker ratios, which separated 

the sample (adapted from Paper IV). 
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3.5 Geochemistry and identification of compounds in Brazilian crude oils (Paper V) 

 

In Paper V, eleven crude oil samples from different regions of Brazil, classified based 

on proprietary methods by the Research Center of Petrobras (CENPES) as having 

different source, biodegradation and maturity levels, were further analyzed with 

GC×GC-TOF-MS. The peak area data obtained was used for the calculation of the 

saturated and aromatic geochemical parameters. The saturated geochemical parameters 

assigned five (S01, S02, S08, S09 and S10), of the oils as originating from lacustrine 

source rocks, five from marine (S04, S05, S6, S07 and S11) and one (S03) as a mixture 

of marine and lacustrine source rocks. The 25-nor-hopane / C30 17α(H),21β(H)-hopane 

(25-NH/H30) ratio assigned the oils S02 and S07 as biodegraded. 

The saturated and aromatic geochemical parameters obtained from GC×GC-TOF-

MS were analyzed by PCA (data not shown). However, the loading plot was difficult to 

read due to the large quantity of parameters, therefore another PCA was done with 

selected geochemical source parameters. This new calculation gave a similar result as 

the one with the large number of geochemical parameters, but produced Figures (Figure 

17) which are easier to interpret. The PCA separated most mature oils (S05, S06 and 

S07, Figure 17A) and the loading plots in Figure 17B illustrate that the oils were mainly 

separated by parameters based on aromatic compounds and saturated maturity 

biomarker ratios. 
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Figure 17. PCA score (A) and loading (B) plots for the first two principal components, 
based on saturated and aromatic biomarker parameters. [1] Oil S02; [2] Oils S05, S06 
and S07; [3] 25NH/H30 ratio; [4] some of the saturated maturity parameters; [5] 
aromatic geochemical parameters. 
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During the data analysis, eight unknown compounds (Figure 18), not reported 

earlier in the literature, were observed. These compounds had the molecular ion (M+.) at 

m/z 274, 288 or 316. Two of these compounds had a common characteristic fragment at 

m/z 191 in their EI mass spectrum, and the remaining six compounds had a common 

fragment at m/z 203. All the new (or unusual) compounds were found in the B/C oil 

fraction meaning that they are saturated hydrocarbons, i.e., these compounds contain 

only carbon and hydrogen atoms. Therefore, it was straightforward to calculate the 

double bond equivalence (DBE), or degree of unsaturation, for all these compounds 

from the masses of the molecular ions. The DBE formula calculates how many 

hydrogens are “lost” from the saturated structure. The DBE for all the compounds was 

four. 

The new compounds had different retention times in 1D and in 2D GC (Figure 18 

and Table 10). In the chromatographic conditions used in this study (see section 2.6) the 

group type separation in the 2D dimension follows the order of: (i) tricyclic terpanes; (ii) 

steranes with 3 rings containing 6 carbon atoms and 1 ring containing 5 carbon atoms; 

(iii) tetracyclic terpanes with 4 rings containing 6 carbon atoms; (iv) pentacyclic 

terpanes with 4 rings containing 6 carbon atoms and 1 ring containing 5 carbon atoms 

and (v) pentacyclic terpanes with 5 rings containing 6 carbon atoms. In this group type 

separation, the observation that the eight new compounds are in the two dimensional 

separation plane somewhere between tricyclic terpanes and pentacyclic terpanes (Figure 

18), and the DBE number of four, give reason to expect that the new compounds could 

be tetracyclic compounds. 
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To achieve more information about the structures of the new compounds, the 

retention times of the compounds, for which the separation in a 2D column was known, 

were plotted against the numerical values calculated based on the number of rings of 6 

carbon atoms and number of rings of 5 carbon atoms in three reference compounds 

(Figure 19). The known reference compounds are C29 tricyclic terpane, which has three 

6 carbon rings (with given ring number = 3); C29 5α(H),14β(H),17β(H)-stigmastane 

20R, which has three 6 carbon rings and one 5 carbon ring (with given ring number = 

3.5) and C29 17α(H),21β(H)hopane, which has four 6 carbon rings and one 5 carbon 

ring (with given ring number = 4.5) (see Figure 19 for structures). The ring numbers 

(Table 10) for the eight new compounds were assigned according to the best fit line 

obtained based on the known biomarker retention times. The ring numbers for the eight 

new compounds varied in the range from 2.86 to 3.91, representing approximately those 

of from tricyclic (3.00) to tetracyclic terpanes (4.00). 
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To achieve more information about the structures of the new compounds, the 

retention times of the compounds, for which the separation in a 2D column was known, 

were plotted against the numerical values calculated based on the number of rings of 6 

carbon atoms and number of rings of 5 carbon atoms in three reference compounds 

(Figure 19). The known reference compounds are C29 tricyclic terpane, which has three 

6 carbon rings (with given ring number = 3); C29 5α(H),14β(H),17β(H)-stigmastane 

20R, which has three 6 carbon rings and one 5 carbon ring (with given ring number = 

3.5) and C29 17α(H),21β(H)hopane, which has four 6 carbon rings and one 5 carbon 

ring (with given ring number = 4.5) (see Figure 19 for structures). The ring numbers 

(Table 10) for the eight new compounds were assigned according to the best fit line 

obtained based on the known biomarker retention times. The ring numbers for the eight 

new compounds varied in the range from 2.86 to 3.91, representing approximately those 

of from tricyclic (3.00) to tetracyclic terpanes (4.00). 
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Figure 19. 2D retention time vs. ring number curve of (1) C29 tricyclic terpane, (2) C29 
5α(H),14β(H),17β(H)-stigmastane 20R and (3) C29 17α(H),21β(H)hopane, which were 
used to calculate the ring number values in Table 10 (adapted from Paper V). 
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Table 10. Retention times (tR) in 1D (t1) and 2D (t2), and ring numbers for selected 
known biomarkers, as well as the calculated ring numbers for new tetracyclic 
compounds (Figure 19), which are marked with bold font. The numbers represent the 
new tetracyclic compounds observed in the chromatogram in Figure 18. 

Name MM tR1 (s) tR2 (s) Carbons Ring 
number 

C20 tricyclic terpane 276 1448 3.24 20 3.00b 

C21 tricyclic terpane 290 1632 3.40 21 3.00b 
C24 tricyclic terpane 332 2144 3.43 24 3.00b 
C24 tetracyclic terpane 330 2552 4.36 24 4.00b 
C27 13β(H),17α(H)-diacholestane 20R 372 2848 3.65 27 3.50b 

C27 5α(H),14β(H),17β(H)-stigmastane 
20R 372 3112 3.89 27 3.50b 

C27 22,29,30-trisnorneohopane (Ts) 370 3224 4.73 27 4.50b 

C27 22,29,30-trisnorhopane (Tm) 370 3304 4.93 27 4.50b 

C29 tricyclic terpane 402 3136 3.54 29 3.00b 
C29 5α(H),14β(H),17β(H)-stigmastane 
20R 400 3480 3.95 29 3.50b 

C29 Hopane 398 3568 4.72 29 4.50b 
Gammacerane 412 3952 5.14 30 5.00b 

8α,14α Onocerane II 414 3576 3.83 30 2+2b 

#1, C20H34 274 1552 3.44 20 2.86a 

#2, C20H34  288 1608 3.63 21 3.11a 
#3, C21H36  288 1640 3.61 21 3.08a 
#4, C23H40  316 1896 3.44 23 2.86a 
#5, C23H40  316 2024 3.72 23 3.22a 
#6, C23H40  316 2088 3.81 23 3.34a 
#7, C23H40  316 2240 3.93 23 3.49a 
#8, C23H40  316 2328 4.26 23 3.91a 

a The calculated ring number based on a linear trend line equation presented in Figure 
19. 
b Given number according to the number of carbon rings in the molecule; a five-carbon 
ring reduces the number by 0.5. 

 

 

Exact matches for the MS spectra of compounds 1-8 (Figure 20) were not found in 

the literature (Table 4, Paper V), therefore the structural identification, including ring 

configurations is relying on the compounds´ retention times and MS fragmentation. 
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Figure 19. 2D retention time vs. ring number curve of (1) C29 tricyclic terpane, (2) C29 
5α(H),14β(H),17β(H)-stigmastane 20R and (3) C29 17α(H),21β(H)hopane, which were 
used to calculate the ring number values in Table 10 (adapted from Paper V). 
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Figure 20. EI mass spectra of new compounds (1-8) and C24 tetracyclic terpane 
(TeT24) (adapted from Paper V). 

 

 

Even when the measurements are conducted with a two dimensional gas 

chromatography obtaining “clean” EI mass spectra is not easy. This is demonstrated in 

Figure 21. The compound 4 co-eluted with another compound also in 2D, resulting in a 

single peak in TIC (marked with an asterisk in Figure 21). Careful spectral examination 

and software assisted deconvolution resulted in clear MS spectra for C23 tricyclic 

terpane (A, Figure 21) and compound 4 (B, Figure 20 and 21). The detection of this 

compound with conventional GC-MS would be very difficult, as in the detection of 

minor differences of oils in section 3.4. For example, 3βMH31 can not always be 

detected with GC-MS, because it elutes close to H31R and Gam [111]. 
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Figure 21. Top left: Total ion chromatogram (TIC) (*, black solid line); extracted ion 
chromatogram at m/z 191 (A, blue dashed line, peak intensity x48), and extracted ion 
chromatogram at m/z 203 (B, red solid line, peak intensity x45). Top right: mass 
spectrum at the top of the TIC peak. Bottom left: Mass spectrum of co-eluting possible 
C23 tricyclic terpane with diagnostic ion m/z 191 (A) taken at the top of the blue dashed 
line. Bottom right: New C23 tetracyclic compound (Compound 4, Figure 18B and 21) 
with diagnostic ion m/z 203 (B) taken at the top of the red solid line (adapted from 
Paper V). 

 

The chromatographic and MS information for the new compounds were combined 

and the most likely tentative structures for compounds 1, 3, 4 and 8 are proposed 

(Figure 22). For instance, compound 4 has retention time close to tricyclic terpanes and 

it has a 4 ring structure. Therefore it could be possible to have a  of the ring C, which 

could cause a reduction in retention time in 2D. Compounds 6 and 7 have similar MS 

spectra to compound 4, but a higher retention times in 2D, which indicate a different 

ring structure. Compound 8 has a retention time in 2D close to the C24 tetracyclic 

terpane and a fragment ion at m/z 191. This ion is typical to C24 tetracyclic terpane 

[150], and therefore compound 8 could be a C23 tetracyclic terpane. Compound 2 could 

have a similar structure as compound 1, because their retention times in 2D are similar 

and in MS spectrum they have similar fragment ions. The MS spectrum of compound 5 

is close to compound 8, and therefore compound 5 could have a partially similar 

structure. To summarise, all the new compounds are assumed to have a tetracyclic 

saturated structure. 
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Figure 22. Tentative structures and possible fragmentations for new biomarkers (1, 3, 
4 and 8) in Figure 18 (adapted from Paper V). 

 

 

The new tetracyclic compounds were encountered with varying concentrations in 

all 11 crude oil samples collected from different regions of Brazil.  

The peak areas of the new tetracyclic compounds were divided with the peak area 

of C24 tetracyclic terpane (Ac/TeT24, Supplementary material, Table 2S, Paper V). The 

new ratios were analyzed with PCA together with already known saturated and aromatic 

geochemical parameters as presented in Figure 17. The loading plot results showed that 

Ac/TeT24 ratios acted in the same direction as dibenzothiophene ratios, which indicates 

that some of the new compounds could respond to changes in maturation in a similar 

way as dibenzothiophenes. Similar results were observed in score plots when the ratios 

of compound 7/TeT24 and compound 8/TeT24 were plotted with the ratio of 

dimethyldibenzothiophene (DMDBT) 4,6/1,4. The samples S06 and S07, which both 

showed high ratios of compound 7/TeT24 and 8/TeT24 when the ratio of DMDBT 4,6/1,4 

was high. 

A more detailed score plot (data not shown) examination of the samples revealed a 

correlation between the peak areas of compound 7 and TeT24, which could mean that 

compound 7 is formed from TeT24 during the maturation process, or the compounds 

could have a common precursor. Therefore, it is proposed that the ratios of compound 7 

/ TeT24 could be used as potential new maturity parameter, for more mature oils, 

similar to benzothiophenes, which have been used for oils in the maturity window for 

vitrinite reflectance R0 ~1.3-1.5 (Chakhmakhchev et al., 1997). Nevertheless, the 

maturation working range of these tetracyclic compounds should be determined in more 

detail. 
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4. CONCLUSIONS 

 

Two different pre-separation techniques, IMS (Papers I-III) and GC×GC (IV-V) 

combined with MS, were studied in this thesis. Their capacity in difficult analytical 

tasks was demonstrated by separating model isomeric compounds with IMS and by oil 

analysis with GC×GC-TOF-MS. 

Paper I studied the behavior of selected phenolic compounds and 2,4,6-TNT using 

negative APCI-IMS-MS. 2-tBPh formed two ion species [M-H]- and [M-H+O]-, 

interestingly; the heavier [M-H+O]- ion had a shorter drift time than the lighter [M-H]- 

ion. This could be due to the fact that the [M-H]- ion forms an adduct, for example with 

NOx or Ox, which is separated from analyte after IMS separation and is not detected 

with MS. The increased mass of an adduct ion [M-H+?]- could result in a longer drift 

time than [M-H+O]- ion, or the interaction with the drift gas is different for these two 

ion species. Where [M-H]- ion is more prone to interactions than [M-H+O]-, which 

could form an internal hydrogen bond resulting in the charge being more protected. 

Three compounds, 2,6-DtBPh, 2,6-DtB-4-MPh and 2,4,6-TtBPh, behaved similarly in 

the different IMS measuring conditions used in this study, producing two mobility 

peaks for the [M-H]- ion, which are not dependent on the measuring conditions used. 

Therefore, it can be suggested that these three phenolic compounds could be used as 

mobility standards in addition to 2,4,6-TNT, but further characterization is required. In 

addition, two isomeric compounds 2,4-DtBPh and 2,6-DtBPh were clearly separated 

with IMS. 

Paper II demonstrated that in correct APPI ionization conditions, 2,6-DtBPyr and 

2,6-DtB-4-MPyr efficiently produce both radical cations M+· and protonated [M+H]+ 

molecules. Also, dioxygen adduct ions [M+O2]+·, which had the same mobility as M+·, 

were observed. Therefore, it can be proposed that the M+· ions are formed together with 

[M+O2]+· ions. The lower mobility of [M+O2]+· ions than of [M+H]+, can be explained 

by the mass difference, i.e., heavier ions have longer drift times than lighter ions. The 

dioxygen adduct formation is likely to depend on the presence of two tert-butyl groups 

on both sides of the nitrogen “locking” the dioxygen in the middle. The naphthols 

produced both M+· and [M+H]+ ions. Interestingly, the M+· ions had higher mobilities 

than the [M+H]+ ions, which is opposite to 2,6-DtBPyr and 2,6-DtB-4-MPyr, for which 

also oxygen adducts were formed. The mobility order of different naphthol ions could 
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be due to different locations of the charge, for example the [M+H]+ ion could be 

protonated in the -OH group, whereas in the M+· ion the charge could be delocalized in 

the benzene rings. This could result in different conformation of molecules with 

different collision cross-sections of ion species. 

In Paper III, both APCI and APPI produced protonated molecules [M+H]+ for 

isomeric amines. Clear separation was recorded for 2,4,6-colidine, N,N-dimethylaniline, 

N-methyl-o-toluidine, phenethylamine and 4-ethylaniline with IMS, while the rest of the 

amines had mobility values very close to each other. This can be explained by the 

structures of isomers. For instance, the shielded molecules, i.e., with a protected charge 

(e.g. 2,4,6-collidine), interact less with the drift gas than the molecules with more open 

structures, such as primary amines. 

In Paper IV, crude oil analysis from Recôncavo Basin was carried out with GC×GC-

TOF-MS. Important geochemical parameters were calculated based on the GC×GC-

TOF-MS results and evaluated. The PCA of the geochemical parameters was able to 

separate two oils from a total of twenty oils. The geochemical parameters also indicated 

that β-carotane can be used to reconstruct salinity variations in the late Jurassic to early 

Cretaceous time in an ancient lake during the fragmentation of the Pangaea 

supercontinent.  

In Paper V, the source and maturity-related geochemical parameters were measured 

for eleven Brazilian crude oils using GC×GC-TOF-MS. A relationship between the 

retention time in 2D and the carbon ring structure was observed for several biomarkers 

already known from the literature. Since all the analyte compounds were saturated 

hydrocarbons (their polarity did not vary significantly), it is assumed that the shape of 

the molecule has an important role in the interactions with the column surface. The data 

about a relationship between the retention time in 2D and the carbon ring was used to 

achieve more structural information about eight new compounds found during the 

analysis. Using mass spectral data to calculate the DBE and the information from 

retention time in 2D, it could be suggested that these new compounds had tetracyclic 

structures, some of them similar to nor-steranes. It was also observed that compound 

7/TeT24 ratio increases together with the DMDBT 4,6/1,4 ratio. This could be due to 

the fact that the compound 7 is more stable than the C24 tetracyclic terpane or it is 

produced during the maturation process. The compound 7/TeT24 ratio could be used in 

the future, in parallel with other maturation indicators such as benzothiophenes (R0 
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~1.3-1.5) to evaluate oils from mature to overmature levels. Still, the maturity range for 

these new tetracyclic compounds should be characterized in more detail. 

IMS is a faster measuring technique (typical analysis time is ~1 sec) with smaller 

peak capacity ~102 (total number of theoretical plates) [151] than GC×GC, which has 

peak capacity >2*104 [90] with slower analysis time (typical analysis time is ~1 h). In 

IMS and GC×GC the separation of coeluting compounds can be improved in some 

cases by optimizing the measuring conditions, such as the polarity of the drift gas in 

IMS or the polarity of the columns in GC×GC. Furthermore, in IMS, ionized 

compounds are separated in a drift region and in GC×GC, the neutral molecules are 

separated. The shape of the molecule can change during the ionization process therefore 

these two techniques complement each other. IMS can be miniaturized for field 

analysis, while GC×GC instruments are typically benchtop size for laboratory use. 

Both IMS and GC×GC, are capable of separating isomers. In IMS the most 

important property for separation of isomeric compounds is their shape (collision cross 

section). In addition to this, it was shown that different isomers have differing 

tendencies to form adducts. For example, in the negative APCI mode the formation of 

dioxygen adduct was seen for 2,4-DtBPh but not for 2,6-DtBPh. The dioxygen adduct 

of 2,4-DtBPh increased the mass of the ion resulting in a slower drift time than for the 

lighter [M-H]+ ion of 2,6-DtBPh. This basic finding could be adapted in different fields 

of chemistry to increase the understanding of the fundamental behavior of regio 

isomers. For example, isomers have a significant role in complex biological processes. 

Adducts (e.g. dioxygen) are well known in IMS and MS literature, but commonly they 

are dissociated in MS interface with declustering voltage or with curtain gas. Reactive 

oxygen species, such as hydrogen peroxide or peroxynitrite, are part of the production 

of dioxygen radical ions in living cells. It could be possible that dioxygen adducts are 

formed with molecules, which have similar structure than model compounds in this 

work, in real biological process. In the future, it would be interesting to study these 

adducts. 
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IMS is a faster measuring technique (typical analysis time is ~1 sec) with smaller 

peak capacity ~102 (total number of theoretical plates) [151] than GC×GC, which has 

peak capacity >2*104 [90] with slower analysis time (typical analysis time is ~1 h). In 

IMS and GC×GC the separation of coeluting compounds can be improved in some 

cases by optimizing the measuring conditions, such as the polarity of the drift gas in 

IMS or the polarity of the columns in GC×GC. Furthermore, in IMS, ionized 

compounds are separated in a drift region and in GC×GC, the neutral molecules are 

separated. The shape of the molecule can change during the ionization process therefore 

these two techniques complement each other. IMS can be miniaturized for field 

analysis, while GC×GC instruments are typically benchtop size for laboratory use. 

Both IMS and GC×GC, are capable of separating isomers. In IMS the most 

important property for separation of isomeric compounds is their shape (collision cross 

section). In addition to this, it was shown that different isomers have differing 

tendencies to form adducts. For example, in the negative APCI mode the formation of 

dioxygen adduct was seen for 2,4-DtBPh but not for 2,6-DtBPh. The dioxygen adduct 

of 2,4-DtBPh increased the mass of the ion resulting in a slower drift time than for the 

lighter [M-H]+ ion of 2,6-DtBPh. This basic finding could be adapted in different fields 

of chemistry to increase the understanding of the fundamental behavior of regio 

isomers. For example, isomers have a significant role in complex biological processes. 

Adducts (e.g. dioxygen) are well known in IMS and MS literature, but commonly they 

are dissociated in MS interface with declustering voltage or with curtain gas. Reactive 

oxygen species, such as hydrogen peroxide or peroxynitrite, are part of the production 

of dioxygen radical ions in living cells. It could be possible that dioxygen adducts are 

formed with molecules, which have similar structure than model compounds in this 

work, in real biological process. In the future, it would be interesting to study these 

adducts. 
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Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate

phenols with varying numbers of tert-butyl groups using ion mobility spectrometry–mass spec-

trometry (IMS-MS). The main characteristic ion observed for all the phenolic compounds was the

deprotonated molecule [M–H]�. 2-tert-Butylphenol showed one main mobility peak in the mass-

selected mobility spectrum of the [M–H]� ion measured under nitrogen atmosphere. When air was

used as a nebulizer gas an oxygen addition ion was seen in the mass spectrum and, interestingly, this

new species [M–HRO]� had a shorter drift time than the lighter [M–H]� ion. Other phenolic

compounds primarily produced two IMS peaks in the mass-selected mobility spectra measured

using the [M–H]� ion. It was also observed that two isomeric compounds, 2,4-di-tert-butylphenol and

2,6-di-tert-butylphenol, could be separatedwith IMS. In addition, mobilities of various characteristic

ions of 2,4,6-trinitrotoluene were measured, since this compound was previously used as a mobility

standard. The possibility of using phenolic compounds as mobility standards is also discussed.
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Ionmobility spectrometry (IMS) is based on the separation of

ions in a drift tube by an electric field.1 Molecules with

different collision cross-sections have different drift vel-

ocities and are therefore separated from each other. The

theory of drift tube IMS has been described in detail pre-

viously.1–3 IMS is a powerful tool in different areas, such as the

monitoring of environmental pollutants,4–6 warfare agents,7

explosives,8–10 herbicides,11 pesticides,12,13 petroleum pro-

ducts,14 and illicit/legal drugs.15 In addition, it is also used

in peptide analysis16,17 and space exploration.18 Most of these

studies have used various positive ion ionization methods,

whereas fewer studies have been carried out in negative ion

mode.

Negative reactant ions formed in radioactive ionization in

IMS were first studied during the 1970s19,20 and then later

using a plasma ionization or corona discharge ion source.21–23

The negative ion mode with radioactive ionization has been

used, for example, to measure inorganic pollutant gases,

such as SO2, H2S, HCl, and NO2,
6 anesthetics24 and organic

nitrogen compounds such as 2,4,6-trinitrotoluene (2,4,6-

TNT)8,9,25 and chlorinated compounds such as 2,4-dichlor-

ophenoxyacetic acid and 2,4-dichlorophenol.26 Explosives

and chemical warfare agents (e.g. blistering agents) have also

been measured using negative ion electrospray ionization

(ESI)-IMS,27 and negative ion APCI-IMS has been used to

study fluorinated phenols28 and non-polar isomeric hydro-

carbons.29 Negative ion APCI-IMS has also been used to

measure the reaction rate constants for electron attachment

with CCl4, CHCl3, andCH2Cl2.
30 A review on the detection of

explosives has been published10 and 2,4,6-TNT has been

used as a negative ion mobility standard.31

In this study the behavior of selected phenolic compounds

(Fig. 1) in negative APCI ion mobility spectrometry–mass

spectrometry (IMS-MS) was measured. The compounds

studied include phenolic compounds with varying numbers

of tert-butyl groups. These compounds are widely used in

industry; e.g., 2,6-di-tert-butylphenol is used as an antiox-

idant for food additives, fuels, oils and gasolines.32,33 2,4,6-

TNT was also included in the study since it has been used

previously as a reference compound.31 The possibility of

using phenolic compounds as mobility standards in negative

IMS is also discussed.

EXPERIMENTAL

Instrumentation and measuring conditions
A custom-made IMS drift tube was attached to a commercial

Sciex API-300 triple quadrupole mass spectrometer (Applied

Biosystems-SCIEX, Concord, Ontario, Canada). This combi-

nation is referred to here as IMS-MS and is described in more

detail by Sysoev et al.34 Briefly, a 13.3 cm long drift tube is

constructed from a set of metal rings individually separated
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Ionmobility spectrometry (IMS) is based on the separation of

ions in a drift tube by an electric field.1 Molecules with

different collision cross-sections have different drift vel-

ocities and are therefore separated from each other. The

theory of drift tube IMS has been described in detail pre-

viously.1–3 IMS is a powerful tool in different areas, such as the

monitoring of environmental pollutants,4–6 warfare agents,7

explosives,8–10 herbicides,11 pesticides,12,13 petroleum pro-

ducts,14 and illicit/legal drugs.15 In addition, it is also used

in peptide analysis16,17 and space exploration.18 Most of these

studies have used various positive ion ionization methods,

whereas fewer studies have been carried out in negative ion

mode.

Negative reactant ions formed in radioactive ionization in

IMS were first studied during the 1970s19,20 and then later

using a plasma ionization or corona discharge ion source.21–23

The negative ion mode with radioactive ionization has been

used, for example, to measure inorganic pollutant gases,

such as SO2, H2S, HCl, and NO2,
6 anesthetics24 and organic

nitrogen compounds such as 2,4,6-trinitrotoluene (2,4,6-

TNT)8,9,25 and chlorinated compounds such as 2,4-dichlor-

ophenoxyacetic acid and 2,4-dichlorophenol.26 Explosives

and chemical warfare agents (e.g. blistering agents) have also

been measured using negative ion electrospray ionization

(ESI)-IMS,27 and negative ion APCI-IMS has been used to

study fluorinated phenols28 and non-polar isomeric hydro-

carbons.29 Negative ion APCI-IMS has also been used to

measure the reaction rate constants for electron attachment

with CCl4, CHCl3, andCH2Cl2.
30 A review on the detection of

explosives has been published10 and 2,4,6-TNT has been

used as a negative ion mobility standard.31

In this study the behavior of selected phenolic compounds

(Fig. 1) in negative APCI ion mobility spectrometry–mass

spectrometry (IMS-MS) was measured. The compounds

studied include phenolic compounds with varying numbers

of tert-butyl groups. These compounds are widely used in

industry; e.g., 2,6-di-tert-butylphenol is used as an antiox-

idant for food additives, fuels, oils and gasolines.32,33 2,4,6-

TNT was also included in the study since it has been used

previously as a reference compound.31 The possibility of

using phenolic compounds as mobility standards in negative

IMS is also discussed.

EXPERIMENTAL

Instrumentation and measuring conditions
A custom-made IMS drift tube was attached to a commercial

Sciex API-300 triple quadrupole mass spectrometer (Applied

Biosystems-SCIEX, Concord, Ontario, Canada). This combi-

nation is referred to here as IMS-MS and is described in more

detail by Sysoev et al.34 Briefly, a 13.3 cm long drift tube is

constructed from a set of metal rings individually separated
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by Teflon rings. The desolvation area, which has a length of

7.65 cm, is separated by a Bradbury-Nielsen (B-N) gate from

the drift region.35 A second B-N gate is located in front of the

MS interface. These two gates allow one to select a specific

mobility window.34,36 The gate opening time for both B-N

gates was 300ms for all the experiments. The B-N gates and

the high voltages in the drift tube are controlled by a program

written in-house and data is collected using the mass

spectrometer operating software, the Analyst 1.4.1 program

(Applied Biosystems/MDS SCIEX). The operating electric

field varied between 270 and 378V/cm in the drift region

and between 230 and 260V/cm in the desolvation area. This

study uses absolute reduced mobilities, which are calculated

according to Eqn. (1).

The instrument was operated using negative corona

discharge APCI with a typical needle voltage of 1.3–1.5 kV

in nitrogen and 1.7–2.2 kV in air. Most of the measurements

were conducted in a nitrogen atmosphere, at atmospheric

pressure. Pre-dried compressed air was passed through a

NGLCMS20 nitrogen generator (Labgas Instrument Co.,

Espoo, Finland) to obtain 99.5% nitrogen. This was followed

by a hydrocarbon and moisture trap. This nitrogen was used

as both the nebulizer and the drift gas. The level of humidity

was measured using a humidity gauge (Vaisala DMT242;

Helsinki, Finland) downstream from the drift tube. In

addition, compressed, bottled air (80% N2, 20% O2 with a

purity of 4.0, AGA Ltd., Espoo, Finland) was used in certain

experiments. A thermometer (Thermatag, Digitron Instru-

mentation Ltd., Torquay, UK) was attached to the nitrogen

storage tank and correlated well with the temperature being

measured inside the drift tube, except in the case where the

drift tube was heated above room temperature (see next

section). The pressure meter (Series 902; MKS Instruments,

Andover, MA, USA) was located within the laboratory and it

correlated well with the prevailing ambient pressure in

SMEAR III (608200N, 248970E), Helsinki, Finland.

Sample injections were conducted with a PHD 2000

advanced syringe pump (Harvard Apparatus GmbH,

Hugstetten, Germany) with a typical injection speed of

180mL/h into the custom-made heated nebulizer, which was

heated to 573K. The nebulizer gas (nitrogen or air) flow rate

in the nebulizer was typically 1.6–1.8 L/min. Sample

concentrations were around 1–3 ppb unless otherwise stated.

The drift flow was estimated to be �2.4 L/min. The mass

spectrometric parameters were as follows: declustering

potential from �15 to �25V, focusing potential from �180

to �200V and an entrance potential of �5V. Mass-selected

mobility data was collected using the dual gate mode, which

is presented in more detail in our previous publication.34

Temperature and ion mobility
In our IMS-MS instrument the temperature of the device is

measured with a thermometer which is mounted between

the stainless steel metal drift rings and the outer core of the

drift tube; therefore, it is expected that the temperature inside

the drift tube will be somewhat different from the

thermometer reading. To correlate the measured tempera-

ture with the real temperature inside the drift tube, the

reduced mobility of 2,6-di-tert-butylpyridine (2,6-DtBPyr)

was measured at different temperatures in the positive APCI

mode. Using this data, and recognizing that in the

temperature range 310–523K the reduced mobility of 2,6-

DtBPyr is constant,37 the real temperature can be calculated

as presented below. Correspondingly, the use of the reduced

mobility of 2,4-lutidine has been used to calculate the real

temperature inside a drift tube.38 The reduced mobility of

2,6-DtBPyr measured using the [MþH]þ ion at m/z 192 in

positive ion APCI mode was 1.50 cm2/Vs within exper-

imental error. The general formula for reduced mobility K0

(cm2/Vs)39 is:

K0 ¼
l2d
tdV

� �
273

T

� �
P

760

� �
(1)

where ld¼ length of the drift region, td¼drift time of the ion,

V¼ the voltage drop over the drift region, P¼pressure, and

T¼ temperature. As the reduced mobility of 2,6-DtBPyr is

stable in the temperature range used (296–335K) and all

other variables, except T and td, are constant, the formula for

reduced mobility of 2,6-DtBPyr (K2,6-DtBPyr) without a

temperature correction term can be rewritten as:

K2;6�DtBPyr /
273

T

� �
(2)

Based on this, when a room temperature (296K) mobility

value (K2,6-DtBPyr) of 2,6-DtBPyr,1.63 cm2/Vs, is used as a

calibration point, its mobility values (K2,6-DtBPyr) of 1.72 and

1.85 cm2/Vs measured at thermometer readings 323 and

343K represent the real temperatures in the drift tube of 313

and 335K, respectively.

Figure 1. Structures of chemicals investigated in this study.
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Chemicals
Phenolic compounds 2-tert-butylphenol (2-tBPh), 2,6-di-tert-

butylphenol (2,6-DtBPh), 2,4-di-tert-butylphenol (2,4-DtBPh)

and 2,6-di-tert-butyl-4-methylphenol (2,6-DtB-4-MPh),

which all had a purity of >99%, 2,4,6-tri-tert-butylphenol

(2,4,6-TtBPh), which had a purity of >98%, and 2,6-di-tert-

butylpyridine (2,6-DtBPyr), which had a purity of >97%,

were obtained from Sigma-Aldrich (Steinheim, Germany).

The stock solutions (5mM) were prepared first in hexane

(Poch SA, Gliwice, Poland) and these were diluted further to

give 50 or 500 mM solutions. 2,4,6-Trinitrotoluene (2,4,6-

TNT), 1000mg/mL in acetonitrile (ACN), with a purity of

99%, was purchased from Supelco (Bellefonte, PA, USA).

This solution was diluted further in ACN (Lab-Scan, Dublin,

Ireland).

RESULTS AND DISCUSSION

Reactant ions in negative corona discharge
ionization
The identity of reactant ions in atmospheric pressure nega-

tive IMS has been studied previously19–21,23 and a general

review of the corona discharge process has been published.40

Briefly, based on these studies, one can state that the negative

ionization process is more challenging and complex than the

positive ionmode. In atmospheric pressure corona discharge

chemical ionization, the charge is transferred first to oxygen

and subsequently reactant ions are formed by various

reactions. These depend, for example, on the concentration

levels of different gases or chemicals present in the ion source

atmosphere, and even trace amounts of chemicals (e.g. water,

NOx) can affect the ionization process. This generally

complicates the measurements and reduces the consistency

of the experiments. Due to this, the ionization conditions

were kept as constant as possible.

Mass spectrometric measurements showed that the main

reactant ions typically observed were [CO3]
� at m/z 60 and

[NO2]
� at m/z 46, but [NO3]

� at m/z 62 and [CNO]� at m/z 42

were normally also seen at low intensities. However,

depending on the ionization conditions (e.g. sample gas,

corona needle voltage, and solvent) changes in relative

abundances of these ions were observed. In addition, daily

variations in ambient trace gas concentrations occur41 and

could also have an effect on the ionization processes. Similar

ions have also been reported in other corona discharge

ionization IMS studies.21–23,42 Since the analytes were

dissolved in different solvents, the solvent effect on the

reactant ions was tested. Injection of solvents (e.g. hexane or

acetonitrile) together with nebulizer gas clearly decreased

the [CO3]
� signal. When air was used instead of nitrogen as a

nebulizer gas, the intensity of [CO3]
� remained at about the

same level. This was also the case in the presence of a solvent.

Ionization of model compounds
All the phenolic compounds formed [M–H]� ions under

negative ion APCI in nitrogen atmosphere. For some

compounds, measurements were also carried out in air;

e.g., for 2-tBPh, in addition to the [M–H]� ion at m/z 149, an

intense [M–HþO]� ion at m/z 165 was observed. Formation

of the [M–HþO]� ion could occur by the formal insertion of

oxygen into a C–H bond during the ionization processes. A

similar phenomenon was previously reported for benzene

with positive corona discharge ionization.43 In our study the

origin of the oxygen is probably from theO�
2 . The product ion

mass spectra of both the oxygen insertion ion of 2-tBPh (m/z

165) and the [M–H]� ion of 2-tBPh (m/z 149) indicated the loss

of 16 mass units (corresponding to the mass of a single

oxygen atom) forming product ions m/z 149 and 133,

respectively.

2,4,6-TNT typically produced three main characteristic

ions, namely [M–NO]� at m/z 197, [M–H]� at m/z 226 and

[M]� at m/z 227, in nitrogen using corona discharge ioniza-

tion (Fig. 2). When a mass spectrum was measured in air, an

oxygen adduct ion [MþO]�wasmore clearly seen atm/z 243.

When the oxygen adduct ion was seen, ions m/z 213 and 183

were also typically observed in the mass spectrum, probably

formed by loss of one or two NO groups from the oxygen

adduct ion. A fragment ion [M–OH]� atm/z 210, with a lower

intensity, was also often seen in the mass spectra. Most of

these characteristic ions of 2,4,6-TNT have been reported

previously with different atmospheric pressure ionization

techniques.9,42,44,45

Mobilities of model compounds
In the next step, mobilities for the identified analyte ions

were measured. The data is discussed below, compound by

compound, and is summarized in Table 1. Typically,

variations in reduced mobility values in different exper-

iments were below 2%. 2,4,6-Trinitrotoluene (2,4,6-TNT) was

also included in the compounds studied, since it has been

used as a reference compound.31 The reducedmobility for its

[M–H]� ion equals 1.58 cm2/Vs, which is in agreement with

the reported value of 1.53–1.55 cm2/Vs.10 The small differ-

ence is considered to be due to different drift tube designs

and variations in measuring conditions.

2-tert-Butylphenol (2-tBPh)
The mass-selected mobility spectrum of the [M–H]� ion of 2-

tBPh shows onemajor mobility peak with a reducedmobility

Figure 2. Negative ion APCI mass spectrum of 2,4,6-TNT.

The gas-phase concentration of 2,4,6-TNTwas around 1 ppb;

2,4,6-TNT was dissolved in acetonitrile and the nebulizer gas

was nitrogen. The main peaks are the [M–NO]� ion at m/z

197, [M–H]� at m/z 226 and [M]� at m/z 227. The [NO2]
�

ion at m/z 46 is a reactant ion.
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by Teflon rings. The desolvation area, which has a length of

7.65 cm, is separated by a Bradbury-Nielsen (B-N) gate from

the drift region.35 A second B-N gate is located in front of the

MS interface. These two gates allow one to select a specific

mobility window.34,36 The gate opening time for both B-N

gates was 300ms for all the experiments. The B-N gates and

the high voltages in the drift tube are controlled by a program

written in-house and data is collected using the mass

spectrometer operating software, the Analyst 1.4.1 program

(Applied Biosystems/MDS SCIEX). The operating electric

field varied between 270 and 378V/cm in the drift region

and between 230 and 260V/cm in the desolvation area. This

study uses absolute reduced mobilities, which are calculated

according to Eqn. (1).

The instrument was operated using negative corona

discharge APCI with a typical needle voltage of 1.3–1.5 kV

in nitrogen and 1.7–2.2 kV in air. Most of the measurements

were conducted in a nitrogen atmosphere, at atmospheric

pressure. Pre-dried compressed air was passed through a

NGLCMS20 nitrogen generator (Labgas Instrument Co.,

Espoo, Finland) to obtain 99.5% nitrogen. This was followed

by a hydrocarbon and moisture trap. This nitrogen was used

as both the nebulizer and the drift gas. The level of humidity

was measured using a humidity gauge (Vaisala DMT242;

Helsinki, Finland) downstream from the drift tube. In

addition, compressed, bottled air (80% N2, 20% O2 with a

purity of 4.0, AGA Ltd., Espoo, Finland) was used in certain

experiments. A thermometer (Thermatag, Digitron Instru-

mentation Ltd., Torquay, UK) was attached to the nitrogen

storage tank and correlated well with the temperature being

measured inside the drift tube, except in the case where the

drift tube was heated above room temperature (see next

section). The pressure meter (Series 902; MKS Instruments,

Andover, MA, USA) was located within the laboratory and it

correlated well with the prevailing ambient pressure in

SMEAR III (608200N, 248970E), Helsinki, Finland.

Sample injections were conducted with a PHD 2000

advanced syringe pump (Harvard Apparatus GmbH,

Hugstetten, Germany) with a typical injection speed of

180mL/h into the custom-made heated nebulizer, which was

heated to 573K. The nebulizer gas (nitrogen or air) flow rate

in the nebulizer was typically 1.6–1.8 L/min. Sample

concentrations were around 1–3 ppb unless otherwise stated.

The drift flow was estimated to be �2.4 L/min. The mass

spectrometric parameters were as follows: declustering

potential from �15 to �25V, focusing potential from �180

to �200V and an entrance potential of �5V. Mass-selected

mobility data was collected using the dual gate mode, which

is presented in more detail in our previous publication.34

Temperature and ion mobility
In our IMS-MS instrument the temperature of the device is

measured with a thermometer which is mounted between

the stainless steel metal drift rings and the outer core of the

drift tube; therefore, it is expected that the temperature inside

the drift tube will be somewhat different from the

thermometer reading. To correlate the measured tempera-

ture with the real temperature inside the drift tube, the

reduced mobility of 2,6-di-tert-butylpyridine (2,6-DtBPyr)

was measured at different temperatures in the positive APCI

mode. Using this data, and recognizing that in the

temperature range 310–523K the reduced mobility of 2,6-

DtBPyr is constant,37 the real temperature can be calculated

as presented below. Correspondingly, the use of the reduced

mobility of 2,4-lutidine has been used to calculate the real

temperature inside a drift tube.38 The reduced mobility of

2,6-DtBPyr measured using the [MþH]þ ion at m/z 192 in

positive ion APCI mode was 1.50 cm2/Vs within exper-

imental error. The general formula for reduced mobility K0

(cm2/Vs)39 is:

K0 ¼
l2d
tdV

� �
273

T

� �
P

760

� �
(1)

where ld¼ length of the drift region, td¼drift time of the ion,

V¼ the voltage drop over the drift region, P¼pressure, and

T¼ temperature. As the reduced mobility of 2,6-DtBPyr is

stable in the temperature range used (296–335K) and all

other variables, except T and td, are constant, the formula for

reduced mobility of 2,6-DtBPyr (K2,6-DtBPyr) without a

temperature correction term can be rewritten as:

K2;6�DtBPyr /
273

T

� �
(2)

Based on this, when a room temperature (296K) mobility

value (K2,6-DtBPyr) of 2,6-DtBPyr,1.63 cm2/Vs, is used as a

calibration point, its mobility values (K2,6-DtBPyr) of 1.72 and

1.85 cm2/Vs measured at thermometer readings 323 and

343K represent the real temperatures in the drift tube of 313

and 335K, respectively.

Figure 1. Structures of chemicals investigated in this study.
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Phenolic compounds 2-tert-butylphenol (2-tBPh), 2,6-di-tert-

butylphenol (2,6-DtBPh), 2,4-di-tert-butylphenol (2,4-DtBPh)

and 2,6-di-tert-butyl-4-methylphenol (2,6-DtB-4-MPh),

which all had a purity of >99%, 2,4,6-tri-tert-butylphenol

(2,4,6-TtBPh), which had a purity of >98%, and 2,6-di-tert-

butylpyridine (2,6-DtBPyr), which had a purity of >97%,

were obtained from Sigma-Aldrich (Steinheim, Germany).

The stock solutions (5mM) were prepared first in hexane

(Poch SA, Gliwice, Poland) and these were diluted further to

give 50 or 500 mM solutions. 2,4,6-Trinitrotoluene (2,4,6-

TNT), 1000mg/mL in acetonitrile (ACN), with a purity of

99%, was purchased from Supelco (Bellefonte, PA, USA).

This solution was diluted further in ACN (Lab-Scan, Dublin,

Ireland).

RESULTS AND DISCUSSION

Reactant ions in negative corona discharge
ionization
The identity of reactant ions in atmospheric pressure nega-

tive IMS has been studied previously19–21,23 and a general

review of the corona discharge process has been published.40

Briefly, based on these studies, one can state that the negative

ionization process is more challenging and complex than the

positive ionmode. In atmospheric pressure corona discharge

chemical ionization, the charge is transferred first to oxygen

and subsequently reactant ions are formed by various

reactions. These depend, for example, on the concentration

levels of different gases or chemicals present in the ion source

atmosphere, and even trace amounts of chemicals (e.g. water,

NOx) can affect the ionization process. This generally

complicates the measurements and reduces the consistency

of the experiments. Due to this, the ionization conditions

were kept as constant as possible.

Mass spectrometric measurements showed that the main

reactant ions typically observed were [CO3]
� at m/z 60 and

[NO2]
� at m/z 46, but [NO3]

� at m/z 62 and [CNO]� at m/z 42

were normally also seen at low intensities. However,

depending on the ionization conditions (e.g. sample gas,

corona needle voltage, and solvent) changes in relative

abundances of these ions were observed. In addition, daily

variations in ambient trace gas concentrations occur41 and

could also have an effect on the ionization processes. Similar

ions have also been reported in other corona discharge

ionization IMS studies.21–23,42 Since the analytes were

dissolved in different solvents, the solvent effect on the

reactant ions was tested. Injection of solvents (e.g. hexane or

acetonitrile) together with nebulizer gas clearly decreased

the [CO3]
� signal. When air was used instead of nitrogen as a

nebulizer gas, the intensity of [CO3]
� remained at about the

same level. This was also the case in the presence of a solvent.

Ionization of model compounds
All the phenolic compounds formed [M–H]� ions under

negative ion APCI in nitrogen atmosphere. For some

compounds, measurements were also carried out in air;

e.g., for 2-tBPh, in addition to the [M–H]� ion at m/z 149, an

intense [M–HþO]� ion at m/z 165 was observed. Formation

of the [M–HþO]� ion could occur by the formal insertion of

oxygen into a C–H bond during the ionization processes. A

similar phenomenon was previously reported for benzene

with positive corona discharge ionization.43 In our study the

origin of the oxygen is probably from theO�
2 . The product ion

mass spectra of both the oxygen insertion ion of 2-tBPh (m/z

165) and the [M–H]� ion of 2-tBPh (m/z 149) indicated the loss

of 16 mass units (corresponding to the mass of a single

oxygen atom) forming product ions m/z 149 and 133,

respectively.

2,4,6-TNT typically produced three main characteristic

ions, namely [M–NO]� at m/z 197, [M–H]� at m/z 226 and

[M]� at m/z 227, in nitrogen using corona discharge ioniza-

tion (Fig. 2). When a mass spectrum was measured in air, an

oxygen adduct ion [MþO]�wasmore clearly seen atm/z 243.

When the oxygen adduct ion was seen, ions m/z 213 and 183

were also typically observed in the mass spectrum, probably

formed by loss of one or two NO groups from the oxygen

adduct ion. A fragment ion [M–OH]� atm/z 210, with a lower

intensity, was also often seen in the mass spectra. Most of

these characteristic ions of 2,4,6-TNT have been reported

previously with different atmospheric pressure ionization

techniques.9,42,44,45

Mobilities of model compounds
In the next step, mobilities for the identified analyte ions

were measured. The data is discussed below, compound by

compound, and is summarized in Table 1. Typically,

variations in reduced mobility values in different exper-

iments were below 2%. 2,4,6-Trinitrotoluene (2,4,6-TNT) was

also included in the compounds studied, since it has been

used as a reference compound.31 The reducedmobility for its

[M–H]� ion equals 1.58 cm2/Vs, which is in agreement with

the reported value of 1.53–1.55 cm2/Vs.10 The small differ-

ence is considered to be due to different drift tube designs

and variations in measuring conditions.

2-tert-Butylphenol (2-tBPh)
The mass-selected mobility spectrum of the [M–H]� ion of 2-

tBPh shows onemajor mobility peak with a reducedmobility

Figure 2. Negative ion APCI mass spectrum of 2,4,6-TNT.

The gas-phase concentration of 2,4,6-TNTwas around 1 ppb;

2,4,6-TNT was dissolved in acetonitrile and the nebulizer gas

was nitrogen. The main peaks are the [M–NO]� ion at m/z

197, [M–H]� at m/z 226 and [M]� at m/z 227. The [NO2]
�

ion at m/z 46 is a reactant ion.
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of 1.53 cm2/Vs at room temperature and in a nitrogen

atmosphere (Fig. 3(A)). Typically, two minor peaks with

mobilities of 1.14 and 1.63 cm2/Vs were also seen. The

mobility peak of 1.63 cm2/Vs is probably due to an oxygen

insertion ion [M–HþO]� atm/z 165, since the intensity of this

peak increased in the mass spectrum and the abundance of

this mobility peak in the mobility spectrum also increased

when air instead of nitrogen was used as the nebulizer gas

(Fig. 3(B)). The fact that the oxygen insertion ion drifts faster

than themain peak of 2-tBPh indicates that themain peak has

an adduct, e.g. O2 or NOx, attached to the analyte or that the

oxygen insertion ion interacts less with the drift gas due to its

structure, i.e. a possible internal hydrogen bond between the

OH group and the negatively charged oxygen atom in the

ortho position, than the [M–H]� ion. Oxygen and chloride

adduct formation has been reported previously for fluori-

nated phenols.28 The peak with a mobility of 1.14 cm2/Vs is

probably due to dimer formation. A dimer peak, [2M–H]� at

m/z 299, was observed in a mass spectrum measured with a

sample concentration about 100 times greater, and a

relatively wide mobility peak was observed in about the

same position in the mass-selected mobility spectrum

measured using the ion m/z 149 at this higher concentration.

It was also observed that the reduced mobility of the major

peak of 2-tBPh, the [M–H]� ion at m/z 149, remained stable

within experimental error when the temperature was

increased from 296 to 335K.

2,6-Di-tert-butylphenol (2,6-DtBPh), 2,6-di-tert-butyl-
4-methylphenol (2,6-DtB-4-MPh) and 2,4,6-tri-tert-
butylphenol (2,4,6-TtBPh)
The mass-selected [M–H]� ion mobility spectra of all these

compounds, measured at room temperature and in a

nitrogen atmosphere, look remarkably similar; typically

Table 1. Summary of the reduced mobilities K0 (cm
2/Vs) measured at room temperature. Nitrogen was used as a nebulizer gas

and sampleswere dissolved in hexane unless otherwise stated. The numbers represent the peak numbers in the order theyappear

in the mass-selected mobility spectra

Molecule Mass (u) 1st (K0) 2nd (K0) 3rd (K0) 4th (K0)

2-tBPh ([M–HþO]� m/z 165)b 150 1.63 1.13c

2-tBPh ([M–H]� m/z 149) 150 1.63 1.53 1.14c

2,4-DtBPh ([M–H]� m/z 205) 206 1.34 1.29
2,6-DtBPh ([M–H]� m/z 205) 206 1.43 1.37
2,6-DtB-4-MPh ([M–H]� m/z 219) 220 1.36 1.29
2,4,6-TtBPh ([M–H]� m/z 261) 262 1.23 1.18
2,4,6-TNT ([MþO]� m/z 243)a,b 227 1.53
2,4,6-TNT ([M]� m/z 227)a 227 1.58d 1.53 1.35
2,4,6-TNT ([M–H]� m/z 226)a 227 1.58 1.48 1.36
2,4,6-TNT ([M–OH]� m/z 210)a 227 1.53
2,4,6-TNT ([M–NO]� m/z 197)a 227 1.64 1.53 1.42 1.36

a Solvent is ACN.
bNebulizer gas is air.
c Dimer.
d Probably 13C isotope peak of the m/z 226 ion.

Figure 3. Negative ion APCI mass-selected ion mobility spectra of 2-tert-butylphenol. The gas-phase concentration

of 2-tBPh was about 2 ppb; the sample was dissolved in hexane and measurements were made at room temperature.

Mass-selectedmobility spectra of (A) the [M–H]� ion atm/z 149 in nitrogen atmosphere and (B) ions [M–H]� atm/z 149

(solid line) and [M–HþO]� atm/z 165 (dotted line) in air (80%N2, 20%O2). A dimer peak (marked with an asterisk) with

lower mobility is also observed.
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two major peaks and sometimes one or two minor peaks

(Fig. 4 and Table 1). The peak intensities changed somewhat

between the different measurements, probably due to slight

changes in the measuring conditions, but the absolute

reduced mobilities were stable within experimental error.

The multiple peaks are most likely due to different adduct

ions formed, for example, with O2 and NOx. Due to the

similarity of the ionmobility spectra the effect of temperature

was studied in more detail for 2,6-DtB-4-MPh and 2,4,6-

TtBPh. When the temperature was increased for 2,6-DtB-4-

MPh (Fig. 5) the relative abundance of the first peak

increased. This is an indication that at least the lower

mobility peaks are due to adducts. Eiceman et al. have also

reported that, at higher temperatures, adduct peaks decrease

in height or disappear.28 Similar behavior was also observed

in our study for 2,4,6-TtBPh.

As expected, the mobilities of these compounds remained

stable in the different drift fields of 270 and 344V/cm. This is

in agreement with earlier studies where varying the drift

field had a negligible effect on the mobilities of sterically

hindered molecules.37,46 In addition, changing the nebulizer

gas to air (80% N2, 20% O2) was tested with 2,6-DtB-4-MPh

and it did not affect the mobility of the [M–H]� ion.

2,6-Di-tert-butylphenol (2,6-DtBPh) and 2,4-di-tert-
butylphenol (2,4-DtBPh)
The [M–H]� ion of these isomeric compounds had clearly

different reduced mobilities (Table 1). The mass-selected ion

mobility spectrum of the [M–H]� ion at m/z 205 of 2,4-DtBPh

typically showed one large peak with a reduced mobility of

1.29 cm2/Vs and a smaller peak with a higher mobility of

1.34 cm2/Vs, whereas the main peaks of the [M–H]� ion of

2,6-DtBPh had K0 values of 1.43 and 1.37 cm2/Vs. One

explanation for the clearly different mobilities could be that

the charge is more exposed to interactions in the 2,4-DtBPh

than in 2,6-DtBPh. A similar explanation has been suggested

to explain why the mobilities of acetate monomers are lower

than those of acetate dimers with the same mass.47

Figure 4. Negative ion APCI mass-selected ion mobility spectra for (A) the 2,6-DtBPh [M–H]� ion at m/z 205, (B)

the 2,6-DtB-4-MPh [M–H]� ion at m/z 219, and (C) the 2,4,6-TtBPh [M–H]� ion at m/z 261. Gas-phase concen-

trations were between 1 and 2 ppb; samples were dissolved in hexane and measurements were made at room

temperature in nitrogen atmosphere. The drift field was 308 cm2/Vs.
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of 1.53 cm2/Vs at room temperature and in a nitrogen

atmosphere (Fig. 3(A)). Typically, two minor peaks with

mobilities of 1.14 and 1.63 cm2/Vs were also seen. The

mobility peak of 1.63 cm2/Vs is probably due to an oxygen

insertion ion [M–HþO]� atm/z 165, since the intensity of this

peak increased in the mass spectrum and the abundance of

this mobility peak in the mobility spectrum also increased

when air instead of nitrogen was used as the nebulizer gas

(Fig. 3(B)). The fact that the oxygen insertion ion drifts faster

than themain peak of 2-tBPh indicates that themain peak has

an adduct, e.g. O2 or NOx, attached to the analyte or that the

oxygen insertion ion interacts less with the drift gas due to its

structure, i.e. a possible internal hydrogen bond between the

OH group and the negatively charged oxygen atom in the

ortho position, than the [M–H]� ion. Oxygen and chloride

adduct formation has been reported previously for fluori-

nated phenols.28 The peak with a mobility of 1.14 cm2/Vs is

probably due to dimer formation. A dimer peak, [2M–H]� at

m/z 299, was observed in a mass spectrum measured with a

sample concentration about 100 times greater, and a

relatively wide mobility peak was observed in about the

same position in the mass-selected mobility spectrum

measured using the ion m/z 149 at this higher concentration.

It was also observed that the reduced mobility of the major

peak of 2-tBPh, the [M–H]� ion at m/z 149, remained stable

within experimental error when the temperature was

increased from 296 to 335K.

2,6-Di-tert-butylphenol (2,6-DtBPh), 2,6-di-tert-butyl-
4-methylphenol (2,6-DtB-4-MPh) and 2,4,6-tri-tert-
butylphenol (2,4,6-TtBPh)
The mass-selected [M–H]� ion mobility spectra of all these

compounds, measured at room temperature and in a

nitrogen atmosphere, look remarkably similar; typically

Table 1. Summary of the reduced mobilities K0 (cm
2/Vs) measured at room temperature. Nitrogen was used as a nebulizer gas

and sampleswere dissolved in hexane unless otherwise stated. The numbers represent the peak numbers in the order theyappear

in the mass-selected mobility spectra

Molecule Mass (u) 1st (K0) 2nd (K0) 3rd (K0) 4th (K0)

2-tBPh ([M–HþO]� m/z 165)b 150 1.63 1.13c

2-tBPh ([M–H]� m/z 149) 150 1.63 1.53 1.14c

2,4-DtBPh ([M–H]� m/z 205) 206 1.34 1.29
2,6-DtBPh ([M–H]� m/z 205) 206 1.43 1.37
2,6-DtB-4-MPh ([M–H]� m/z 219) 220 1.36 1.29
2,4,6-TtBPh ([M–H]� m/z 261) 262 1.23 1.18
2,4,6-TNT ([MþO]� m/z 243)a,b 227 1.53
2,4,6-TNT ([M]� m/z 227)a 227 1.58d 1.53 1.35
2,4,6-TNT ([M–H]� m/z 226)a 227 1.58 1.48 1.36
2,4,6-TNT ([M–OH]� m/z 210)a 227 1.53
2,4,6-TNT ([M–NO]� m/z 197)a 227 1.64 1.53 1.42 1.36

a Solvent is ACN.
bNebulizer gas is air.
c Dimer.
d Probably 13C isotope peak of the m/z 226 ion.

Figure 3. Negative ion APCI mass-selected ion mobility spectra of 2-tert-butylphenol. The gas-phase concentration

of 2-tBPh was about 2 ppb; the sample was dissolved in hexane and measurements were made at room temperature.

Mass-selectedmobility spectra of (A) the [M–H]� ion atm/z 149 in nitrogen atmosphere and (B) ions [M–H]� atm/z 149

(solid line) and [M–HþO]� atm/z 165 (dotted line) in air (80%N2, 20%O2). A dimer peak (marked with an asterisk) with

lower mobility is also observed.
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two major peaks and sometimes one or two minor peaks

(Fig. 4 and Table 1). The peak intensities changed somewhat

between the different measurements, probably due to slight

changes in the measuring conditions, but the absolute

reduced mobilities were stable within experimental error.

The multiple peaks are most likely due to different adduct

ions formed, for example, with O2 and NOx. Due to the

similarity of the ionmobility spectra the effect of temperature

was studied in more detail for 2,6-DtB-4-MPh and 2,4,6-

TtBPh. When the temperature was increased for 2,6-DtB-4-

MPh (Fig. 5) the relative abundance of the first peak

increased. This is an indication that at least the lower

mobility peaks are due to adducts. Eiceman et al. have also

reported that, at higher temperatures, adduct peaks decrease

in height or disappear.28 Similar behavior was also observed

in our study for 2,4,6-TtBPh.

As expected, the mobilities of these compounds remained

stable in the different drift fields of 270 and 344V/cm. This is

in agreement with earlier studies where varying the drift

field had a negligible effect on the mobilities of sterically

hindered molecules.37,46 In addition, changing the nebulizer

gas to air (80% N2, 20% O2) was tested with 2,6-DtB-4-MPh

and it did not affect the mobility of the [M–H]� ion.

2,6-Di-tert-butylphenol (2,6-DtBPh) and 2,4-di-tert-
butylphenol (2,4-DtBPh)
The [M–H]� ion of these isomeric compounds had clearly

different reduced mobilities (Table 1). The mass-selected ion

mobility spectrum of the [M–H]� ion at m/z 205 of 2,4-DtBPh

typically showed one large peak with a reduced mobility of

1.29 cm2/Vs and a smaller peak with a higher mobility of

1.34 cm2/Vs, whereas the main peaks of the [M–H]� ion of

2,6-DtBPh had K0 values of 1.43 and 1.37 cm2/Vs. One

explanation for the clearly different mobilities could be that

the charge is more exposed to interactions in the 2,4-DtBPh

than in 2,6-DtBPh. A similar explanation has been suggested

to explain why the mobilities of acetate monomers are lower

than those of acetate dimers with the same mass.47

Figure 4. Negative ion APCI mass-selected ion mobility spectra for (A) the 2,6-DtBPh [M–H]� ion at m/z 205, (B)

the 2,6-DtB-4-MPh [M–H]� ion at m/z 219, and (C) the 2,4,6-TtBPh [M–H]� ion at m/z 261. Gas-phase concen-

trations were between 1 and 2 ppb; samples were dissolved in hexane and measurements were made at room

temperature in nitrogen atmosphere. The drift field was 308 cm2/Vs.
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2,4,6-Trinitrotoluene (2,4,6-TNT)
For 2,4,6-TNTmass-selectedmobility spectra weremeasured

for the main ionsm/z 226 and 197, and some other interesting

ions m/z 227, 210 and 243 seen in the mass spectra (Table 1).

The mobility spectra of the ionsm/z 227, 226 and 197 showed

multiple peaks with varying intensities, but typically there

were one or twomore intense peaks. The first peak of the [M–

NO]� ion at m/z 197, K0¼ 1.64 cm2/Vs, has higher mobility

than the first peak of the [M–H]� ion at m/z 226 with a

mobility of 1.58 cm2/Vs. Other ions did not produce peaks at

these mobility values, except for a mobility peak for the ion

m/z 227 which also had a K0 of 1.58 cm
2/Vs, but based on its

intensity it is probably the isotope peak of the m/z 226 ion.

The mobility difference between these peaks could be due to

the mass difference of these ions. The second peak of the ions

m/z 197 and 227 has a mobility value of K0¼ 1.53 cm2/Vs and

a peak in the mass-selected mobility spectra of the ions m/z

210 and 243with the samemobility can also be seen (Table 1).

This could indicate that all the species with K0¼ 1.53 cm2/Vs

are formed at least partly from the one precursor ion, i.e. the

oxygen adduct ion [MþO]� ion at m/z 243, which fragments

after IMS separation. However, formation of this mobility

peak due to the presence of an intact molecular anion or its

fragmentation to m/z 197 and 210 could also be possible.

Similarly to what was reported previously,9 it was observed

that the radical ion [M]� at m/z 227 of 2,4,6-TNT drifts more

slowly than the [M–H]� ion atm/z 226 (Table 1). In our study

the peaks with a K0 of less than 1.50 cm2/Vs are probably due

to various adducts, as their intensities decrease when the

temperature is elevated to 335K (Fig. 6).

Mobility standard
One of the goals of this study was to find out if phenolic

compounds with protective tert-butyl groups could be used

as mobility standards in negative ion mode IMS, in the same

way as 2,6-di-tert-butylpyridine (2,6-DtBPyr), which has

been used as a mobility standard for positive mode IMS.37 A

mobility standard is needed since differences in drift tube

designs and measuring conditions lead to varying absolute

reduced mobilities. An ideal standard for IMS has a constant

reduced mobility over a wide range of temperatures and, in

different drift fields, has a low tendency to form clusters or

dimers, can be ionized with various atmospheric pressure

ionizations methods and is safe to use.48 2,6-DtBPyr

tetraalkylammonium halides (TAAH) have been identified

as mobility standards for positive mode ESI-IMS46 and also

Figure 5. Negative ion APCI mass-selected ion mobility spectra of 2,6-di-tert-butyl-4-methylphenol [M–H]� ion at m/z

219. Gas-phase concentrations were 2 ppb; samples were dissolved in hexane and measurements were made at (A)

296, (B) 313, and (C) 335K in nitrogen atmosphere. The drift field was 270 cm2/Vs.
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suggested for use as standards for aerosol instruments.49 In

addition, 2,6-DtBPyr has been used to measure effective

length of different drift tubes.50 In negative ion mode IMS,

2,4,6-TNT has been used as a mobility standard.31

Our study indicates good reproducibility of the measured

reduced mobilities in the conditions reported for 2,6-DtBPh,

2,6-DtB-4-MPh and 2,4,6-TtBPh. These compounds could be

used as standards because they are easily available, inex-

pensive and safe to use. They should, however, be further

tested using various instruments/measurement conditions

and also other ionization methods before a final conclusion

about their suitability as general mobility standards can be

reached. 2,4,6-TNT also shows suitable behavior for use as a

mobility standard. Compared with 2,4,6-TNT the main

advantage of the phenols is that they produce less fragmen-

tation under negative APCI and thereby simpler gas-phase

chemistry and ion mobility spectra. Furthermore, the

phenols have the advantage of being part of a homologous

series which means that it is possible to tune the reduced

mobility to avoid coeluting peaks and to tune the mass to

avoid isobaric overlap.

CONCLUSIONS

The behavior of selected phenols and 2,4,6-TNT in negative

corona discharge APCI-IMS was investigated. In our study,

reduced mobilities of the main peaks of the [M–H]� ions of

all the phenolic compounds are smaller than for the [M–H]�

m/z 226 ion of 2,4,6-TNT, although the masses of some of the

phenols are less than that of 2,4,6-TNT. These compounds are

from different chemical families, and therefore they can

interact differently with the drift gas, so that different

reduced mobilities are observed.3 The mass-selected mobi-

lity spectrum of the [M–H]� ion of 2-tBPh produced one

major peak. When air was used as a nebulizer gas, a mobility

peak due to an oxygen insertion ion [M–HþO]� was also

clearly seen. This species had a shorter drift time than the

main peak of the [M–H]� ion of 2-tBPh, indicating that the

main peak may have an adduct present or that the

interactions with drift gas differ. Interestingly, the two

isomeric compounds 2,4-DtBPh and 2,6-DtBPh were clearly

separated by IMS. Three of the phenols, namely 2,6-DtBPh,

2,6-DtB-4-MPh and 2,4,6-TtBPh, behaved very similarly,

typically producing two major mobility peaks in the mass-

selectedmobility spectrameasured for the [M–H]� ion under

different conditions. This study suggests that these three

phenols could be used as standards in addition to 2,4,6-TNT,

but further characterization studies are required.
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2,4,6-Trinitrotoluene (2,4,6-TNT)
For 2,4,6-TNTmass-selectedmobility spectra weremeasured

for the main ionsm/z 226 and 197, and some other interesting

ions m/z 227, 210 and 243 seen in the mass spectra (Table 1).

The mobility spectra of the ionsm/z 227, 226 and 197 showed

multiple peaks with varying intensities, but typically there

were one or twomore intense peaks. The first peak of the [M–

NO]� ion at m/z 197, K0¼ 1.64 cm2/Vs, has higher mobility

than the first peak of the [M–H]� ion at m/z 226 with a

mobility of 1.58 cm2/Vs. Other ions did not produce peaks at

these mobility values, except for a mobility peak for the ion

m/z 227 which also had a K0 of 1.58 cm
2/Vs, but based on its

intensity it is probably the isotope peak of the m/z 226 ion.

The mobility difference between these peaks could be due to

the mass difference of these ions. The second peak of the ions

m/z 197 and 227 has a mobility value of K0¼ 1.53 cm2/Vs and

a peak in the mass-selected mobility spectra of the ions m/z

210 and 243with the samemobility can also be seen (Table 1).

This could indicate that all the species with K0¼ 1.53 cm2/Vs

are formed at least partly from the one precursor ion, i.e. the

oxygen adduct ion [MþO]� ion at m/z 243, which fragments

after IMS separation. However, formation of this mobility

peak due to the presence of an intact molecular anion or its

fragmentation to m/z 197 and 210 could also be possible.

Similarly to what was reported previously,9 it was observed

that the radical ion [M]� at m/z 227 of 2,4,6-TNT drifts more

slowly than the [M–H]� ion atm/z 226 (Table 1). In our study

the peaks with a K0 of less than 1.50 cm2/Vs are probably due

to various adducts, as their intensities decrease when the

temperature is elevated to 335K (Fig. 6).

Mobility standard
One of the goals of this study was to find out if phenolic

compounds with protective tert-butyl groups could be used

as mobility standards in negative ion mode IMS, in the same

way as 2,6-di-tert-butylpyridine (2,6-DtBPyr), which has

been used as a mobility standard for positive mode IMS.37 A

mobility standard is needed since differences in drift tube

designs and measuring conditions lead to varying absolute

reduced mobilities. An ideal standard for IMS has a constant

reduced mobility over a wide range of temperatures and, in

different drift fields, has a low tendency to form clusters or

dimers, can be ionized with various atmospheric pressure

ionizations methods and is safe to use.48 2,6-DtBPyr

tetraalkylammonium halides (TAAH) have been identified

as mobility standards for positive mode ESI-IMS46 and also

Figure 5. Negative ion APCI mass-selected ion mobility spectra of 2,6-di-tert-butyl-4-methylphenol [M–H]� ion at m/z

219. Gas-phase concentrations were 2 ppb; samples were dissolved in hexane and measurements were made at (A)

296, (B) 313, and (C) 335K in nitrogen atmosphere. The drift field was 270 cm2/Vs.
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suggested for use as standards for aerosol instruments.49 In

addition, 2,6-DtBPyr has been used to measure effective

length of different drift tubes.50 In negative ion mode IMS,

2,4,6-TNT has been used as a mobility standard.31

Our study indicates good reproducibility of the measured

reduced mobilities in the conditions reported for 2,6-DtBPh,

2,6-DtB-4-MPh and 2,4,6-TtBPh. These compounds could be

used as standards because they are easily available, inex-

pensive and safe to use. They should, however, be further

tested using various instruments/measurement conditions

and also other ionization methods before a final conclusion

about their suitability as general mobility standards can be

reached. 2,4,6-TNT also shows suitable behavior for use as a

mobility standard. Compared with 2,4,6-TNT the main

advantage of the phenols is that they produce less fragmen-

tation under negative APCI and thereby simpler gas-phase

chemistry and ion mobility spectra. Furthermore, the

phenols have the advantage of being part of a homologous

series which means that it is possible to tune the reduced

mobility to avoid coeluting peaks and to tune the mass to

avoid isobaric overlap.

CONCLUSIONS

The behavior of selected phenols and 2,4,6-TNT in negative

corona discharge APCI-IMS was investigated. In our study,

reduced mobilities of the main peaks of the [M–H]� ions of

all the phenolic compounds are smaller than for the [M–H]�

m/z 226 ion of 2,4,6-TNT, although the masses of some of the

phenols are less than that of 2,4,6-TNT. These compounds are

from different chemical families, and therefore they can

interact differently with the drift gas, so that different

reduced mobilities are observed.3 The mass-selected mobi-

lity spectrum of the [M–H]� ion of 2-tBPh produced one

major peak. When air was used as a nebulizer gas, a mobility

peak due to an oxygen insertion ion [M–HþO]� was also

clearly seen. This species had a shorter drift time than the

main peak of the [M–H]� ion of 2-tBPh, indicating that the

main peak may have an adduct present or that the

interactions with drift gas differ. Interestingly, the two

isomeric compounds 2,4-DtBPh and 2,6-DtBPh were clearly

separated by IMS. Three of the phenols, namely 2,6-DtBPh,

2,6-DtB-4-MPh and 2,4,6-TtBPh, behaved very similarly,

typically producing two major mobility peaks in the mass-

selectedmobility spectrameasured for the [M–H]� ion under

different conditions. This study suggests that these three

phenols could be used as standards in addition to 2,4,6-TNT,

but further characterization studies are required.
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Separation of Different Ion Structures in
Atmospheric Pressure Photoionization-Ion
Mobility Spectrometry-Mass Spectrometry
(APPI-IMS-MS)
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This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility
spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms
of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent,
2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) effi-
ciently produce radical cations [M]�· and protonated [M � H]� molecules, whereas, when the
sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical
cations drift slower in the drift tube than the protonated molecules. It was observed that an
oxygen adduct ion, [M � O2]�·, which was clearly seen in the mass spectra for hexane:toluene
(9:1) solutions, shares the same mobility with radical cations, [M]�·. Therefore, the observed
mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation
forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules
could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that
in hexane the protonated molecule typically had a higher intensity than the radical cation,
whereas in hexane:toluene (9:1) the radical cation [M]�· typically had a higher intensity than
the protonated molecule [M � H]�. Interestingly, the latter drifts slower than the radical cation
[M]�·, which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr.
(J Am Soc Mass Spectrom 2010, 21, 1565–1572) © 2010 American Society for Mass Spectrometry

In ion mobility spectrometry (IMS) ions move through an
applied electric field in a drift gas flow [1]. Interac-
tions between analyte ions and the drift gas result in

a specific drift time for that ion, which is often con-
verted to the reduced mobility (Formula 1) [1, 2].
Several general reviews of IMS exist [1, 3–8] and the
theory behind drift tube ion mobility spectrometry has
been presented in detail elsewhere [2, 9].

K0 �� ld
2

tdV
��273

T �� P

760� (1)

where ld � length of the drift region, td � drift time of
ion, V � voltage drop over the drift region, T �
temperature, and P � pressure.

The most common IMS devices are stand-alone instru-
ments, which are commonly used to screen the environ-
ment for significant chemicals such as warfare agents,
explosives, and illegal drugs [1, 10–12]. These devices are
often tuned to detect certain chemicals; when more spe-
cific information is required, IMS is often combined with
other instruments, for example with gas chromatography
(GC-IMS) [4, 13]. Ion mobility spectrometry-mass spec-
trometry (IMS-MS) is also becoming more and more
popular in various application fields, especially in bio-
analysis [5]. Several different types of ion mobility spec-
trometers have been combined with mass spectrometers,
e.g., drift tube IMS-MS [1, 5, 14], field asymmetric ion
mobility spectrometry (FAIMS-MS) [5, 15–17], and also an
aspiration IMS method has been combined with MS [18].
In bioanalysis, a common application of IMS-MS is struc-
tural studies of peptides and proteins [19–22]. Lately, it
has also been shown that drift tube IMS-MS can be used,
for example, to separate carbohydrate isomers [23] and
enantiomers of model compounds [24, 25].

Ionization in ion mobility spectrometry is usually
conducted with radioactive ionization (e.g., 63Ni), how-
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ever ionization techniques such as electrospray ioniza-
tion (ESI) and atmospheric pressure chemical ionization
(APCI) have also often been used [1, 5, 22, 26–29].
Atmospheric pressure photoionization (APPI) is an
ionization technique that has shown its strength, espe-
cially in LC-MS during the past decade [30, 31]. How-
ever, APPI has already been used with IMS in 1980s
[13]. An important advantage of APPI compared to ESI
is that APPI is capable of ionizing less polar compounds
[30, 32]. Together with drift tube ion mobility spectrom-
etry, APPI has been used for example to detect alcohols
[33] and toluene [34]. Borsdorf et al. have compared
APPI with APCI and 63Ni in the analysis of various
aromatic compounds and terpenes and observed some
variance in the mobility spectra depending on the
ionization method [35–38]. Still, the number of publica-
tions with APPI-IMS is limited. In our group APPI-IMS
has been used, for example, to measure mobility of
2,6-di-tert-butylpyridine (2,6-DtBPyr), which has been
proposed for use as a mobility standard [39]. Interest-
ingly, in some of these measurements, two different
mobility peaks were observed using our high-resolution
drift tubes. Preliminary mass-selected mobility mea-
surements showed that one of the peaks was due to the
[M]�· ion of 2,6-DtBPyr and the other one due to the
[M � H]� ion [40]. To further study this observation
and possibility separate radical cations and protonated
molecules of the same compound by IMS, a set of
analytes was selected (Figure 1); the fact that depending
on the ionization conditions radical cations or proton-
ated molecules can be produced in APPI guided the
selection [41–43]. The results of these studies and the
reasons for the observed differences in mobilities of
different ions of the model compounds are presented.

Experimental

Instrumentation

Two different drift tube IMS instruments were used
in this study. Most of the measurements were done with
the IMS-MS instrument described in more detailed previ-
ously [14]. In addition, some measurements were done
with an ion mobility spectrometer-faraday plate detector
(IMS-FP) instrument [44]. Briefly, in the IMS-MS instru-
ment, the dual Bradbury-Nielsen (B-N) [45] gate cylin-
der drift tube is attached to a commercial triple-
quadrupole mass spectrometer API-300 (SCIEX Applied
Biosystems, Toronto, ON, Canada). These two B-N gates
allow the selection of a mobility window [14, 46]. The
gate opening time for both B-N gates was 300 �s.
Nitrogen was used as the drift gas with a flow of �2.4
L/min. The length of the drift region is 13.3 cm and
voltage drop was set from 4.20 to 4.83 kV (from 316 to
363 V/cm), unless stated otherwise. Mass spectrometric
parameters were typically a declustering potential from
20 to 30 V, unless otherwise stated, a focusing potential
of 130 to 220 V, and an entrance potential of 5 to 10 V.
Full scan mass spectra were usually collected in the
range of m/z 30–300 in 1-s scan time, and sometimes
with a range of m/z 50–500. Product ion mass spectra
were measured in a mass range of m/z 30 to 200 or 300,
and the collision energy varied from 15 to 40 V. Mass-
selected ion mobility data were measured using the
selected ion monitoring (SIM) mode of the instrument
and the typical mobility spectrum measurement time
was �10–15 min. The software used for data collection
was Analyst 1.4.1 (Applied Biosystems/MDS SCIEX,
Concord, ON, Canada). In the IMS-FP instrument, the
total drift length is 13.85 cm and it was operated with
one B-N gate with a gate opening time of 100 �s. The
drift voltage was 5.24 kV, which equals 378 V/cm, and
the nitrogen drift gas flow was set to 2.1 L/min. Data
were collected by utilizing a custom-made program in a
LabVIEW environment (National Instruments, Austin,
TX, USA). Also, some data were transferred to a
ChemStation rev. 10.02 (Agilent Technologies, Inc., Palo Alto,
CA, USA) and further processed with custom-made
macros. In this study, 2000 measurements were com-
bined for the mobility spectra. A nitrogen delivery
system, which produces 99.5% pure nitrogen gas from
compressed air for drift and nebulizer gas, was de-
scribed previously [14, 47, 48]. Experiments were con-
ducted at room temperature and atmospheric pressure.
Temperature was measured with a thermometer (Ther-
matag; Digitron Instrumentation Ltd., Torquay, En-
gland) which was attached to the nitrogen storage tank,
and the pressure meter (Series 902; MKS Instrument,
Andover, MA, USA) was located within the laboratory.

In both instruments, atmospheric pressure photoion-
ization was carried out using a custom-made ion source
in which a krypton discharge lamp is used (model PKS
100; Heraeus Noblelight, Cambridge, UK). It produces
two energy packets, with 10 eV (main packet) and 10.6 eV,

Figure 1. The structures of the compounds investigated in this
study.
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which equal in wave lengths of 124 and 117 nm,
respectively. Sample feeding to the ion source was
carried out with a custom-made heated nebulizer,
which was heated up to 573 K. Samples were injected
into the nebulizer with a PHD 2000 Advanced Syringe
Pump (Harvard Apparatus GmbH, Hugstetten, Ger-
many). The nebulizer nitrogen gas flow was typically
set at 1.6 to 1.8 L/min. In some measurements, a
custom-made gas calibrator was used for sample intro-
duction. In this system, analyte solutions are directly
injected, without heating, into the nitrogen sample gas
stream (1.9 L/min) using the syringe pump.

Chemicals

Chemicals used in the study were: n-hexane with a
purity of �95% (POCH, SA, Gliwice, Poland), HPLC-
grade toluene (Lab-Scan, Dublin, Ireland), n-pentane
with a purity of �99% (Fluka, Steinheim, Germany),
HPLC-gradient-grade methanol (J. T. Baker, Denventer,
Holland), pyridine with a purity of �99.5% (Merck,
Darmstadt, Germany), 1-naphthol, 2-naphthol, 2-tert-
butylpyridine (2-tBPyr), 2,6-di-tert-butylpyridine (2,6-
DtBPyr) with a purity of �97% and 2,6-di-tert-butyl-4-
methylpyridine (2,6-DtB-4-MPyr from Sigma-Aldrich,
Steinheim, Germany) with a purity of �98%. All the
chemicals were purchased and used as received. Solu-
tions of 2,6-di-tert-butylpyridine, at two different con-
centrations, were made in the solvent to give 50 or 500
�M (IMS-FP measurements), which equals a gas-phase
concentration of 2 or 20 ppb, respectively. Other com-
pounds typically had solution concentrations of 50 or
100 �M, which equal gas-phase concentrations of about
1 to 10 ppb, depending on the compound concerned.
Most of the solutions were prepared in hexane, or
hexane:toluene (9:1). Only a few solutions were made in
methanol:toluene (9:1), or pentane:toluene (9:1).

Results and Discussion

Atmospheric Pressure Photoionization (APPI)

One of the main points of the study was to select the APPI
ionization conditions so that a radical cation and/or
protonated molecule could be efficiently formed for the
model compounds (Figure 1). All the pyridine com-
pounds produced a protonated molecule [M � H]� in
APPI when they were dissolved in hexane. Low level
production of the [M]�· ion was also observed for
2,6-DtBPyr and 2,6-DtB-4-MPyr in hexane (Figure 2a).
However, when the sample solvent was hexane:toluene
(9:1), radical cations were clearly observed for 2,6-
DtBPyr and 2,6-DtB-4-MPyr (Figure 2b). In these con-
ditions, pyridine and 2-tBPyr formed efficiently only
the protonated molecule. A radical cation [M]�· of
toluene at m/z 92 was typically observed in the APPI
mass spectra measured for samples in hexane:toluene
(9:1). This is in good agreement with the results re-
ported earlier [41]. The fact that the toluene radical

cation is seen together with the analyte radical cation
suggests that it is needed for effective formation of the
[M]�· ion.

For 2,6-DtBPyr and 2,6-DtB-4-MPyr, oxygen adduct
[M � O2]�· ions at m/z 223 and 237, respectively, were
observed in some of the APPI mass spectra, which
turned out to be useful in explaining the mobility data
(see the Mobilities of the Compounds section). For the
samples dissolved in hexane:toluene (9:1) this ion was
clearly observed (Figure 2b). Previously, O2 adduct ions
have been observed to be formed in positive APPI for
benzene [49], for a �-distonic ion (C5H5N�-CH2C·H2)
reacting with O2 [50] and for distonic isomers of pyri-
dine radical cation [51]. To confirm the structures of the
oxygen adducts, their product ion mass spectra were
measured and compared to product ion mass spectra of
the radical cations and protonated molecules of 2,6-
DtBPyr and 2,6-DtB-4-MPyr (Table 1). For both of the
oxygen adducts oxygen (O2) loss was observed and the
other product ions seen in the mass spectrum were similar
to the ones observed for the radical cation of the studied
molecules. For both the radical cations and the protonated
molecule of 2,6-DtBPyr and 2,6-DtB-4-MPyr, fragmenta-
tion of the side groups was observed. Product ion

Figure 2. Positive ion APPI mass spectra of 2,6-DtB-4-MPyr,
which have a gas-phase concentration of �2 ppb. (a) The analyte
is dissolved in hexane and (b) in hexane:toluene (9:1). The main
peaks are the [M]�· ion at m/z 205, [M � H]� at m/z 206, and [M �
O2]�· at m/z 237. Toluene produces the ion [M � H]� at m/z 91 and
radical cation [M]�· at m/z 92. Declustering potential � 28 V.
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ever ionization techniques such as electrospray ioniza-
tion (ESI) and atmospheric pressure chemical ionization
(APCI) have also often been used [1, 5, 22, 26–29].
Atmospheric pressure photoionization (APPI) is an
ionization technique that has shown its strength, espe-
cially in LC-MS during the past decade [30, 31]. How-
ever, APPI has already been used with IMS in 1980s
[13]. An important advantage of APPI compared to ESI
is that APPI is capable of ionizing less polar compounds
[30, 32]. Together with drift tube ion mobility spectrom-
etry, APPI has been used for example to detect alcohols
[33] and toluene [34]. Borsdorf et al. have compared
APPI with APCI and 63Ni in the analysis of various
aromatic compounds and terpenes and observed some
variance in the mobility spectra depending on the
ionization method [35–38]. Still, the number of publica-
tions with APPI-IMS is limited. In our group APPI-IMS
has been used, for example, to measure mobility of
2,6-di-tert-butylpyridine (2,6-DtBPyr), which has been
proposed for use as a mobility standard [39]. Interest-
ingly, in some of these measurements, two different
mobility peaks were observed using our high-resolution
drift tubes. Preliminary mass-selected mobility mea-
surements showed that one of the peaks was due to the
[M]�· ion of 2,6-DtBPyr and the other one due to the
[M � H]� ion [40]. To further study this observation
and possibility separate radical cations and protonated
molecules of the same compound by IMS, a set of
analytes was selected (Figure 1); the fact that depending
on the ionization conditions radical cations or proton-
ated molecules can be produced in APPI guided the
selection [41–43]. The results of these studies and the
reasons for the observed differences in mobilities of
different ions of the model compounds are presented.

Experimental

Instrumentation

Two different drift tube IMS instruments were used
in this study. Most of the measurements were done with
the IMS-MS instrument described in more detailed previ-
ously [14]. In addition, some measurements were done
with an ion mobility spectrometer-faraday plate detector
(IMS-FP) instrument [44]. Briefly, in the IMS-MS instru-
ment, the dual Bradbury-Nielsen (B-N) [45] gate cylin-
der drift tube is attached to a commercial triple-
quadrupole mass spectrometer API-300 (SCIEX Applied
Biosystems, Toronto, ON, Canada). These two B-N gates
allow the selection of a mobility window [14, 46]. The
gate opening time for both B-N gates was 300 �s.
Nitrogen was used as the drift gas with a flow of �2.4
L/min. The length of the drift region is 13.3 cm and
voltage drop was set from 4.20 to 4.83 kV (from 316 to
363 V/cm), unless stated otherwise. Mass spectrometric
parameters were typically a declustering potential from
20 to 30 V, unless otherwise stated, a focusing potential
of 130 to 220 V, and an entrance potential of 5 to 10 V.
Full scan mass spectra were usually collected in the
range of m/z 30–300 in 1-s scan time, and sometimes
with a range of m/z 50–500. Product ion mass spectra
were measured in a mass range of m/z 30 to 200 or 300,
and the collision energy varied from 15 to 40 V. Mass-
selected ion mobility data were measured using the
selected ion monitoring (SIM) mode of the instrument
and the typical mobility spectrum measurement time
was �10–15 min. The software used for data collection
was Analyst 1.4.1 (Applied Biosystems/MDS SCIEX,
Concord, ON, Canada). In the IMS-FP instrument, the
total drift length is 13.85 cm and it was operated with
one B-N gate with a gate opening time of 100 �s. The
drift voltage was 5.24 kV, which equals 378 V/cm, and
the nitrogen drift gas flow was set to 2.1 L/min. Data
were collected by utilizing a custom-made program in a
LabVIEW environment (National Instruments, Austin,
TX, USA). Also, some data were transferred to a
ChemStation rev. 10.02 (Agilent Technologies, Inc., Palo Alto,
CA, USA) and further processed with custom-made
macros. In this study, 2000 measurements were com-
bined for the mobility spectra. A nitrogen delivery
system, which produces 99.5% pure nitrogen gas from
compressed air for drift and nebulizer gas, was de-
scribed previously [14, 47, 48]. Experiments were con-
ducted at room temperature and atmospheric pressure.
Temperature was measured with a thermometer (Ther-
matag; Digitron Instrumentation Ltd., Torquay, En-
gland) which was attached to the nitrogen storage tank,
and the pressure meter (Series 902; MKS Instrument,
Andover, MA, USA) was located within the laboratory.

In both instruments, atmospheric pressure photoion-
ization was carried out using a custom-made ion source
in which a krypton discharge lamp is used (model PKS
100; Heraeus Noblelight, Cambridge, UK). It produces
two energy packets, with 10 eV (main packet) and 10.6 eV,

Figure 1. The structures of the compounds investigated in this
study.
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which equal in wave lengths of 124 and 117 nm,
respectively. Sample feeding to the ion source was
carried out with a custom-made heated nebulizer,
which was heated up to 573 K. Samples were injected
into the nebulizer with a PHD 2000 Advanced Syringe
Pump (Harvard Apparatus GmbH, Hugstetten, Ger-
many). The nebulizer nitrogen gas flow was typically
set at 1.6 to 1.8 L/min. In some measurements, a
custom-made gas calibrator was used for sample intro-
duction. In this system, analyte solutions are directly
injected, without heating, into the nitrogen sample gas
stream (1.9 L/min) using the syringe pump.

Chemicals

Chemicals used in the study were: n-hexane with a
purity of �95% (POCH, SA, Gliwice, Poland), HPLC-
grade toluene (Lab-Scan, Dublin, Ireland), n-pentane
with a purity of �99% (Fluka, Steinheim, Germany),
HPLC-gradient-grade methanol (J. T. Baker, Denventer,
Holland), pyridine with a purity of �99.5% (Merck,
Darmstadt, Germany), 1-naphthol, 2-naphthol, 2-tert-
butylpyridine (2-tBPyr), 2,6-di-tert-butylpyridine (2,6-
DtBPyr) with a purity of �97% and 2,6-di-tert-butyl-4-
methylpyridine (2,6-DtB-4-MPyr from Sigma-Aldrich,
Steinheim, Germany) with a purity of �98%. All the
chemicals were purchased and used as received. Solu-
tions of 2,6-di-tert-butylpyridine, at two different con-
centrations, were made in the solvent to give 50 or 500
�M (IMS-FP measurements), which equals a gas-phase
concentration of 2 or 20 ppb, respectively. Other com-
pounds typically had solution concentrations of 50 or
100 �M, which equal gas-phase concentrations of about
1 to 10 ppb, depending on the compound concerned.
Most of the solutions were prepared in hexane, or
hexane:toluene (9:1). Only a few solutions were made in
methanol:toluene (9:1), or pentane:toluene (9:1).

Results and Discussion

Atmospheric Pressure Photoionization (APPI)

One of the main points of the study was to select the APPI
ionization conditions so that a radical cation and/or
protonated molecule could be efficiently formed for the
model compounds (Figure 1). All the pyridine com-
pounds produced a protonated molecule [M � H]� in
APPI when they were dissolved in hexane. Low level
production of the [M]�· ion was also observed for
2,6-DtBPyr and 2,6-DtB-4-MPyr in hexane (Figure 2a).
However, when the sample solvent was hexane:toluene
(9:1), radical cations were clearly observed for 2,6-
DtBPyr and 2,6-DtB-4-MPyr (Figure 2b). In these con-
ditions, pyridine and 2-tBPyr formed efficiently only
the protonated molecule. A radical cation [M]�· of
toluene at m/z 92 was typically observed in the APPI
mass spectra measured for samples in hexane:toluene
(9:1). This is in good agreement with the results re-
ported earlier [41]. The fact that the toluene radical

cation is seen together with the analyte radical cation
suggests that it is needed for effective formation of the
[M]�· ion.

For 2,6-DtBPyr and 2,6-DtB-4-MPyr, oxygen adduct
[M � O2]�· ions at m/z 223 and 237, respectively, were
observed in some of the APPI mass spectra, which
turned out to be useful in explaining the mobility data
(see the Mobilities of the Compounds section). For the
samples dissolved in hexane:toluene (9:1) this ion was
clearly observed (Figure 2b). Previously, O2 adduct ions
have been observed to be formed in positive APPI for
benzene [49], for a �-distonic ion (C5H5N�-CH2C·H2)
reacting with O2 [50] and for distonic isomers of pyri-
dine radical cation [51]. To confirm the structures of the
oxygen adducts, their product ion mass spectra were
measured and compared to product ion mass spectra of
the radical cations and protonated molecules of 2,6-
DtBPyr and 2,6-DtB-4-MPyr (Table 1). For both of the
oxygen adducts oxygen (O2) loss was observed and the
other product ions seen in the mass spectrum were similar
to the ones observed for the radical cation of the studied
molecules. For both the radical cations and the protonated
molecule of 2,6-DtBPyr and 2,6-DtB-4-MPyr, fragmenta-
tion of the side groups was observed. Product ion

Figure 2. Positive ion APPI mass spectra of 2,6-DtB-4-MPyr,
which have a gas-phase concentration of �2 ppb. (a) The analyte
is dissolved in hexane and (b) in hexane:toluene (9:1). The main
peaks are the [M]�· ion at m/z 205, [M � H]� at m/z 206, and [M �
O2]�· at m/z 237. Toluene produces the ion [M � H]� at m/z 91 and
radical cation [M]�· at m/z 92. Declustering potential � 28 V.
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spectra of the ions m/z 191 and 205 indicated that traces
of oxygen adduct ion were sometimes observable in the
product ion spectra. This further indicates that for the
both radical cation species oxygen adduct formation is
favorable.

1- and 2-naphthol behaved similarly in mass spec-
trometric analysis, and the APPI mass spectra measured
for samples dissolved in hexane show both the radical
cation [M]�· at m/z 144 and protonated molecule [M �
H]� at m/z 145 with varying relative intensities; typi-
cally, the [M � H]� ion has a clearly higher intensity
and the peak m/z 144 is relatively small. But when the
samples are dissolved in hexane:toluene (9:1), the rad-
ical cation [M]�· at m/z 144 clearly has the higher
intensity and a relatively small peak is seen at m/z 145.
This is quite well in line with an earlier study where
2-naphthol in acetonitrile produced only the [M]�· ion
at m/z 144 when the dopant was toluene or anisole [52],
and when the solvent was hexane and toluene was
dopant a small amount of the [M � H]� ion at m/z 145
was produced along with the radical cation [41].

In addition to these two ions, which are most rele-
vant for this study, an interesting ion-molecule reaction
product ion with an additional 10 mass units compared
with the [M � H]� ion was observed at m/z 155 for both
the naphthols. This ion was observed clearly when the
[M � H]� ion had a large intensity with a high
declustering potential (80 V). At these conditions a
small peak at m/z 127 was also seen in the APPI mass
spectra, most likely formed via water loss from the
protonated molecule. In the product ion mass spectrum
of m/z 155, fragment ions m/z 127 and 145 are seen.
Interestingly, the ion m/z 155 was also often observed in
the product ion mass spectrum of m/z 145, where the ion
m/z 127 is also observed. These findings suggest that the
[M � H]� ion, at m/z 145, loses water (Mr � 18) to form
m/z 127, which reacts further, for example with CO (Mr � 28)

or other species capable of donating CO, to form ion [M �
H � H2O � CO]� at m/z 155, a reaction which can also
happen in reverse in the collision chamber. The origin
of reacting neutral species could be trace impurities
in the collision gas. The corresponding reaction prod-
uct, i.e., removal of CO and addition of water, has
recently been reported to occur for isoquinoline-3-
carboxamides [53].

Mobilities of the Compounds

The mass-selected mobility data is summarized in Table
2, where the values are absolute reduced mobilities
calculated using Formula 1. The behavior of the com-
pounds is discussed below in more detail. Since 2,6-
DtBPyr is proposed to be used as a mobility standard
[39], the repeatability of the mobility measurements for
it was looked into in more detail. The relative standard
deviation of mass-selected reduced mobility for the
[M � H]� ion of 2,6-DtBPyr in hexane and with a
gas-phase concentration of about 2 ppb was 0.7% (n �
13, K0 � 1.49 cm2/Vs).

Pyridine

The mass-selected mobility spectrum of the pyridine [M �
H]� ion at m/z 80 shows two main peaks, K0 � 2.04 and
1.69 cm2/Vs, when hexane is the solvent (Figure 3a).
The latter mobility peak is expected to be due to a
proton-bound dimer because its intensity increases
when the gas-phase concentration of pyridine was
doubled; even a dimer mass peak was not observed in
a full scan mass spectrum. Symmetric proton-bound
dimers are commonly formed under ambient condi-
tions for a wide range of molecules: alcohols, ketones,
ethers, acetates, aliphatic amines, and aromatic amines
[54–56]. An additional reason for us to expect that the

Table 1. Product ion mass spectra of 2,6-di-tert-butylpyridine and 2,6-di-tert-butyl-4-methylpyridine with and without toluene in the
sample solution

Compound PI Product ions, proposed cleaved species CE

2,6-DtBPyr in hexane 192 177 (70)
(�CH3)

176 (100)
(�CH4)

162 (70)
(�C2H6)

149 (10)
(�C3H7)

135 (10)
(�C4H9)

40

2,6-DtBPyr in hexane:toluene (9:1) 191 176 (40)
(�CH3)

149 (100)
(�C3H6)

15

192 177 (70)
(�CH3)

176 (100)
(�CH4)

162 (70)
(�C2H6)

161 (20)
(�C2H7)

149 (20)
(�C3H7)

135 (20)
(�C4H9)

40

223 191 (80)
(�O2)

176 (30)
(�O2–CH3)

149 (100)
(�O2–C3H6)

22

2,6-DtB-4-MPyr in hexane 206 191 (100)
(�CH3)

190 (80)
(�CH4)

176 (40)
(�C2H6)

163 (10)
(�C3H7)

149 (10)
(�C4H9)

38

2-DtB-4-MPyr in hexane:toluene (9:1) 205 204 (10)
(�H)

190 (30)
(�CH3)

163 (100)
(�C3H6)

149 (10)
(�C4H8)

15

206 191 (100)
(�CH3)

190 (80)
(�CH4)

176 (50)
(�C2H6)

163 (20)
(�C3H7)

149 (10)
(�C4H9)

38

237 205 (100)
(�O2)

204 (20)
(�O2–H)

190 (30)
(�O2–CH3)

163 (100)
(�O2–C3H6)

22

Relative abundances of product ions and the species lost are presented in brackets. Product ions with a relative abundance equal to or more than
10% are presented. All the analytes have a gas phase concentration of 2 to 4 ppb.
PI � precursor ion (m/z); CE � collision energy (V).
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second peak is a dimer peak is the observation that
during one measurement day it was observed that the
first peak changed relatively much, about 0.06 units, to
lower mobility, but the second peak still had a mobility
of 1.69 cm2/Vs. We believe that the change could be due
to sample solvent somehow “overloading” the drift
tube on this one day, since the next day’s measurement
of the mobility of the first peak was as expected. It has
been reported that mobility of monomers can be more
dependent on measuring conditions than dimers [57].
Interestingly, when hexane:toluene (9:1) is used, a new
peak with a lower mobility, K0 � 1.63 cm2/Vs, appears
while measuring mass-selected mobility of the ion m/z
80 (Figure 3b). This mobility peak is most likely due to
some kind of pyridine adduct ion. It was also observed
that an adduct ion m/z 170 produced a mobility peak
with this same mobility, i.e., K0 � 1.63 cm2/Vs. An ion
m/z 170 was typically seen with low intensity in APPI
mass spectra of pyridine measured from hexane:toluene
(9:1) solution. Its product ion mass spectrum indicated
the presence of a fragment ion m/z 91, which could
mean that the ion m/z 170 is a benzyl cation adduct of
pyridine [M � 91]�. The presence of some other product
ions was also indicated (e.g., m/z 78 and 80) but unfortu-
nately the quality of the product ion spectrum was not
very good. Identification of the structure of the ion m/z 170
is not possible without further measurements.

2-tert-Butylpyridine, 2,6-di-tert-Butylpyridine and
2,6-di-tert-butyl-4-Methylpyridine

The mass-selected mobility spectra of 2-tBPyr measured
for its [M � H]� ion produced one peak with a mobility
of K0 � 1.73 cm2/Vs (Table 2) when the solvent was
hexane or hexane:toluene (9:1). For 2,6-DtBPyr (Figure

4a and b) and 2,6-DtB-4-MPyr one clear mobility peak
was observed in the mass-selected mobility spectra of
the [M � H]� ion, with K0 � 1.50 and 1.42 cm2/Vs,
respectively, whereas for the [M]�· ions mobility peaks
were observed at K0 � 1.45 and 1.38 cm2/Vs, respec-
tively. Small mobility peaks were also observed at K0 �
1.45 and 1.38 cm2/Vs for the [M � H]� ion of 2,6-
DtBPyr and 2,6-DtB-4-MPyr, respectively, but it is ex-
pected that these are isotope peaks of ions m/z 191 and
205, respectively. Mass-selected mobility spectra of the
[M � O2]�· ions of these two compounds produced
mobility peaks with corresponding mobilities as mea-
sured for their [M]�· ions (Table 2). Some mobility
measurements were also done for 2,6-DtBPyr using the
IMS-FP instrument and APPI. Two mobility peaks were
observed when the sample solvent was either hexane:
toluene (Figure 5) or pentane:toluene, with mobilities of
K0 � 1.47 and 1.42 cm2/Vs and K0 � 1.46 and 1.42
cm2/Vs, respectively. A reaction ion peak was also
observed. However, when the sample solvent was
methanol:toluene (9:1) only one mobility peak, at K0 �
1.46 cm2/Vs, was seen. The small difference in reduced
mobility between these two instruments was examined
previously and it could be corrected by adjusting the
mobility scale [58].

Interestingly, for both 2,6-DtBPyr and 2,6-DtB-4-
MPyr the radical cation has a lower mobility than the
protonated molecule. It is most likely that 2,6-DtBPyr
and 2,6-DtB-4-MPyr form oxygen adducts [M � O2]�·,
causing slower drift time due to the increased mass.
However, we could not entirely rule out the possibility
that radical cations interact strongly with the residual
oxygen in the drift gas and therefore drift slower.
Borsdorf et al. have previously reported that protonated
anilines have lower reduced mobilities than radical

Table 2. Summary of the reduced mobilities, K0 (cm2/Vs), measured with IMS-MS. Samples are dissolved in hexane or
hexane:toluene (9:1) and typically the values are based on measurements made using both of the solvents. Typically the mobility
values obtained with different solvents were the same within the experimental error. The numbers represent the peak numbers in
decreasing mobility order as they appear in the mass-selected mobility spectra

Molecule Mass (u) 1st (K0) 2nd (K0) 3rd (K0)

Pyridine ([M � H]� m/z 80) 79 2.04 1.69a 1.63b

Pyridine ([M � 91]� m/z 170)b 79 1.64
2-tBPyr ([M � H]� m/z 136) 135 1.73
2,6-DtBPyr ([M]�· m/z 191)b 191 1.45
2,6-DtBPyr ([M � H]� m/z 192) 191 1.50 1.45b,c

2,6-DtBPyr ([M � O2]�· m/z 223)b 191 1.45
2,6-DtB-4-MPyr ([M]�· m/z 205)b 205 1.38
2,6-DtB-4-MPyr ([M � H]� m/z 206) 205 1.42 1.38b,c

2,6-DtB-4-MPyr ([M � O2]�· m/z 237)b 205 1.39
1-Naphthol ([M]�· m/z 144) 144 1.72
1-Naphthol ([M � H]� m/z 145) 144 1.68 1.50d 1.32d

1-Naphthol ([M � H � H2O � CO]� m/z 155) 144 1.68
2-Naphthol ([M]�· m/z 144) 144 1.73
2-Naphthol ([M � H]� m/z 145) 144 1.67 1.50d 1.32d

2-Naphthol ([M � H � H2O � CO]� m/z 155) 144 1.67

aDimer.
bPeaks observed only clearly in hexane:toluene (9:1).
cMost likely 13C isotope peak of the ion m/z 191 or 205.
dMinor peaks that are observed sporadically.
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spectra of the ions m/z 191 and 205 indicated that traces
of oxygen adduct ion were sometimes observable in the
product ion spectra. This further indicates that for the
both radical cation species oxygen adduct formation is
favorable.

1- and 2-naphthol behaved similarly in mass spec-
trometric analysis, and the APPI mass spectra measured
for samples dissolved in hexane show both the radical
cation [M]�· at m/z 144 and protonated molecule [M �
H]� at m/z 145 with varying relative intensities; typi-
cally, the [M � H]� ion has a clearly higher intensity
and the peak m/z 144 is relatively small. But when the
samples are dissolved in hexane:toluene (9:1), the rad-
ical cation [M]�· at m/z 144 clearly has the higher
intensity and a relatively small peak is seen at m/z 145.
This is quite well in line with an earlier study where
2-naphthol in acetonitrile produced only the [M]�· ion
at m/z 144 when the dopant was toluene or anisole [52],
and when the solvent was hexane and toluene was
dopant a small amount of the [M � H]� ion at m/z 145
was produced along with the radical cation [41].

In addition to these two ions, which are most rele-
vant for this study, an interesting ion-molecule reaction
product ion with an additional 10 mass units compared
with the [M � H]� ion was observed at m/z 155 for both
the naphthols. This ion was observed clearly when the
[M � H]� ion had a large intensity with a high
declustering potential (80 V). At these conditions a
small peak at m/z 127 was also seen in the APPI mass
spectra, most likely formed via water loss from the
protonated molecule. In the product ion mass spectrum
of m/z 155, fragment ions m/z 127 and 145 are seen.
Interestingly, the ion m/z 155 was also often observed in
the product ion mass spectrum of m/z 145, where the ion
m/z 127 is also observed. These findings suggest that the
[M � H]� ion, at m/z 145, loses water (Mr � 18) to form
m/z 127, which reacts further, for example with CO (Mr � 28)

or other species capable of donating CO, to form ion [M �
H � H2O � CO]� at m/z 155, a reaction which can also
happen in reverse in the collision chamber. The origin
of reacting neutral species could be trace impurities
in the collision gas. The corresponding reaction prod-
uct, i.e., removal of CO and addition of water, has
recently been reported to occur for isoquinoline-3-
carboxamides [53].

Mobilities of the Compounds

The mass-selected mobility data is summarized in Table
2, where the values are absolute reduced mobilities
calculated using Formula 1. The behavior of the com-
pounds is discussed below in more detail. Since 2,6-
DtBPyr is proposed to be used as a mobility standard
[39], the repeatability of the mobility measurements for
it was looked into in more detail. The relative standard
deviation of mass-selected reduced mobility for the
[M � H]� ion of 2,6-DtBPyr in hexane and with a
gas-phase concentration of about 2 ppb was 0.7% (n �
13, K0 � 1.49 cm2/Vs).

Pyridine

The mass-selected mobility spectrum of the pyridine [M �
H]� ion at m/z 80 shows two main peaks, K0 � 2.04 and
1.69 cm2/Vs, when hexane is the solvent (Figure 3a).
The latter mobility peak is expected to be due to a
proton-bound dimer because its intensity increases
when the gas-phase concentration of pyridine was
doubled; even a dimer mass peak was not observed in
a full scan mass spectrum. Symmetric proton-bound
dimers are commonly formed under ambient condi-
tions for a wide range of molecules: alcohols, ketones,
ethers, acetates, aliphatic amines, and aromatic amines
[54–56]. An additional reason for us to expect that the

Table 1. Product ion mass spectra of 2,6-di-tert-butylpyridine and 2,6-di-tert-butyl-4-methylpyridine with and without toluene in the
sample solution

Compound PI Product ions, proposed cleaved species CE

2,6-DtBPyr in hexane 192 177 (70)
(�CH3)

176 (100)
(�CH4)

162 (70)
(�C2H6)

149 (10)
(�C3H7)

135 (10)
(�C4H9)

40

2,6-DtBPyr in hexane:toluene (9:1) 191 176 (40)
(�CH3)

149 (100)
(�C3H6)

15

192 177 (70)
(�CH3)

176 (100)
(�CH4)

162 (70)
(�C2H6)

161 (20)
(�C2H7)

149 (20)
(�C3H7)

135 (20)
(�C4H9)

40

223 191 (80)
(�O2)

176 (30)
(�O2–CH3)

149 (100)
(�O2–C3H6)

22

2,6-DtB-4-MPyr in hexane 206 191 (100)
(�CH3)

190 (80)
(�CH4)

176 (40)
(�C2H6)

163 (10)
(�C3H7)

149 (10)
(�C4H9)

38

2-DtB-4-MPyr in hexane:toluene (9:1) 205 204 (10)
(�H)

190 (30)
(�CH3)

163 (100)
(�C3H6)

149 (10)
(�C4H8)

15

206 191 (100)
(�CH3)

190 (80)
(�CH4)

176 (50)
(�C2H6)

163 (20)
(�C3H7)

149 (10)
(�C4H9)

38

237 205 (100)
(�O2)

204 (20)
(�O2–H)

190 (30)
(�O2–CH3)

163 (100)
(�O2–C3H6)

22

Relative abundances of product ions and the species lost are presented in brackets. Product ions with a relative abundance equal to or more than
10% are presented. All the analytes have a gas phase concentration of 2 to 4 ppb.
PI � precursor ion (m/z); CE � collision energy (V).
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second peak is a dimer peak is the observation that
during one measurement day it was observed that the
first peak changed relatively much, about 0.06 units, to
lower mobility, but the second peak still had a mobility
of 1.69 cm2/Vs. We believe that the change could be due
to sample solvent somehow “overloading” the drift
tube on this one day, since the next day’s measurement
of the mobility of the first peak was as expected. It has
been reported that mobility of monomers can be more
dependent on measuring conditions than dimers [57].
Interestingly, when hexane:toluene (9:1) is used, a new
peak with a lower mobility, K0 � 1.63 cm2/Vs, appears
while measuring mass-selected mobility of the ion m/z
80 (Figure 3b). This mobility peak is most likely due to
some kind of pyridine adduct ion. It was also observed
that an adduct ion m/z 170 produced a mobility peak
with this same mobility, i.e., K0 � 1.63 cm2/Vs. An ion
m/z 170 was typically seen with low intensity in APPI
mass spectra of pyridine measured from hexane:toluene
(9:1) solution. Its product ion mass spectrum indicated
the presence of a fragment ion m/z 91, which could
mean that the ion m/z 170 is a benzyl cation adduct of
pyridine [M � 91]�. The presence of some other product
ions was also indicated (e.g., m/z 78 and 80) but unfortu-
nately the quality of the product ion spectrum was not
very good. Identification of the structure of the ion m/z 170
is not possible without further measurements.

2-tert-Butylpyridine, 2,6-di-tert-Butylpyridine and
2,6-di-tert-butyl-4-Methylpyridine

The mass-selected mobility spectra of 2-tBPyr measured
for its [M � H]� ion produced one peak with a mobility
of K0 � 1.73 cm2/Vs (Table 2) when the solvent was
hexane or hexane:toluene (9:1). For 2,6-DtBPyr (Figure

4a and b) and 2,6-DtB-4-MPyr one clear mobility peak
was observed in the mass-selected mobility spectra of
the [M � H]� ion, with K0 � 1.50 and 1.42 cm2/Vs,
respectively, whereas for the [M]�· ions mobility peaks
were observed at K0 � 1.45 and 1.38 cm2/Vs, respec-
tively. Small mobility peaks were also observed at K0 �
1.45 and 1.38 cm2/Vs for the [M � H]� ion of 2,6-
DtBPyr and 2,6-DtB-4-MPyr, respectively, but it is ex-
pected that these are isotope peaks of ions m/z 191 and
205, respectively. Mass-selected mobility spectra of the
[M � O2]�· ions of these two compounds produced
mobility peaks with corresponding mobilities as mea-
sured for their [M]�· ions (Table 2). Some mobility
measurements were also done for 2,6-DtBPyr using the
IMS-FP instrument and APPI. Two mobility peaks were
observed when the sample solvent was either hexane:
toluene (Figure 5) or pentane:toluene, with mobilities of
K0 � 1.47 and 1.42 cm2/Vs and K0 � 1.46 and 1.42
cm2/Vs, respectively. A reaction ion peak was also
observed. However, when the sample solvent was
methanol:toluene (9:1) only one mobility peak, at K0 �
1.46 cm2/Vs, was seen. The small difference in reduced
mobility between these two instruments was examined
previously and it could be corrected by adjusting the
mobility scale [58].

Interestingly, for both 2,6-DtBPyr and 2,6-DtB-4-
MPyr the radical cation has a lower mobility than the
protonated molecule. It is most likely that 2,6-DtBPyr
and 2,6-DtB-4-MPyr form oxygen adducts [M � O2]�·,
causing slower drift time due to the increased mass.
However, we could not entirely rule out the possibility
that radical cations interact strongly with the residual
oxygen in the drift gas and therefore drift slower.
Borsdorf et al. have previously reported that protonated
anilines have lower reduced mobilities than radical

Table 2. Summary of the reduced mobilities, K0 (cm2/Vs), measured with IMS-MS. Samples are dissolved in hexane or
hexane:toluene (9:1) and typically the values are based on measurements made using both of the solvents. Typically the mobility
values obtained with different solvents were the same within the experimental error. The numbers represent the peak numbers in
decreasing mobility order as they appear in the mass-selected mobility spectra

Molecule Mass (u) 1st (K0) 2nd (K0) 3rd (K0)

Pyridine ([M � H]� m/z 80) 79 2.04 1.69a 1.63b

Pyridine ([M � 91]� m/z 170)b 79 1.64
2-tBPyr ([M � H]� m/z 136) 135 1.73
2,6-DtBPyr ([M]�· m/z 191)b 191 1.45
2,6-DtBPyr ([M � H]� m/z 192) 191 1.50 1.45b,c

2,6-DtBPyr ([M � O2]�· m/z 223)b 191 1.45
2,6-DtB-4-MPyr ([M]�· m/z 205)b 205 1.38
2,6-DtB-4-MPyr ([M � H]� m/z 206) 205 1.42 1.38b,c

2,6-DtB-4-MPyr ([M � O2]�· m/z 237)b 205 1.39
1-Naphthol ([M]�· m/z 144) 144 1.72
1-Naphthol ([M � H]� m/z 145) 144 1.68 1.50d 1.32d

1-Naphthol ([M � H � H2O � CO]� m/z 155) 144 1.68
2-Naphthol ([M]�· m/z 144) 144 1.73
2-Naphthol ([M � H]� m/z 145) 144 1.67 1.50d 1.32d

2-Naphthol ([M � H � H2O � CO]� m/z 155) 144 1.67

aDimer.
bPeaks observed only clearly in hexane:toluene (9:1).
cMost likely 13C isotope peak of the ion m/z 191 or 205.
dMinor peaks that are observed sporadically.
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cations [38], which is the opposite of our case. The
explanation given was that in the experimental condi-
tions used, protonated anilines interact significantly
more with water in the drift tube than the radical
cations. Due to this, protonated anilines are heavier and
drift slower than radical cations. The solvation and
clustering of protonated amines and pyridines has been
studied by Meot-Ner et al. with NBS pulsed high-
pressure mass spectrometer [59], the results of which
suggest that steric effects cause unfavorable entropy
effects for hydration of protonated 2,6-DtBPyr [59].
Based on this, we are expecting that protonated 2,6-
DtBPyr and 2,6-DtB-4-MPyr do not interact strongly
with water in the drift tube. Formation of an oxygen
adduct [M � O2]�· was not observed for pyridine and
2-tBPyr. This could mean that both of the tert-butyl
groups are needed to “lock” the oxygen atom together
with ionized 2,6-DtBPyr and 2,6-DtB-4-MPyr to form a
stable adduct. Also, it is clear based on the data that
radical cations are needed for oxygen adduct formation,
and the data show that formation of radical cations for
pyridine and 2-tBPyr is not very favorable in the

conditions used. We could not find ionization energies
(IE) for the tert-butyl substituted pyridines, but we are
expecting that formation of a radical cation via charge-
transfer from a toluene radical cation is favorable only for
2,6-DtBPyr and 2,6-DtB-4-MPyr, so that the IE of toluene
(IE � 8.828 eV) is higher than that of these two pyridines.
This estimation is based on literature values for pyridine,
2-methylpyridine, and 2,6-dimethylpyridine, which have
ionization energies of IE � 9.26 eV, 9.2 eV (range given is
9.02–9.4) and 8.86 eV, respectively [60].

Note that 2,6-DtBPyr is used as a mobility standard
[61] by some research groups [39, 58, 62]. It can be used
for calibration if one makes sure, by selecting appropri-
ate ionization conditions, that the mobility of the pro-
tonated molecule is measured.

1- and 2-Naphthol

These two isomeric compounds produced within exper-
imental error the same mobility values for their radical
cations and protonated molecules (Table 2). Mass-
selected mobilities of the radical cation and protonated
molecule of 1-naphthol measured for a sample in hex-

Figure 3. Positive ion APPI mass-selected ion mobility spectra of
pyridine. (a) [M � H]� ion at m/z 80 (solid line); the gas-phase
concentration is �10 ppb and the sample is dissolved in hexane.
(b) [M � H]� ion at m/z 80 (solid line) and [M � 91]� ion at m/z
170 (dotted line); the gas-phase concentration is �5 ppb and the
sample is dissolved in hexane:toluene (9:1). Peaks are: (1) mono-
mer ion with K0 � 2.04 cm2/Vs, (2) dimer ion with K0 � 1.69
cm2/Vs, (3) and (4) adduct ion with mobilities of K0 � 1.63 and
1.64 cm2/Vs for ions at m/z 80 and 170, respectively.

Figure 4. Positive ion APPI mass-selected mobility spectra of
2,6-DtBPyr. The gas-phase concentration is �2 ppb and the
sample is dissolved in hexane:toluene (9:1). (a) Ion [M]�· at m/z 191
(dotted line) has a K0 � 1.45 cm2/Vs and ion [M � H]� at m/z 192
(solid line) has a K0 � 1.49 cm2/Vs. (b) Both ions [M]�· at m/z 191
(dotted line) and [M�O2]�· at m/z 223 (solid line) have the same
mobility, K0 � 1.45 cm2/Vs.
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ane were K0 � 1.72 cm2/Vs and K0 � 1.68 cm2/Vs,
respectively, whereas the corresponding values for
2-naphthol were K0 � 1.73 cm2/Vs and K0 � 1.67
cm2/Vs. The mobilities of the radical cations for both
compounds measured in hexane:toluene (9:1) were the
same as in hexane, within experimental error. In these
conditions the mass selected mobility measurement of
the ion m/z 145 produced a small peak with the same
mobility as measured for the ion m/z 144, most likely
due to isotope effects. Minor peaks with lower mobili-
ties are also sometimes observed for both compounds.
Mobility of the ion molecule reaction product [M � H �
H2O � CO]� ion at m/z 155 has the same mobility for
both compounds than their protonated molecules. In-
terestingly, the radical cation [M]�· has a higher mobil-
ity than the protonated ion [M � H]�, which is the
opposite of what is observed for 2,6-DtBPyr and 2,6-
DtB-4-MPyr. For 2,6-DtBPyr and 2,6-DtB-4-MPyr, the
slower mobility of the radical cation was explained by
its ability to form an oxygen adduct ion. In the case of
1- and 2-naphthol, no other than [M � H � H2O �
CO]� adduct ions were identified from the measured
mass spectra. The most likely explanation for the ob-
served mobility order of the [M]�· and [M � H]� ions of
1- and 2-naphthol is the explanation given by Borsdorf
et al. for anilines [38], i.e., protonated molecules interact
more with the residual water in the drift gas than
radical cations.

Conclusions

This study demonstrates how radical cations and pro-
tonated molecules can be produced and separated with
APPI-IMS-MS. Under appropriate measurement condi-
tions, 2,6-DtBPyr and 2,6-DtB-4-MPyr efficiently pro-
duced both radical cations [M]�· and protonated [M �

H]� molecules. The radical cation [M]�· was observed
to have a longer drift time. Further mass spectrometry
analysis also revealed the formation of the oxygen
adduct ion [M � O2]�·, which has the same mobility as
the radical cation [M]�·. The formation of the oxygen
adduct is likely to be dependent on the presence of two
tert-butyl groups. In case of 1- and 2-naphthol, the
radical cation [M]�· has a higher mobility than the
protonated [M � H]�, which is opposite compared with
2,6-DtBPyr and 2,6-DtB-4-MPyr. For pyridine and 2-tB-
Pyr, protonated molecules were the main ions observed
and their mobilities are reported. Overall, these find-
ings illustrated how high-resolution IMS is used to
separate different ion structures of model compounds,
and how MS is used to obtain more information about
the different peaks observed with IMS.
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cations [38], which is the opposite of our case. The
explanation given was that in the experimental condi-
tions used, protonated anilines interact significantly
more with water in the drift tube than the radical
cations. Due to this, protonated anilines are heavier and
drift slower than radical cations. The solvation and
clustering of protonated amines and pyridines has been
studied by Meot-Ner et al. with NBS pulsed high-
pressure mass spectrometer [59], the results of which
suggest that steric effects cause unfavorable entropy
effects for hydration of protonated 2,6-DtBPyr [59].
Based on this, we are expecting that protonated 2,6-
DtBPyr and 2,6-DtB-4-MPyr do not interact strongly
with water in the drift tube. Formation of an oxygen
adduct [M � O2]�· was not observed for pyridine and
2-tBPyr. This could mean that both of the tert-butyl
groups are needed to “lock” the oxygen atom together
with ionized 2,6-DtBPyr and 2,6-DtB-4-MPyr to form a
stable adduct. Also, it is clear based on the data that
radical cations are needed for oxygen adduct formation,
and the data show that formation of radical cations for
pyridine and 2-tBPyr is not very favorable in the

conditions used. We could not find ionization energies
(IE) for the tert-butyl substituted pyridines, but we are
expecting that formation of a radical cation via charge-
transfer from a toluene radical cation is favorable only for
2,6-DtBPyr and 2,6-DtB-4-MPyr, so that the IE of toluene
(IE � 8.828 eV) is higher than that of these two pyridines.
This estimation is based on literature values for pyridine,
2-methylpyridine, and 2,6-dimethylpyridine, which have
ionization energies of IE � 9.26 eV, 9.2 eV (range given is
9.02–9.4) and 8.86 eV, respectively [60].

Note that 2,6-DtBPyr is used as a mobility standard
[61] by some research groups [39, 58, 62]. It can be used
for calibration if one makes sure, by selecting appropri-
ate ionization conditions, that the mobility of the pro-
tonated molecule is measured.

1- and 2-Naphthol

These two isomeric compounds produced within exper-
imental error the same mobility values for their radical
cations and protonated molecules (Table 2). Mass-
selected mobilities of the radical cation and protonated
molecule of 1-naphthol measured for a sample in hex-

Figure 3. Positive ion APPI mass-selected ion mobility spectra of
pyridine. (a) [M � H]� ion at m/z 80 (solid line); the gas-phase
concentration is �10 ppb and the sample is dissolved in hexane.
(b) [M � H]� ion at m/z 80 (solid line) and [M � 91]� ion at m/z
170 (dotted line); the gas-phase concentration is �5 ppb and the
sample is dissolved in hexane:toluene (9:1). Peaks are: (1) mono-
mer ion with K0 � 2.04 cm2/Vs, (2) dimer ion with K0 � 1.69
cm2/Vs, (3) and (4) adduct ion with mobilities of K0 � 1.63 and
1.64 cm2/Vs for ions at m/z 80 and 170, respectively.

Figure 4. Positive ion APPI mass-selected mobility spectra of
2,6-DtBPyr. The gas-phase concentration is �2 ppb and the
sample is dissolved in hexane:toluene (9:1). (a) Ion [M]�· at m/z 191
(dotted line) has a K0 � 1.45 cm2/Vs and ion [M � H]� at m/z 192
(solid line) has a K0 � 1.49 cm2/Vs. (b) Both ions [M]�· at m/z 191
(dotted line) and [M�O2]�· at m/z 223 (solid line) have the same
mobility, K0 � 1.45 cm2/Vs.
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ane were K0 � 1.72 cm2/Vs and K0 � 1.68 cm2/Vs,
respectively, whereas the corresponding values for
2-naphthol were K0 � 1.73 cm2/Vs and K0 � 1.67
cm2/Vs. The mobilities of the radical cations for both
compounds measured in hexane:toluene (9:1) were the
same as in hexane, within experimental error. In these
conditions the mass selected mobility measurement of
the ion m/z 145 produced a small peak with the same
mobility as measured for the ion m/z 144, most likely
due to isotope effects. Minor peaks with lower mobili-
ties are also sometimes observed for both compounds.
Mobility of the ion molecule reaction product [M � H �
H2O � CO]� ion at m/z 155 has the same mobility for
both compounds than their protonated molecules. In-
terestingly, the radical cation [M]�· has a higher mobil-
ity than the protonated ion [M � H]�, which is the
opposite of what is observed for 2,6-DtBPyr and 2,6-
DtB-4-MPyr. For 2,6-DtBPyr and 2,6-DtB-4-MPyr, the
slower mobility of the radical cation was explained by
its ability to form an oxygen adduct ion. In the case of
1- and 2-naphthol, no other than [M � H � H2O �
CO]� adduct ions were identified from the measured
mass spectra. The most likely explanation for the ob-
served mobility order of the [M]�· and [M � H]� ions of
1- and 2-naphthol is the explanation given by Borsdorf
et al. for anilines [38], i.e., protonated molecules interact
more with the residual water in the drift gas than
radical cations.

Conclusions

This study demonstrates how radical cations and pro-
tonated molecules can be produced and separated with
APPI-IMS-MS. Under appropriate measurement condi-
tions, 2,6-DtBPyr and 2,6-DtB-4-MPyr efficiently pro-
duced both radical cations [M]�· and protonated [M �

H]� molecules. The radical cation [M]�· was observed
to have a longer drift time. Further mass spectrometry
analysis also revealed the formation of the oxygen
adduct ion [M � O2]�·, which has the same mobility as
the radical cation [M]�·. The formation of the oxygen
adduct is likely to be dependent on the presence of two
tert-butyl groups. In case of 1- and 2-naphthol, the
radical cation [M]�· has a higher mobility than the
protonated [M � H]�, which is opposite compared with
2,6-DtBPyr and 2,6-DtB-4-MPyr. For pyridine and 2-tB-
Pyr, protonated molecules were the main ions observed
and their mobilities are reported. Overall, these find-
ings illustrated how high-resolution IMS is used to
separate different ion structures of model compounds,
and how MS is used to obtain more information about
the different peaks observed with IMS.
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a b s t r a c t

Eight selected isomeric amines were ionized using atmospheric pressure chemical ionization and
atmospheric pressure photoionization producing a protonated molecule [MþH]þ for each amine. The
mobility of these ions was measured by ion mobility spectrometry. The amine compound class was
shown to have an important role in mobility separation of the amines. 2,4,6-collidine, N,N-dimethylani-
line and N-methyl-o-toluidine with highest observed mobilities have a N-heterocyclic aromatic ring, or
are tertiary or secondary amines, respectively, whereas the rest of the compounds with lower mobilities
were primary amines. It is suggested that the protonated –NH2 group (–NH3

þ) interacts more with the
drift gas, and therefore the primary amines have lower mobilities. The effect of the drift gas was tested
by mixing argon or helium with the nitrogen drift gas. The presence of argon shifted the mobilities
towards lower values, while with helium the mobility shifted towards higher values. However, in neither
case did this result in better separation of the unresolved compounds.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In ion mobility spectrometry (IMS) the analyte ions travel
through a counter-flow drift gas in an electric field. The ions
interact with the drift gas, which results in specific drift times for
different ions. The analysis is commonly conducted at ambient
pressure, which allows the construction of small portable IMS
devices, which are widely used in field applications, for example,
to detect explosives and warfare agents [1,2]. In the laboratory the
IMS drift tube can be attached to a mass spectrometer (MS) [3,4].
This combination allows simultaneous access to mass and mobility
data, for example to study different ionic structures of the same
molecule [5,6], separating isomers of di-tert-butylphenol [7] or
ovalbumin N-linked glycans [8] or distinguishing between differ-
ent conformations of peptides [9].

Here, the main aim was to study the separation of isomeric
amines (Mr¼121, C8H11N, Table 1) with IMS in order to understand
better how compound structure affects separation. In addition, it
was investigated how the addition of helium and argon to the
nitrogen drift gas affects the separation of these amines. This
report completes the preliminary presentation of the results [10].
Some of the amines in our study, namely 4-ethylaniline [11],
N,N-dimethylaniline [12,13] and 2,4,6-collidine [13–15], have been
studied before with IMS, but the whole set of isomeric amines
used in this study was not included to the compounds studied. The
drift gas has a significant role in separating ions, and changes in
drift gas polarizability and radius will result in different interac-
tion with analyte ions, and can thus produce different drift times
[14,16–18]. For the compounds studied here, the effect of the drift
gas on the mobility has been studied earlier for 2,4,6-collidine by
using nitrogen, air, helium, argon, carbon dioxide and sulfur
hexafluoride as drift gases [14]. The drift gas studies include also
for example the use of drift gases, such as nitrogen, helium, argon,
and carbon dioxide for amines other than those studied here
[14,17], as well as peptides [17], and cocaine and its metabolites,
amphetamines and benzodiazepines [18]. Here, our aim was to
investigate how the addition of different proportions of helium
and argon to the nitrogen drift gas affects the separation of the
model amines.
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2. Experimental section

2.1. Chemicals

The amines N-methyl-o-toluidine (495%), 2-methylbenzylamine
(496%), 4-methylbenzylamine (497%), 3-methylbenzylamine and
4-ethylaniline (498%), 2-phenethylamine (499%), N,N-dimethyla-
niline (499.5%) and 2,6-di-tert-butylpyridine (497%) were pur-
chased from Sigma-Aldrich (Steinheim, Germany) and 2,4,6-
collidine (499%) from Merck (Darmstadt, Germany). Stock solutions
(5 mM) were prepared in methanol (HPLC, Lab-scan, Dublin, Ireland)
and diluted further with methanol:toluene (95:5%) (HPLC, Baker,
Deventer, Holland) to give 50 and 100 mM solutions.

2.2. Instrumentation

The mobility distributions were recorded using a custom-made
drift tube ion mobility spectrometer equipped by a Faraday plate
detector (IMS-FP) [19] and the mass spectrometric data were
recorded using an ion mobility spectrometer-mass spectrometer
(IMS-MS) [3]. In the IMS-FP the length of the drift region was
13.85 cm. The instrument was operated using a Bradbury–Nielsen
(B–N) type ion gate with a 200 ms gate opening time. The drift gas
flow was set to 1.9–2.5 L min�1 and measurements were con-
ducted at room temperature (294–297 K). Nitrogen, and mixtures
of nitrogen and argon or helium were used as drift gases.
The desolvation and drift fields were both set to 316 V cm�1.

Table 1
Summary of the reduced mobility K0 (cm2 V�1 s�1) values for the isomeric amines (Mr¼121) and 2,6-di-tert-butylpyridine (Mr¼191) measured with an IMS-FP instrument
using nitrogen as the drift gas. Mobility values are not normalized with the mobility of 2,6-DtBPyr (average of eight measurements). The mobility values of amines are the
average of four measurements; two within one day, which were then repeated on the second day.

Compound Abbreviation Structure K0 (cm2 V�1 s�1) APCI K0 (cm2 V�1 s�1) APPI

2,4,6-collidinea 2,4,6-Col N 1.80 1.81

N,N-dimethylanilinea N,N-DMA N 1.75 1.75

N-methyl-o-toluidinea n-M-o-T NH 1.70 1.69

2-phenethylamineb PEA NH2 1.62 1.62

4-ethylanilineb 4-EA NH2 1.58 1.58

2-methylbenzylaminec 2-MBA NH2 1.61 1.61

4-methylbenzylaminec 4-MBA NH2 1.60 1.57

3-methylbenzylaminec 3-MBA NH2 1.60 1.58

2,6-di-tert-butylpyridined 2,6-DtBPyr
N

1.47

a Measured from Mix A.
b Measured from Mix B.
c Measured individually.
d Measured from Mix B and Mix C.
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A custom-made program was used to operate the instrument.
During the total measurement time of 25 s 500 drift time tran-
sients were summed up to achieve drift time distribution. The
obtained data were processed by a ChemStation 10.02 program
code (Agilent Technologies, Inc., PaloAlto, CA, USA), with custom-
made macros to calculate reduced mobilities of the ions detected.
The IMS-MS was operated in continuous ion flow mode (both B–N
gates open) to record the mass spectra [3]. The desolvation and
drift fields were set to 304 and 316 V cm�1, respectively. The
nitrogen drift gas flow was �2.4 L min�1. The mass spectrometer
was a triple–quadrupole mass spectrometer API-300 (SCIEX
Applied Biosystems, Toronto, ON, Canada) operated in positive
ion mode with a declustering potential of 5 V, and a mass range of
m/z 30–300. The data were collected by Analyst 1.4.1 program
code (Applied Biosystems/MDS SCIEX, Concord, ON, Canada).

2.3. Gases

Nitrogen for the drift and nebulizer gases was produced from
compressed air with a heatless dryer Dominic Hunter Pneudri
MiDAS 4 (Parker Hannifin Ltd., Gateshead, England) and a
NGLCMS20 (Labgas Instrument Co., Espoo, Finland) or N2-
MISTRAL-0 (LNI Schmidlin AG, Neuheim, Switzerland) nitrogen
generator. The N2 gas was further purified using a hydrocarbon
and moisture trap. The level of humidity was measured using a
humidity gauge (Vaisala DMT242; Helsinki, Finland) downstream
from the drift tube. The bottled gases were purchased from AGA
(Espoo, Finland) with a 99.999% purity for argon and 99.996% for
helium. The drift gas mixtures were produced using two EL-Flow
mass flow controllers (Bronkhorst, Ruurlo, the Netherlands).

2.4. Ionization

The samples were delivered to the ionization region using a
custom-made heated nebulizer [19], which was heated up to
423 K. The samples were delivered with a PHD 2000 Advanced
Syringe Pump (Harvard Apparatus GmbH, Hugstetten, Germany)
into a nebulizer (the injection speed was 180 μL h�1), where the
nitrogen gas flow at 1.6-1.8 L min�1 carried the sample vapor to
the ionization region. Two different ionization methods were used
in this study: (1) atmospheric pressure chemical ionization (APCI)
was conducted using an acupuncture needle (the corona needle
potential was 2.0–2.2 kV), and (2) atmospheric pressure photoioniza-
tion (APPI), using a krypton discharge lamp (PKS-100, Cathodeon, Ltd.,
Cambridge, England) with 10 and 10.6 eV photons.

3. Results and discussion

3.1. Ionization

Most of the experiments were conducted with an IMS-FP
instrument operated in positive ion APCI or APPI mode. Mass
spectra measured with the IMS-MS instrument confirmed that all
the amines produced protonated molecules [MþH]þ with positive
APCI and APPI. Furthermore, both ionization methods resulted in a
reaction ion peak (RIP).

3.2. Mobilities

All the reduced mobilities for isomeric amines were recorded
with IMS-FP using APCI or APPI, and are summarized in Table 1.
The mobility measurements were mainly done using three differ-
ent mixtures of the analytes: Mix A (2,4,6-Col, N,N-DMA, n-M-o-T
and 2-MBA), Mix B (PEA, 4-EA and 2,6-DtBPyr) and Mix C (2-, 3-
and 4-MBA, and 2,6-DtBPyr). The mobility order was confirmed by

measuring the amines individually. As an example of the reprodu-
cibility of the measurements the reduced mobility of 2,6-DtBPyr
K0¼1.47 cm2 V�1 s�1 with the relative standard deviation of 0.3%
(n¼8, on two different days) measured using APCI is reported. 2,6-
DtBPyr is nowadays a commonly used IMS standard [19–22].
However, in this study reduced mobility values were not normal-
ized with the reduced mobility of 2,6-DtBPyr.

Due to the different experimental conditions it is difficult to
compare the reduced mobility values obtained in this study to the
ones previously published [11–15]. However, the reduced mobility
values in Ref [13] for 2,4,6-Col (1.83 cm2 V�1 s�1) and N,N-DMA
(1.81 cm2 V�1 s�1) measured at 150 1C and using air as the drift
gas are close to the values reported in Table 1, showing the same
mobility order, but smaller differences in mobilities. Interestingly,
Karpas et al. have reported that anilines typically form two
mobility peaks, one for nitrogen-protonated, and one for ring-
protonated species [12,13]. Later, this has been proven by mobility
separation of different forms of protonated aniline molecules
formed by electrospray ionization, and interpreting the subse-
quently measured collision induced dissociation (CID) mass spec-
tra of the mobility separated protonated molecules [6]. It was
observed that the nitrogen-protonated ions had longer drift time
than the ring-protonated ions due to stronger interaction with the
drift gas. However, in our study photoionization and corona
discharge ionization produced only one mobility peak for each
amine meaning that only one protonation site (most likely nitro-
gen) was preferable.

Based on the reduced mobility values presented in Table 1 and
Fig. 1, two different amine groups can be separated. The first
group contains the amines 2,4,6-Col, N,N-DMA and n-M-o-T, which
contain a N-heterocyclic aromatic ring, or a tertiary or secondary
amino group, respectively. These amines have clearly faster
mobilities than the second group containing primary NH2-groups
(PEA, 4-EA, and 2-, 3- and 4-MBA). From Fig. 1A and Table 1 it can
be seen that the amines in the first group can be separated
from each other, and they have clearly different mobility values.
Fig. 1A shows also that the first group of amines can be easily
separated from a second group amine 2-MBA. Reduced mobilities
of the amines in the second group are very close to each other. PEA
and 4-EA could be separated from each other (Fig. 1B), but the
mixture of 2-, 3- and 4-MBA produced a single mobility peak
(Fig. 1C).

The clear separation of isomeric amines 2,4,6-Col, N,N-DMA
and n-M-o-T could be explained by the varying number of carbon
containing groups attached to the nitrogen atom, or by the
aromatic nitrogen being surrounded by two methyl groups in
ortho position, i.e. the charge in the N-protonated molecule is
shielded by the alkyl groups, resulting in decreased interaction of
the protonated molecule with the drift gas, and therefore higher
mobility. Because of a similar shielding effect of the charged site,
some molecules, such as 2,6-DtBPyr [20,21] and tetraalkylammo-
nium halides [23], have been found suitable as IMS instrumental
standards, and their reduced mobilities have been observed to be
minimally affected by e.g. impurities of the drift gas. Interestingly,
PEA was separated from 4-EA, even though both compounds have
–NH2 groups (Fig. 1B). The reason for this might be that the
protonated PEA forms a “loop” via –NH3

þ interaction with the
benzene ring, resulting in a more closely-packed shape. Therefore
protonated PEA is likely to interact less with the drift gas than the
protonated 4-EA, which cannot form a similar “loop”. This is also
supported by the slightly higher mobility of PEA (Table 1, Fig. 1B).
Similar loop formation has been reported in an IMS study for
protonated diamines and polyamines [24]. In addition, very
recently it has been shown by infrared multiple-photon dissocia-
tion spectroscopy that for the protonated phenylalkylamines,
C6H5(CH2)nNH3

þ (n¼2–4), the most stable ion geometry has
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Applied Biosystems, Toronto, ON, Canada) operated in positive
ion mode with a declustering potential of 5 V, and a mass range of
m/z 30–300. The data were collected by Analyst 1.4.1 program
code (Applied Biosystems/MDS SCIEX, Concord, ON, Canada).

2.3. Gases

Nitrogen for the drift and nebulizer gases was produced from
compressed air with a heatless dryer Dominic Hunter Pneudri
MiDAS 4 (Parker Hannifin Ltd., Gateshead, England) and a
NGLCMS20 (Labgas Instrument Co., Espoo, Finland) or N2-
MISTRAL-0 (LNI Schmidlin AG, Neuheim, Switzerland) nitrogen
generator. The N2 gas was further purified using a hydrocarbon
and moisture trap. The level of humidity was measured using a
humidity gauge (Vaisala DMT242; Helsinki, Finland) downstream
from the drift tube. The bottled gases were purchased from AGA
(Espoo, Finland) with a 99.999% purity for argon and 99.996% for
helium. The drift gas mixtures were produced using two EL-Flow
mass flow controllers (Bronkhorst, Ruurlo, the Netherlands).

2.4. Ionization

The samples were delivered to the ionization region using a
custom-made heated nebulizer [19], which was heated up to
423 K. The samples were delivered with a PHD 2000 Advanced
Syringe Pump (Harvard Apparatus GmbH, Hugstetten, Germany)
into a nebulizer (the injection speed was 180 μL h�1), where the
nitrogen gas flow at 1.6-1.8 L min�1 carried the sample vapor to
the ionization region. Two different ionization methods were used
in this study: (1) atmospheric pressure chemical ionization (APCI)
was conducted using an acupuncture needle (the corona needle
potential was 2.0–2.2 kV), and (2) atmospheric pressure photoioniza-
tion (APPI), using a krypton discharge lamp (PKS-100, Cathodeon, Ltd.,
Cambridge, England) with 10 and 10.6 eV photons.

3. Results and discussion

3.1. Ionization

Most of the experiments were conducted with an IMS-FP
instrument operated in positive ion APCI or APPI mode. Mass
spectra measured with the IMS-MS instrument confirmed that all
the amines produced protonated molecules [MþH]þ with positive
APCI and APPI. Furthermore, both ionization methods resulted in a
reaction ion peak (RIP).

3.2. Mobilities

All the reduced mobilities for isomeric amines were recorded
with IMS-FP using APCI or APPI, and are summarized in Table 1.
The mobility measurements were mainly done using three differ-
ent mixtures of the analytes: Mix A (2,4,6-Col, N,N-DMA, n-M-o-T
and 2-MBA), Mix B (PEA, 4-EA and 2,6-DtBPyr) and Mix C (2-, 3-
and 4-MBA, and 2,6-DtBPyr). The mobility order was confirmed by

measuring the amines individually. As an example of the reprodu-
cibility of the measurements the reduced mobility of 2,6-DtBPyr
K0¼1.47 cm2 V�1 s�1 with the relative standard deviation of 0.3%
(n¼8, on two different days) measured using APCI is reported. 2,6-
DtBPyr is nowadays a commonly used IMS standard [19–22].
However, in this study reduced mobility values were not normal-
ized with the reduced mobility of 2,6-DtBPyr.

Due to the different experimental conditions it is difficult to
compare the reduced mobility values obtained in this study to the
ones previously published [11–15]. However, the reduced mobility
values in Ref [13] for 2,4,6-Col (1.83 cm2 V�1 s�1) and N,N-DMA
(1.81 cm2 V�1 s�1) measured at 150 1C and using air as the drift
gas are close to the values reported in Table 1, showing the same
mobility order, but smaller differences in mobilities. Interestingly,
Karpas et al. have reported that anilines typically form two
mobility peaks, one for nitrogen-protonated, and one for ring-
protonated species [12,13]. Later, this has been proven by mobility
separation of different forms of protonated aniline molecules
formed by electrospray ionization, and interpreting the subse-
quently measured collision induced dissociation (CID) mass spec-
tra of the mobility separated protonated molecules [6]. It was
observed that the nitrogen-protonated ions had longer drift time
than the ring-protonated ions due to stronger interaction with the
drift gas. However, in our study photoionization and corona
discharge ionization produced only one mobility peak for each
amine meaning that only one protonation site (most likely nitro-
gen) was preferable.

Based on the reduced mobility values presented in Table 1 and
Fig. 1, two different amine groups can be separated. The first
group contains the amines 2,4,6-Col, N,N-DMA and n-M-o-T, which
contain a N-heterocyclic aromatic ring, or a tertiary or secondary
amino group, respectively. These amines have clearly faster
mobilities than the second group containing primary NH2-groups
(PEA, 4-EA, and 2-, 3- and 4-MBA). From Fig. 1A and Table 1 it can
be seen that the amines in the first group can be separated
from each other, and they have clearly different mobility values.
Fig. 1A shows also that the first group of amines can be easily
separated from a second group amine 2-MBA. Reduced mobilities
of the amines in the second group are very close to each other. PEA
and 4-EA could be separated from each other (Fig. 1B), but the
mixture of 2-, 3- and 4-MBA produced a single mobility peak
(Fig. 1C).

The clear separation of isomeric amines 2,4,6-Col, N,N-DMA
and n-M-o-T could be explained by the varying number of carbon
containing groups attached to the nitrogen atom, or by the
aromatic nitrogen being surrounded by two methyl groups in
ortho position, i.e. the charge in the N-protonated molecule is
shielded by the alkyl groups, resulting in decreased interaction of
the protonated molecule with the drift gas, and therefore higher
mobility. Because of a similar shielding effect of the charged site,
some molecules, such as 2,6-DtBPyr [20,21] and tetraalkylammo-
nium halides [23], have been found suitable as IMS instrumental
standards, and their reduced mobilities have been observed to be
minimally affected by e.g. impurities of the drift gas. Interestingly,
PEA was separated from 4-EA, even though both compounds have
–NH2 groups (Fig. 1B). The reason for this might be that the
protonated PEA forms a “loop” via –NH3

þ interaction with the
benzene ring, resulting in a more closely-packed shape. Therefore
protonated PEA is likely to interact less with the drift gas than the
protonated 4-EA, which cannot form a similar “loop”. This is also
supported by the slightly higher mobility of PEA (Table 1, Fig. 1B).
Similar loop formation has been reported in an IMS study for
protonated diamines and polyamines [24]. In addition, very
recently it has been shown by infrared multiple-photon dissocia-
tion spectroscopy that for the protonated phenylalkylamines,
C6H5(CH2)nNH3

þ (n¼2–4), the most stable ion geometry has

J. Laakia et al. / Talanta 132 (2015) 889–893 891



interactions between the aromatic ring and the –NH3
þ group

causing folding of the side chain [25].
The effect of drift gas composition was studied using positive

APCI–IMS–FP, sample mixture A, and a varying amount of helium or
argon in the nitrogen drift gas. The addition of helium shifted all the
peaks towards higher mobility (Fig. 2A), and separation of the amines
was deteriorated at higher helium concentrations (Fig. 1D vs. 1A). On
the contrary, the addition of argon to the nitrogen drift gas shifted all
the peaks towards lower mobility (Fig. 2B), but the reduced mobility
of the reaction ion peak (RIP) stayed more or less constant after the
first argon addition. In addition, it was observed that peak heights of
the analytes increased as the amount of helium in the drift gas
increased, but with increasing amount of argon in the drift gas the
peak heights were observed to decrease. These results are in good
agreement with literature, where it has been reported for many
compounds that reduced mobilities increase, when helium is used as
the drift gas instead of nitrogen, and decrease, when argon is used as
the drift gas [14,18]. Of the compounds used here, for 2,4,6-collidine
clearly higher mobility in helium than in argon has been reported
[14]. The observed changes in the peak height, and the effect of
helium on resolution are also in good agreement with literature. It
has been reported that helium provides clearly better sensitivity and
argon lower, when compared to the use of nitrogen as drift gas [17].
In the same study it was hypothesized that the sensitivity changes
are due to increased amount of reactions in the drift tube, since
longer drift times allow more reactions, and the presence of different

gases may cause differences in ionization efficiency in the electro-
spray process. In the same study it was also reported that shorter
drift times in helium drift gas provide lower resolving power.
Comparison of Fig. 1A and D confirms this observation.

4. Conclusions

The selected isomeric amines produced [MþH]þ ions with
APCI and APPI. Both ionization methods produced a single mobi-
lity peak for each amine. Two subgroups from the model com-
pounds could be identified based on reduced mobility. Compounds
with N-heterocyclic aromatic ring, tertiary or secondary amino
groups (2,4,6-collidine, N,N-dimethylaniline and N-methyl-o-tolui-
dine, respectively) had clearly higher reduced mobilities than the
rest of the amines, which had a primary –NH2 group (2-phenethy-
lamine, 4-ethylaniline, and 2-,3- and 4-methylbenzylamine). 2,4,
6-Col, N,N-DMA and n-M-o-T could also be separated from each
other, while the primary amines had mobility values very close to
each other. However, PEA could be separated from 4-EA. The
extent of how much the adjacent groups are shielding the
protonated nitrogen is expected to be the major explanation for
the different reduced mobilities. In other words: the more pro-
tected the charge, the less the ionized analyte can interact with the
drift gas, and therefore it can move faster through the drift tube.

Fig. 1. Positive APCI ion mobility spectra of mixtures of isomeric amines measured with IMS-FP instrument (A and D) 1¼2,4,6-Col, 2¼N,N-DMA, 3¼n-M-o-T and 4¼2-MBA,
(B) 5¼PEA and 6¼4-EA, and (C) Mix¼2-, 3-, and 4-MBA. In Fig. (A)–(C) the drift gas was nitrogen and in Fig. (D) the drift gas mixture was 33% helium and 67% nitrogen.
RIP¼reaction ion peak, IS¼2,6-DtBPyr and the asterisk indicates possible amine cluster ions.
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When argon was mixed with nitrogen drift gas all the peaks
shifted towards lower reduced mobility, and a reduction in the
peak height was observed, whereas the opposite behavior was
observed with helium, which shifted all the peaks towards higher
reduced mobility and increased peak height.
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interactions between the aromatic ring and the –NH3
þ group

causing folding of the side chain [25].
The effect of drift gas composition was studied using positive

APCI–IMS–FP, sample mixture A, and a varying amount of helium or
argon in the nitrogen drift gas. The addition of helium shifted all the
peaks towards higher mobility (Fig. 2A), and separation of the amines
was deteriorated at higher helium concentrations (Fig. 1D vs. 1A). On
the contrary, the addition of argon to the nitrogen drift gas shifted all
the peaks towards lower mobility (Fig. 2B), but the reduced mobility
of the reaction ion peak (RIP) stayed more or less constant after the
first argon addition. In addition, it was observed that peak heights of
the analytes increased as the amount of helium in the drift gas
increased, but with increasing amount of argon in the drift gas the
peak heights were observed to decrease. These results are in good
agreement with literature, where it has been reported for many
compounds that reduced mobilities increase, when helium is used as
the drift gas instead of nitrogen, and decrease, when argon is used as
the drift gas [14,18]. Of the compounds used here, for 2,4,6-collidine
clearly higher mobility in helium than in argon has been reported
[14]. The observed changes in the peak height, and the effect of
helium on resolution are also in good agreement with literature. It
has been reported that helium provides clearly better sensitivity and
argon lower, when compared to the use of nitrogen as drift gas [17].
In the same study it was hypothesized that the sensitivity changes
are due to increased amount of reactions in the drift tube, since
longer drift times allow more reactions, and the presence of different

gases may cause differences in ionization efficiency in the electro-
spray process. In the same study it was also reported that shorter
drift times in helium drift gas provide lower resolving power.
Comparison of Fig. 1A and D confirms this observation.

4. Conclusions

The selected isomeric amines produced [MþH]þ ions with
APCI and APPI. Both ionization methods produced a single mobi-
lity peak for each amine. Two subgroups from the model com-
pounds could be identified based on reduced mobility. Compounds
with N-heterocyclic aromatic ring, tertiary or secondary amino
groups (2,4,6-collidine, N,N-dimethylaniline and N-methyl-o-tolui-
dine, respectively) had clearly higher reduced mobilities than the
rest of the amines, which had a primary –NH2 group (2-phenethy-
lamine, 4-ethylaniline, and 2-,3- and 4-methylbenzylamine). 2,4,
6-Col, N,N-DMA and n-M-o-T could also be separated from each
other, while the primary amines had mobility values very close to
each other. However, PEA could be separated from 4-EA. The
extent of how much the adjacent groups are shielding the
protonated nitrogen is expected to be the major explanation for
the different reduced mobilities. In other words: the more pro-
tected the charge, the less the ionized analyte can interact with the
drift gas, and therefore it can move faster through the drift tube.

Fig. 1. Positive APCI ion mobility spectra of mixtures of isomeric amines measured with IMS-FP instrument (A and D) 1¼2,4,6-Col, 2¼N,N-DMA, 3¼n-M-o-T and 4¼2-MBA,
(B) 5¼PEA and 6¼4-EA, and (C) Mix¼2-, 3-, and 4-MBA. In Fig. (A)–(C) the drift gas was nitrogen and in Fig. (D) the drift gas mixture was 33% helium and 67% nitrogen.
RIP¼reaction ion peak, IS¼2,6-DtBPyr and the asterisk indicates possible amine cluster ions.
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When argon was mixed with nitrogen drift gas all the peaks
shifted towards lower reduced mobility, and a reduction in the
peak height was observed, whereas the opposite behavior was
observed with helium, which shifted all the peaks towards higher
reduced mobility and increased peak height.
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a b s t r a c t

As most of the oils in the Recôncavo Basin are genetically related and have experienced nearly equivalent
thermal stress, it is difficult to differentiate them using standard techniques. However, differentiation can
be accomplished using new analytical techniques, including comprehensive two-dimensional gas chro-
matography (GC�GC)-time of flight mass spectrometry (TOFMS). In this investigation, GC�GC-TOFMS
was applied for the characterization of 20 selected Recôncavo Basin crude oils from a wide geographical
distribution. Source and maturation parameters were determined based on the analysis of saturated
hydrocarbons, aromatic compounds and diamondoids using GC�GC-TOFMS. Chemometric techniques
were applied in order to expand the overall understanding of the sample characteristics. It was found that
b-carotane and gammacerane were highly important for differentiating oils from the central portion of
the basin, while two southern oils were differentiated by their sulfur-containing aromatic compounds.
Diamondoid analysis was fundamental to evaluating maturity. The results of this study show how previ-
ously overlooked, minor oil components are important for differentiating genetic groups, compounds that
were neglected prior to the application of GC�GC-TOFMS.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Recôncavo Basin is located in northeastern Brazil (State of
Bahia) and its evolution is related to the fragmentation of the
Gondwana paleocontinent and the opening of the South Atlantic
Ocean, in the late Jurassic-early Cretaceous time (Figueiredo
et al., 1994). The basin encompasses approximately 11,500 km2

and corresponds to the southern part of the Recôncavo-Tucano-Ja-
tobá rift (Fig. 1) (Milani and Davison, 1988; Magnavita and Da Sil-
va, 1995). Petroleum exploration in the prolific Recôncavo Basin,
which now is in a mature stage, dates back to the 1930s (see, for
instance, Figueiredo et al., 1994). In the South Tucano sub-basin
there are some small gas fields. Northward, no liquid petroleum
accumulations have been found. In the Recôncavo Basin, the lacus-
trine shales of the Candeias Formation (early Cretaceous) are con-
sidered to be the predominant source rock units. The main
reservoirs are sandstones of the pre-rift Sergi Formation (Santos
et al., 1990; Coutinho, 2008).

A deep understanding of crude oil potential demands a detailed
characterization of its constituents. This challenging task involves
different analytical techniques. Traditionally, the most commonly
adopted is one-dimensional (1D) capillary gas chromatography
(GC), which, despite the impressive results achieved in the past,
has encountered limitations in many cases. GC coupled with mass
spectrometry (MS), acquiring key ions in single ion monitoring
(SIM) mode (Chakhmakhchev et al., 1997) or tandem MS (MS-
MS) in metastable reaction monitoring (MRM) has overcome many
of these limitations (Moldowan et al., 1986). More recently, GC
coupled to triple quadrupole mass spectrometry (GC-QqQ) has
been implemented and other mass spectrometry analyzers might
come into play. Despite these technological advances, the com-
plexity of the matrix is still generating restricted access to the bulk
of information. Most of them also suffer from the lack of full mass
spectra information, being limited target oriented methods. An-
other issue is the mixtures of stereoisomers, which have similar
structures, generating coelutions and similar mass spectral frag-
mentations. Thus, chromatographic coelution as well as the lack
of mass spectral data, significantly limit the information gathered
by these analytical techniques. Therefore, it is important to use
complementary techniques to overcome such limitations. GC�GC
and GC�GC-TOFMS are certainly among these techniques for the
reasons highlighted below (Eiserbeck et al., 2011).

http://dx.doi.org/10.1016/j.orggeochem.2014.01.009
0146-6380/� 2014 Elsevier Ltd. All rights reserved.

q This study was presented at the 26th IMOG Meeting, Tenerife, September 16–
20th, 2013.
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a b s t r a c t

As most of the oils in the Recôncavo Basin are genetically related and have experienced nearly equivalent
thermal stress, it is difficult to differentiate them using standard techniques. However, differentiation can
be accomplished using new analytical techniques, including comprehensive two-dimensional gas chro-
matography (GC�GC)-time of flight mass spectrometry (TOFMS). In this investigation, GC�GC-TOFMS
was applied for the characterization of 20 selected Recôncavo Basin crude oils from a wide geographical
distribution. Source and maturation parameters were determined based on the analysis of saturated
hydrocarbons, aromatic compounds and diamondoids using GC�GC-TOFMS. Chemometric techniques
were applied in order to expand the overall understanding of the sample characteristics. It was found that
b-carotane and gammacerane were highly important for differentiating oils from the central portion of
the basin, while two southern oils were differentiated by their sulfur-containing aromatic compounds.
Diamondoid analysis was fundamental to evaluating maturity. The results of this study show how previ-
ously overlooked, minor oil components are important for differentiating genetic groups, compounds that
were neglected prior to the application of GC�GC-TOFMS.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Recôncavo Basin is located in northeastern Brazil (State of
Bahia) and its evolution is related to the fragmentation of the
Gondwana paleocontinent and the opening of the South Atlantic
Ocean, in the late Jurassic-early Cretaceous time (Figueiredo
et al., 1994). The basin encompasses approximately 11,500 km2

and corresponds to the southern part of the Recôncavo-Tucano-Ja-
tobá rift (Fig. 1) (Milani and Davison, 1988; Magnavita and Da Sil-
va, 1995). Petroleum exploration in the prolific Recôncavo Basin,
which now is in a mature stage, dates back to the 1930s (see, for
instance, Figueiredo et al., 1994). In the South Tucano sub-basin
there are some small gas fields. Northward, no liquid petroleum
accumulations have been found. In the Recôncavo Basin, the lacus-
trine shales of the Candeias Formation (early Cretaceous) are con-
sidered to be the predominant source rock units. The main
reservoirs are sandstones of the pre-rift Sergi Formation (Santos
et al., 1990; Coutinho, 2008).

A deep understanding of crude oil potential demands a detailed
characterization of its constituents. This challenging task involves
different analytical techniques. Traditionally, the most commonly
adopted is one-dimensional (1D) capillary gas chromatography
(GC), which, despite the impressive results achieved in the past,
has encountered limitations in many cases. GC coupled with mass
spectrometry (MS), acquiring key ions in single ion monitoring
(SIM) mode (Chakhmakhchev et al., 1997) or tandem MS (MS-
MS) in metastable reaction monitoring (MRM) has overcome many
of these limitations (Moldowan et al., 1986). More recently, GC
coupled to triple quadrupole mass spectrometry (GC-QqQ) has
been implemented and other mass spectrometry analyzers might
come into play. Despite these technological advances, the com-
plexity of the matrix is still generating restricted access to the bulk
of information. Most of them also suffer from the lack of full mass
spectra information, being limited target oriented methods. An-
other issue is the mixtures of stereoisomers, which have similar
structures, generating coelutions and similar mass spectral frag-
mentations. Thus, chromatographic coelution as well as the lack
of mass spectral data, significantly limit the information gathered
by these analytical techniques. Therefore, it is important to use
complementary techniques to overcome such limitations. GC�GC
and GC�GC-TOFMS are certainly among these techniques for the
reasons highlighted below (Eiserbeck et al., 2011).
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Since the commercial availability of comprehensive two-
dimensional gas chromatography instruments (GC�GC), analyses
that were previously performed by one-dimensional chromatogra-
phy techniques have been improved. GC�GC allows for the reduc-
tion of coelutions, particularly common in complex mixtures such
as crude oil. Time of flight mass spectrometers (TOFMS) provide
the mass spectrum of each component, which maximizes the
extraction of the biomarker structural information content embed-
ded in the complexity of petroleum samples.

GC�GC-TOFMS has been used for advanced biomarker and dia-
mondoid evaluation. Sound statements of the advantages provided
by this technique in organic geochemistry have been recently re-
ported (Ventura et al., 2010, 2012; Aguiar et al., 2011; Silva et al.,
2011, 2013; Eiserbeck et al., 2012; Oliveira et al., 2012a, 2012b).
Noteworthy is its application in the search for better data from tra-
ditional biomarkers as well as the search for non-conventional bio-
markers carrying specific geochemical diagnostic features, the
latter rarely monitored in routine analysis by conventional 1D-
GC or monitored by GC–MS-MS.

Therefore, GC�GC-TOFMS is the first analytical technique with
the potential to allow for a breakthrough in traditional biomarker
based study of petroleum systems, paving the path for the develop-
ment of a true high resolution molecular organic geochemistry
(HRMOG). The present study illustrates this potential in the assess-
ment of 20 crude oil samples from the Recôncavo Basin. Gaglia-
none and Trindade (1998) investigated the biomarkers
distribution in a set of oils from this basin. The oils have been clas-
sified as belonging to the same family, with only minor composi-
tional variations related to maturation; to the best of our
knowledge, this is the only work reported in literature, concerning
the biomarkers distribution in this basin.

Analyses were performed on saturated and aromatic hydrocar-
bons, organo-sulfur compounds and diamondoids. The primary
goal was to differentiate oils considered to come from source rocks
deposited in similar environments and with similar levels of ther-
mal maturity.

2. Geological setting

The lacustrine freshwater shales of the Gomo and Tauá members of
the Candeias Formation (syn-rift) are considered to be the main source
rocks of the basin. Previous geochemical studies (e.g., Mello et al., 1994;
Aragão et al., 1998) identified the depositional paleoenvironment as a
freshwater lake or lakes. Sedimentswere deposited under anoxic condi-
tions, which favored organic matter preservation. Total organic carbon
(%TOC) content varies from 0.8–4%, but can reach 10% in some organic
rich facies. Rock–Eval pyrolysis showsapetroleumpotential (S2 peak) of
around 16mgHC/g rock, although in some facies the valuesmay rise to
70mg HC/g rock. Hydrogen index (HI = (S2/TOC)� 100) values may
reach 700mg HC/g TOC, and chemical and petrographic analyses indi-
cate a type I kerogen.

Based on the vitrinite reflectance results of Coutinho (2008), the
source rocks are at oil window and wet gas window levels of ther-
mal maturity in the south and central parts of the basin. In the
northeastern part of the basin, the organic matter is still immature
to marginally mature.

Three basic types of reservoirs and traps have been proposed for
the Recôncavo Basin (Figueiredo et al., 1994; Magnavita and Da Sil-
va, 1995). (1) Pre-rift system: The main reservoirs are in the Sergi
and Água Grande Formations and account for around 57% of the
proven oil volume of the basin. They are fluvial/eolian sands and
the traps are mainly structural. (2) Syn-rift Candeias system: This
petroleum system comprises approximately 16% of the proven oil
reserves of the basin. The reservoirs are typically lacustrine turbi-
dites with stratigraphic and combined traps. (3) Syn-rift Ilhas sys-
tem: The oil volume of this system corresponds to around 27% of
the total proven oil of the basin. The principal reservoirs are deltaic
sands, and there are structural, combined and stratigraphic traps.

3. Samples and methods

Twenty crude oil samples from the Recôncavo Basin were ana-
lyzed. The geographic location of the respective wells is shown in

Fig. 1. Location map of Recôncavo Basin and position of the studied oils.
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Fig. 1. Samples 254, 229, 281, 251 and 250 belong to the northeast
part of the basin. Another group comprises samples 224, 274, 249,
246, 205, 231, 253, 230, 239, 252 and 224, located in the central
part of the basin, while samples 183, 263, 283, 211 and 207 are lo-
cated in the southern part of the basin.

3.1. Sample preparation

The oil samples were subjected to liquid chromatography with
pre-activated silica as the stationary phase. The crude oil samples
were dissolved in hexane and applied to the top of a column con-
taining activated silica gel (120 �C overnight). The samples (ca.
100 mg each) were separated into saturated hydrocarbons, aro-
matic hydrocarbons and polar compounds, through n-hexane
(10 ml), n-hexane:dichloromethane (8:2, v:v, 10 ml) and dichloro-
methane:methanol (9:1, v:v, 10 ml), respectively. The solvent from
each fraction was evaporated and 500 ll of dichloromethane was
added. One microlitre of the saturated hydrocarbon and aromatic
fraction was analyzed by GC�GC-TOFMS.

Urea adduction of the saturated hydrocarbon fraction was per-
formed to remove the n-alkanes (Nwadinigwe and Nwobodo,
1994; Marotta, 2010). Briefly, the saturated hydrocarbon fraction
was dissolved in 1 mL of n-hexane in a test tube, and 1 ml of ace-
tone was added. A saturated solution of urea in methanol was
added and the precipitation of urea was immediately observed.
The solution was heated to 50 �C until the urea was completely dis-
solved; afterwards, the solution was cooled and the formation of
urea crystals observed. The solvents were carefully evaporated un-
der nitrogen flow, and the dried crystals were washed with hexane
(5 � 2 ml). After centrifugation, the washing solvent containing the
cyclic and branched saturated hydrocarbons was obtained. This
fraction, after evaporation by nitrogen flow, was dissolved in
dichloromethane and analyzed by GC�GC-TOFMS.

In order to analyze diamondoids, another procedure was per-
formed. Approximately 100 mg of each crude oil was deposited
in the top of a dry silica gel column and was then eluted with
5 ml of n-hexane, similarly to procedures published elsewhere
(Azevedo et al., 2008; Springer et al., 2010). Eluted solutions were
rapidly sealed and analyzed by GC�GC-TOFMS. Deuterated n-
dodecane-d26 and n-tetracosane-d50 standard solutions were used
to spike the samples before the fractionation procedure. A set of
diamondoid standards purchased from Chiron AS (Stiklestadveien,
Norway) was used as reference for the identification of adaman-
tane and diamantane. Internal deuterated standards (n-dode-
cane-d26 and n-tetracosane-d50) were used for relative
quantification of diamondoids and saturated hydrocarbons,
respectively (Silva et al., 2013).

3.2. GC�GC-TOFMS and data processing

Analyses were performed on a Pegasus 4D (Leco, St. Joseph, MI,
USA) GC�GC-TOFMS, composed of an Agilent 6890 GC (Palo Alto,
CA, USA) equipped with a secondary oven, a non-moving quad-
jet dual-stage modulator and a Pegasus III (Leco, St. Joseph, MI,
USA) time of flight mass spectrometer. A DB-5 column (Agilent
Technologies, Palo Alto, CA, USA), 5% phenyl–95% methylsiloxane
(30 m, 0.25 mm i.d., 0.25 lm df) was used as the first dimension
column (1D). A BPX-50 column (SGE, Ringwood, VIC, Australia),
50% phenyl–50% methylsiloxane (1.5 m, 0.1 mm i.d., 0.1 lm df)
was used as the second dimension column (2D). The 2D column
was connected to the TOFMS by means of a 0.5 m � 0.25 mm i.d.
uncoated deactivated fused silica capillary, via SGE mini-unions
and Siltite™ metal ferrules 0.1–0.25 mm i.d. (Ringwood, VIC, Aus-
tralia) (Silva et al., 2011; Oliveira et al., 2012a).

The GC conditions for the first dimension include: splitless
mode injection of 1 ll at 290 �C, a purge time of 60 s, and a purge

flow of 5 ml/min. Helium was used as the carrier gas at a constant
flow rate of 1.5 ml/min. The primary oven temperature program
began at 70 �C for 1 min, and was then increased to 170 �C at
20 �C/min, and further to 325 �C at 2 �C/min. The secondary oven
temperature program was 10 �C higher than the primary one.
The modulation period was 8 s with a 2 s hot pulse duration, and
the modulator temperature was 30 �C higher than the primary
oven temperature. The transfer line to the MS was set at 280 �C,
the electron ionization mode was set at 70 eV, the mass range
was 50–600 Da, the ion source temperature was 230 �C, the detec-
tor was 1550 V, and the acquisition rate was 100 spectra/s. Com-
pound identification was performed by comparison with
literature mass spectra, mass spectral examination, retention time
and elution order.

Diamondoid analyses were carried out using the same instru-
ment and column. GC conditions differ by a 5 �C offset used be-
tween the dimensions during the GC program, which was
initially stabilized at 50 �C and the first dimension temperature
was raised to 350 �C at 4 �C/min. The modulation period was
chosen to be 6 s, with a 2 s hot pulse. Transfer line and ion source
temperatures were held at 290 �C and 200 �C, respectively.
GC�GC–TOFMS data acquisition and processing were performed
with ChromaTOF software version 4.42 (Leco, St. Joseph, MI,
USA). Individual peaks were automatically detected on the basis
of a 10:1 signal/noise ratio.

3.3. Chemometric analyses

The software package Statistica 8 (Statsoft Inc.) was used in all
statistical calculations in this work. Principal Component Analysis
(PCA) was based on the covariance matrix. All variables were mean
centred and scaled by the sample standard deviation. Data re-
ported in Tables 1–4 have been partially or totally processed. In
the latter case, a matrix X(20�42) containing maturity parameters
from saturated biomarker, aromatics and diamondoid data was
used.

4. Results and discussion

4.1. Saturated hydrocarbons

Tri- and tetracyclic terpanes (m/z 191), regular and rearranged
hopanes (m/z 191), methyl-hopanes (m/z 205), secohopanes (m/z
123), onoceranes (m/z 123), steranes (m/z 217, 218), b-carotane
(m/z 125) and other compounds (e.g., gammacerane, tetracyclic
polyprenoid (TPP) (m/z 191, 259) were detected in the saturate
fractions of the Recôncavo oils by monitoring extracted ion chro-
matograms (EIC). The detailed procedure adopted for structural
characterization is extensively reported in previous works (e.g.,
Aguiar et al., 2010, 2011; Oliveira et al., 2012a, 2012b).

The tricyclic terpane series (Trn) was identified in all samples,
with the corresponding carbon numbers varying from C19 to C41.
The regular hopane series was detected in the range from C27 to
C37. Moretanes were detected from C29 to C34. Diahopanes were
also often detected in oils; the complete series from C30 to C35

was assigned in the current investigation. The 28-nor-spergulane
series, another type of rearranged hopane, was detected in the
range from C29 to C32. Using the GC�GC-TOFMS method, each class
of compounds was successfully separated in the chromatographic
plane, as can be seen in the representative example of the tri-, tet-
ra- and pentacyclic terpanes reported in Fig. 1S. Fig. 2 shows exam-
ples of pentacyclic terpane fingerprints of the two most
chromatographically distinct samples, 263 and 252.

Besides the above mentioned traditional biomarkers, less com-
mon ones were also investigated, for example, the 3b-methyl-hopane
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as crude oil. Time of flight mass spectrometers (TOFMS) provide
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Based on the vitrinite reflectance results of Coutinho (2008), the
source rocks are at oil window and wet gas window levels of ther-
mal maturity in the south and central parts of the basin. In the
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Three basic types of reservoirs and traps have been proposed for
the Recôncavo Basin (Figueiredo et al., 1994; Magnavita and Da Sil-
va, 1995). (1) Pre-rift system: The main reservoirs are in the Sergi
and Água Grande Formations and account for around 57% of the
proven oil volume of the basin. They are fluvial/eolian sands and
the traps are mainly structural. (2) Syn-rift Candeias system: This
petroleum system comprises approximately 16% of the proven oil
reserves of the basin. The reservoirs are typically lacustrine turbi-
dites with stratigraphic and combined traps. (3) Syn-rift Ilhas sys-
tem: The oil volume of this system corresponds to around 27% of
the total proven oil of the basin. The principal reservoirs are deltaic
sands, and there are structural, combined and stratigraphic traps.
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Twenty crude oil samples from the Recôncavo Basin were ana-
lyzed. The geographic location of the respective wells is shown in
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Fig. 1. Samples 254, 229, 281, 251 and 250 belong to the northeast
part of the basin. Another group comprises samples 224, 274, 249,
246, 205, 231, 253, 230, 239, 252 and 224, located in the central
part of the basin, while samples 183, 263, 283, 211 and 207 are lo-
cated in the southern part of the basin.

3.1. Sample preparation

The oil samples were subjected to liquid chromatography with
pre-activated silica as the stationary phase. The crude oil samples
were dissolved in hexane and applied to the top of a column con-
taining activated silica gel (120 �C overnight). The samples (ca.
100 mg each) were separated into saturated hydrocarbons, aro-
matic hydrocarbons and polar compounds, through n-hexane
(10 ml), n-hexane:dichloromethane (8:2, v:v, 10 ml) and dichloro-
methane:methanol (9:1, v:v, 10 ml), respectively. The solvent from
each fraction was evaporated and 500 ll of dichloromethane was
added. One microlitre of the saturated hydrocarbon and aromatic
fraction was analyzed by GC�GC-TOFMS.

Urea adduction of the saturated hydrocarbon fraction was per-
formed to remove the n-alkanes (Nwadinigwe and Nwobodo,
1994; Marotta, 2010). Briefly, the saturated hydrocarbon fraction
was dissolved in 1 mL of n-hexane in a test tube, and 1 ml of ace-
tone was added. A saturated solution of urea in methanol was
added and the precipitation of urea was immediately observed.
The solution was heated to 50 �C until the urea was completely dis-
solved; afterwards, the solution was cooled and the formation of
urea crystals observed. The solvents were carefully evaporated un-
der nitrogen flow, and the dried crystals were washed with hexane
(5 � 2 ml). After centrifugation, the washing solvent containing the
cyclic and branched saturated hydrocarbons was obtained. This
fraction, after evaporation by nitrogen flow, was dissolved in
dichloromethane and analyzed by GC�GC-TOFMS.

In order to analyze diamondoids, another procedure was per-
formed. Approximately 100 mg of each crude oil was deposited
in the top of a dry silica gel column and was then eluted with
5 ml of n-hexane, similarly to procedures published elsewhere
(Azevedo et al., 2008; Springer et al., 2010). Eluted solutions were
rapidly sealed and analyzed by GC�GC-TOFMS. Deuterated n-
dodecane-d26 and n-tetracosane-d50 standard solutions were used
to spike the samples before the fractionation procedure. A set of
diamondoid standards purchased from Chiron AS (Stiklestadveien,
Norway) was used as reference for the identification of adaman-
tane and diamantane. Internal deuterated standards (n-dode-
cane-d26 and n-tetracosane-d50) were used for relative
quantification of diamondoids and saturated hydrocarbons,
respectively (Silva et al., 2013).

3.2. GC�GC-TOFMS and data processing

Analyses were performed on a Pegasus 4D (Leco, St. Joseph, MI,
USA) GC�GC-TOFMS, composed of an Agilent 6890 GC (Palo Alto,
CA, USA) equipped with a secondary oven, a non-moving quad-
jet dual-stage modulator and a Pegasus III (Leco, St. Joseph, MI,
USA) time of flight mass spectrometer. A DB-5 column (Agilent
Technologies, Palo Alto, CA, USA), 5% phenyl–95% methylsiloxane
(30 m, 0.25 mm i.d., 0.25 lm df) was used as the first dimension
column (1D). A BPX-50 column (SGE, Ringwood, VIC, Australia),
50% phenyl–50% methylsiloxane (1.5 m, 0.1 mm i.d., 0.1 lm df)
was used as the second dimension column (2D). The 2D column
was connected to the TOFMS by means of a 0.5 m � 0.25 mm i.d.
uncoated deactivated fused silica capillary, via SGE mini-unions
and Siltite™ metal ferrules 0.1–0.25 mm i.d. (Ringwood, VIC, Aus-
tralia) (Silva et al., 2011; Oliveira et al., 2012a).

The GC conditions for the first dimension include: splitless
mode injection of 1 ll at 290 �C, a purge time of 60 s, and a purge

flow of 5 ml/min. Helium was used as the carrier gas at a constant
flow rate of 1.5 ml/min. The primary oven temperature program
began at 70 �C for 1 min, and was then increased to 170 �C at
20 �C/min, and further to 325 �C at 2 �C/min. The secondary oven
temperature program was 10 �C higher than the primary one.
The modulation period was 8 s with a 2 s hot pulse duration, and
the modulator temperature was 30 �C higher than the primary
oven temperature. The transfer line to the MS was set at 280 �C,
the electron ionization mode was set at 70 eV, the mass range
was 50–600 Da, the ion source temperature was 230 �C, the detec-
tor was 1550 V, and the acquisition rate was 100 spectra/s. Com-
pound identification was performed by comparison with
literature mass spectra, mass spectral examination, retention time
and elution order.

Diamondoid analyses were carried out using the same instru-
ment and column. GC conditions differ by a 5 �C offset used be-
tween the dimensions during the GC program, which was
initially stabilized at 50 �C and the first dimension temperature
was raised to 350 �C at 4 �C/min. The modulation period was
chosen to be 6 s, with a 2 s hot pulse. Transfer line and ion source
temperatures were held at 290 �C and 200 �C, respectively.
GC�GC–TOFMS data acquisition and processing were performed
with ChromaTOF software version 4.42 (Leco, St. Joseph, MI,
USA). Individual peaks were automatically detected on the basis
of a 10:1 signal/noise ratio.

3.3. Chemometric analyses

The software package Statistica 8 (Statsoft Inc.) was used in all
statistical calculations in this work. Principal Component Analysis
(PCA) was based on the covariance matrix. All variables were mean
centred and scaled by the sample standard deviation. Data re-
ported in Tables 1–4 have been partially or totally processed. In
the latter case, a matrix X(20�42) containing maturity parameters
from saturated biomarker, aromatics and diamondoid data was
used.

4. Results and discussion

4.1. Saturated hydrocarbons

Tri- and tetracyclic terpanes (m/z 191), regular and rearranged
hopanes (m/z 191), methyl-hopanes (m/z 205), secohopanes (m/z
123), onoceranes (m/z 123), steranes (m/z 217, 218), b-carotane
(m/z 125) and other compounds (e.g., gammacerane, tetracyclic
polyprenoid (TPP) (m/z 191, 259) were detected in the saturate
fractions of the Recôncavo oils by monitoring extracted ion chro-
matograms (EIC). The detailed procedure adopted for structural
characterization is extensively reported in previous works (e.g.,
Aguiar et al., 2010, 2011; Oliveira et al., 2012a, 2012b).

The tricyclic terpane series (Trn) was identified in all samples,
with the corresponding carbon numbers varying from C19 to C41.
The regular hopane series was detected in the range from C27 to
C37. Moretanes were detected from C29 to C34. Diahopanes were
also often detected in oils; the complete series from C30 to C35

was assigned in the current investigation. The 28-nor-spergulane
series, another type of rearranged hopane, was detected in the
range from C29 to C32. Using the GC�GC-TOFMS method, each class
of compounds was successfully separated in the chromatographic
plane, as can be seen in the representative example of the tri-, tet-
ra- and pentacyclic terpanes reported in Fig. 1S. Fig. 2 shows exam-
ples of pentacyclic terpane fingerprints of the two most
chromatographically distinct samples, 263 and 252.

Besides the above mentioned traditional biomarkers, less com-
mon ones were also investigated, for example, the 3b-methyl-hopane
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series, whose precursors are the 3b-methyl-hopanoids synthesized
by several types of methanotrophic bacteria (Eigenbrode et al.,
2008; Welander et al., 2012). These biomarkers, usually present
in small amounts in crude oils, are a key example of the detection
potential of GC�GC, due to its characteristics of high peak capacity
and sensitivity, as previously shown by Oliveira et al. (2012a). The
coelution between gammacerane and C31 3b-methyl-hopane nor-
mally observed in monodimensional GC, was solved by utilizing
GC�GC.

Gammacerane and TPP were also identified in all of the Recônc-
avo oils. High relative concentration of gammacerane is commonly
related to hypersalinity, highly specific for water-column stratifi-
cation during source rock deposition. TPP has an origin linked to
precursors from freshwater algae. A relatively high concentration

of TPP is considered indicative of source rocks deposited in a lacus-
trine environment (Holba et al., 2003).

b-Carotane, thought to be derived from halo-tolerant unicellu-
lar algae which thrive in anoxic, saline lacustrine or highly re-
stricted marine settings (Peters et al., 2005; Sousa Júnior et al.,
2013), was also detected in the 20 oil samples.

Onoceranes are associated with restricted basins in warm and
humid tropical climates such as Brazil (Oliveira et al., 2012a). Their
origin is unclear, but is thought to be related to terrigenous domi-
nated ferns and flowering plants (Peters et al., 2005).

The GC�GC-TOFMS identification and quantification of the
compounds just described were used to establish origin, paleoenvi-
ronmental conditions and maturity of the oils (calculated and re-
ported in Tables 1–3).

Table 1
Traditional source parameters from saturated biomarkers as analyzed by GC�GC-TOFMS.a

Sample Region H30/St TPP/Dia27 H34/H35 H35 S22/H34 S22 Ts/Tm C27/C29 Tr23/H30 Te24/H30 Gam/H30 25NH/H30 Tr26/Tr25

183 South 9 1.62 1.90 tr 4.45 1.94 0.93 0.21 0.15 0.01 1.74
205 Central 12 2.04 2.00 tr 3.60 1.88 0.87 0.13 0.22 0.02 1.89
207 South 67 1.94 2.38 0.35 2.04 1.34 0.18 0.08 0.10 0.01 1.18
211 South 41 2.92 2.50 0.34 1.97 1.25 0.06 0.04 0.14 0.01 1.82
224 Central 30 1.25 2.19 0.47 1.31 2.72 0.29 0.08 0.13 0.01 1.11
229 Northeast 26 1.40 3.40 0.45 1.91 3.12 0.31 0.11 0.13 0.01 1.74
230 Central 20 2.13 1.47 tr 1.95 2.03 0.4 0.10 0.30 0.02 1.94
231 Central 11 2.12 1.61 0.43 1.10 1.10 0.27 0.09 0.15 0.03 1.50
239 Central 12 3.21 1.82 0.34 1.42 1.21 0.46 0.08 0.49 0.12 1.48
246 Central 32 1.68 2.41 0.41 2.12 2.25 0.36 0.11 0.15 0.01 1.02
249 Central 18 2.39 2.94 0.46 2.62 1.80 0.35 0.07 0.45 0.04 1.44
250 Northeast 17 4.61 3.34 0.39 1.26 2.32 0.2 0.05 0.48 0.04 1.71
251 Northeast 16 4.21 2.40 0.47 1.69 1.74 0.19 0.06 0.20 0.02 1.78
252 Central 16 1.87 1.75 0.53 1.42 1.42 0.49 0.30 0.95 0.02 1.58
253 Central 12 2.53 1.87 tr 1.56 1.90 1.47 0.09 0.16 0.03 1.92
254 Northeast 27 2.65 2.32 0.43 1.89 1.49 0.25 0.11 0.21 0.03 1.39
263 South 8 1.36 2.42 0.39 1.25 1.98 1.18 0.34 0.19 0.08 1.06
274 Central 12 8.55 1.08 0.57 1.11 1.20 0.55 0.42 0.61 0.07 0.55
281 Northeast 8 4.00 1.84 0.54 1.04 2.18 0.40 0.19 0.18 0.05 1.27
283 South 9 5.07 1.77 0.54 1.58 1.22 0.65 0.12 0.78 0.03 1.79

a H30, C30 17a(H),21b(H)-hopane; St, RC27aaa + abb cholestanes (S + R); TPP, C30 tetracyclic poliprenoid; Dia27, C27 13b(H),17a(H)-diacholestanes (S + R); H34, C34

17a(H),21b(H)-tetrakishomohopane (22S + 22R); H35, C35 17a(H),21b(H)-pentakishomohopane (22S + 22R); Ts, C27 22,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorho-
pane; C27, R C27aaa + abb cholestanes(S + R); C29, C29aaa + abb 24-ethyl-cholestanes (S + R); Trn, Cn 13b(H),14a(H)-tricyclic terpane (sum of A + B isomers); Te24, C24

tetracyclic terpane; G, gammacerane; SH30, C30 8a(H),14a(H),17a(H),21b(H)-secohopane; 25NH, 25-nor-hopane. tr = trace level.

Table 2
Non-conventional source parameters from saturated biomarkers as analyzed by GC�GC-TOFMS.a

Sample Region 3bMH31/H30 Tr28/Tr29 ONII/H30 ONIII/H30 29Nsp/H30 Te24/Tr26 SH30/H30 DH30/H30 b-car/H30 H31R/H30 H29/H30

183 South 0.02 1.44 2.06 tr 0.15 0.30 2.14 0.88 0.05 0.13 0.31
205 Central 0.02 1.50 tr tr 0.03 0.16 1.41 0.24 0.29 0.1 0.57
207 South 0.03 1.67 0.15 0.21 0.04 0.93 0.21 0.20 0.06 0.12 0.52
211 South 0.04 2.19 0.13 tr 0.04 0.71 0.23 0.21 0.04 0.15 0.55
224 Central 0.03 4.9 0.13 tr 0.03 0.97 0.67 0.14 0.04 0.12 0.45
229 Northeast 0.03 2.63 0.11 0.12 0.03 0.85 0.55 0.15 0.05 0.16 0.73
230 Central 0.02 1.07 0.82 tr 0.04 0.27 0.84 0.21 0.19 0.08 0.58
231 Central 0.05 2.59 0.31 0.27 0.05 0.61 0.29 0.23 0.09 0.16 0.84
239 Central 0.02 1.18 0.55 0.30 0.04 0.23 5.27 0.22 0.22 0.1 0.69
246 Central 0.03 1.45 0.23 0.17 0.05 0.83 0.92 0.20 0.05 0.11 0.83
249 Central 0.05 2.13 0.70 0.30 0.06 0.93 1.14 0.30 0.05 0.15 0.66
250 Northeast 0.05 2.11 0.1 0.05 0.06 0.48 0.51 0.07 0.05 0.17 0.75
251 Northeast 0.04 2.05 0.16 0.05 0.08 0.36 0.41 0.16 0.04 0.17 0.54
252 Central 0.08 1.90 0.05 0.10 0.16 0.74 0.32 0.06 0.53 0.24 0.43
253 Central tr 1.14 3.33 0.92 n.d. 0.07 3.37 1.14 0.52 tr 0.77
254 Northeast 0.04 2.41 0.25 tr 0.06 0.81 0.82 0.18 0.04 0.20 0.71
263 South 0.01 1.13 0.31 0.24 0.03 0.25 2.05 0.11 0.01 0.07 0.93
274 Central 0.13 3.46 0.20 0.04 0.06 4.48 0.38 0.25 0.21 0.28 0.80
281 Northeast 0.05 1.76 0.25 0.09 0.15 0.92 0.63 0.21 0.03 0.24 0.83
283 South 0.04 1.29 0.40 0.20 0.04 0.16 0.71 0.05 0.19 0.15 0.63

a H30, C30 17a(H),21b(H)-hopane;H29, C29 17a(H)-30-norhopane; b-car, b-carotane; 29Nsp, C29 28-nospergulane; Trn, Cn 13b(H),14a(H)-tricyclic terpane (sum of A + B
isomers); SH30, C30 8a(H),14a(H),17a(H),21b(H)-secohopane; Trn, Cn tricyclic terpane; ONII, 8a(H),14a(H)-onocerane; ONIII, 8a(H),14b(H)-onocerane; 3bMH31, C31 3b-
methylhopane; Te24, C24 tetracyclic terpane; H31R, C3117a(H),21b(H)-homohopane (R). tr = trace level.
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4.2. Aromatic compounds

C ring monoaromatic (MA) steroid (m/z 253) and triaromatic
(TA) steroid (m/z 231) distributions were investigated in the aro-
matic fractions of the Recôncavo oils. These biomarkers are com-
mon constituents in sediments and petroleum and have been
successfully used as thermal maturity parameters (Hussler et al.,
1981; Mackenzie et al., 1981; Riolo et al., 1986). The MAs were

assigned as C21, C22, C27, C28 and C29 components, while the TAs
were assigned as C20, C21, C26, C27 and C28.

Benzothiophenes and dibenzothiophenes are not formally con-
sidered biomarkers because they cannot be related to specific bio-
logical precursors. Despite that, geochemical parameters based on
benzothiophenes and dibenzothiophenes, which are abundant in
mature oils, have been proposed and applied as thermal maturity
indicators in source rocks and oils (Radke et al., 1982; Chakhmakh-
chev et al., 1997; Santamaría-Orozco et al., 1998; Heckmann et al.,
2011). In all the Recôncavo oils investigated, 1- and 4-methyl-
dibenzothiophene (MDBT; m/z 198), 1,4-dimethyl-dibenzothio-
phene (DMDBT; m/z 212), 2,4-DMDBT and 4,6-DMDBT and
different isomers of trimethyl-dibenzothiophene (TMDBT; m/z
226) were identified. Fig. 2S shows a ‘‘roof tile effect’’ for the
alkyl-dibenzothiophenes, where each family with the same carbon
number is easily grouped.

Parameters for maturity assessment of the oils, based on aro-
matic compounds, have been calculated using the GC�GC-TOFMS
peak areas and are reported in Table 3.

4.3. Diamondoids

Diamondoid analyses by GC�GC-TOFMS were published
recently (Li et al., 2012; Silva et al., 2013), showing the advantages
of GC�GC-TOFMS in analyzing extended diamondoids. Adaman-
tanes (m/z 135, 136, 149, 163, 177 and 191), diamantanes (m/z
187, 188, 201 and 215), triamantanes (m/z 239, 240, 244, 253 and
267) and tetramantanes (m/z 291, 292 and 305) were investigated.
However, the samples analyzed in this study did not show consider-
able amounts of tri- nor tetramantanes (signal-to-noise ratio lower
than 10). Adamantanes and diamantanes were identified and their
peak areas were used to calculate diamondoid ratios (Table 4).

5. High resolution molecular organic geochemistry

The use of GC�GC-TOFMS adds a new approach to geochemical
analysis. Regarding the crude oils from the Recôncavo Basin,
saturated compounds were investigated looking for minor

Table 3
Maturity parameters from saturated and aromatic compounds as analyzed by GC�GC-TOFMS.a.

Sample Saturated biomarker Aromatics

Ts/(Ts + Tm) H32 S/(S + R) C29 aaa S/(S + R) C29 bb/(bb + aa) TA/(TA + MA) TA I/(I + II) MDBT 4/1 DMDBT 4.6/1.4 DMDBT 2.4/1.4

183 0.87 0.58 0.45 0.67 0.28 0.94 9.16 3.29 3.34
205 0.78 0.61 0.46 0.54 0.60 0.65 2.94 1.57 1.82
207 0.67 0.59 0.44 0.53 0.64 0.48 2.88 2.66 1.67
211 0.66 0.58 0.41 0.56 0.54 0.53 1.75 2.64 1.61
224 0.57 0.58 0.46 0.67 0.47 0.47 2.28 1.59 1.00
229 0.66 0.59 0.47 0.53 0.54 0.52 1.80 1.63 1.75
230 0.66 0.61 0.43 0.48 0.35 0.81 2.26 2.03 3.54
231 0.52 0.59 0.44 0.62 0.31 0.45 2.03 2.00 1.68
239 0.59 0.69 0.50 0.58 0.52 0.34 2.34 2.45 1.17
246 0.68 0.58 0.56 0.41 0.37 0.48 1.46 1.43 1.69
249 0.58 0.51 0.52 0.57 0.24 0.87 4.12 3.28 1.19
250 0.53 0.51 0.47 0.46 0.49 0.37 3.29 1.18 1.03
251 0.61 0.50 0.41 0.56 0.58 0.39 2.35 1.28 1.24
252 0.59 0.57 0.42 0.55 0.41 0.13 1.76 1.70 1.31
253 0.68 0.60 0.42 0.56 0.52 0.43 3.12 2.03 1.60
254 0.65 0.63 0.40 0.54 0.54 0.44 5.09 1.49 1.11
263 0.56 0.60 0.41 0.54 0.16 0.96 12.56 6.78 3.87
274 0.47 0.46 0.46 0.57 0.39 0.50 3.71 1.32 1.99
281 0.51 0.54 0.49 0.50 0.39 0.71 1.81 1.23 0.99
283 0.61 0.59 0.49 0.64 0.45 0.09 1.12 2.19 1.09

a Ts, C2722,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorhopane; H32, C32 17a(H),21b(H)-bishomohopane (22S + 22R); C29, Raaa + abb St29 (S + R); C29 bb,
5a(H),14b(H),17b(H)-24-ethylcholestane; C29 aa, 5a(H),14a(H),17a(H)-24-ethylcholestane; TA, triaromatic steroids; MA, monoaromatic steroids; TA I, triaromatic steroids
with short-chain carbon; TA II, triaromatic steroids with long-chain carbon; MDBT, 4-methyl dibenzothiophene; MDBT, 1-methyl dibenzothiophene; DMDBT, 4,6-dimethyl
dibenzothiophene; DMDBT, 1,4-dimethyl dibenzothiophene; DMDBT, 2,4-dimethyl dibenzothiophene.

Table 4
Diamondoid parameters obtained from GC�GC-TOFMS analyses.

Sample Quantitativea Diamondoid indexesb

3-MD + 4-MD (lg/g) MAI DMAI EAI TMA MDI DMDI

183 1.46 0.59 0.43 0.75 0.15 0.41 0.70
205 1.09 0.26 0.53 0.72 0.17 0.43 0.72
207 1.43 0.38 0.48 0.66 0.16 0.39 0.78
211 1.89 0.29 0.47 0.62 0.11 0.35 0.63
224 6.03 0.73 0.46 0.69 0.17 0.41 0.71
229 0.31 0.53 0.35 0.65 0.12 0.39 0.77
230 1.70 0.65 0.47 0.56 0.18 0.31 0.75
231 2.42 0.65 0.52 0.56 0.19 0.49 0.67
239 1.46 0.57 0.52 0.72 0.12 0.32 0.79
246 2.22 0.67 0.78 0.59 0.24 0.46 0.69
249 1.12 0.50 0.40 0.63 0.13 0.40 0.69
250 1.31 0.62 0.31 0.69 0.13 0.51 0.65
251 0.93 0.59 0.36 0.63 0.13 0.52 0.65
252 0.63 0.63 0.47 0.68 0.14 0.42 0.70
253 4.93 0.44 0.57 0.65 0.09 0.48 0.72
254 0.28 0.59 0.39 0.66 0.08 0.41 0.50
263 5.95 0.73 0.61 0.65 0.19 0.45 0.75
274 1.00 0.56 0.41 0.69 0.17 0.55 0.65
281 1.06 0.55 0.32 0.81 0.13 0.45 0.74
283 0.33 0.63 0.40 0.67 0.13 0.41 0.59

a Relative quantification to m/z 66 fragment of n-hexadecane-d34, MD = methyl-
diamantane;

b MAI = (1-methyl-adamantane)/(1-methyl-adamantane + 2-methyl-adaman-
tane); MDI = (4-methyl-diamantane)/(4-methyl-diamantane + 1-methyl-diaman-
tane + 3-methyl-diamantane); DMAI = (1,3-dimethyl-adamantane)/(1,2-dimethyl-
adamantane + 1,3-dimethyl-adamantane); DMDI = (3,4-dimethyl-diamantane)/
(4,9-dimethyl-diamantane + 3,4-dimethyl-diamantane); EAI = (2-ethyl-adaman-
tane)/(1-ethyl-adamantane + 2-ethyl-adamantane); TMAI = (1,3,5-trimethyl-ada-
mantane)/(1,3,5-trimethyl-adamantane + 1,3,4-trimethyl-adamantane).
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series, whose precursors are the 3b-methyl-hopanoids synthesized
by several types of methanotrophic bacteria (Eigenbrode et al.,
2008; Welander et al., 2012). These biomarkers, usually present
in small amounts in crude oils, are a key example of the detection
potential of GC�GC, due to its characteristics of high peak capacity
and sensitivity, as previously shown by Oliveira et al. (2012a). The
coelution between gammacerane and C31 3b-methyl-hopane nor-
mally observed in monodimensional GC, was solved by utilizing
GC�GC.

Gammacerane and TPP were also identified in all of the Recônc-
avo oils. High relative concentration of gammacerane is commonly
related to hypersalinity, highly specific for water-column stratifi-
cation during source rock deposition. TPP has an origin linked to
precursors from freshwater algae. A relatively high concentration

of TPP is considered indicative of source rocks deposited in a lacus-
trine environment (Holba et al., 2003).

b-Carotane, thought to be derived from halo-tolerant unicellu-
lar algae which thrive in anoxic, saline lacustrine or highly re-
stricted marine settings (Peters et al., 2005; Sousa Júnior et al.,
2013), was also detected in the 20 oil samples.

Onoceranes are associated with restricted basins in warm and
humid tropical climates such as Brazil (Oliveira et al., 2012a). Their
origin is unclear, but is thought to be related to terrigenous domi-
nated ferns and flowering plants (Peters et al., 2005).

The GC�GC-TOFMS identification and quantification of the
compounds just described were used to establish origin, paleoenvi-
ronmental conditions and maturity of the oils (calculated and re-
ported in Tables 1–3).

Table 1
Traditional source parameters from saturated biomarkers as analyzed by GC�GC-TOFMS.a

Sample Region H30/St TPP/Dia27 H34/H35 H35 S22/H34 S22 Ts/Tm C27/C29 Tr23/H30 Te24/H30 Gam/H30 25NH/H30 Tr26/Tr25

183 South 9 1.62 1.90 tr 4.45 1.94 0.93 0.21 0.15 0.01 1.74
205 Central 12 2.04 2.00 tr 3.60 1.88 0.87 0.13 0.22 0.02 1.89
207 South 67 1.94 2.38 0.35 2.04 1.34 0.18 0.08 0.10 0.01 1.18
211 South 41 2.92 2.50 0.34 1.97 1.25 0.06 0.04 0.14 0.01 1.82
224 Central 30 1.25 2.19 0.47 1.31 2.72 0.29 0.08 0.13 0.01 1.11
229 Northeast 26 1.40 3.40 0.45 1.91 3.12 0.31 0.11 0.13 0.01 1.74
230 Central 20 2.13 1.47 tr 1.95 2.03 0.4 0.10 0.30 0.02 1.94
231 Central 11 2.12 1.61 0.43 1.10 1.10 0.27 0.09 0.15 0.03 1.50
239 Central 12 3.21 1.82 0.34 1.42 1.21 0.46 0.08 0.49 0.12 1.48
246 Central 32 1.68 2.41 0.41 2.12 2.25 0.36 0.11 0.15 0.01 1.02
249 Central 18 2.39 2.94 0.46 2.62 1.80 0.35 0.07 0.45 0.04 1.44
250 Northeast 17 4.61 3.34 0.39 1.26 2.32 0.2 0.05 0.48 0.04 1.71
251 Northeast 16 4.21 2.40 0.47 1.69 1.74 0.19 0.06 0.20 0.02 1.78
252 Central 16 1.87 1.75 0.53 1.42 1.42 0.49 0.30 0.95 0.02 1.58
253 Central 12 2.53 1.87 tr 1.56 1.90 1.47 0.09 0.16 0.03 1.92
254 Northeast 27 2.65 2.32 0.43 1.89 1.49 0.25 0.11 0.21 0.03 1.39
263 South 8 1.36 2.42 0.39 1.25 1.98 1.18 0.34 0.19 0.08 1.06
274 Central 12 8.55 1.08 0.57 1.11 1.20 0.55 0.42 0.61 0.07 0.55
281 Northeast 8 4.00 1.84 0.54 1.04 2.18 0.40 0.19 0.18 0.05 1.27
283 South 9 5.07 1.77 0.54 1.58 1.22 0.65 0.12 0.78 0.03 1.79

a H30, C30 17a(H),21b(H)-hopane; St, RC27aaa + abb cholestanes (S + R); TPP, C30 tetracyclic poliprenoid; Dia27, C27 13b(H),17a(H)-diacholestanes (S + R); H34, C34

17a(H),21b(H)-tetrakishomohopane (22S + 22R); H35, C35 17a(H),21b(H)-pentakishomohopane (22S + 22R); Ts, C27 22,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorho-
pane; C27, R C27aaa + abb cholestanes(S + R); C29, C29aaa + abb 24-ethyl-cholestanes (S + R); Trn, Cn 13b(H),14a(H)-tricyclic terpane (sum of A + B isomers); Te24, C24

tetracyclic terpane; G, gammacerane; SH30, C30 8a(H),14a(H),17a(H),21b(H)-secohopane; 25NH, 25-nor-hopane. tr = trace level.

Table 2
Non-conventional source parameters from saturated biomarkers as analyzed by GC�GC-TOFMS.a

Sample Region 3bMH31/H30 Tr28/Tr29 ONII/H30 ONIII/H30 29Nsp/H30 Te24/Tr26 SH30/H30 DH30/H30 b-car/H30 H31R/H30 H29/H30

183 South 0.02 1.44 2.06 tr 0.15 0.30 2.14 0.88 0.05 0.13 0.31
205 Central 0.02 1.50 tr tr 0.03 0.16 1.41 0.24 0.29 0.1 0.57
207 South 0.03 1.67 0.15 0.21 0.04 0.93 0.21 0.20 0.06 0.12 0.52
211 South 0.04 2.19 0.13 tr 0.04 0.71 0.23 0.21 0.04 0.15 0.55
224 Central 0.03 4.9 0.13 tr 0.03 0.97 0.67 0.14 0.04 0.12 0.45
229 Northeast 0.03 2.63 0.11 0.12 0.03 0.85 0.55 0.15 0.05 0.16 0.73
230 Central 0.02 1.07 0.82 tr 0.04 0.27 0.84 0.21 0.19 0.08 0.58
231 Central 0.05 2.59 0.31 0.27 0.05 0.61 0.29 0.23 0.09 0.16 0.84
239 Central 0.02 1.18 0.55 0.30 0.04 0.23 5.27 0.22 0.22 0.1 0.69
246 Central 0.03 1.45 0.23 0.17 0.05 0.83 0.92 0.20 0.05 0.11 0.83
249 Central 0.05 2.13 0.70 0.30 0.06 0.93 1.14 0.30 0.05 0.15 0.66
250 Northeast 0.05 2.11 0.1 0.05 0.06 0.48 0.51 0.07 0.05 0.17 0.75
251 Northeast 0.04 2.05 0.16 0.05 0.08 0.36 0.41 0.16 0.04 0.17 0.54
252 Central 0.08 1.90 0.05 0.10 0.16 0.74 0.32 0.06 0.53 0.24 0.43
253 Central tr 1.14 3.33 0.92 n.d. 0.07 3.37 1.14 0.52 tr 0.77
254 Northeast 0.04 2.41 0.25 tr 0.06 0.81 0.82 0.18 0.04 0.20 0.71
263 South 0.01 1.13 0.31 0.24 0.03 0.25 2.05 0.11 0.01 0.07 0.93
274 Central 0.13 3.46 0.20 0.04 0.06 4.48 0.38 0.25 0.21 0.28 0.80
281 Northeast 0.05 1.76 0.25 0.09 0.15 0.92 0.63 0.21 0.03 0.24 0.83
283 South 0.04 1.29 0.40 0.20 0.04 0.16 0.71 0.05 0.19 0.15 0.63

a H30, C30 17a(H),21b(H)-hopane;H29, C29 17a(H)-30-norhopane; b-car, b-carotane; 29Nsp, C29 28-nospergulane; Trn, Cn 13b(H),14a(H)-tricyclic terpane (sum of A + B
isomers); SH30, C30 8a(H),14a(H),17a(H),21b(H)-secohopane; Trn, Cn tricyclic terpane; ONII, 8a(H),14a(H)-onocerane; ONIII, 8a(H),14b(H)-onocerane; 3bMH31, C31 3b-
methylhopane; Te24, C24 tetracyclic terpane; H31R, C3117a(H),21b(H)-homohopane (R). tr = trace level.
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4.2. Aromatic compounds

C ring monoaromatic (MA) steroid (m/z 253) and triaromatic
(TA) steroid (m/z 231) distributions were investigated in the aro-
matic fractions of the Recôncavo oils. These biomarkers are com-
mon constituents in sediments and petroleum and have been
successfully used as thermal maturity parameters (Hussler et al.,
1981; Mackenzie et al., 1981; Riolo et al., 1986). The MAs were

assigned as C21, C22, C27, C28 and C29 components, while the TAs
were assigned as C20, C21, C26, C27 and C28.

Benzothiophenes and dibenzothiophenes are not formally con-
sidered biomarkers because they cannot be related to specific bio-
logical precursors. Despite that, geochemical parameters based on
benzothiophenes and dibenzothiophenes, which are abundant in
mature oils, have been proposed and applied as thermal maturity
indicators in source rocks and oils (Radke et al., 1982; Chakhmakh-
chev et al., 1997; Santamaría-Orozco et al., 1998; Heckmann et al.,
2011). In all the Recôncavo oils investigated, 1- and 4-methyl-
dibenzothiophene (MDBT; m/z 198), 1,4-dimethyl-dibenzothio-
phene (DMDBT; m/z 212), 2,4-DMDBT and 4,6-DMDBT and
different isomers of trimethyl-dibenzothiophene (TMDBT; m/z
226) were identified. Fig. 2S shows a ‘‘roof tile effect’’ for the
alkyl-dibenzothiophenes, where each family with the same carbon
number is easily grouped.

Parameters for maturity assessment of the oils, based on aro-
matic compounds, have been calculated using the GC�GC-TOFMS
peak areas and are reported in Table 3.

4.3. Diamondoids

Diamondoid analyses by GC�GC-TOFMS were published
recently (Li et al., 2012; Silva et al., 2013), showing the advantages
of GC�GC-TOFMS in analyzing extended diamondoids. Adaman-
tanes (m/z 135, 136, 149, 163, 177 and 191), diamantanes (m/z
187, 188, 201 and 215), triamantanes (m/z 239, 240, 244, 253 and
267) and tetramantanes (m/z 291, 292 and 305) were investigated.
However, the samples analyzed in this study did not show consider-
able amounts of tri- nor tetramantanes (signal-to-noise ratio lower
than 10). Adamantanes and diamantanes were identified and their
peak areas were used to calculate diamondoid ratios (Table 4).

5. High resolution molecular organic geochemistry

The use of GC�GC-TOFMS adds a new approach to geochemical
analysis. Regarding the crude oils from the Recôncavo Basin,
saturated compounds were investigated looking for minor

Table 3
Maturity parameters from saturated and aromatic compounds as analyzed by GC�GC-TOFMS.a.

Sample Saturated biomarker Aromatics

Ts/(Ts + Tm) H32 S/(S + R) C29 aaa S/(S + R) C29 bb/(bb + aa) TA/(TA + MA) TA I/(I + II) MDBT 4/1 DMDBT 4.6/1.4 DMDBT 2.4/1.4

183 0.87 0.58 0.45 0.67 0.28 0.94 9.16 3.29 3.34
205 0.78 0.61 0.46 0.54 0.60 0.65 2.94 1.57 1.82
207 0.67 0.59 0.44 0.53 0.64 0.48 2.88 2.66 1.67
211 0.66 0.58 0.41 0.56 0.54 0.53 1.75 2.64 1.61
224 0.57 0.58 0.46 0.67 0.47 0.47 2.28 1.59 1.00
229 0.66 0.59 0.47 0.53 0.54 0.52 1.80 1.63 1.75
230 0.66 0.61 0.43 0.48 0.35 0.81 2.26 2.03 3.54
231 0.52 0.59 0.44 0.62 0.31 0.45 2.03 2.00 1.68
239 0.59 0.69 0.50 0.58 0.52 0.34 2.34 2.45 1.17
246 0.68 0.58 0.56 0.41 0.37 0.48 1.46 1.43 1.69
249 0.58 0.51 0.52 0.57 0.24 0.87 4.12 3.28 1.19
250 0.53 0.51 0.47 0.46 0.49 0.37 3.29 1.18 1.03
251 0.61 0.50 0.41 0.56 0.58 0.39 2.35 1.28 1.24
252 0.59 0.57 0.42 0.55 0.41 0.13 1.76 1.70 1.31
253 0.68 0.60 0.42 0.56 0.52 0.43 3.12 2.03 1.60
254 0.65 0.63 0.40 0.54 0.54 0.44 5.09 1.49 1.11
263 0.56 0.60 0.41 0.54 0.16 0.96 12.56 6.78 3.87
274 0.47 0.46 0.46 0.57 0.39 0.50 3.71 1.32 1.99
281 0.51 0.54 0.49 0.50 0.39 0.71 1.81 1.23 0.99
283 0.61 0.59 0.49 0.64 0.45 0.09 1.12 2.19 1.09

a Ts, C2722,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorhopane; H32, C32 17a(H),21b(H)-bishomohopane (22S + 22R); C29, Raaa + abb St29 (S + R); C29 bb,
5a(H),14b(H),17b(H)-24-ethylcholestane; C29 aa, 5a(H),14a(H),17a(H)-24-ethylcholestane; TA, triaromatic steroids; MA, monoaromatic steroids; TA I, triaromatic steroids
with short-chain carbon; TA II, triaromatic steroids with long-chain carbon; MDBT, 4-methyl dibenzothiophene; MDBT, 1-methyl dibenzothiophene; DMDBT, 4,6-dimethyl
dibenzothiophene; DMDBT, 1,4-dimethyl dibenzothiophene; DMDBT, 2,4-dimethyl dibenzothiophene.

Table 4
Diamondoid parameters obtained from GC�GC-TOFMS analyses.

Sample Quantitativea Diamondoid indexesb

3-MD + 4-MD (lg/g) MAI DMAI EAI TMA MDI DMDI

183 1.46 0.59 0.43 0.75 0.15 0.41 0.70
205 1.09 0.26 0.53 0.72 0.17 0.43 0.72
207 1.43 0.38 0.48 0.66 0.16 0.39 0.78
211 1.89 0.29 0.47 0.62 0.11 0.35 0.63
224 6.03 0.73 0.46 0.69 0.17 0.41 0.71
229 0.31 0.53 0.35 0.65 0.12 0.39 0.77
230 1.70 0.65 0.47 0.56 0.18 0.31 0.75
231 2.42 0.65 0.52 0.56 0.19 0.49 0.67
239 1.46 0.57 0.52 0.72 0.12 0.32 0.79
246 2.22 0.67 0.78 0.59 0.24 0.46 0.69
249 1.12 0.50 0.40 0.63 0.13 0.40 0.69
250 1.31 0.62 0.31 0.69 0.13 0.51 0.65
251 0.93 0.59 0.36 0.63 0.13 0.52 0.65
252 0.63 0.63 0.47 0.68 0.14 0.42 0.70
253 4.93 0.44 0.57 0.65 0.09 0.48 0.72
254 0.28 0.59 0.39 0.66 0.08 0.41 0.50
263 5.95 0.73 0.61 0.65 0.19 0.45 0.75
274 1.00 0.56 0.41 0.69 0.17 0.55 0.65
281 1.06 0.55 0.32 0.81 0.13 0.45 0.74
283 0.33 0.63 0.40 0.67 0.13 0.41 0.59

a Relative quantification to m/z 66 fragment of n-hexadecane-d34, MD = methyl-
diamantane;

b MAI = (1-methyl-adamantane)/(1-methyl-adamantane + 2-methyl-adaman-
tane); MDI = (4-methyl-diamantane)/(4-methyl-diamantane + 1-methyl-diaman-
tane + 3-methyl-diamantane); DMAI = (1,3-dimethyl-adamantane)/(1,2-dimethyl-
adamantane + 1,3-dimethyl-adamantane); DMDI = (3,4-dimethyl-diamantane)/
(4,9-dimethyl-diamantane + 3,4-dimethyl-diamantane); EAI = (2-ethyl-adaman-
tane)/(1-ethyl-adamantane + 2-ethyl-adamantane); TMAI = (1,3,5-trimethyl-ada-
mantane)/(1,3,5-trimethyl-adamantane + 1,3,4-trimethyl-adamantane).
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differences related to depositional paleoenvironment. Maturity
assessments were possible combining data from saturated bio-
markers, aromatics and diamondoids using Principal Component
Analysis (PCA).

5.1. Depositional environment

The lacustrine origin of the Recôncavo oils is clearly demon-
strated by the high H30/St ratios (C30-17a,21b-hopane 20S + 20R/
C27-5a,14a,17a-cholestanes 20S + 20R) reported in Table 1 and is
supported by the ratios of Tr26/Tr25 and TPP/Dia27. The main pur-
pose of this work was to identify minor compositional variations
in the Recôncavo Basin oils using GC�GC-TOFMS and thus provide
more details about the original lacustrine environment. For in-
stance, the detection of 3b-methyl-hopanes in all the studied oils
reinforces a lacustrine origin for the Recôncavo Basin. These bio-
markers have been recently characterized in Brazilian lacustrine
oils from the Potiguar and Cumuruxatiba basins as minor constit-
uents (Oliveira et al., 2012a). Similarly, considering that all the
samples contain b-carotane and gammacerane, a more detailed
investigation of these compounds was undertaken. The b-caro-
tane/17a,21b-C30-hopane ratio (b-car/H30) for all samples was cal-
culated and the values plotted against H30/St (Fig. 3a). The
separation of the 20 samples into at least two groups can be clearly
established. It must be observed that in the group characterized by
higher values of b-carotane, almost all the oils were from the cen-
ter of the Recôncavo Basin (Fig. 3b). As b-carotane is associated
with saline lacustrine paleoenvironments, data reveal that the
salinity was not constant throughout ancient lake deposition in
the Recôncavo Basin.

Gammacerane is usually found in oils at least at trace levels, but
a high relative abundance indicates a stratified water column due
to hypersalinity during source rock deposition (Sinninghe Damsté
et al., 1995). In these samples, the G/H30 ratio is not relatively high

compared to other studies (Petersen et al., 2012) even though it
correlates with b-car/H30 ratio (Fig. 4).

According to the literature (e.g., Coutinho, 2008), most of the
hydrocarbons accumulated in the Recôncavo reservoirs are consid-
ered to be generated from the lacustrine freshwater shales in the
Gomo and Tauá Members of the Candeias Formation. The elevated
b-car/H30 and G/H30 ratios in some of the studied oils (Fig. 5) ap-
pear to suggest the existence of episodes of higher salinity during
deposition of these source rocks.

It is well known that the conditions in lakes may change within
relatively short periods of time (see, for instance, Killops and Kil-
lops, 2005), resulting in deposition of different organic facies.
Based on the biomarker data described above, it is reasonable to
suppose that there could have been halophilic protozoa and halo-
tolerant microscopic algae, living in saline waters resulting the rel-
atively higher concentrations of gammacerane and b-carotane in
some samples.

In order to better understand the differences between the 20
samples, a statistical investigation based on PCA of the traditional
(Table 1, Fig. 6a) and traditional plus non-conventional (Tables
1 + 2, Fig. 6b) source biomarker parameters has been carried out.
The introduction of non-conventional parameters differentiated
samples 253 and 274 from the main group. The score contribution
analysis for these two samples, illustrated in Fig. 7 shows the
importance of the unusual biomarkers for oil differentiation. The
ratios of ONII/H30, ONIII/H30 and DH30/H30 were the main factors
responsible for the separation of sample 253 (Fig. 7a), whereas
for sample 274 the ratios of 3bMH31/H30, Te24/Tr26 and H31R/H30

were the main factors (Fig. 7b).

5.2. Maturity

Internal deuterated standards were used to perform quantifica-
tion of diamondoids, especially 3- and 4-methyl-diamantanes

Fig. 2. Extracted ion chromatogram m/z 191 showing mainly pentacyclic terpanes (e.g. hopanes) eluate. Sample 263 [1] shows low abundance of m/z 191, whereas, sample
252 [2] presents high abundance. Tm = 17a(H)-22,29,30 trisnorhopane; Ts = 18a(H)-22,29,30 trisnorneohopane; Trn = Cn tricyclic terpane; H29 = 17a(H),21b(H)-30-
norhopane and C29Ts = 18a(H),21b(H)-30-norneohopane; 29Nsp = C29 28-nor-spergulane, M29 = 17b(H),21a(H)-30-norhopano; H30 = 17a(H),21b(H)-hopane;
M30 = 17b(H),21a(H)-hopane; H31–33 = C31–C33 homohopane; Gam = gammacerane; M31 = 17b(H),21a(H)-30-homohopane; DH30 = C30 17a-diahopane.
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which are used to plot the Dahl’s diagram (Dahl et al., 1999; Silva
et al., 2013) (Fig. 8).

Diamondoid ratios were also used to estimate thermal maturity
as good relationships were recently found in simulation experi-
ments by Fang et al. (2012). In their work, the authors assigned dia-
mondoid ratios to the Easy%Ro scale, which is a vitrinite
reflectance equivalence scale for thermal maturity simulation
experiments as proposed by Sweeney and Burnham (1990). The re-
sults were plotted in Fig. 9 to fit the Recôncavo Basin samples in an
Easy%Ro range calculated from EAI (ethyl-adamantane index) and
DMAI (dimethyl-adamantane index) (Table 4).

Almost all samples are in the range of 1.0–1.5%, supporting
Dahl’s diagram suggestion that these oils have a thermal maturity
near the boundary between biomarker cracking and cracking of the
main components in the oils. Although the shape of Dahl’s diagram
for different petroleum systems is quite similar, the diamondoid
baseline is characteristic of a particular petroleum system. For

these lacustrine oils, a baseline around 1–2 lg/g was found.
Noticeably three samples (253, 224, 263) presented diamondoid
concentration compatible to an initial stage of cracking. In
Fig. 10, samples 263 and 253 showed two of the three higher DMAI
values, corroborating the quantitative diamondoid analysis. How-
ever, sample 246 shows a DMAI ratio which is not fully under-
stood. Caution must be taken as (a) the low stigmastane
concentration are due to both thermal maturity and lacustrine
deposition and (b) these parameters are known to be influenced
by other variables such as lithofacies and organic matter type
(Grice et al., 2000; Wei et al., 2006; Springer et al., 2010).

Apparently, the sample set exhibits thermal maturity in the
narrow range in which traditional saturated biomarker ratios
start to be inconclusive (i.e. ratios of 20S/(20S + 20R) C29 5a(H),14a
(H),17a(H)-24-ethyl-cholestane (C29 aaa) and C32 22S/(22S + 22R)
17a(H),21b(H)-bishomohopane (H32) had values close to equilib-
rium) and diamondoids have been concentrated due to thermal

Fig. 3. (a) b-Carotane/17a(H),21b(H)-30-hopane (b-car/H30) ratio vs. 17a,21b-C30-hopane/20S + 20R C27 5a,14a,17a-cholestanes (H30/St) graph, and (b) Recôncavo Basin
map with samples from the central region highlighted.

Fig. 4. (a) Gammacerane/17a(H),21b(H)-30-hopane (G/H30) ratio vs. (H30/St) graph, and (b) Recôncavo Basin map with samples from the central region highlighted.
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markers, aromatics and diamondoids using Principal Component
Analysis (PCA).
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Gomo and Tauá Members of the Candeias Formation. The elevated
b-car/H30 and G/H30 ratios in some of the studied oils (Fig. 5) ap-
pear to suggest the existence of episodes of higher salinity during
deposition of these source rocks.

It is well known that the conditions in lakes may change within
relatively short periods of time (see, for instance, Killops and Kil-
lops, 2005), resulting in deposition of different organic facies.
Based on the biomarker data described above, it is reasonable to
suppose that there could have been halophilic protozoa and halo-
tolerant microscopic algae, living in saline waters resulting the rel-
atively higher concentrations of gammacerane and b-carotane in
some samples.

In order to better understand the differences between the 20
samples, a statistical investigation based on PCA of the traditional
(Table 1, Fig. 6a) and traditional plus non-conventional (Tables
1 + 2, Fig. 6b) source biomarker parameters has been carried out.
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samples 253 and 274 from the main group. The score contribution
analysis for these two samples, illustrated in Fig. 7 shows the
importance of the unusual biomarkers for oil differentiation. The
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which are used to plot the Dahl’s diagram (Dahl et al., 1999; Silva
et al., 2013) (Fig. 8).

Diamondoid ratios were also used to estimate thermal maturity
as good relationships were recently found in simulation experi-
ments by Fang et al. (2012). In their work, the authors assigned dia-
mondoid ratios to the Easy%Ro scale, which is a vitrinite
reflectance equivalence scale for thermal maturity simulation
experiments as proposed by Sweeney and Burnham (1990). The re-
sults were plotted in Fig. 9 to fit the Recôncavo Basin samples in an
Easy%Ro range calculated from EAI (ethyl-adamantane index) and
DMAI (dimethyl-adamantane index) (Table 4).

Almost all samples are in the range of 1.0–1.5%, supporting
Dahl’s diagram suggestion that these oils have a thermal maturity
near the boundary between biomarker cracking and cracking of the
main components in the oils. Although the shape of Dahl’s diagram
for different petroleum systems is quite similar, the diamondoid
baseline is characteristic of a particular petroleum system. For

these lacustrine oils, a baseline around 1–2 lg/g was found.
Noticeably three samples (253, 224, 263) presented diamondoid
concentration compatible to an initial stage of cracking. In
Fig. 10, samples 263 and 253 showed two of the three higher DMAI
values, corroborating the quantitative diamondoid analysis. How-
ever, sample 246 shows a DMAI ratio which is not fully under-
stood. Caution must be taken as (a) the low stigmastane
concentration are due to both thermal maturity and lacustrine
deposition and (b) these parameters are known to be influenced
by other variables such as lithofacies and organic matter type
(Grice et al., 2000; Wei et al., 2006; Springer et al., 2010).

Apparently, the sample set exhibits thermal maturity in the
narrow range in which traditional saturated biomarker ratios
start to be inconclusive (i.e. ratios of 20S/(20S + 20R) C29 5a(H),14a
(H),17a(H)-24-ethyl-cholestane (C29 aaa) and C32 22S/(22S + 22R)
17a(H),21b(H)-bishomohopane (H32) had values close to equilib-
rium) and diamondoids have been concentrated due to thermal

Fig. 3. (a) b-Carotane/17a(H),21b(H)-30-hopane (b-car/H30) ratio vs. 17a,21b-C30-hopane/20S + 20R C27 5a,14a,17a-cholestanes (H30/St) graph, and (b) Recôncavo Basin
map with samples from the central region highlighted.

Fig. 4. (a) Gammacerane/17a(H),21b(H)-30-hopane (G/H30) ratio vs. (H30/St) graph, and (b) Recôncavo Basin map with samples from the central region highlighted.
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stress, i.e. oil cracking. A more complete approach might consider
all gathered data from GC�GC-TOFMS experiments.

PCA was applied over the maturity variables calculated for the
20 oils resulting in the distinction of three groups (Fig. 10). The first

group (A) comprises samples 224, 253 and 263, based on diamond-
oid concentrations (> 10 lg/g), (Fig. 8). Meanwhile, samples 250,
251, 252, 274, 281 and 283 are grouped (B) because of their higher

Fig. 5. Graph plotting ratios of (b-car/H30) vs. (G/H30). The small dashed box
illustrates low salinity.

Fig. 6. PCA Score plots (a) traditional and (b) traditional plus non-conventional source parameters. See Table 1 and 2 for the parameters.

Fig. 7. Parameter contributions to sample 253 (a) and 274 (b) in PCA score plot (from Fig. 9).

Fig. 8. Relation between biomarker (stigmastane) and diamondoid (methyldi-
amantanes) concentrations in oils with different thermal maturities, which shows
that the biomarkers decrease in concentration with thermal maturity as the
diamondoids increase.
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saturated biomarker content being the most immature sample
subset. The remaining samples form a group (C) with positive val-
ues on the second principal component. The loading plot suggests
group C is differentiated by both diamondoid and aromatic compo-
nents. In addition, Dahl’s diagram displays group C near to the cen-
ter of the plot. These two features suggest that this group
corresponds to either mixed oils or oils altered by other reservoir
processes. To better understand the influence of sulfur-containing
aromatics, alkyldibenzothiophenes were evaluated. The plots
shown in Fig. 3S display the higher abundance of DBTs in samples
183 and 263, both belonging to the southern area of the Recôncavo
Basin (Fig. 4b).

Taking into account the highest diamondoid concentration of
oils 224, 253 and 263, it is reasonable to speculate that these oils
may have migrated short distances from mature source rocks of
the Candeias Formation to adjacent reservoirs. In fact, this is one
of the models proposed by Figueiredo et al. (1994) and Magnavita
and Da Silva (1995) to explain the migration and accumulation of
petroleum in the Recôncavo Basin. On the other hand, medium to
long distance migration of hydrocarbons generated in the Candeias
Formation was possibly involved in the accumulation of oils 250,

251, 252, 274, 281 and 283, the least mature among the 20 oil sam-
ples investigated in this study. The above assumptions are
supported by Gussow’s model of differential entrapment of oil
and gas in interconnected reservoirs controlled by buoyancy forces
(Gussow, 1953).

Regarding the biodegradation level of the oils analyzed, rela-
tively small quantities of 25-norhopanes have been detected, sug-
gesting that the samples have not undergone intensive
biodegradation (Bennett et al., 2006).

6. Conclusions

The use of advanced analytical techniques and statistical rou-
tines have enhanced the understanding of petroleum systems of
the Recôncavo Basin by allowing a more detailed assessment, using
what has been called high resolution molecular organic geochem-
istry (HRMOG). Lacustrine Brazilian oils were investigated by
GC�GC-TOFMS, resulting in a better detection of b-carotane and
several other series of biomarkers that were useful to distinguish
different source facies. In addition, maturity information from sat-
urated biomarkers, aromatics and diamondoids was used to differ-
entiate maturity throughout the basin, providing supporting
information to the understanding of the petroleum system in Recô-
ncavo Basin.
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Fig. 9. Regions of estimated EasyRo(%) values from EAI = (2-ethyl-adamantane)/(1-
ethyl-adamantane + 2-ethyl-adamantane) and DMAI = (1,3-dimethyl-adamantane)/
(1,2-dimethyl-adamantane + 1,3-dimethyl-adamantane). Indexes boundaries were
estimated from Fang et al. (2012).

Fig. 10. PCA score [A] and loading [B] plots for the first two components, based on saturated hydrocarbons, aromatic compounds and diamondoid parameters.
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GC�GC-TOFMS, resulting in a better detection of b-carotane and
several other series of biomarkers that were useful to distinguish
different source facies. In addition, maturity information from sat-
urated biomarkers, aromatics and diamondoids was used to differ-
entiate maturity throughout the basin, providing supporting
information to the understanding of the petroleum system in Recô-
ncavo Basin.
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A. Casilli et al. / Organic Geochemistry 68 (2014) 61–70 69



References

Aguiar, A., Silva Júnior, A.I., Azevedo, D.A., Aquino Neto, F.R., 2010. Application of
comprehensive two-dimensional gas chromatography coupled to time-of-flight
mass spectrometry to biomarker characterization in Brazilian oils. Fuel 89,
2760–2768.

Aguiar, A., Aguiar, H.G.M., Azevedo, D.A., Aquino Neto, F.R., 2011. Identification of
methylhopane and methylmoretane series in Ceará Basin oils, Brazil, using
comprehensive two-dimensional gas chromatography coupled to time-of-flight
mass spectrometry. Energy & Fuels 25, 1060–1065.

Aragão, M.A.N.F., Trindade, L.A.F., Araujo, C.V., Silva, O.B., Scartezini, A.A., Oswaldo,
F.H., Canário, J.A., Garcia, A.P., 1998. Distribution and controls of lacustrine
source rocks in the Recôncavo Basin, Brazil. In: Mello, M.R., Yilmaz, P.O. (Eds.),
Extended Abstracts Volume, American Association of Petroleum Geologists
International Conference and Exhibition, Rio de Janeiro, p. 306.

Azevedo, D.A., Tamanqueira, J.B., Dias, J.C.M., Carmo, A.P.B., Landau, L., Gonçalves,
F.T.T., 2008. Multivariate statistical analysis of diamondoid and biomarker data
from Brazilian basin oil samples. Fuel 87, 2122–2130.

Bennett, B., Fustic, M., Farrimond, P., Huang, H., Larter, S.R., 2006. 25-Norhopanes:
formation during biodegradation of petroleum in the subsurface. Organic
Geochemistry 37, 787–797.

Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of alkylated
dibenzothiophenes in petroleum as a tool for maturity assessments. Organic
Geochemistry 26, 483–489.

Coutinho, L.F.C., 2008. Analysis of the petroleum mass balance in a mature zone for
exploration – Recôncavo Basin, Brasil. Ph.D. Thesis. Universidade Federal do Rio
de Janeiro, Brazil.

Dahl, J.E., Moldowan, J.M., Peters, K.E., Claypool, G.E., Rooney, M.A., Michael, G.E.,
Mello, M.R., Kohnen, M.L., 1999. Diamondoid hydrocarbons as indicators of
natural oil cracking. Nature 399, 54–57.

Eigenbrode, J.L., Freeman, K.H., Summons, R.E., 2008. Methylhopane biomarker
hydrocarbons in Hamersley Province sediments provide evidence for
Neoarcheanaerobiosis Earth and Planetary. Science Letters 273, 323–331.

Eiserbeck, C., Nelson, R.K., Grice, K., Curiale, J., Reddy, C.M., Raiteri, P., 2011.
Separation of 18a(H)-, 18b(H)-oleanane and lupane by comprehensive two-
dimensional gas chromatography. Journal of Chromatography A 1218, 5549–
5553.

Eiserbeck, C., Nelson, R.K., Grice, K., Curiale, J., Reddy, C.M., 2012. Comparison of GC-
MS, GC-MRM-MS, and GC�GC to characterise higher plant biomarkers in
Tertiary oils and rock extracts. Geochimica et Cosmochimica Acta 87, 299–322.

Fang, C., Xiong, Y., Liang, Q., Li, Y., 2012. Variation in abundance and distribution of
diamondoids during oil cracking. Organic Geochemistry 47, 1–8.

Figueiredo, A.M.F., Braga, J.A.E, Zabalaga, J.J., Oliveira, G.A., Aguiar, Silva, Mato, L.F.,
Daniel, L.M.F., Magnavita, L.P., Bruhn, C.H.L., 1994. Recôncavo Basin, Brazil: a
prolific intracontinental rift basin. In: Landon, S.M. (Ed.), Interior Rift Basins:
American Association of Petroleum Geologists Memoir, vol. 59, pp. 157-203.

Gaglianone, P.C., Trindade, L.A.F., 1998. Geochimica Brasiliensis. Caracterização
geoquimica dos óleos da Bacia do Recôncavo 2, 15–39.

Grice, K., Alexander, R., Kagi, R.I., 2000. Diamondoid hydrocarbon ratios as
indicators of biodegradation in Australian crude oils. Organic Geochemistry
31, 67–73.

Gussow, W.C., 1953. Differential trapping of hydrocarbons. American Society of
Petroleum Geologists Journal 1, 4–5.

Heckmann, J.R., Pereira, R., Gonçalves, F.T.T., Landau, L., Azevedo, D.A., 2011.
Geochemical evaluation of Brazilian oils with emphasis on aromatic
hydrocarbons. Química Nova 34, 1328–1333.

Holba, A.G., Dzou, L.I., Wood, G.D., Ellis, L., Adam, P., Schaeffer, P., Albrecht, P.,
Greene, T., Hughes, W.B., 2003. Application of tetracyclic polyprenoids as
indicators of input from fresh-brackish water environments. Organic
Geochemistry 34, 441–469.

Hussler, G., Chappe, B., Wehrung, P., Albrecht, P., 1981. C27–C29 ring A
monoaromatic steroids in Cretaceous black shales. Nature 294, 556–558.

Killops, S., Killops, V., 2005. Introduction to Organic Geochemistry, second ed.
Wiley-Blackwell, Oxford, UK.

Li, M., Wang, T.G., Lillis, P.G., Wang, C., Shi, S., 2012. The significance of 24-
norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-
Ordovician source rocks from the cratonic region of the Tarim Basin, NW China.
Applied Geochemistry 27, 1643–1654.

Mackenzie, A.S., Hoffmann, C.F., Maxwell, J.R., 1981. Molecular parameters of
maturation in the Toarcian shales, Paris Basin, France—III. Changes in aromatic
steroid hydrocarbons. Geochimica et Cosmochimica Acta 45, 1345–1355.

Magnavita, L.P., Da Silva, H.T.F., 1995. Rift border system: the interplay between
tectonics and sedimentation in the Recôncavo Basin, Northeastern Brazil.
American Association of Petroleum Geologists Bulletin 79, 1590–1607.

Marotta, E.C.G.B., 2010. Separation and Quantitative Determination of Linear and
Cyclic/branched Alkanes from Brazilian Oils by Urea Adduction and Gas
Chromatography. M.Sc. Dissertation. Universidade Federal do Rio de Janeiro,
Brazil.

Mello, M.R., Koutsoukos, E.A.M., Mohriak, W.U., Bacoccoli, G., 1994. Selected
petroleum systems in Brazil. In: Magoon, L.B., Dow, W.G. (Eds.), The
Petroleum System – from Source to Trap. American Association of Petroleum
Geologists Memoir, vol. 60, pp. 499–512.

Milani, E.J., Davison, I., 1988. Basement control and transfer tectonics in the
Recôncavo-Tucano-Jatobá rift, Northeast Brazil. Tectonophysics 154, 41–70.

Moldowan, J.M., Sundararaman, P., Schoell, M., 1986. Sensitivity of biomarker
properties to depositional environment and/or source input in the Lower
Toarcian of SW-German. Organic Geochemistry 10, 915–926.

Nwadinigwe, C.A., Nwobodo, I.O., 1994. Analysis of n-paraffins in light
crudes: molecular sieve and urea adduction techniques revisited. Fuel 73,
779–782.

Oliveira, C.R., Ferreira, A.A., Oliveira, C.J.F., Azevedo, D.A., Santos Neto, E.V., Aquino
Neto, F.R., 2012a. Biomarkers in crude oil revealed by comprehensive two-
dimensional gas chromatography time-of-flight mass spectrometry:
depositional paleoenvironment proxies. Organic Geochemistry 46, 154–164.

Oliveira, C.R., Oliveira, C.J.F., Ferreira, A.A., Azevedo, D.A., Aquino Neto, F.R., 2012b.
Characterization of aromatic steroids and hopanoids in marine and lacustrine
crude oils using comprehensive two dimensional gas chromatography coupled
to time-of-flight mass spectrometry (GC�GC-TOFMS). Organic Geochemistry
53, 131–136.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide, Biomarkers
and Isotopes in Petroleum Exploration and Earth History, vol. 2. Cambridge
University Press, Cambridge, UK.

Petersen, H.I., Holland, B., Nytoft, H.P., Cho, A., Piasecki, S., de la Cruz, J., Cornec, J.H.,
2012. Geochemistry of crude oils, seepage oils and source rocks from Belize and
Guatemala: indications of carbonate-sourced petroleum systems. Journal of
Petroleum Geology 35, 127–163.

Radke, M., Welte, D.H., Willsch, H., 1982. Geochemical study on a well in the
Western Canada Basin: relation of the aromatic distribution pattern to maturity
of organic matter. Geochimica et Cosmochimica Acta 46, 1–10.

Riolo, J., Hussler, G., Albrecht, P., Connan, J., 1986. Distribution of aromatic steroids
in geological samples: their evaluation as geochemical parameters. Organic
Geochemistry 10, 981–990.

Santamaría-Orozco, D., Horsfield, B., Di Primio, R., Welte, D.H., 1998. Influence of
maturity on distributions of benzo- and dibenzothiophenes in Tithonian source
rocks and crude oils, Sonda de Campeche, Mexico. Organic Geochemistry 28,
423–439.

Santos, C.F., Cupertino, J.A., Braga, J.A.E., 1990. Síntese sobre a geologia das bacias do
Recôncavo, Tucano e Jatobá. In: Raja Gabaglia, G.P., Milani, E.J. (Eds.), Origem e
evolução das bacias sedimentares brasileiras, Petrobras, Rio de Janeiro, pp. 235–
266 (in Portuguese).

Silva, R.S.F., Aguiar, H.G.M., Rangel, M.D., Azevedo, D.A., Aquino Neto, F.R., 2011.
Comprehensive two-dimensional gas chromatography with time of flight mass
spectrometry applied to biomarker analysis of oils from Colombia. Fuel 90,
2694–2699.

Silva, R.C., Silva, R.S.F., Castro, E.V.R., Peters, K.E., Azevedo, D.A., 2013. Extended
diamondoid assessment in crude oil using comprehensive two-dimensional gas
chromatography coupled to time-of-flight mass spectrometry. Fuel 112, 125–
133.

Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M.,
de Leeuw, J.W., 1995. Evidence for gammacerane as an indicator of water
column stratification. Geochimica et Cosmochimica Acta 59, 1895–1900.

Sousa Júnior, G.R., Santos, A.L.S., de Lima, S.G., Lopes, J.A.D., Reis, F.A.M., Santos Neto,
E.V., Chang, H.K., 2013. Evidence for euphotic zone anoxia during the deposition
of Aptian source rocks based on aryl isoprenoids in petroleum, Sergipe-Alagoas
Basin, northeastern Brazil. Organic Geochemistry 63, 94–104.

Springer, M.V., Garcia, D.F., Gonçalves, F.T.T., Landau, L., Azevedo, D.A., 2010.
Diamondoid and biomarker characterization of oils from the Llanos Orientales
Basin, Colombia. Organic Geochemistry 41, 1013–1018.

Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of vitrinite
reflectance based on chemical kinetics. American Association of Petroleum
Geologists Bulletin 74, 1559–1570.

Ventura, G.T., Raghuraman, B., Nelson, R.K., Mullins, O.C., Reddy, C.M., 2010.
Compound class oil fingerprinting techniques using comprehensive two-
dimensional gas chromatography (GC � GC). Organic Geochemistry 41, 1026–
1035.

Ventura, G.T., Simoneit, B.R.T., Nelson, R.K., Reddy, C.M., 2012. The composition,
origin and fate of complex mixtures in the maltene fractions of hydrothermal
petroleum assessed by comprehensive two-dimensional gas chromatography.
Organic Geochemistry 45, 48–65.

Wei, Z., Moldowan, J.M., Dahl, J., Goldstein, T.P., Jarvie, D.M., 2006. The catalytic
effects of minerals on the formation of diamondoids from kerogen
macromolecules. Organic Geochemistry 37, 1421–1436.

Welander, V.W., Summons, R.E., 2012. Discovery, taxonomic distribution, and
phenotypic characterization of a gene required for 3-methylhopanoid
production. Proceedings of the National Academy of Sciences 109 (32),
12905–12910.

70 A. Casilli et al. / Organic Geochemistry 68 (2014) 61–70

 

V 

 
 



References

Aguiar, A., Silva Júnior, A.I., Azevedo, D.A., Aquino Neto, F.R., 2010. Application of
comprehensive two-dimensional gas chromatography coupled to time-of-flight
mass spectrometry to biomarker characterization in Brazilian oils. Fuel 89,
2760–2768.

Aguiar, A., Aguiar, H.G.M., Azevedo, D.A., Aquino Neto, F.R., 2011. Identification of
methylhopane and methylmoretane series in Ceará Basin oils, Brazil, using
comprehensive two-dimensional gas chromatography coupled to time-of-flight
mass spectrometry. Energy & Fuels 25, 1060–1065.

Aragão, M.A.N.F., Trindade, L.A.F., Araujo, C.V., Silva, O.B., Scartezini, A.A., Oswaldo,
F.H., Canário, J.A., Garcia, A.P., 1998. Distribution and controls of lacustrine
source rocks in the Recôncavo Basin, Brazil. In: Mello, M.R., Yilmaz, P.O. (Eds.),
Extended Abstracts Volume, American Association of Petroleum Geologists
International Conference and Exhibition, Rio de Janeiro, p. 306.

Azevedo, D.A., Tamanqueira, J.B., Dias, J.C.M., Carmo, A.P.B., Landau, L., Gonçalves,
F.T.T., 2008. Multivariate statistical analysis of diamondoid and biomarker data
from Brazilian basin oil samples. Fuel 87, 2122–2130.

Bennett, B., Fustic, M., Farrimond, P., Huang, H., Larter, S.R., 2006. 25-Norhopanes:
formation during biodegradation of petroleum in the subsurface. Organic
Geochemistry 37, 787–797.

Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of alkylated
dibenzothiophenes in petroleum as a tool for maturity assessments. Organic
Geochemistry 26, 483–489.

Coutinho, L.F.C., 2008. Analysis of the petroleum mass balance in a mature zone for
exploration – Recôncavo Basin, Brasil. Ph.D. Thesis. Universidade Federal do Rio
de Janeiro, Brazil.

Dahl, J.E., Moldowan, J.M., Peters, K.E., Claypool, G.E., Rooney, M.A., Michael, G.E.,
Mello, M.R., Kohnen, M.L., 1999. Diamondoid hydrocarbons as indicators of
natural oil cracking. Nature 399, 54–57.

Eigenbrode, J.L., Freeman, K.H., Summons, R.E., 2008. Methylhopane biomarker
hydrocarbons in Hamersley Province sediments provide evidence for
Neoarcheanaerobiosis Earth and Planetary. Science Letters 273, 323–331.

Eiserbeck, C., Nelson, R.K., Grice, K., Curiale, J., Reddy, C.M., Raiteri, P., 2011.
Separation of 18a(H)-, 18b(H)-oleanane and lupane by comprehensive two-
dimensional gas chromatography. Journal of Chromatography A 1218, 5549–
5553.

Eiserbeck, C., Nelson, R.K., Grice, K., Curiale, J., Reddy, C.M., 2012. Comparison of GC-
MS, GC-MRM-MS, and GC�GC to characterise higher plant biomarkers in
Tertiary oils and rock extracts. Geochimica et Cosmochimica Acta 87, 299–322.

Fang, C., Xiong, Y., Liang, Q., Li, Y., 2012. Variation in abundance and distribution of
diamondoids during oil cracking. Organic Geochemistry 47, 1–8.

Figueiredo, A.M.F., Braga, J.A.E, Zabalaga, J.J., Oliveira, G.A., Aguiar, Silva, Mato, L.F.,
Daniel, L.M.F., Magnavita, L.P., Bruhn, C.H.L., 1994. Recôncavo Basin, Brazil: a
prolific intracontinental rift basin. In: Landon, S.M. (Ed.), Interior Rift Basins:
American Association of Petroleum Geologists Memoir, vol. 59, pp. 157-203.

Gaglianone, P.C., Trindade, L.A.F., 1998. Geochimica Brasiliensis. Caracterização
geoquimica dos óleos da Bacia do Recôncavo 2, 15–39.

Grice, K., Alexander, R., Kagi, R.I., 2000. Diamondoid hydrocarbon ratios as
indicators of biodegradation in Australian crude oils. Organic Geochemistry
31, 67–73.

Gussow, W.C., 1953. Differential trapping of hydrocarbons. American Society of
Petroleum Geologists Journal 1, 4–5.

Heckmann, J.R., Pereira, R., Gonçalves, F.T.T., Landau, L., Azevedo, D.A., 2011.
Geochemical evaluation of Brazilian oils with emphasis on aromatic
hydrocarbons. Química Nova 34, 1328–1333.

Holba, A.G., Dzou, L.I., Wood, G.D., Ellis, L., Adam, P., Schaeffer, P., Albrecht, P.,
Greene, T., Hughes, W.B., 2003. Application of tetracyclic polyprenoids as
indicators of input from fresh-brackish water environments. Organic
Geochemistry 34, 441–469.

Hussler, G., Chappe, B., Wehrung, P., Albrecht, P., 1981. C27–C29 ring A
monoaromatic steroids in Cretaceous black shales. Nature 294, 556–558.

Killops, S., Killops, V., 2005. Introduction to Organic Geochemistry, second ed.
Wiley-Blackwell, Oxford, UK.

Li, M., Wang, T.G., Lillis, P.G., Wang, C., Shi, S., 2012. The significance of 24-
norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-
Ordovician source rocks from the cratonic region of the Tarim Basin, NW China.
Applied Geochemistry 27, 1643–1654.

Mackenzie, A.S., Hoffmann, C.F., Maxwell, J.R., 1981. Molecular parameters of
maturation in the Toarcian shales, Paris Basin, France—III. Changes in aromatic
steroid hydrocarbons. Geochimica et Cosmochimica Acta 45, 1345–1355.

Magnavita, L.P., Da Silva, H.T.F., 1995. Rift border system: the interplay between
tectonics and sedimentation in the Recôncavo Basin, Northeastern Brazil.
American Association of Petroleum Geologists Bulletin 79, 1590–1607.

Marotta, E.C.G.B., 2010. Separation and Quantitative Determination of Linear and
Cyclic/branched Alkanes from Brazilian Oils by Urea Adduction and Gas
Chromatography. M.Sc. Dissertation. Universidade Federal do Rio de Janeiro,
Brazil.

Mello, M.R., Koutsoukos, E.A.M., Mohriak, W.U., Bacoccoli, G., 1994. Selected
petroleum systems in Brazil. In: Magoon, L.B., Dow, W.G. (Eds.), The
Petroleum System – from Source to Trap. American Association of Petroleum
Geologists Memoir, vol. 60, pp. 499–512.

Milani, E.J., Davison, I., 1988. Basement control and transfer tectonics in the
Recôncavo-Tucano-Jatobá rift, Northeast Brazil. Tectonophysics 154, 41–70.

Moldowan, J.M., Sundararaman, P., Schoell, M., 1986. Sensitivity of biomarker
properties to depositional environment and/or source input in the Lower
Toarcian of SW-German. Organic Geochemistry 10, 915–926.

Nwadinigwe, C.A., Nwobodo, I.O., 1994. Analysis of n-paraffins in light
crudes: molecular sieve and urea adduction techniques revisited. Fuel 73,
779–782.

Oliveira, C.R., Ferreira, A.A., Oliveira, C.J.F., Azevedo, D.A., Santos Neto, E.V., Aquino
Neto, F.R., 2012a. Biomarkers in crude oil revealed by comprehensive two-
dimensional gas chromatography time-of-flight mass spectrometry:
depositional paleoenvironment proxies. Organic Geochemistry 46, 154–164.

Oliveira, C.R., Oliveira, C.J.F., Ferreira, A.A., Azevedo, D.A., Aquino Neto, F.R., 2012b.
Characterization of aromatic steroids and hopanoids in marine and lacustrine
crude oils using comprehensive two dimensional gas chromatography coupled
to time-of-flight mass spectrometry (GC�GC-TOFMS). Organic Geochemistry
53, 131–136.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide, Biomarkers
and Isotopes in Petroleum Exploration and Earth History, vol. 2. Cambridge
University Press, Cambridge, UK.

Petersen, H.I., Holland, B., Nytoft, H.P., Cho, A., Piasecki, S., de la Cruz, J., Cornec, J.H.,
2012. Geochemistry of crude oils, seepage oils and source rocks from Belize and
Guatemala: indications of carbonate-sourced petroleum systems. Journal of
Petroleum Geology 35, 127–163.

Radke, M., Welte, D.H., Willsch, H., 1982. Geochemical study on a well in the
Western Canada Basin: relation of the aromatic distribution pattern to maturity
of organic matter. Geochimica et Cosmochimica Acta 46, 1–10.

Riolo, J., Hussler, G., Albrecht, P., Connan, J., 1986. Distribution of aromatic steroids
in geological samples: their evaluation as geochemical parameters. Organic
Geochemistry 10, 981–990.

Santamaría-Orozco, D., Horsfield, B., Di Primio, R., Welte, D.H., 1998. Influence of
maturity on distributions of benzo- and dibenzothiophenes in Tithonian source
rocks and crude oils, Sonda de Campeche, Mexico. Organic Geochemistry 28,
423–439.

Santos, C.F., Cupertino, J.A., Braga, J.A.E., 1990. Síntese sobre a geologia das bacias do
Recôncavo, Tucano e Jatobá. In: Raja Gabaglia, G.P., Milani, E.J. (Eds.), Origem e
evolução das bacias sedimentares brasileiras, Petrobras, Rio de Janeiro, pp. 235–
266 (in Portuguese).

Silva, R.S.F., Aguiar, H.G.M., Rangel, M.D., Azevedo, D.A., Aquino Neto, F.R., 2011.
Comprehensive two-dimensional gas chromatography with time of flight mass
spectrometry applied to biomarker analysis of oils from Colombia. Fuel 90,
2694–2699.

Silva, R.C., Silva, R.S.F., Castro, E.V.R., Peters, K.E., Azevedo, D.A., 2013. Extended
diamondoid assessment in crude oil using comprehensive two-dimensional gas
chromatography coupled to time-of-flight mass spectrometry. Fuel 112, 125–
133.

Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M.,
de Leeuw, J.W., 1995. Evidence for gammacerane as an indicator of water
column stratification. Geochimica et Cosmochimica Acta 59, 1895–1900.

Sousa Júnior, G.R., Santos, A.L.S., de Lima, S.G., Lopes, J.A.D., Reis, F.A.M., Santos Neto,
E.V., Chang, H.K., 2013. Evidence for euphotic zone anoxia during the deposition
of Aptian source rocks based on aryl isoprenoids in petroleum, Sergipe-Alagoas
Basin, northeastern Brazil. Organic Geochemistry 63, 94–104.

Springer, M.V., Garcia, D.F., Gonçalves, F.T.T., Landau, L., Azevedo, D.A., 2010.
Diamondoid and biomarker characterization of oils from the Llanos Orientales
Basin, Colombia. Organic Geochemistry 41, 1013–1018.

Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of vitrinite
reflectance based on chemical kinetics. American Association of Petroleum
Geologists Bulletin 74, 1559–1570.

Ventura, G.T., Raghuraman, B., Nelson, R.K., Mullins, O.C., Reddy, C.M., 2010.
Compound class oil fingerprinting techniques using comprehensive two-
dimensional gas chromatography (GC � GC). Organic Geochemistry 41, 1026–
1035.

Ventura, G.T., Simoneit, B.R.T., Nelson, R.K., Reddy, C.M., 2012. The composition,
origin and fate of complex mixtures in the maltene fractions of hydrothermal
petroleum assessed by comprehensive two-dimensional gas chromatography.
Organic Geochemistry 45, 48–65.

Wei, Z., Moldowan, J.M., Dahl, J., Goldstein, T.P., Jarvie, D.M., 2006. The catalytic
effects of minerals on the formation of diamondoids from kerogen
macromolecules. Organic Geochemistry 37, 1421–1436.

Welander, V.W., Summons, R.E., 2012. Discovery, taxonomic distribution, and
phenotypic characterization of a gene required for 3-methylhopanoid
production. Proceedings of the National Academy of Sciences 109 (32),
12905–12910.

70 A. Casilli et al. / Organic Geochemistry 68 (2014) 61–70

 

V 

 
 



 

Characterization of unusual tetracyclic compounds and possible novel
maturity parameters for Brazilian crude oils using comprehensive
two-dimensional gas chromatography-time of flight mass spectrometry

Jaakko Laakia a,⇑, Alessandro Casilli a, Bruno Q. Araújo a, Félix T.T. Gonçalves a, Elaine Marotta a,
Cleverson J.F. Oliveira b, Carlos A. Carbonezi b, Maria Regina B. Loureiro a, Débora A. Azevedo a,
Francisco R. Aquino Neto a,⇑
aUniversidade Federal do Rio de Janeiro, Instituto de Química, LAGOA/LADETEC, Ilha do Fundão, Rio de Janeiro, RJ 21941-598, Brazil
bDivision of Geochemistry, Petrobras Research and Development Center (CENPES), Petrobras, Ilha do Fundão, Rio de Janeiro, RJ 21941-915, Brazil

a r t i c l e i n f o

Article history:
Received 26 March 2016
Received in revised form 18 October 2016
Accepted 18 October 2016
Available online 24 October 2016

Keywords:
Biomarkers
Two-dimensional gas chromatography
Group-type separation
Mass spectrometry
Tetracyclic saturated biomarkers
Maturation

a b s t r a c t

Eleven Brazilian oil samples from different sources, biodegradation and maturity levels were analyzed by
comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC�GC-
TOFMS). Geochemical characterization associated with principal component analysis (PCA) allowed the
identification of the three most mature oils. The GC�GC chromatographic conditions used in this study
allowed us to perform group-type (or chemical class) separation in the following second dimension
(2D) order: (i) tricyclic terpanes; followed by (ii) steranes with 3 rings containing 6 carbon atoms and
1 ring containing 5 carbon atoms; (iii) tetracyclic terpanes with 4 rings containing 6 carbon atoms;
(iv) pentacyclic terpanes with 4 rings containing 6 carbon atoms and 1 ring containing 5 carbon atoms;
and finally (v) pentacyclic terpanes with 5 rings containing 6 carbon atoms. This information was used to
tentatively identify the ring structure of eight unusual compounds found in the saturated fraction of the
oils. These compounds had the double bond equivalent (DBE) value four, which was calculated based on
molecular ions M+� at m/z 274, 288 and 316, indicating possible tetracyclic structures. Two of them pre-
sented a diagnostic peak atm/z 191 and six atm/z 203. A trend between the ratios of two of these unusual
compounds and the C24 tetracyclic terpane versus 4,6/1,4 dimethyldibenzothiophene ratio shows pro-
mise as a maturation parameter. Thus, these unusual compounds are prone to respond to the maturation
on a scale from mature to overmature, when compared with traditional maturation parameters.
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1. Introduction

Gas Chromatography (GC) coupled to Mass Spectrometry (MS)
has been one of the most important techniques used to assess
structural information of the large amounts of compounds
observed in complex crude oil samples. Historically, one dimen-
sional GC–qMS-instruments were used for single ion monitoring
(SIM) because the full scan mode acquisition rate was not always
fast enough to analyze a wide range of ions during GC runs
(Sparkman et al., 2011). Nowadays, GC–MS-quadrupole combina-
tions have achieved a sufficient acquisition rate for the monitoring
of multiple fragment ions while superior sensitivity and selectivity

have been provided by GC–MS/MS-triple quadrupoles performing
MS/MS tandem experiments. In spite of progress in GC–MS tech-
nology, a great number of chromatographic co-elution problems
in complex sample analyses remain unsolved. Many of these co-
elution issues can be addressed by multiple ion monitoring or by
applying deconvolution algorithms, which separate overlapping
peaks and reconstruct clean chromatograms and mass spectra for
each component (Lu et al., 2008). However, this is ineffective when
two co-eluting compounds have similar mass spectra and/or the
same diagnostic ion.

One key instrumental setup that has the potential to address
such issues is comprehensive two-dimensional gas
chromatography-time of flight mass spectrometry (GC�GC-
TOFMS) (Aguiar et al., 2010). Unlike GC–MS analyses, GC�GC
instrumentation produces full mass spectrum data with a high
acquisition rate, which assures reliable qualitative and quantitative
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a b s t r a c t
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and finally (v) pentacyclic terpanes with 5 rings containing 6 carbon atoms. This information was used to
tentatively identify the ring structure of eight unusual compounds found in the saturated fraction of the
oils. These compounds had the double bond equivalent (DBE) value four, which was calculated based on
molecular ions M+� at m/z 274, 288 and 316, indicating possible tetracyclic structures. Two of them pre-
sented a diagnostic peak atm/z 191 and six atm/z 203. A trend between the ratios of two of these unusual
compounds and the C24 tetracyclic terpane versus 4,6/1,4 dimethyldibenzothiophene ratio shows pro-
mise as a maturation parameter. Thus, these unusual compounds are prone to respond to the maturation
on a scale from mature to overmature, when compared with traditional maturation parameters.
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has been one of the most important techniques used to assess
structural information of the large amounts of compounds
observed in complex crude oil samples. Historically, one dimen-
sional GC–qMS-instruments were used for single ion monitoring
(SIM) because the full scan mode acquisition rate was not always
fast enough to analyze a wide range of ions during GC runs
(Sparkman et al., 2011). Nowadays, GC–MS-quadrupole combina-
tions have achieved a sufficient acquisition rate for the monitoring
of multiple fragment ions while superior sensitivity and selectivity

have been provided by GC–MS/MS-triple quadrupoles performing
MS/MS tandem experiments. In spite of progress in GC–MS tech-
nology, a great number of chromatographic co-elution problems
in complex sample analyses remain unsolved. Many of these co-
elution issues can be addressed by multiple ion monitoring or by
applying deconvolution algorithms, which separate overlapping
peaks and reconstruct clean chromatograms and mass spectra for
each component (Lu et al., 2008). However, this is ineffective when
two co-eluting compounds have similar mass spectra and/or the
same diagnostic ion.

One key instrumental setup that has the potential to address
such issues is comprehensive two-dimensional gas
chromatography-time of flight mass spectrometry (GC�GC-
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instrumentation produces full mass spectrum data with a high
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results. In GC�GC, the increase in signal-to-noise ratio is achieved
due to the focusing of the chromatographic peaks by a modulator,
which generates narrow peaks. In addition, the chemical back-
ground of the column, which is typical for one dimensional 1D
GC, generates a characteristic bleeding that increases the baseline
with the temperature program. In GC�GC, this bleeding is con-
stantly modulated and separated as any analyte compound in each
1D fraction. Therefore, some compounds with low abundances,
which are commonly lost in the background noise in one dimen-
sional 1D GC, are more easily resolved in GC�GC-TOFMS. An exam-
ple of how this technique is effective in displaying compounds
hitherto unobservable due to problems of resolution and/or co-
elution is found in Oliveira et al. (2012a) and Kiepper et al.
(2014) where four isomers for C19–C24 tricyclic terpanes and C31

3b-methylhopane were identified respectively. Recently, Araújo
and Azevedo (2016) also used GC�GC-TOFMS to identify unusual
steranes in branched-cyclic hydrocarbon fractions of crude oils
from the Sergipe-Alagoas Basin, Brazil.

Moreover, 2D separation improves the quality of mass spectra,
making peaks purer by separating mass fragments of co-eluting
compounds. A clear example in crude oil research can be seen in
the investigation of C27 17a(H)-22,29,30-trisnorhopane (Tm) and
C27 18a(H)-22,29,30-trisnorneohopane (Ts), which are commonly
used for maturity evaluations (Seifert, 1978). Even though these
two compounds are separated and analyzed in 1D GC, a source
dependence which can affect the maturity interpretation of the
Ts/Tm ratio has previously been reported (Moldowan et al.,
1986). This apparent source dependence can be explained by Ts
co-eluting with the C30 tetracyclic terpane (TeT30) (Rullkötter and
Wendisch, 1982). Furthermore, the concentration of Tm could also
be influenced by the C30 tricyclic terpane (Tr30), which co-elutes
with Tm on 1D (Aguiar et al., 2010). It is well established that the
abundance of TeT30 and Tr30 can be influenced by this kind of
organic matter input (Aquino Neto et al., 1983; Moldowan et al.,
1983; Peters et al., 2005a). Since the majority of studies using
Ts/Tm are conducted with 1D GC, it is difficult to rule out that
co-eluting compounds do not cause problems in interpretation.
Therefore, the common solution in geochemical studies based only
on one dimensional GC has been to use parallel biomarker param-
eters (Peters et al., 2005a).

GC�GC-TOFMS provides cleaner mass spectra and improves the
accuracy of biomarker ratios by resolving co-eluting compounds in
2D. Additionally, the deconvoluted ion current (DIC) in TOFMS
analysis can be used for compounds which co-elute in 2D. This is
possible due to the fast spectral acquisition rate and absence of
concentration skewing (Focant et al., 2004; Mitrevski et al.,
2010). Hence, the GC�GC-TOFMS system improves the separation
of minor compounds that co-elute in standard GC and GC–MS anal-
yses. It is important to emphasize that the resolution of co-eluting
components in GC�GC-TOFMS analyses is a result of an additional
dimension for the separation system, which facilitates the
identification of new or not often reported (unusual) compounds
encountered in complex crude oil samples.

In this study, 11 Brazilian crude oils were examined from
differing source rocks and depositional conditions (5 lacustrine, 5
marine and 1 mixture) and with varying biodegradation and matu-
rity levels. The aim was to evaluate the degree of maturation of the
oil samples by analyzing saturated and aromatic fractions with
conventional and non-conventional biomarker ratios measured
by GC�GC-TOFMS. This approach is made possible by the
increased capacity of GC�GC-TOFMS in the separation of oil com-
ponents which can overcome interference in the determination of
these parameters caused by their diverse origin and geological his-
tory. The enhanced diagnosis capacity enabled by GC�GC-TOFMS
leading to High Resolution Molecular Organic Geochemistry
(HRMOG), has been previously used for maturation investigations

incorporating established parameters (Casilli et al., 2014). An out-
come of this current study was the identification of eight unusual
tetracyclic biomarkers in the saturated hydrocarbon fractions
which may have potential as maturity indicators. The structure
and geochemical significance of these tetracyclic compounds are
discussed.

2. Material and methods

2.1. Sample preparation

Selected crude oils from the north to the south regions of Brazil
were classified by the Research Center of Petrobras (Centro de Pes-
quisas Leopoldo Américo Miguez de Mello, CENPES, Rio de Janeiro,
RJ, Brazil) using proprietary classifying methods (Table 1). These
oils were also pre-fractionated by CENPES with medium pressure
liquid chromatography (MPLC, model MKW, Margot Köhnen
Willsch, Jülich, Germany) into saturated and aromatic fractions
(Radke et al., 1980). The saturated fractions were further processed
to remove the n-alkanes using urea adduction to separate
branched and cyclic hydrocarbon fractions (B/C) (Lappas et al.,
1997; Netzel and Rovani, 2007). The detailed experimental proce-
dure for urea adduction and chromatographic analysis is described
in Marotta et al. (2014) and Casilli et al. (2014), respectively. The
B/C and aromatic fractions (total of 22 samples) were
dissolved in dichloromethane (TediaBrasil, Rio de Janeiro, RJ,
Brazil) with an internal standard of 20 lg/mL of perdeuterated
n-tetracosane-D50 and pyrene-D10 (Cambridge Isotope Laborato-
ries, Andover, MA, USA) before chromatographic analyses.

2.2. GC�GC-TOFMS and data processing

Analyses were performed on a Pegasus 4D (Leco, St. Joseph, MI,
USA) GC�GC-TOFMS, composed of an Agilent Technologies 6890
GC (Palo Alto, CA, USA) equipped with a secondary oven, a non-
moving quad-jet dual-stage modulator and a Pegasus III (Leco, St.
Joseph, MI, USA) time of flight mass spectrometer. A DB-5 column
(Agilent Technologies, Palo Alto, CA, USA), 5% phenyl–95% methyl-
siloxane (30 m, 0.25 mm i.d., 0.25 lm df) was used as the first
dimension column (1D). A BPX-50 column (SGE, Ringwood, VIC,
Australia) with 50% phenyl polysilphenylene-siloxane (1.5 m,
0.1 mm i.d., 0.1 lm df) was used as the second dimension column
(2D). The 2D column was connected to the TOFMS by means of a
0.5 m � 0.25 mm i.d. uncoated deactivated fused silica capillary,
using SGE mini-unions and SiltiteTM metal ferrules 0.1–0.25 mm i.
d. (Ringwood, VIC, Australia) (Silva et al., 2011; Oliveira et al.,
2012a).

GC conditions were: splitless mode injection of 1 lL at 290 �C, a
purge time of 60 s, and a purge flow of 5 mL/min. Helium was used
as the carrier gas at a constant flow rate of 1.5 mL/min. The pri-
mary oven temperature program began at 70 �C for 1 min, and
was then increased to 170 �C at 20 �C/min, and further to 325 �C
at 2 �C/min. The secondary oven temperature program was 10 �C
higher than the primary one. The modulation period was 8 s with
a 2 s hot pulse duration, and the modulator temperature was
30 �C higher than the primary oven temperature. The transfer line
to the MS was set at 280 �C, the electron ionization mode was set at
70 eV, the mass range was 50–600 Da, the ion source temperature
was 230 �C, the detector was +50 V above the tune value, and the
acquisition rate was 100 spectra/s. Compound identification was
performed by mass spectral examination, comparison with litera-
ture mass spectra, retention time and elution order, which is
extensively reported in previous works (Aguiar et al., 2010, 2011;
Oliveira et al., 2012a, 2012b).
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2.3. Chemometric analyses

The software package Statistica 8 (Statsoft Inc., Tulsa, OK,
USA) was used in all statistical calculations in this work. Princi-
pal Component Analysis (PCA) was based on the covariance
matrix. All variables were mean centered and scaled by the
sample standard deviation. Data reported in Tables 1 and 2
were used to create matrix X(11�42) containing maturity and
source ratios from saturated biomarker and aromatic com-
pounds. Also matrix X(11�101) was constructed for the analysis
of all the normalized peak areas: area of compounds/area of
internal standard (Ac/Ais). In the calculations n-tetracosane-D50

was used for compounds in B/C fraction and pyrene-D10 for
aromatic fraction.

3. Results and discussion

A range of geochemical parameters were determined by identi-
fying and quantifying compounds of geochemical interest. Peak
areas and relevant ratios were calculated and are listed in Tables
1 and 2, the majority of which have been described by Peters
et al. (2005a). These parameters provide information about differ-
ent geochemical conditions such as variations in biological source
inputs, biodegradation and maturation.

Table 2
Geochemical compound ratios in aromatic fractions of selected crude oils measured by GC�GC-TOFMS.

Geochemical parameters/classification S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11

TA C20/(TA C20 + C27) % nd 18.0 5.7 5.1 53.0 18.0 25.0 12.0 nd 4.0 1.0
TA C19–21/(TA C19–21 + TA C26–28) % nd 16.0 3.5 3.8 45.0 14.0 37.0 10.0 nd 7.3 0.6
MA C21/(MA C21 + C28) % 13.0 47.0 7.1 24.0 73.0 49.0 67.0 28.0 nd 43.0 13.0
MA C20–21/(MA C20–21 + MA C27–29) % 7.4 40.0 5.5 17.0 63.0 42.0 54.0 27.0 nd 47.0 10.0
MDBT 4/1 1.7 1.7 2.8 3.6 5.4 11.0 17.0 2.7 nd 6.3 2.4
DMDBT 2,4/1,4 0.5 0.3 0.9 0.4 0.5 1.0 1.0 0.7 nd 1.0 0.5
DMDBT 4,6/1,4 1.2 0.7 1.5 1.2 1.9 4.6 7.3 1.2 nd 1.9 1.5
TMDBT peak 3/peak 5 nd 2.0 2.0 1.9 2.6 3.5 6.7 2.0 nd 2.4 1.6

TA, triaromatic steroids; MA, monoaromatic steroids; MDBT, methyl dibenzothiophene; DMDBT, dimethyl dibenzothiophene; TMDBT, trimethyl dibenzothiophene; nd, not
determined.

Table 1
Geochemical parameters of selected Brazilian crude oils measured by GC�GC-TOFMS.

Geochemical parameters/classificationa S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11
LS-NB LS-SB MIX-BD MN-NB-MM MN-NB-HM MR-NB-HM MR-BD-HM LS-NB-HM LF-SB LF-NB ME
Off On Off Off Off On Off Off On On On

SAT%b 42 26 26 52 72 54 58 38 38 50 44
ARO%b 4 18 15 14 16 10 17 13 1 12 10
NSO%b 22 53 40 16 7 10 15 27 25 14 11
H30/St27c 9.30 3.80 2.40 3.60 1.70 0.91 3.80 9.70 22.0 85.0 4.40
Tr23/H30 0.34 2.50 0.23 0.24 0.61 2.40 2.30 0.30 0.50 0.50 0.06
Tr26/Tr25 0.91 1.14 1.21 0.71 0.99 1.23 0.96 1.09 1.46 0.29 0.96
2aMH31/H30 % 5.10 14.0 5.60 4.00 1.40 4.20 1.90 1.80 0.62 0.77 9.60
3bMH31/H30 %d 1.73 10.0 1.72 0.65 0.55 2.40 0.62 1.40 29.0 11.03 0.41
TeT24/H30 0.10 0.79 0.04 0.04 0.08 0.10 0.20 0.08 0.11 0.07 0.02
TeT24/Tr26 0.50 0.44 0.33 0.34 0.18 0.07 0.17 0.34 0.20 2.93 0.64
H29/H30 0.60 1.48 0.48 0.48 0.39 0.70 0.38 0.58 0.55 0.57 0.52
H31R/H30 0.34 0.08 0.20 0.22 0.13 0.26 0.14 0.20 0.18 0.12 0.10
Gam/H30 0.16 0.90 0.45 0.05 0.00 0.22 0.13 0.16 0.28 0.25 0.86
H35 (R + S)/H34 (R + S) 0.67 0.82 0.58 0.74 0.48 0.60 0.41 0.52 0.40 0.39 0.52
b-car/H30

e 0.05 0.15 0.22 0.19 0.15 1.56 0.35 0.05 0.06 0.03 0.12
TPP/Dia27f 0.38 1.77 0.17 0.19 0.08 0.23 0.31 0.55 36.0 10.0 0.05
Tr21/Tr23 0.83 0.71 0.85 0.59 0.60 0.80 0.77 0.84 0.75 0.74 0.66
Tr20/Tr23 0.53 0.51 0.53 0.28 0.25 0.48 0.39 0.44 0.57 0.47 0.46
M30/H30 0.11 0.28 0.13 0.10 0.06 0.14 0.08 0.13 0.22 0.16 0.13
Tr19–30 (S + R)/H28–34 (S + R)g 0.56 2.60 0.39 0.45 1.52 4.60 4.80 0.69 1.40 1.20 0.18
H32 22S/(22S + 22R) 0.58 0.55 0.56 0.59 0.61 0.59 0.59 0.61 0.51 0.60 0.59
St29 20S/(20S + 20R) 0.43 0.48 0.36 0.50 0.58 0.54 0.48 0.52 0.39 0.55 0.53
St29 bb(S + R)/bb(S + R) + aa(S + R) 0.48 0.32 0.42 0.59 0.63 0.61 0.51 0.52 0.48 0.56 0.51
Ts/(Ts + Tm) 0.32 0.27 0.42 0.55 0.83 0.47 0.62 0.29 0.32 0.46 0.64
25NH/H30 (m/z 177) 0.03 1.54 0.07 0.01 0.00 0.01 0.14 0.08 0.01 0.01 0.00

H30, C30 17a(H),21b(H)-hopane; St27, C27 5a(H),14a(H),17a(H)-cholestanes (20S + 20R); Trn, Cn tricyclic terpane; 2aMH31, C31 2a-methylhopane; 3bMH31, C31 3b-methyl-
hopane; TeT24, C24 tetracyclic terpane; H29, C29 17a(H), 21b(H)-30-norhopane; H31R, C31 17a(H),21b(H)-homohopane (R); Gam, gammacerane; H34, C34 17a(H),21b
(H)-tetrakishomohopane (22S + 22R); H35, C35 17a(H),21b(H)-pentakishomohopane (22S + 22R); b-car, b-carotane; TPP, C30 tetracyclic polyprenoid; Dia27, C27 13b(H),17a
(H)-diacholestanes (20S + 20R); M30, C30 17b(H),21a(H)-hopane; H32, C32 17a(H),21b(H)-bishomohopane (22S + 22R); St29, C29 5a(H),14a(H),17a(H) + 5a(H), 14b(H), 17b(H),
24-ethylcholestane (20S + 20R); Ts, C27 22,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorhopane; LS, lacustrine saline; LF, lacustrine freshwater; MN, marine normal; MR,
marine restricted; ME, marine evaporitic; MIX, Mixture (marine + lacustrine); NB, Non biodegraded; BD, biodegraded; SB, severe biodegraded; MM, mediummaturation; HM,
high maturation; Off, off shore; On, on shore.

a The parameters are taken from Peters et al. (2005a) unless stated otherwise and the classification of crude oils was provided by CENPES.
b Compound class distribution, in percentage (%), determined by liquid chromatography was provided by CENPES.
c Mello et al. (1988).
d Kiepper et al. (2014).
e Casilli et al. (2014).
f Silva et al. (2011).
g Silva et al. (2008).

J. Laakia et al. / Organic Geochemistry 106 (2017) 93–104 95



results. In GC�GC, the increase in signal-to-noise ratio is achieved
due to the focusing of the chromatographic peaks by a modulator,
which generates narrow peaks. In addition, the chemical back-
ground of the column, which is typical for one dimensional 1D
GC, generates a characteristic bleeding that increases the baseline
with the temperature program. In GC�GC, this bleeding is con-
stantly modulated and separated as any analyte compound in each
1D fraction. Therefore, some compounds with low abundances,
which are commonly lost in the background noise in one dimen-
sional 1D GC, are more easily resolved in GC�GC-TOFMS. An exam-
ple of how this technique is effective in displaying compounds
hitherto unobservable due to problems of resolution and/or co-
elution is found in Oliveira et al. (2012a) and Kiepper et al.
(2014) where four isomers for C19–C24 tricyclic terpanes and C31

3b-methylhopane were identified respectively. Recently, Araújo
and Azevedo (2016) also used GC�GC-TOFMS to identify unusual
steranes in branched-cyclic hydrocarbon fractions of crude oils
from the Sergipe-Alagoas Basin, Brazil.

Moreover, 2D separation improves the quality of mass spectra,
making peaks purer by separating mass fragments of co-eluting
compounds. A clear example in crude oil research can be seen in
the investigation of C27 17a(H)-22,29,30-trisnorhopane (Tm) and
C27 18a(H)-22,29,30-trisnorneohopane (Ts), which are commonly
used for maturity evaluations (Seifert, 1978). Even though these
two compounds are separated and analyzed in 1D GC, a source
dependence which can affect the maturity interpretation of the
Ts/Tm ratio has previously been reported (Moldowan et al.,
1986). This apparent source dependence can be explained by Ts
co-eluting with the C30 tetracyclic terpane (TeT30) (Rullkötter and
Wendisch, 1982). Furthermore, the concentration of Tm could also
be influenced by the C30 tricyclic terpane (Tr30), which co-elutes
with Tm on 1D (Aguiar et al., 2010). It is well established that the
abundance of TeT30 and Tr30 can be influenced by this kind of
organic matter input (Aquino Neto et al., 1983; Moldowan et al.,
1983; Peters et al., 2005a). Since the majority of studies using
Ts/Tm are conducted with 1D GC, it is difficult to rule out that
co-eluting compounds do not cause problems in interpretation.
Therefore, the common solution in geochemical studies based only
on one dimensional GC has been to use parallel biomarker param-
eters (Peters et al., 2005a).

GC�GC-TOFMS provides cleaner mass spectra and improves the
accuracy of biomarker ratios by resolving co-eluting compounds in
2D. Additionally, the deconvoluted ion current (DIC) in TOFMS
analysis can be used for compounds which co-elute in 2D. This is
possible due to the fast spectral acquisition rate and absence of
concentration skewing (Focant et al., 2004; Mitrevski et al.,
2010). Hence, the GC�GC-TOFMS system improves the separation
of minor compounds that co-elute in standard GC and GC–MS anal-
yses. It is important to emphasize that the resolution of co-eluting
components in GC�GC-TOFMS analyses is a result of an additional
dimension for the separation system, which facilitates the
identification of new or not often reported (unusual) compounds
encountered in complex crude oil samples.

In this study, 11 Brazilian crude oils were examined from
differing source rocks and depositional conditions (5 lacustrine, 5
marine and 1 mixture) and with varying biodegradation and matu-
rity levels. The aim was to evaluate the degree of maturation of the
oil samples by analyzing saturated and aromatic fractions with
conventional and non-conventional biomarker ratios measured
by GC�GC-TOFMS. This approach is made possible by the
increased capacity of GC�GC-TOFMS in the separation of oil com-
ponents which can overcome interference in the determination of
these parameters caused by their diverse origin and geological his-
tory. The enhanced diagnosis capacity enabled by GC�GC-TOFMS
leading to High Resolution Molecular Organic Geochemistry
(HRMOG), has been previously used for maturation investigations

incorporating established parameters (Casilli et al., 2014). An out-
come of this current study was the identification of eight unusual
tetracyclic biomarkers in the saturated hydrocarbon fractions
which may have potential as maturity indicators. The structure
and geochemical significance of these tetracyclic compounds are
discussed.

2. Material and methods

2.1. Sample preparation

Selected crude oils from the north to the south regions of Brazil
were classified by the Research Center of Petrobras (Centro de Pes-
quisas Leopoldo Américo Miguez de Mello, CENPES, Rio de Janeiro,
RJ, Brazil) using proprietary classifying methods (Table 1). These
oils were also pre-fractionated by CENPES with medium pressure
liquid chromatography (MPLC, model MKW, Margot Köhnen
Willsch, Jülich, Germany) into saturated and aromatic fractions
(Radke et al., 1980). The saturated fractions were further processed
to remove the n-alkanes using urea adduction to separate
branched and cyclic hydrocarbon fractions (B/C) (Lappas et al.,
1997; Netzel and Rovani, 2007). The detailed experimental proce-
dure for urea adduction and chromatographic analysis is described
in Marotta et al. (2014) and Casilli et al. (2014), respectively. The
B/C and aromatic fractions (total of 22 samples) were
dissolved in dichloromethane (TediaBrasil, Rio de Janeiro, RJ,
Brazil) with an internal standard of 20 lg/mL of perdeuterated
n-tetracosane-D50 and pyrene-D10 (Cambridge Isotope Laborato-
ries, Andover, MA, USA) before chromatographic analyses.

2.2. GC�GC-TOFMS and data processing

Analyses were performed on a Pegasus 4D (Leco, St. Joseph, MI,
USA) GC�GC-TOFMS, composed of an Agilent Technologies 6890
GC (Palo Alto, CA, USA) equipped with a secondary oven, a non-
moving quad-jet dual-stage modulator and a Pegasus III (Leco, St.
Joseph, MI, USA) time of flight mass spectrometer. A DB-5 column
(Agilent Technologies, Palo Alto, CA, USA), 5% phenyl–95% methyl-
siloxane (30 m, 0.25 mm i.d., 0.25 lm df) was used as the first
dimension column (1D). A BPX-50 column (SGE, Ringwood, VIC,
Australia) with 50% phenyl polysilphenylene-siloxane (1.5 m,
0.1 mm i.d., 0.1 lm df) was used as the second dimension column
(2D). The 2D column was connected to the TOFMS by means of a
0.5 m � 0.25 mm i.d. uncoated deactivated fused silica capillary,
using SGE mini-unions and SiltiteTM metal ferrules 0.1–0.25 mm i.
d. (Ringwood, VIC, Australia) (Silva et al., 2011; Oliveira et al.,
2012a).

GC conditions were: splitless mode injection of 1 lL at 290 �C, a
purge time of 60 s, and a purge flow of 5 mL/min. Helium was used
as the carrier gas at a constant flow rate of 1.5 mL/min. The pri-
mary oven temperature program began at 70 �C for 1 min, and
was then increased to 170 �C at 20 �C/min, and further to 325 �C
at 2 �C/min. The secondary oven temperature program was 10 �C
higher than the primary one. The modulation period was 8 s with
a 2 s hot pulse duration, and the modulator temperature was
30 �C higher than the primary oven temperature. The transfer line
to the MS was set at 280 �C, the electron ionization mode was set at
70 eV, the mass range was 50–600 Da, the ion source temperature
was 230 �C, the detector was +50 V above the tune value, and the
acquisition rate was 100 spectra/s. Compound identification was
performed by mass spectral examination, comparison with litera-
ture mass spectra, retention time and elution order, which is
extensively reported in previous works (Aguiar et al., 2010, 2011;
Oliveira et al., 2012a, 2012b).
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2.3. Chemometric analyses

The software package Statistica 8 (Statsoft Inc., Tulsa, OK,
USA) was used in all statistical calculations in this work. Princi-
pal Component Analysis (PCA) was based on the covariance
matrix. All variables were mean centered and scaled by the
sample standard deviation. Data reported in Tables 1 and 2
were used to create matrix X(11�42) containing maturity and
source ratios from saturated biomarker and aromatic com-
pounds. Also matrix X(11�101) was constructed for the analysis
of all the normalized peak areas: area of compounds/area of
internal standard (Ac/Ais). In the calculations n-tetracosane-D50

was used for compounds in B/C fraction and pyrene-D10 for
aromatic fraction.

3. Results and discussion

A range of geochemical parameters were determined by identi-
fying and quantifying compounds of geochemical interest. Peak
areas and relevant ratios were calculated and are listed in Tables
1 and 2, the majority of which have been described by Peters
et al. (2005a). These parameters provide information about differ-
ent geochemical conditions such as variations in biological source
inputs, biodegradation and maturation.

Table 2
Geochemical compound ratios in aromatic fractions of selected crude oils measured by GC�GC-TOFMS.

Geochemical parameters/classification S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11

TA C20/(TA C20 + C27) % nd 18.0 5.7 5.1 53.0 18.0 25.0 12.0 nd 4.0 1.0
TA C19–21/(TA C19–21 + TA C26–28) % nd 16.0 3.5 3.8 45.0 14.0 37.0 10.0 nd 7.3 0.6
MA C21/(MA C21 + C28) % 13.0 47.0 7.1 24.0 73.0 49.0 67.0 28.0 nd 43.0 13.0
MA C20–21/(MA C20–21 + MA C27–29) % 7.4 40.0 5.5 17.0 63.0 42.0 54.0 27.0 nd 47.0 10.0
MDBT 4/1 1.7 1.7 2.8 3.6 5.4 11.0 17.0 2.7 nd 6.3 2.4
DMDBT 2,4/1,4 0.5 0.3 0.9 0.4 0.5 1.0 1.0 0.7 nd 1.0 0.5
DMDBT 4,6/1,4 1.2 0.7 1.5 1.2 1.9 4.6 7.3 1.2 nd 1.9 1.5
TMDBT peak 3/peak 5 nd 2.0 2.0 1.9 2.6 3.5 6.7 2.0 nd 2.4 1.6

TA, triaromatic steroids; MA, monoaromatic steroids; MDBT, methyl dibenzothiophene; DMDBT, dimethyl dibenzothiophene; TMDBT, trimethyl dibenzothiophene; nd, not
determined.

Table 1
Geochemical parameters of selected Brazilian crude oils measured by GC�GC-TOFMS.

Geochemical parameters/classificationa S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11
LS-NB LS-SB MIX-BD MN-NB-MM MN-NB-HM MR-NB-HM MR-BD-HM LS-NB-HM LF-SB LF-NB ME
Off On Off Off Off On Off Off On On On

SAT%b 42 26 26 52 72 54 58 38 38 50 44
ARO%b 4 18 15 14 16 10 17 13 1 12 10
NSO%b 22 53 40 16 7 10 15 27 25 14 11
H30/St27c 9.30 3.80 2.40 3.60 1.70 0.91 3.80 9.70 22.0 85.0 4.40
Tr23/H30 0.34 2.50 0.23 0.24 0.61 2.40 2.30 0.30 0.50 0.50 0.06
Tr26/Tr25 0.91 1.14 1.21 0.71 0.99 1.23 0.96 1.09 1.46 0.29 0.96
2aMH31/H30 % 5.10 14.0 5.60 4.00 1.40 4.20 1.90 1.80 0.62 0.77 9.60
3bMH31/H30 %d 1.73 10.0 1.72 0.65 0.55 2.40 0.62 1.40 29.0 11.03 0.41
TeT24/H30 0.10 0.79 0.04 0.04 0.08 0.10 0.20 0.08 0.11 0.07 0.02
TeT24/Tr26 0.50 0.44 0.33 0.34 0.18 0.07 0.17 0.34 0.20 2.93 0.64
H29/H30 0.60 1.48 0.48 0.48 0.39 0.70 0.38 0.58 0.55 0.57 0.52
H31R/H30 0.34 0.08 0.20 0.22 0.13 0.26 0.14 0.20 0.18 0.12 0.10
Gam/H30 0.16 0.90 0.45 0.05 0.00 0.22 0.13 0.16 0.28 0.25 0.86
H35 (R + S)/H34 (R + S) 0.67 0.82 0.58 0.74 0.48 0.60 0.41 0.52 0.40 0.39 0.52
b-car/H30

e 0.05 0.15 0.22 0.19 0.15 1.56 0.35 0.05 0.06 0.03 0.12
TPP/Dia27f 0.38 1.77 0.17 0.19 0.08 0.23 0.31 0.55 36.0 10.0 0.05
Tr21/Tr23 0.83 0.71 0.85 0.59 0.60 0.80 0.77 0.84 0.75 0.74 0.66
Tr20/Tr23 0.53 0.51 0.53 0.28 0.25 0.48 0.39 0.44 0.57 0.47 0.46
M30/H30 0.11 0.28 0.13 0.10 0.06 0.14 0.08 0.13 0.22 0.16 0.13
Tr19–30 (S + R)/H28–34 (S + R)g 0.56 2.60 0.39 0.45 1.52 4.60 4.80 0.69 1.40 1.20 0.18
H32 22S/(22S + 22R) 0.58 0.55 0.56 0.59 0.61 0.59 0.59 0.61 0.51 0.60 0.59
St29 20S/(20S + 20R) 0.43 0.48 0.36 0.50 0.58 0.54 0.48 0.52 0.39 0.55 0.53
St29 bb(S + R)/bb(S + R) + aa(S + R) 0.48 0.32 0.42 0.59 0.63 0.61 0.51 0.52 0.48 0.56 0.51
Ts/(Ts + Tm) 0.32 0.27 0.42 0.55 0.83 0.47 0.62 0.29 0.32 0.46 0.64
25NH/H30 (m/z 177) 0.03 1.54 0.07 0.01 0.00 0.01 0.14 0.08 0.01 0.01 0.00

H30, C30 17a(H),21b(H)-hopane; St27, C27 5a(H),14a(H),17a(H)-cholestanes (20S + 20R); Trn, Cn tricyclic terpane; 2aMH31, C31 2a-methylhopane; 3bMH31, C31 3b-methyl-
hopane; TeT24, C24 tetracyclic terpane; H29, C29 17a(H), 21b(H)-30-norhopane; H31R, C31 17a(H),21b(H)-homohopane (R); Gam, gammacerane; H34, C34 17a(H),21b
(H)-tetrakishomohopane (22S + 22R); H35, C35 17a(H),21b(H)-pentakishomohopane (22S + 22R); b-car, b-carotane; TPP, C30 tetracyclic polyprenoid; Dia27, C27 13b(H),17a
(H)-diacholestanes (20S + 20R); M30, C30 17b(H),21a(H)-hopane; H32, C32 17a(H),21b(H)-bishomohopane (22S + 22R); St29, C29 5a(H),14a(H),17a(H) + 5a(H), 14b(H), 17b(H),
24-ethylcholestane (20S + 20R); Ts, C27 22,29,30-trisnorneohopane; Tm, C27 22,29,30-trisnorhopane; LS, lacustrine saline; LF, lacustrine freshwater; MN, marine normal; MR,
marine restricted; ME, marine evaporitic; MIX, Mixture (marine + lacustrine); NB, Non biodegraded; BD, biodegraded; SB, severe biodegraded; MM, mediummaturation; HM,
high maturation; Off, off shore; On, on shore.

a The parameters are taken from Peters et al. (2005a) unless stated otherwise and the classification of crude oils was provided by CENPES.
b Compound class distribution, in percentage (%), determined by liquid chromatography was provided by CENPES.
c Mello et al. (1988).
d Kiepper et al. (2014).
e Casilli et al. (2014).
f Silva et al. (2011).
g Silva et al. (2008).
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3.1. Saturated hydrocarbons

Geochemically pertinent compounds such as tri-, tetra- and
pentacyclic terpanes (m/z 191), methyl-hopanes (m/z 205), 25-
norhopane (m/z 177), diasteranes and steranes (m/z 217 and
218), b-carotane (m/z 125), and tetracyclic polyprenoids (m/z
259) were detected in the B/C fractions of the Brazilian oils by
monitoring extracted ion chromatograms (EIC). These were used
for subsequent interpretations of source, alteration (Biodegrada-
tion) and maturity of the various oils.

3.1.1. Saturated hydrocarbon source parameters
The following biomarkers which are characteristic of source

organic matter were detected in all B/C fractions of the oils: tri-
cyclic terpane series (Trn) from C19 to C40, C30 diahopane and regu-
lar hopanes from C28 to C36, except C36 hopane was not detected in
the oils S06 and S10. Common biomarker parameters used to elu-
cidate source and environment of deposition are as follows. The
hopane to steranes ratio, expressed as H30/St27, indicates relative
inputs of heterotrophic bacterial biomass (H30), versus eukaryotic
organisms (St27) such as algae and higher plants (Fu et al., 1990;
Peters et al., 2005a). Low (< 4) H30/St27 ratios are typically associ-
ated with marine source rocks (Mello et al., 1988) while a high
3b-MH31/H30 % ratio (> 1%) indicates lacustrine sources (Kiepper
et al., 2014).

The score plot of H30/St27 and 3b-MH31/H30 % ratios illustrated
that oils with low values in both parameters (oils S04-S07) were
generated by marine source rocks (Supplementary material,
Fig. 1S). It is noteworthy that oils S09 and S10 showed an abnormal
elevation of C30 17a(H),21b(H)-hopane.

The TPP/Dia27 ratio is highly specific for lacustrine organic mat-
ter (Silva et al., 2011), with high TPP/Dia27 values being character-
istic of lacustrine conditions and biomass. Oils S02 and S11 show
elevated Gam/H30 ratios, sometimes indicative of hypersalinity in
marine shales and is used as an indicator of water-column stratifi-
cation during source rock deposition. Elevated concentrations of b-
carotane were observed in oil S06, a compound which is associated
with saline lacustrine paleoenvironments. High values for Tr26/Tr25
ratios are typical for lacustrine oils, and low for marine oils. The
Tr23/H30 ratio responds in the opposite manner, i.e. is low in lacus-
trine settings (Peters et al., 2005a), although in our study this dis-
tinction was unclear. For instance, lacustrine oil (S10) had the
lowest value of Tr26/Tr25 ratio and a marine oil (S06) had the sec-
ond highest value. Therefore we relied primarily on H30/St27, 3b-
MH31/H30 % (Supplementary material, Fig. 1S) and TPP/Dia27 to
classify the oils as lacustrine, marine and mixed. Based on these
geochemical parameters, S01, S02, S08, S09 and S10 are lacustrine
oils, S04, S05, S06, S07 and S11 are marine oils; and S03 is a mix-
ture of both sources.

3.1.2. Saturated hydrocarbon biodegradation parameters
During biodegradation hopanes and steranes are preferentially

depleted relative to tricyclic terpanes, and consequently can affect
the interpretation of geochemical parameters (Peters et al., 2005a).
In our study the degree of biodegradation was evaluated using the
25-norhopane to C30 hopane (25NH/H30) ratio (Table 1) (Bennett
et al., 2006). According to this parameter, samples S02 and S07
were significantly altered, putting into question the reliability of
the Gam/H30 and H30/St27 ratios as indicators of biomass and
depositional environment for these two samples. The tricyclic
terpanes to pentacyclic terpanes (Tr19–30 (S + R)/H28–34 (S + R))
ratio is used as an indicator for the level of biodegradation of crude
oils (Wenger and Isaksen, 2002) and corroborates the fact that oils
S02 and S07 in ours study are biodegraded. Interestingly, oils S05,
S06, S09 and S10 could also be considered biodegraded based on
this ratio. However, these samples do not contain the series of

demethylated tricyclic terpanes (m/z 177) and had a very low
25NH/H30 ratio and are assumed to be different from S02 and
S07 in that they were (i) a mixture of a biodegraded oil and fresh
oil and/or (ii) altered by different kinds of micro-organisms with
different metabolic properties, which did not produce 25-
norhopanes (Peters et al., 2005a). In summary oil S02 was clearly
the most biodegraded.

3.1.3. Saturated hydrocarbon maturation parameters
Routine sterane and hopane maturity parameters (Table 1) indi-

cate that most of the oils in our study have reached a moderate to
high degree of maturity, i.e., are between the beginning of the oil
window and the peak of oil generation (Gürgey, 1999; Peters
et al., 2005a). Practically all the oils have reached the equilibrium
value of 60% for the H32 22S/(22S + 22R) ratio (vitrinite reflectance
equivalent of approx. Ro = 0.6%). There is greater variation among
the samples for the St29 20S/(20S + 20R) ratio, which reaches equi-
librium at 55% (approx. Ro = 0.9%; Gürgey, 1999) and for the St29 bb
(S + R)/bb(S + R) + aa(S + R) ratio, which reaches equilibrium at
70% (approx. Ro = 1.0%; Petersen et al., 2012). Oils S05 and S06
show the highest values for the sterane maturity parameters
(Supplementary material, Fig. 2S) and are considered as the most
mature, whereas oils S02, S03 and S09 showed lower values for
these ratios, and therefore are considered less thermally evolved.
Biodegradation may have altered the steranes in sample S02, since
the St29 bb(S + R)/bb(S + R) + aa(S + R) ratio is relatively much
lower than for the St29 20S/(20S + 20R) ratio (Section 3.1.2).

Based on the moretane/hopane (M30/H30) ratio, which
decreases with increasing maturation (Grantham, 1986), oils S05
and S07 are the most mature, while the oils S02 and S09 are the
least mature. Finally, Ts/(Ts + Tm) ratios indicate that S01, S02,
S08 and S09 oil samples have the lowest degree of thermal matu-
rity whereas S05, S07 and S11 are the most mature samples. It is
important to consider that the Ts/(Ts + Tm) ratio can also be influ-
enced by the lithology and oxicity of the depositional setting
(Rullkötter et al., 1985; Rullkötter and Marzi, 1988). The terpane
and sterane ratios indicated that S06 has highest degree of matu-
rity in contrast to its M30/H30 and Ts/(Ts + Tm) ratios, which indi-
cated a lower maturity level. This may be explained by the fact
that the S06 sample, which has a high Tr19–30 (S + R)/H28–34

(S + R) ratio, was exposed to different maturation and/or biodegra-
dation processes (e.g. removal of hopanes and no formation of
25NH) than oils S05 and S07 (Farrimond et al., 1998). In summary,
oils S05 and S06 were the most mature samples based on sterane
parameters (Supplementary material, Fig. 2S).

3.2. Aromatic fraction maturity parameters

Monoaromatic (MA, m/z 253) and triaromatic (TA, m/z 231)
steroids, which are abundant in mature oils (Mackenzie et al.,
1981, 1982; Peters et al., 2005a), were detected in most samples,
except for oil S01 in which TA steroids were not detected, and
S09, in which neither MA nor TA steroids were detected. Methyl-
(MDBT, m/z 198), dimethyl- (DMDBT, m/z 212) and trimethyl-
dibenzothiophenes (TMDBT, m/z 226) were found in all of the oil
samples, except in sample S09. The following geochemical param-
eters were calculated for compounds in the aromatic fraction of
our oils (Table 2). Methyl- (MDBT) and dimethyl-
dibenzothiophenes (DMDBT) ratios, which are used as thermal
maturity indicators in the range of mature to overmature oils
(Chakhmakhchev et al., 1997; Heckmann et al., 2011), show the
highest values for the S06 and S07 oil samples. The mono- and
triaromatic steroid ratios, MA C21/(MA C21 + C28) % and
TA C20/(TA C20 + C27) %, which increase with maturation, show
the highest values in the S05 oil. Oil S09 had an extremely small
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quantity of aromatic compounds (1% ARO, Table 1), therefore no
aromatic geochemical parameters could be calculated.

In summary, ordinary saturated hydrocarbon maturation
parameters (Section 3.1.3), indicate that oils S05 and S06 are the
most mature samples. This is also supported by the aromatic
compound parameters. In addition oil S07 was identified as a
mature sample, as was illustrated in Section 3.1.3 with the ratios
of M30/H30 and Ts/(Ts + Tm).

3.3. Identification of compounds

Eight unusual (or new) compounds were detected in most of
the samples, although with varying relative intensities (Table 3).
Their distribution is illustrated in the partial chromatogram of
the B/C fraction of sample S08 shown in Fig. 1, as well as the
respective mass spectra shown in Fig. 2. Compounds 1 and 2 have
molecular ion M+� at m/z 274, compound 3 at m/z 288 and
compounds 4–8 at m/z 316. Fig. 3 illustrates the separation of
compound 4 by software-assisted deconvolution in 2D from the
co-eluting C23 tricyclic terpane, resulting in a cleaner mass spec-
trum where diagnostic and molecular ions are clearly distinguish-
able. Since the peaks were overlapping, deconvolution of the ion
current (DIC) was only possible due to the high acquisition rate
of the TOFMS (Focant et al., 2004).

The unusual compounds showed double bond equivalence
(DBE) values equal to four, which indicate a tetracyclic saturated
structure. Alkenes can be found in immature crude oils and rock
extracts, but since double bonds are relatively susceptible to trans-
formation in early diagenetic processes, structures with a double
bond are generally absent or only found as trace quantities in oils.
These compounds are more common in immature bitumen (Peters
et al., 2005b). For example, de-A-diasterenes have been detected in
immature marine shales (Peakman et al., 1986) and C23 tricyclic
terp-12(13)-ene in asphaltenes (Yang et al., 2009). Taking into
account that alkenes are rarely found in crude oils, especially in
the saturated hydrocarbon fraction, and that their retention times
in 2D being higher than those of tricyclic terpanes (Supplementary
Material, Table 1S), we assign these eight unusual structures as sat-
urated tetracyclic compounds.

Compounds 5 and 8 have m/z 191 as a diagnostic ion, which is
typical for tetracyclic terpanes, whereas compounds 1–4, 6 and 7
have a diagnostic ion at m/z 203; in addition, compound 1 showed
m/z 135 characteristic of A-nor-steranes (van Graas et al., 1982). In
the literature (Table 4), the C20 tetracyclic diterpane, with a diag-
nostic ion at m/z 203 and molecular ion at m/z 274, has been
reported in coal samples from Luquan, China (Sheng et al., 1992).
Similarly the C23 C-10-demethylated tetracyclic terpane, with a
diagnostic ion at m/z 177 and molecular ion at m/z 316 was
detected in severely biodegraded oils in Zhungeer oil field in China
(Zhusheng et al., 1990) and in Brazilian oils (Aguiar et al., 2010).
Recently, sterane derivatives with a diagnostic ion at m/z 203
related to a modified androstane carbon skeleton have been syn-
thetized for biomarker confirmation (Bender et al., 2015).

Different pathways for the formation of tetracyclic compounds
(Supplementary Material, Fig. 3S) have been proposed in the liter-
ature: (i) thermo-catalytic degradation of pentacyclic hopane pre-
cursors during geological maturation (Trendel et al., 1982); (ii)
microbial opening of ring E of hopanoids, e.g. oxidation of hop-
17(21)-enes, at an early stage of diagenesis, followed by a reduc-
tion in the corresponding alkanes (Trendel et al., 1982); (iii)
cyclization of a squalene precursor stopping at ring D, leading to
tetracyclic precursors which could be further reduced (Trendel
et al., 1982); (iv) enzymatic cyclization of unsaturated aliphatic
polyisoprenoids, i.e. isocomene formation from farnesol (Zalkow
et al., 1977; Petrov et al., 1988); (v) precursors of tetracyclic diter-
panes from pteridophyta, for example ferns (Sheng et al., 1992);
(vi) biosynthesis of tetracyclic terpane series by bacteria or algae
(Sheng et al., 1992); (vii) C19 A-nor-steranes which could originate
from larger sterols observed in some sponges (Minale and Sodano,
1974; Grosjean et al., 2009). Interestingly, although sample S07
was classified as a marine oil and S08 as a lacustrine oil, both of
them have high levels of these unusual tetracyclic compounds. This
may indicate that both environments had organisms capable of
producing precursors of these unusual compounds.

3.4. Number and size of rings of polycyclic alkanes

The unusual tetracyclic compounds 4–8 all have the same
molecular ion m/z 316 but their retention times (tR) differ in 1D
and 2D. The GC�GC-TOFMS instrument is capable of performing
compound class separations from complex hydrocarbons. Some
examples of this capability are crude oils where ten different
groups were separated (Ventura et al., 2010), diesel samples where
compounds with different number of aromatic rings were sepa-
rated (Marriott et al., 2004) and gasoline fuel where linear and
branched alkanes were separated (Schoenmakers et al., 2000).

In this study, a similar GC�GC separation was observed in the
hydrocarbon fraction with biomarkers based on retention time
(tR) in the second dimension in the following order: (i) tricyclic ter-
panes; (ii) steranes with 3 rings with 6 carbon atoms in ring and 1
ring with 5 carbon atoms in ring; (iii) tetracyclic terpanes with 4
rings with 6 carbon atoms; (iv) pentacyclic terpanes with 4 rings
with 6 carbon atoms and 1 ring with 5 carbon atoms; (v)
pentacyclic terpane with 5 rings with 6 carbon atoms (Fig. 4). A
group-type separation was observed in the 2D order with the
chromatographic conditions used in the GC�GC-TOFMS.

The main separation factor in the mid-polar 2D column is polar-
ity of compounds, i.e., analytes with increasing polarity have
increasing retention times. This rule is valid when analytes have
ring structures (e.g. benzene) or functional groups with differing
polarity (e.g. oxygen or nitrogen). In our study the polarity does
not vary significantly between saturated compounds that contain
only hydrogen and carbon atoms (hydrocarbons). Therefore, these
distinct retention times may be explained by the three dimensional
shape of molecules and small differences in polarizability of six
member rings as compared to five member rings. These would

Table 3
Peak areas of unusual compounds and TeT24 divided by perdeuterated tetracosane (Ac/Ais).

Compounds/classification S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11

#1, C20H34 0.20 0.17 0.12 0.11 0.08 0.20 0.40 0.58 0.07 0.03 0.11
#2, C20H34 0.07 0.08 0.04 0.03 0.01 0.04 0.14 0.24 0.02 0.01 0.02
#3, C21H36 0.02 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.06 0.02 0.00
#4, C23H40 0.06 0.12 0.03 0.02 0.00 0.09 0.16 0.41 0.22 0.09 0.00
#5, C23H40 0.09 0.08 0.01 0.01 0.00 0.06 0.11 0.49 0.02 0.01 0.01
#6, C23H40 0.06 0.08 0.01 0.02 0.00 0.02 0.07 0.21 0.23 0.06 0.01
#7, C23H40 0.10 0.18 0.06 0.03 0.00 0.07 0.17 0.47 1.89 0.43 0.02
#8, C23H40 0.03 0.04 0.01 0.01 0.00 0.02 0.03 0.05 0.09 0.03 0.00
TeT24 0.19 0.29 0.05 0.05 0.03 0.01 0.05 0.64 2.08 0.42 0.08
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3.1. Saturated hydrocarbons

Geochemically pertinent compounds such as tri-, tetra- and
pentacyclic terpanes (m/z 191), methyl-hopanes (m/z 205), 25-
norhopane (m/z 177), diasteranes and steranes (m/z 217 and
218), b-carotane (m/z 125), and tetracyclic polyprenoids (m/z
259) were detected in the B/C fractions of the Brazilian oils by
monitoring extracted ion chromatograms (EIC). These were used
for subsequent interpretations of source, alteration (Biodegrada-
tion) and maturity of the various oils.

3.1.1. Saturated hydrocarbon source parameters
The following biomarkers which are characteristic of source

organic matter were detected in all B/C fractions of the oils: tri-
cyclic terpane series (Trn) from C19 to C40, C30 diahopane and regu-
lar hopanes from C28 to C36, except C36 hopane was not detected in
the oils S06 and S10. Common biomarker parameters used to elu-
cidate source and environment of deposition are as follows. The
hopane to steranes ratio, expressed as H30/St27, indicates relative
inputs of heterotrophic bacterial biomass (H30), versus eukaryotic
organisms (St27) such as algae and higher plants (Fu et al., 1990;
Peters et al., 2005a). Low (< 4) H30/St27 ratios are typically associ-
ated with marine source rocks (Mello et al., 1988) while a high
3b-MH31/H30 % ratio (> 1%) indicates lacustrine sources (Kiepper
et al., 2014).

The score plot of H30/St27 and 3b-MH31/H30 % ratios illustrated
that oils with low values in both parameters (oils S04-S07) were
generated by marine source rocks (Supplementary material,
Fig. 1S). It is noteworthy that oils S09 and S10 showed an abnormal
elevation of C30 17a(H),21b(H)-hopane.

The TPP/Dia27 ratio is highly specific for lacustrine organic mat-
ter (Silva et al., 2011), with high TPP/Dia27 values being character-
istic of lacustrine conditions and biomass. Oils S02 and S11 show
elevated Gam/H30 ratios, sometimes indicative of hypersalinity in
marine shales and is used as an indicator of water-column stratifi-
cation during source rock deposition. Elevated concentrations of b-
carotane were observed in oil S06, a compound which is associated
with saline lacustrine paleoenvironments. High values for Tr26/Tr25
ratios are typical for lacustrine oils, and low for marine oils. The
Tr23/H30 ratio responds in the opposite manner, i.e. is low in lacus-
trine settings (Peters et al., 2005a), although in our study this dis-
tinction was unclear. For instance, lacustrine oil (S10) had the
lowest value of Tr26/Tr25 ratio and a marine oil (S06) had the sec-
ond highest value. Therefore we relied primarily on H30/St27, 3b-
MH31/H30 % (Supplementary material, Fig. 1S) and TPP/Dia27 to
classify the oils as lacustrine, marine and mixed. Based on these
geochemical parameters, S01, S02, S08, S09 and S10 are lacustrine
oils, S04, S05, S06, S07 and S11 are marine oils; and S03 is a mix-
ture of both sources.

3.1.2. Saturated hydrocarbon biodegradation parameters
During biodegradation hopanes and steranes are preferentially

depleted relative to tricyclic terpanes, and consequently can affect
the interpretation of geochemical parameters (Peters et al., 2005a).
In our study the degree of biodegradation was evaluated using the
25-norhopane to C30 hopane (25NH/H30) ratio (Table 1) (Bennett
et al., 2006). According to this parameter, samples S02 and S07
were significantly altered, putting into question the reliability of
the Gam/H30 and H30/St27 ratios as indicators of biomass and
depositional environment for these two samples. The tricyclic
terpanes to pentacyclic terpanes (Tr19–30 (S + R)/H28–34 (S + R))
ratio is used as an indicator for the level of biodegradation of crude
oils (Wenger and Isaksen, 2002) and corroborates the fact that oils
S02 and S07 in ours study are biodegraded. Interestingly, oils S05,
S06, S09 and S10 could also be considered biodegraded based on
this ratio. However, these samples do not contain the series of

demethylated tricyclic terpanes (m/z 177) and had a very low
25NH/H30 ratio and are assumed to be different from S02 and
S07 in that they were (i) a mixture of a biodegraded oil and fresh
oil and/or (ii) altered by different kinds of micro-organisms with
different metabolic properties, which did not produce 25-
norhopanes (Peters et al., 2005a). In summary oil S02 was clearly
the most biodegraded.

3.1.3. Saturated hydrocarbon maturation parameters
Routine sterane and hopane maturity parameters (Table 1) indi-

cate that most of the oils in our study have reached a moderate to
high degree of maturity, i.e., are between the beginning of the oil
window and the peak of oil generation (Gürgey, 1999; Peters
et al., 2005a). Practically all the oils have reached the equilibrium
value of 60% for the H32 22S/(22S + 22R) ratio (vitrinite reflectance
equivalent of approx. Ro = 0.6%). There is greater variation among
the samples for the St29 20S/(20S + 20R) ratio, which reaches equi-
librium at 55% (approx. Ro = 0.9%; Gürgey, 1999) and for the St29 bb
(S + R)/bb(S + R) + aa(S + R) ratio, which reaches equilibrium at
70% (approx. Ro = 1.0%; Petersen et al., 2012). Oils S05 and S06
show the highest values for the sterane maturity parameters
(Supplementary material, Fig. 2S) and are considered as the most
mature, whereas oils S02, S03 and S09 showed lower values for
these ratios, and therefore are considered less thermally evolved.
Biodegradation may have altered the steranes in sample S02, since
the St29 bb(S + R)/bb(S + R) + aa(S + R) ratio is relatively much
lower than for the St29 20S/(20S + 20R) ratio (Section 3.1.2).

Based on the moretane/hopane (M30/H30) ratio, which
decreases with increasing maturation (Grantham, 1986), oils S05
and S07 are the most mature, while the oils S02 and S09 are the
least mature. Finally, Ts/(Ts + Tm) ratios indicate that S01, S02,
S08 and S09 oil samples have the lowest degree of thermal matu-
rity whereas S05, S07 and S11 are the most mature samples. It is
important to consider that the Ts/(Ts + Tm) ratio can also be influ-
enced by the lithology and oxicity of the depositional setting
(Rullkötter et al., 1985; Rullkötter and Marzi, 1988). The terpane
and sterane ratios indicated that S06 has highest degree of matu-
rity in contrast to its M30/H30 and Ts/(Ts + Tm) ratios, which indi-
cated a lower maturity level. This may be explained by the fact
that the S06 sample, which has a high Tr19–30 (S + R)/H28–34

(S + R) ratio, was exposed to different maturation and/or biodegra-
dation processes (e.g. removal of hopanes and no formation of
25NH) than oils S05 and S07 (Farrimond et al., 1998). In summary,
oils S05 and S06 were the most mature samples based on sterane
parameters (Supplementary material, Fig. 2S).

3.2. Aromatic fraction maturity parameters

Monoaromatic (MA, m/z 253) and triaromatic (TA, m/z 231)
steroids, which are abundant in mature oils (Mackenzie et al.,
1981, 1982; Peters et al., 2005a), were detected in most samples,
except for oil S01 in which TA steroids were not detected, and
S09, in which neither MA nor TA steroids were detected. Methyl-
(MDBT, m/z 198), dimethyl- (DMDBT, m/z 212) and trimethyl-
dibenzothiophenes (TMDBT, m/z 226) were found in all of the oil
samples, except in sample S09. The following geochemical param-
eters were calculated for compounds in the aromatic fraction of
our oils (Table 2). Methyl- (MDBT) and dimethyl-
dibenzothiophenes (DMDBT) ratios, which are used as thermal
maturity indicators in the range of mature to overmature oils
(Chakhmakhchev et al., 1997; Heckmann et al., 2011), show the
highest values for the S06 and S07 oil samples. The mono- and
triaromatic steroid ratios, MA C21/(MA C21 + C28) % and
TA C20/(TA C20 + C27) %, which increase with maturation, show
the highest values in the S05 oil. Oil S09 had an extremely small
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quantity of aromatic compounds (1% ARO, Table 1), therefore no
aromatic geochemical parameters could be calculated.

In summary, ordinary saturated hydrocarbon maturation
parameters (Section 3.1.3), indicate that oils S05 and S06 are the
most mature samples. This is also supported by the aromatic
compound parameters. In addition oil S07 was identified as a
mature sample, as was illustrated in Section 3.1.3 with the ratios
of M30/H30 and Ts/(Ts + Tm).

3.3. Identification of compounds

Eight unusual (or new) compounds were detected in most of
the samples, although with varying relative intensities (Table 3).
Their distribution is illustrated in the partial chromatogram of
the B/C fraction of sample S08 shown in Fig. 1, as well as the
respective mass spectra shown in Fig. 2. Compounds 1 and 2 have
molecular ion M+� at m/z 274, compound 3 at m/z 288 and
compounds 4–8 at m/z 316. Fig. 3 illustrates the separation of
compound 4 by software-assisted deconvolution in 2D from the
co-eluting C23 tricyclic terpane, resulting in a cleaner mass spec-
trum where diagnostic and molecular ions are clearly distinguish-
able. Since the peaks were overlapping, deconvolution of the ion
current (DIC) was only possible due to the high acquisition rate
of the TOFMS (Focant et al., 2004).

The unusual compounds showed double bond equivalence
(DBE) values equal to four, which indicate a tetracyclic saturated
structure. Alkenes can be found in immature crude oils and rock
extracts, but since double bonds are relatively susceptible to trans-
formation in early diagenetic processes, structures with a double
bond are generally absent or only found as trace quantities in oils.
These compounds are more common in immature bitumen (Peters
et al., 2005b). For example, de-A-diasterenes have been detected in
immature marine shales (Peakman et al., 1986) and C23 tricyclic
terp-12(13)-ene in asphaltenes (Yang et al., 2009). Taking into
account that alkenes are rarely found in crude oils, especially in
the saturated hydrocarbon fraction, and that their retention times
in 2D being higher than those of tricyclic terpanes (Supplementary
Material, Table 1S), we assign these eight unusual structures as sat-
urated tetracyclic compounds.

Compounds 5 and 8 have m/z 191 as a diagnostic ion, which is
typical for tetracyclic terpanes, whereas compounds 1–4, 6 and 7
have a diagnostic ion at m/z 203; in addition, compound 1 showed
m/z 135 characteristic of A-nor-steranes (van Graas et al., 1982). In
the literature (Table 4), the C20 tetracyclic diterpane, with a diag-
nostic ion at m/z 203 and molecular ion at m/z 274, has been
reported in coal samples from Luquan, China (Sheng et al., 1992).
Similarly the C23 C-10-demethylated tetracyclic terpane, with a
diagnostic ion at m/z 177 and molecular ion at m/z 316 was
detected in severely biodegraded oils in Zhungeer oil field in China
(Zhusheng et al., 1990) and in Brazilian oils (Aguiar et al., 2010).
Recently, sterane derivatives with a diagnostic ion at m/z 203
related to a modified androstane carbon skeleton have been syn-
thetized for biomarker confirmation (Bender et al., 2015).

Different pathways for the formation of tetracyclic compounds
(Supplementary Material, Fig. 3S) have been proposed in the liter-
ature: (i) thermo-catalytic degradation of pentacyclic hopane pre-
cursors during geological maturation (Trendel et al., 1982); (ii)
microbial opening of ring E of hopanoids, e.g. oxidation of hop-
17(21)-enes, at an early stage of diagenesis, followed by a reduc-
tion in the corresponding alkanes (Trendel et al., 1982); (iii)
cyclization of a squalene precursor stopping at ring D, leading to
tetracyclic precursors which could be further reduced (Trendel
et al., 1982); (iv) enzymatic cyclization of unsaturated aliphatic
polyisoprenoids, i.e. isocomene formation from farnesol (Zalkow
et al., 1977; Petrov et al., 1988); (v) precursors of tetracyclic diter-
panes from pteridophyta, for example ferns (Sheng et al., 1992);
(vi) biosynthesis of tetracyclic terpane series by bacteria or algae
(Sheng et al., 1992); (vii) C19 A-nor-steranes which could originate
from larger sterols observed in some sponges (Minale and Sodano,
1974; Grosjean et al., 2009). Interestingly, although sample S07
was classified as a marine oil and S08 as a lacustrine oil, both of
them have high levels of these unusual tetracyclic compounds. This
may indicate that both environments had organisms capable of
producing precursors of these unusual compounds.

3.4. Number and size of rings of polycyclic alkanes

The unusual tetracyclic compounds 4–8 all have the same
molecular ion m/z 316 but their retention times (tR) differ in 1D
and 2D. The GC�GC-TOFMS instrument is capable of performing
compound class separations from complex hydrocarbons. Some
examples of this capability are crude oils where ten different
groups were separated (Ventura et al., 2010), diesel samples where
compounds with different number of aromatic rings were sepa-
rated (Marriott et al., 2004) and gasoline fuel where linear and
branched alkanes were separated (Schoenmakers et al., 2000).

In this study, a similar GC�GC separation was observed in the
hydrocarbon fraction with biomarkers based on retention time
(tR) in the second dimension in the following order: (i) tricyclic ter-
panes; (ii) steranes with 3 rings with 6 carbon atoms in ring and 1
ring with 5 carbon atoms in ring; (iii) tetracyclic terpanes with 4
rings with 6 carbon atoms; (iv) pentacyclic terpanes with 4 rings
with 6 carbon atoms and 1 ring with 5 carbon atoms; (v)
pentacyclic terpane with 5 rings with 6 carbon atoms (Fig. 4). A
group-type separation was observed in the 2D order with the
chromatographic conditions used in the GC�GC-TOFMS.

The main separation factor in the mid-polar 2D column is polar-
ity of compounds, i.e., analytes with increasing polarity have
increasing retention times. This rule is valid when analytes have
ring structures (e.g. benzene) or functional groups with differing
polarity (e.g. oxygen or nitrogen). In our study the polarity does
not vary significantly between saturated compounds that contain
only hydrogen and carbon atoms (hydrocarbons). Therefore, these
distinct retention times may be explained by the three dimensional
shape of molecules and small differences in polarizability of six
member rings as compared to five member rings. These would

Table 3
Peak areas of unusual compounds and TeT24 divided by perdeuterated tetracosane (Ac/Ais).

Compounds/classification S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11

#1, C20H34 0.20 0.17 0.12 0.11 0.08 0.20 0.40 0.58 0.07 0.03 0.11
#2, C20H34 0.07 0.08 0.04 0.03 0.01 0.04 0.14 0.24 0.02 0.01 0.02
#3, C21H36 0.02 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.06 0.02 0.00
#4, C23H40 0.06 0.12 0.03 0.02 0.00 0.09 0.16 0.41 0.22 0.09 0.00
#5, C23H40 0.09 0.08 0.01 0.01 0.00 0.06 0.11 0.49 0.02 0.01 0.01
#6, C23H40 0.06 0.08 0.01 0.02 0.00 0.02 0.07 0.21 0.23 0.06 0.01
#7, C23H40 0.10 0.18 0.06 0.03 0.00 0.07 0.17 0.47 1.89 0.43 0.02
#8, C23H40 0.03 0.04 0.01 0.01 0.00 0.02 0.03 0.05 0.09 0.03 0.00
TeT24 0.19 0.29 0.05 0.05 0.03 0.01 0.05 0.64 2.08 0.42 0.08

J. Laakia et al. / Organic Geochemistry 106 (2017) 93–104 97



be more twisted, thus allowing a larger surface area of six member
rings for interaction with the stationary phase of the 2D column
and resulting in longer retention times than five member rings.
The analyte molecules could form a ‘‘van der Waals plane” which
would increase the contact force with the column stationary phase
similar to smaller hydrocarbon isomers such as 2-methyl butane
and pentane which are separated in a GC with a MOF-508 column
(Chen et al., 2006).

Generally, tri- and tetracyclic terpanes are assumed to have a
more planar structure than steranes (with five-carbon ring) which
disrupts the planarity of the structure and result in steranes having

lower retention times in 2D than tetracyclic compounds. Some
variations inside the groups were also observed. For instance, in
the tricyclic terpane group (i) C19 and C20 tricyclic terpanes had
the lowest retention times in 2D, and show an increase in the 2tR
of the tricyclic terpane series and (ii) pentacyclic hopanes, with
increasing carbon number, showed the opposite behavior of a
reduction in 2D retention times (Supplementary Material,
Table 1S). In the case of C19 and C20 tricyclic terpanes the variation
can be explained by the fact that C20 and C21 tricyclic terpanes have
four stereoisomers, and the 13a(H),14a(H) and 13a(H),14b(H) iso-
mers, respectively, are usually the most abundant ones in oils

Fig. 1. Sample S08: Partial extracted ion chromatogram with sum of ions m/z 191 and 203 (�5) showing tri-, tetra-, and pentacyclic terpanes [A] and eight [1–8] unusual
compounds [B]. Trn = Cn tricyclic terpane; TeT24, C24 tetracyclic terpane.

Fig. 2. Mass spectra of [1–8] unusual compounds. TeT24, C24 tetracyclic terpane.

98 J. Laakia et al. / Organic Geochemistry 106 (2017) 93–104

(Oliveira et al., 2012a). The small difference in retention time in 2D
could be due to different conformations of the two isomers.

In the case of the homologous series of hopanes, the systematic
reduction in retention time in 2D can be explained by the degree of
branching on the side chain, which increases with increasing car-

bon number. Sometimes chromatographic conditions can cause
disruption in retention times. For example, the heat transfer inside
the 2D oven can be more effective than in the 1D oven. Note, in Sup-
plementary Material Fig. 4S, that the homologous series of tricyclic
terpanes have a slightly increasing trend in retention time in 2D

Fig. 3. Top left: Total ion chromatogram (⁄, black solid line); extracted ion chromatogram at m/z 191 (A, blue dashed line, peak intensity �48), and extracted ion
chromatogram at m/z 203 (B, orange solid line, peak intensity �45). Top right: mass spectrum at peak top of TIC. Bottom left: Mass spectra of co-eluting possible C23 tricyclic
terpane with diagnostic ion m/z 191 [A]. Bottom right: Unusual C23 tetracyclic compound [compound 4, Figs. 1 and 2] with diagnostic ion m/z 203 [B]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Summary of tetracyclic compounds (I to XIV, in Supplementary material Fig. 1S) found in oils or rock extracts.

Compounds Empirical
formula

[M]+�

(m/z)
Key ions (m/z) Biological origin Reference

C19 methyl-sterane (I) C19H32 260 204, 203 Norden et al. (2011)
C19 methyl-18-nor-androstane (II) C19H32 260 204, 203, 135 Bender et al. (2013)
C19 A-nor-sterane C19H32 260 203 Grosjean et al. (2009)
C19 D-homo-13b(H), 14a(H)-androstane C19H32 260 203, 204, 245 Bender et al. (2015)
C19 5a(H),14b(H)-androstane C19H32 260 203, 204, 245 Bender et al. (2015)
C19 diterpane C19H32 260 217, 177 Microbiological Petrov et al. (1988)
C20 methyl-androstane (III) C20H34 274 218, 217 Norden et al. (2011)
C20 tetracyclic diterpane C20H34 274 259, 203, 177, 109 Fungal or lower plant Sheng et al. (1992)
C20 phyllocladane (IV) C20H34 274 274, 259, 231, 123 Higher plants, in the leaf

resins of conifers
Noble et al. (1985),
Schulze and Michaelis (1990),
Zubrik et al. (2009)

C21 tetracyclic terpane C21H36 288 273, 231, 203, 164, 123 Fungal or lower plant Sheng et al. (1992)
C22 pregnane C22H38 302 287, 218 Microbial Lu et al. (2009)
C23 C-10 demethylated tetracyclic terpane (V) C23H40 316 177 Biodegradation Zhusheng et al. (1990),

Aguiar et al. (2010)
nor-des-A-ursane/taraxastane C23H40 316 177 Eiserbeck et al. (2012)
C23 unsaturated de-A-steroid (alkene) (VI) C23H40 316 203 Immature shale Peakman et al. (1986)
C24 tetracyclic terpane (VII) C24H42 330 315, 191 Thermo degradation or microbial Trendel et al. (1982)
C24 4,4-dimethyl-homopregnane C24H42 330 246, 177 Ten Haven et al. (1985)
C24 des-A-oleanane (VIII) C24H42 330 315, 191, 177 Higher plant, Cretaceous or younger Woodhouse et al. (1992),

Samuel et al. (2010)
C24 des-A-lupane (IX) C24H42 330 287, 192, 192, 123 Higher plant Schmitter et al. (1981),

Woodhouse et al. (1992)
C24 lanostane (X) C24H42 330 315, 259 Sponge, dinoflagellate Lu et al. (2011)
C26 A-nor-sterane (XI) C26H46 358 343, 203, 135 van Graas et al. (1982)
C26 degraded bicadinane (XII) C26H46 358 343, 315, 163, 149 Higher plant Bao et al. (2013)
C27 nor-methyl-cholestane (XIII) C27H48 372 357, 217, 149 Diatom, dinoflagellate Schouten et al. (1994)
C30 onocerane I (XIV) C30H54 414 399, 191, 123 Fern Jacob et al. (2004)
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which supports the hypothesis that the side chain of the hopanes
could be more branched than the tricyclic terpanes. C27 18a(H)-2
2,29,30-trisnorneohopane (Ts) has a retention time in 2D close to
hopane, but C27 17a(H)-22,29,30-trisnorhopane (Tm) has a much
higher retention time, closer to gammacerane, which has 6 rings
with 6 carbon atoms (Hills et al., 1966). The difference in retention
times could be due to fact that the structure of Tm is more planar
than Ts (Dunlap et al., 1985). Onocerane II has a ‘‘broken” ring C,
which could allow freedom of rotation of two different ring sets
resulting in lower retention times in 2D than steranes, which have
a fused ring structure. Also, additional methyl groups in fused ring
structures are expected to hinder molecule-stationary phase inter-
actions and result in a small reduction in retention times in 2D.
Ring numbers were assigned to known biomarkers with C29 struc-
ture, namely C29 tricyclic terpane (Ring number = 3), C29 5a(H),14b
(H),17b(H)-stigmastane 20R (Ring number = 3.5) and C29 17a(H),
21b(H)-30-norhopane (Ring number = 4.5), based on how many
six-carbon rings they contain. If the structure had five carbons in
one ring, then 0.5 was subtracted from the original number. This
was plotted against their retention times (tR) in 2D (see
Supplementary Material, Fig. 5S). The resulting curve equation
was used to calculate ring numbers for the eight unusual tetra-
cyclic compounds (Supplementary Material, Table 1S). Since chro-
matographic conditions can affect retention time in 2D, C24 tricyclic
terpane (Ring number = 3) and C24 tetracyclic terpane (Ring num-
ber = 4) were included for comparison (Supplementary Material,
Table 1S) because they elute in the same region of the chro-
matogram as the unusual tetracyclic terpanes. Compound 5 and
6 were an exception, with ring numbers 3.22 and 3.34 that could
represent a ‘‘closed” conformation of a sterane-like structure
which has reduced interaction with the column phase. Differences
in retention times (tR) in 1D and 2D indicate structural differences.
For example, in Fig. 5, tentative structures for unusual compounds
1, 3, 4 and 8 are presented which are based on compiled chromato-
graphic and MS information. Compound 4 has a tR close to tricyclic
terpanes, but it has a 4 ring structure. Therefore, one could suggest
a contraction of ring C, which could cause reduction in tR in 2D. This
change in 2D retention time is also observed for other compounds.

For example, tR of C30 17a(H),21b(H)-hopane with 5 carbon atoms
in ring E is lower than that of gammacerane with 6 carbon atoms in
ring E. Compound 4 has MS fragment ions m/z 177 and 203, which
supports a hypothesis of the presence of having 5 carbon atoms in
ring C. Whereas, compound 8 has tR in 2D near the C24 tetracyclic
terpane and a m/z 191 fragment ion, typical of C24 tetracyclic ter-
pane (Trendel et al., 1982). This indicates that this compound could
be a C23 tetracyclic terpane.

By evaluating the mass spectra data in combinations with
retention times in the first and second dimensions, and by exclud-
ing chemical structures that present completely different mass
spectra (Table 4) we suggest that the structures are tetracyclic sat-
urated compounds with terpane and/or sterane hydrocarbon skele-
tons but with differing methyl group positions and/or on the ring
sizes.

The mass spectra of des-A-ursane and des-A-oleanane
(Zhusheng et al., 1990; Woodhouse et al., 1992; Samuel et al.,
2010) do not match with the observed mass spectra. This also
holds for kaurane (Sheng et al., 1992), phyllocladane (Sheng
et al., 1992), beyerane (Noble et al., 1985), all of which are ruled
out as they present ion m/z 123 as the base peak. Compounds
related to methyl-estrane (Norden et al., 2011), methyl-
androstane (Norden et al., 2011), methyl-nor-androstane (Bender
et al., 2013) or D-homo-androstane (Bender et al., 2013) all have a
base peak at m/z 203, and so we tentatively suggest that the unu-
sual tetracyclic compounds could have the structure with a 5 car-
bon atom ring. Changing the position of only one methyl group,
and/or changing the stereochemistry, can completely change the
mass spectra. All the structures that showed m/z 203 are assigned
as being steroid like structures presenting at least one 5 carbon
atom ring.

3.5. High resolution molecular organic geochemistry

The CENPES provided a set of basic geochemical parameters for
all the oils in our study as well as their interpreted classifications
(Table 1). In addition to this information, biomarker parameters
were calculated from GC�GC-TOFMS data (Tables 1 and 2). We

Fig. 4. GC�GC-TOFMS retention time plot (1D vs 2D) illustrating the behavior of hydrocarbons with differing ring structures.
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subjected these parameters to PCA with the following results. The
S02 oil was separated based on the highest biodegradation level
while the S05, S06 and S07 oils were separated as being the most
mature (data not shown), supporting the earlier interpretation of
saturated (Section 3.1.3) and aromatic (Section 3.2) maturation
parameters. The result was similar when selected source parame-
ters and all the saturated and aromatic maturation parameters
were used for PCA analysis (Fig. 6A). The loading plot indicates that
the most mature oils were mainly separated by parameters based
on aromatic compounds and terpane ratios (Fig. 6B). The S09 oil
could be considered immature, as this sample had extremely low

abundance of aromatic compounds, which is unusual. Therefore,
a further investigation using PCA was conducted using only peak
areas. The results showed that oil S09 was clearly separated from
the other samples (Supplementary material, Fig. 6S). The contribu-
tion plot shows a high concentration of tri- and tetracyclic terpanes
and an extremely low abundance of aromatic compounds, confirm-
ing the low maturity of this sample.

Finally, PCA was run with all the geochemical ratios in Tables 1
and 2 and also with the unusual biomarker compound ratios,
obtained by dividing each of the peak areas by the peak area of
the C24 tetracyclic terpane (Fig. 7A; Supplementary Material,

Fig. 5. Tentative structures and possible fragmentations for unusual biomarkers (1, 3, 4 and 8) in Fig. 1.

Fig. 6. PCA score [A] and loading [B] plots for the first two principal components, based on saturated and aromatic biomarker parameters. [1] Oil S02; [2] oils S05, S06 and
S07; [3] 25NH/H30 ratio; [4] some of saturated maturity parameters; [5] aromatic geochemical parameters.

Fig. 7. PCA score [A] and loading [B] plots for the first two principal components, based on saturated and aromatic biomarker parameters. [1] Conventional saturated/
aromatic maturation ratios; [2] dibenzothiophenes ratios; [3] unusual compounds 1–8/TeT24 ratios.
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which supports the hypothesis that the side chain of the hopanes
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supports a hypothesis of the presence of having 5 carbon atoms in
ring C. Whereas, compound 8 has tR in 2D near the C24 tetracyclic
terpane and a m/z 191 fragment ion, typical of C24 tetracyclic ter-
pane (Trendel et al., 1982). This indicates that this compound could
be a C23 tetracyclic terpane.

By evaluating the mass spectra data in combinations with
retention times in the first and second dimensions, and by exclud-
ing chemical structures that present completely different mass
spectra (Table 4) we suggest that the structures are tetracyclic sat-
urated compounds with terpane and/or sterane hydrocarbon skele-
tons but with differing methyl group positions and/or on the ring
sizes.

The mass spectra of des-A-ursane and des-A-oleanane
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2010) do not match with the observed mass spectra. This also
holds for kaurane (Sheng et al., 1992), phyllocladane (Sheng
et al., 1992), beyerane (Noble et al., 1985), all of which are ruled
out as they present ion m/z 123 as the base peak. Compounds
related to methyl-estrane (Norden et al., 2011), methyl-
androstane (Norden et al., 2011), methyl-nor-androstane (Bender
et al., 2013) or D-homo-androstane (Bender et al., 2013) all have a
base peak at m/z 203, and so we tentatively suggest that the unu-
sual tetracyclic compounds could have the structure with a 5 car-
bon atom ring. Changing the position of only one methyl group,
and/or changing the stereochemistry, can completely change the
mass spectra. All the structures that showed m/z 203 are assigned
as being steroid like structures presenting at least one 5 carbon
atom ring.

3.5. High resolution molecular organic geochemistry

The CENPES provided a set of basic geochemical parameters for
all the oils in our study as well as their interpreted classifications
(Table 1). In addition to this information, biomarker parameters
were calculated from GC�GC-TOFMS data (Tables 1 and 2). We

Fig. 4. GC�GC-TOFMS retention time plot (1D vs 2D) illustrating the behavior of hydrocarbons with differing ring structures.

100 J. Laakia et al. / Organic Geochemistry 106 (2017) 93–104

subjected these parameters to PCA with the following results. The
S02 oil was separated based on the highest biodegradation level
while the S05, S06 and S07 oils were separated as being the most
mature (data not shown), supporting the earlier interpretation of
saturated (Section 3.1.3) and aromatic (Section 3.2) maturation
parameters. The result was similar when selected source parame-
ters and all the saturated and aromatic maturation parameters
were used for PCA analysis (Fig. 6A). The loading plot indicates that
the most mature oils were mainly separated by parameters based
on aromatic compounds and terpane ratios (Fig. 6B). The S09 oil
could be considered immature, as this sample had extremely low

abundance of aromatic compounds, which is unusual. Therefore,
a further investigation using PCA was conducted using only peak
areas. The results showed that oil S09 was clearly separated from
the other samples (Supplementary material, Fig. 6S). The contribu-
tion plot shows a high concentration of tri- and tetracyclic terpanes
and an extremely low abundance of aromatic compounds, confirm-
ing the low maturity of this sample.

Finally, PCA was run with all the geochemical ratios in Tables 1
and 2 and also with the unusual biomarker compound ratios,
obtained by dividing each of the peak areas by the peak area of
the C24 tetracyclic terpane (Fig. 7A; Supplementary Material,

Fig. 5. Tentative structures and possible fragmentations for unusual biomarkers (1, 3, 4 and 8) in Fig. 1.

Fig. 6. PCA score [A] and loading [B] plots for the first two principal components, based on saturated and aromatic biomarker parameters. [1] Oil S02; [2] oils S05, S06 and
S07; [3] 25NH/H30 ratio; [4] some of saturated maturity parameters; [5] aromatic geochemical parameters.

Fig. 7. PCA score [A] and loading [B] plots for the first two principal components, based on saturated and aromatic biomarker parameters. [1] Conventional saturated/
aromatic maturation ratios; [2] dibenzothiophenes ratios; [3] unusual compounds 1–8/TeT24 ratios.
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Table 2S). The results show that source parameters have an
insignificant role in the separation of the oils. Since PCA simplifies
the results and can have overshadowed some parameters, the cor-
relation of unusual compound ratios was tested by creating simple
plots against source and environmental parameters. For example,
elevated values of TeT24/H30 and TeT24/Tr26 may indicate carbonate
or evaporite depositional environments whereas b-carotane/H30

and Gam/H30 indicate elevated salinity and/or water column strat-
ification levels in lacustrine environments (Sinninghe Damsté
et al., 1995; Casilli et al., 2014). 2a-MH31 is indicative of cyanobac-
teria and cyanobacterial mats and commonly elevated in oils from
carbonate marine source rock (Summons et al., 1999). The outcome
found no correlation between these known source and environ-
ment parameters and the unusual tetracyclic terpane ratios.

The key result of PCA analysis of the unusual biomarkers (group
number 3, Fig. 7B) is a trend in the same loadings as the dibenzoth-
iophenes (group number 2, Fig. 7B). A similar trend can be seen in
score plots when ratios of compound 7/TeT24 (Fig. 8A) and com-
pound 8/TeT24 (Fig. 8B) are plotted with DMDBT 4,6/1,4. The oil
S05 had no compound 7 or 8 and this could be because initial
organic input material lacked precursors of these compounds.
However, a correlation between normalized peak areas of com-
pound 7 and TeT24 is seen (Table 3), which may mean that com-
pound 7 is formed from TeT24 during maturation or they have a
common precursor. Therefore, it is proposed that these ratios are
potential maturity parameters for more mature oils, akin to ben-
zothiophene parameters which have been used for oils in the
maturity range of Ro � 1.3–1.5 (Chakhmakhchev et al., 1997). How-
ever, it is recommend that the working range of these tetracyclic
compounds be determined in more detail.

4. Conclusions

Source and maturity-related geochemical parameters were
measured for eleven Brazilian crude oils using GC�GC-TOFMS.
H30/St27, 3b-MH31/H30 % and TPP/Dia27 ratios suggested that oils
S01, S02, S08, S09 and S10 were generated from lacustrine source
rocks; S04, S05, S6, S07 and S11 from marine source rocks, and S03
is a mixture of both sources. PCA on the data indicate that the most
mature oils are S05, S06 and S07 and the least mature is S09. The
low maturity degree is also confirmed by the absence of aromatic
compounds in this sample.

Eight unusual biomarkers were revealed by the GC�GC-TOFMS
technique, some of which (compounds 3, 4 and 5) would not have
been detected using one dimensional GC–MS. A relationship
between retention time (tR) in 2D and carbon ring number was

observed for known biomarkers and by using this correlation, we
were able to obtain additional structural information about num-
ber of carbons in rings for the unusual tetracyclic compounds. Fur-
thermore, mass spectral data point to tetracyclic structures, some
of which appear similar to nor-steranes, and tentative structures
for four of these compounds are proposed.

No correlation between these novel compounds and source
parameters was observed. However, we did observe a trend
between some of these tetracyclic compounds and maturity of
the oils, e.g. the ratio of compound 7/TeT24 increasing with the
ratio of DMDBT 4,6/1,4. One explanation is that compound 7 is
more stable than the C24 tetracyclic terpane or is produced during
the maturation process. Therefore, it is propose that the compound
7/TeT24 ratio could be used in parallel with other maturation indi-
cators such as benzothiophenes (Ro � 1.3–1.5) to evaluate oils from
mature to overmature levels. The working range for these unusual
tetracyclic compounds as maturity parameters needs to be charac-
terized in more detail.
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Table 2S). The results show that source parameters have an
insignificant role in the separation of the oils. Since PCA simplifies
the results and can have overshadowed some parameters, the cor-
relation of unusual compound ratios was tested by creating simple
plots against source and environmental parameters. For example,
elevated values of TeT24/H30 and TeT24/Tr26 may indicate carbonate
or evaporite depositional environments whereas b-carotane/H30

and Gam/H30 indicate elevated salinity and/or water column strat-
ification levels in lacustrine environments (Sinninghe Damsté
et al., 1995; Casilli et al., 2014). 2a-MH31 is indicative of cyanobac-
teria and cyanobacterial mats and commonly elevated in oils from
carbonate marine source rock (Summons et al., 1999). The outcome
found no correlation between these known source and environ-
ment parameters and the unusual tetracyclic terpane ratios.

The key result of PCA analysis of the unusual biomarkers (group
number 3, Fig. 7B) is a trend in the same loadings as the dibenzoth-
iophenes (group number 2, Fig. 7B). A similar trend can be seen in
score plots when ratios of compound 7/TeT24 (Fig. 8A) and com-
pound 8/TeT24 (Fig. 8B) are plotted with DMDBT 4,6/1,4. The oil
S05 had no compound 7 or 8 and this could be because initial
organic input material lacked precursors of these compounds.
However, a correlation between normalized peak areas of com-
pound 7 and TeT24 is seen (Table 3), which may mean that com-
pound 7 is formed from TeT24 during maturation or they have a
common precursor. Therefore, it is proposed that these ratios are
potential maturity parameters for more mature oils, akin to ben-
zothiophene parameters which have been used for oils in the
maturity range of Ro � 1.3–1.5 (Chakhmakhchev et al., 1997). How-
ever, it is recommend that the working range of these tetracyclic
compounds be determined in more detail.

4. Conclusions

Source and maturity-related geochemical parameters were
measured for eleven Brazilian crude oils using GC�GC-TOFMS.
H30/St27, 3b-MH31/H30 % and TPP/Dia27 ratios suggested that oils
S01, S02, S08, S09 and S10 were generated from lacustrine source
rocks; S04, S05, S6, S07 and S11 from marine source rocks, and S03
is a mixture of both sources. PCA on the data indicate that the most
mature oils are S05, S06 and S07 and the least mature is S09. The
low maturity degree is also confirmed by the absence of aromatic
compounds in this sample.

Eight unusual biomarkers were revealed by the GC�GC-TOFMS
technique, some of which (compounds 3, 4 and 5) would not have
been detected using one dimensional GC–MS. A relationship
between retention time (tR) in 2D and carbon ring number was

observed for known biomarkers and by using this correlation, we
were able to obtain additional structural information about num-
ber of carbons in rings for the unusual tetracyclic compounds. Fur-
thermore, mass spectral data point to tetracyclic structures, some
of which appear similar to nor-steranes, and tentative structures
for four of these compounds are proposed.

No correlation between these novel compounds and source
parameters was observed. However, we did observe a trend
between some of these tetracyclic compounds and maturity of
the oils, e.g. the ratio of compound 7/TeT24 increasing with the
ratio of DMDBT 4,6/1,4. One explanation is that compound 7 is
more stable than the C24 tetracyclic terpane or is produced during
the maturation process. Therefore, it is propose that the compound
7/TeT24 ratio could be used in parallel with other maturation indi-
cators such as benzothiophenes (Ro � 1.3–1.5) to evaluate oils from
mature to overmature levels. The working range for these unusual
tetracyclic compounds as maturity parameters needs to be charac-
terized in more detail.
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