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We demonstrate the importance of including the lensing contribution in galaxy clustering analyses
with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift
bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the
autocorrelations within one bin severely biases cosmological parameter estimation with redshift surveys.
It leads to significant shifts for several cosmological parameters, most notably the scalar spectral index and
the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.
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I. INTRODUCTION

Galaxy number counts are a key observable in cosmol-
ogy and are exploited by current [1–3] and future [4–7]
cosmological observations. Usually, the galaxy counts
are compared to the predicted power spectrum of matter
density fluctuations Pðk; zÞ, which is, however, not
directly observable. The power spectrum in harmonic space
Clðz; z0Þ on the other hand is an observable [8].
Predictions for number counts have been derived

for example in Refs. [8–10]. From these expressions, it
becomes clear that, in addition to the well-known density
perturbations and redshift space distortions that are usually
included in PðkÞ, there are additional, so-called relativistic
effects that contribute to the observed number counts.
They come from the fact that we observe photons which
have been deflected on their way from a source into the
telescopes and that not only the galaxy number but also the
volume is perturbed. For typical surveys, the most impor-
tant relativistic effect is due to lensing convergence [11,12].
In this paper, we show that neglecting lensing convergence
in the analysis of a future survey like Euclid will lead to
significant biases in the estimation of cosmological param-
eters. As a consequence, care should be taken to include
lensing. Including it in the standard matter power spectrum
PðkÞ is difficult as lensing inherently mixes different scales;
this argues in favor of the adoption of quantities like the
Clðz; z0Þ where it is straightforward to include relativistic
effects.

II. METHODOLOGY

We illustrate the bias of cosmological parameters when
neglecting lensing by analyzing Clðz; z0Þ. We employ
CLASSgal [13] to compute “observed” Cl that include
the effect of lensing convergence in addition to the matter
perturbations and to redshift space distortions and “theory”
Cl that only contain the latter two and neglect lensing. We

call the former Cobs
l and the latter Cth

l . In order to mimic a
PðkÞ analysis more closely, we consider not only the full set
of Clðz; z0Þ but add a case where we limit ourselves to the
autocorrelations Clðz; zÞ. More details about power spectra
are given in Appendix A.
The survey configuration which we consider here is

consistent with the Euclid photometric catalog. The number
of galaxies per redshift and per steradian, the galaxy
density, and the magnification bias are as specified in
Ref. [14]. In order to make our work more self-contained,
we repeat them in Appendix A. For the galaxy bias, we
assume bG ¼ b0

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
[15], where b0 is varied in the

Markov chain Monte Carlo (MCMC) chains.
We adopt a covered sky fraction fsky ¼ 0.364 and divide

the N ∼ 109 photometric galaxies catalog into Nbin ¼ 5
Gaussian redshift bins containing equal numbers of galaxies
per steradian N . We assume a fiducial flat Lambda-Cold-
Dark-Matter (ΛCDM) model consistent with Planck [16],
including massive neutrinos with a normal mass hierarchy
(dominated by the heaviest neutrino mass eigenstate). More
precisely, the cosmological parameters of our fiducial model
are the reduced baryon density parameter, h2Ωb ¼ ωb ¼
2.225 × 10−2; the cold dark matter density parameter,
h2Ωcdm ¼ ωcdm ¼ 0.1198; the scalar spectral index, ns ¼
0.9645; the amplitude of curvature fluctuations, ln 1010As ¼
3.094; the Hubble constant H0 ¼ 67.27 km=s=Mpc¼
h100 km=s=Mpc; and the sum of the neutrino masses,P

mν ¼ 0.06 eV and b0 ¼ 1.
We incorporate an error Eij

l due to nonlinearities,
computed as a rescaling of the transfer functions based on
the HALOFIT corrections to the power spectrum (see
AppendixD ofRef. [14] for details; we neglect the parameter
dependence of the error Eij

l ). We also add a shot-noise
contribution N −1 to the power spectra. Thus, the
angular power spectrum of number count fluctuations is
modelled as
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CA;ij
l ¼ Cij

l þ Eij
l þN −1δij; ð1Þ

where A ¼ obs; th and i; j ¼ 1;…; Nbin are redshift bin
indices.
Similarly to the cosmic shear implementation of

Ref. [17], we adopt a Gaussian likelihood which leads
to a χ2 relative to the fiducial model given by

Δχ2 ¼
Xlmax

l¼2

ð2lþ 1Þfsky
�
ln

dthl
dobsl

þ dmix
l

dthl
− Nbin

�
; ð2Þ

where dAl ≡ detðCA;ij
l Þ and dmix

l is computed like dthl but
substituting in each term of the determinant one factor by
Cobs;ij
l . The total dmix

l is obtained by adding all different
possibilities for the insertion of Cobs;ij

l . More details can be
found in Ref. [17]. To be conservative and keep nonlinear
effects small, we choose lmax ¼ 400 in the analysis.
Angular power spectraCl and nonlinear correctionsEl are

accurately computed using the Limber approximation only for
the lensing integral along the line of sight.We then explore the
parameter spacewith the help of aMCMC approach based on
the Metropolis-Hastings algorithm [18] first using wide flat
priors (“without priors”) and a second time using Planck [16]
priors (“Planck priors”). When computing the theoretical
spectra Cth

l with which we want to fit the observed Cl, we
neglect lensing convergence. Our aim is to test the shift (bias)
of cosmological parameters due to this mistake. To speed up
the MCMC exploration of parameter space, the Cl of the
theoretical spectra are computed less accurately thanCobs

l , but
we request that Δχ2 ≲ 0.2 for the fiducial parameters when
lensing is included in the analysis. Hence, the inaccuracy in
our calculations can lead to an uncertainty of the order
of Δχ2 ≲ 0.2.

III. RESULTS

In this section, we present the results of our analysis. We
first study the case (nearly) without prior knowledge and
compare the results with a Fisher matrix based analysis.
Then, we introduce Planck priors, and in a final subsection
we analyze what our results mean for the significance of the
detection of the lensing term in the Euclid photometric
survey.

A. MCMC without priors

We first determine the bias of the parameters due to
neglecting the lensing term assuming nearly no prior
knowledge. Of course, we have to assume some priors
for the MCMC chain, but they are very wide and flat.
We have fitted the generated Cij

l data in three different
ways, where lensing convergence is (i) consistently included,
(ii) neglected, and (iii) neglected with only redshift bin
autocorrelations taken into account. The results are shown in
Table I and Fig. 1. Figure 1 shows two-dimensional contours

and one-dimensional (1D) probability distribution functions
for the marginalized posteriors of the cosmological param-
eters obtained from these analyses. The red contours
(dotted 1D distributions) show the full analysis. They should
reproduce the fiducial model. In the analyses shown by
the gray (1D solid) and blue (1D dashed) contours, lensing
is neglected. Furthermore, in the gray contours, only auto-
correlations [i.e., Clðz; zÞ] are considered, while the blue
contours use both auto and cross-correlations [i.e., Clðz; z0Þ
for all combinations of redshift bins]. The autocorrelation
case is closer to the standard PðkÞ analysis which is usually
performed in redshift bins, but caution should be taken in
comparing the two analyses since binning in redshift has
significantly different effects.
From the red contours in Fig. 1, it is evident that we

cannot determine the baryon and cold dark matter densities

TABLE I. MCMC results (flat prior). We show the mean and
best-fit values, the standard deviation, and the amplitude of the
shift of the mean and best fit with respect to the fiducial value in
units of the standard deviation, σ, of the corresponding analysis.
The large value of Δχ2 for case ii shows that cross-correlations
cannot be fitted if lensing is neglected. A shift of less than about
0.2σ is not serious and is probably due to the reduced precision
used to compute the theoretical spectra.

(i) Consistently including lensing: Δχ2 ¼ 0
Parameter Mean Best fit σ shift: Mean Best-fit

ωb 0.02979 0.02285 0.00624 1.2σ 0.1σ
ωcdm 0.1455 0.1219 0.0200 1.3σ 0.1σ
ns 0.9476 0.9642 0.0387 0.4σ <0.1σ
ln 1010As 3.047 3.097 0.065 0.7σ <0.1σ
H0ð km

s·MpcÞ 73.84 67.84 5.48 1.2σ 0.1σ

mν (eV) 0.29 0.09 0.19 1.2σ 0.2σ
b0 1.018 1.000 0.031 0.6σ <0.1σ

(ii) Neglecting lensing: Δχ2 ¼ 2064
Parameter Mean Best fit σ shift: Mean Best-fit

ωb 0.02494 0.02120 0.00556 0.5σ 0.1σ
ωcdm 0.1532 0.1435 0.0208 1.6σ 1.1σ
ns 0.8702 0.8837 0.0446 2.1σ 1.8σ
ln 1010As 2.867 2.965 0.394 0.6σ 0.3σ

H0ð km
s·MpcÞ 68.73 66.76 5.14 0.3σ 0.1σ

mν (eV) 0.43 0.41 0.16 2.3σ 2.2σ
b0 1.293 1.200 0.271 1.1σ 0.7σ

(iii) Neglecting lensing: (only autocorrelations) Δχ2 ¼ 180
Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.01982 0.01737 0.00520 0.5σ 0.9σ
ωcdm 0.1658 0.1552 0.0242 1.9σ 1.5σ
ns 0.7539 0.7675 0.0513 4.1σ 3.8σ
ln 1010As 2.449 2.719 0.465 1.4σ 0.8σ
H0ð km

s·MpcÞ 61.64 59.11 5.43 1σ 1.5σ

mν (eV) 0.41 0.41 0.14 2.6σ 2.5σ
b0 1.888 1.603 0.428 2.1σ 1.4σ
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very well with our configuration. The rather large redshift
bins of our analysis with Δz≳ 0.3 significantly smear out
the baryon acoustic oscillations, leaving only the dominant
features in the power spectrum which are fixed by the
equality scale keq ∝ ωm=H0 (at fixed radiation content and
measured in h=Mpc) and the ratio ωb=ωcdm. This leads to a

significant degeneracy between ωb, ωcdm, and H0; only the
slopes of the (ωx, H0) and the (ωb, ωcdm) contours are well
determined. The large uncertainties in these parameters, as
well as the prior mν ≥ 0, push the posterior mean value
away from the best fit (which is always very close to the
input value). We did not add realization noise in our

FIG. 1. Two- and 1-D posteriors for the cosmological parameters inferred from the full analysis including lensing (red dotted), an
analysis neglecting lensing (blue dashed) and considering only auto-correlations (gray solid). The 68% and 95% confidence intervals are
shown. Intersections between vertical and horizontal lines denote the fiducial cosmology. In this analysis no significant priors were
imposed on the parameters. Circles and squares represent the estimates for the best fits from a Fisher matrix analysis when neglecting
lensing, and for the only auto-correlations case, respectively.
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likelihood, since it is not relevant for the present study. Our
aim here is not to derive optimal parameter constraints
but to demonstrate the importance of the lensing contri-
bution in such an analysis. For this reason, our approach is
far from optimal but conservative and simple, and even
in this case, we find that not including lensing leads to
wrong results. Optimizing error contours by, e.g., intro-
ducing more nonlinear scales in the analysis is expected to
lead to even more biased results, given that the relevance of
lensing increases at higher multipoles.
If lensing is neglected in the analysis, several parameters

show a significant bias with respect to the input parameters
(given by the vertical dashed lines); cf. also Table I. First of
all, there is a very strong degeneracy between the scalar
amplitude As and the bias b0. When including lensing
which does not depend on b0, this degeneracy is broken,
and both b0 and As are determined accurately. Furthermore,
lensing (together with the magnification bias for Euclid
specifications) enhances clustering. Compensating this
with a larger value of b20As leads to too much clustering
on small scales, which, in turn, is compensated by reducing
the spectral index by ð2 − 4Þσ and by increasing the
neutrino mass. The preferred neutrino mass is around
0.4 eV, which corresponds just about to the current limits
from cosmology [16]. From the degeneracy directions in
the two-dimensional contours in Fig. 1, we can also read off

that forcing mν → mðfidÞ
ν ¼ 0.06 eV would lead to an even

larger bias in the scalar spectral index. Therefore, to go
beyond the current state and derive accurate estimates of
the neutrino masses with galaxy surveys absolutely requires
taking lensing into account.
Formodelswith additional parameters, the possibilities to

improve the fit by choosing “wrong” values of the param-
eters increase, and we may see even larger biases, leading to
even stronger spurious detections of new physics.
It is interesting that taking cross-correlations into

account helps somewhat to reduce the bias on the param-
eters. The scalar spectral index best fit in this case has a bias
of 1.8σ, as compared to 3.8σ for autocorrelations only, and
the neutrino mass is shifted by 2.2σ compared to 2.5σ;
see Table I. But this “improvement” is actually not real. It
comes to a big extent from the fact that cross-correlations
simply cannot be fitted without the lensing term as
discussed below and shown in Fig. 2. This is most manifest
in the total Δχ2 which increases from Δχ2auto ≃ 180 for the
five autocorrelation bins to more than Δχ2aþc ≳ 2000 when
adding the ten cross-correlation bins. Giving each bin
naively the same weight, we would expect an increase
by a factor 3; instead, we have Δχ2aþc=Δχ2auto ≳ 11. The
increase in the size of the parameter contours for some
parameters appears at first counterintuitive as including
more data improves our knowledge and therefore should
reduce the errors. This simple logic, however, only applies
if the data can actually be fitted by the model at hand or
if the likelihoods are Gaussian. Otherwise, different data

may prefer different model parameters and lead to an
increase not only in the total Δχ2 but also in the size of the
confidence contours.
We can understand our results by looking at the differences

in the harmonic power spectra shown in Fig. 2. The thick red
and thin blue lines are the angular spectra computed at the
best-fit values shown in Table I for the consistent case
including lensing and for the one neglecting it, respectively
(we include all redshift bin correlations). For the consistent
spectra including lensing, we compute 1-σ error bars at each
multipole by assuming, as for Eq. (2), Gaussian spectra (see
Eq. (2.13) of Ref. [14]). We consider the representative
correlations between the redshift bins ðijÞ ¼ ð11Þ; ð55Þ, and
(15). The plot shows that, when neglecting lensing, the
spectrum for the cross-correlation between redshift bins 1
and 5 lies outside the 1-σ error bars around the fiducial
spectrum including lensing. This confirms that the model
cannot fit the mock data.

B. Fisher analysis without priors

The shift of best-fit parameters and the change in the
figure of merit due to neglecting relativistic corrections
(hence, in particular, neglecting lensing) has been studied
previously; see, e.g., Refs. [19–22]. However, these pre-
vious works did not include massive neutrinos, and they
used a Fisher matrix analysis which gives quantitative
estimates for shifts only if these are significantly less than
one standard deviation. Hence, the results obtained in
these works can only be trusted qualitatively, while the
MCMC study presented here gives quantitative results and

FIG. 2. The thick red and the thin blue lines correspond to the
spectra at the best-fit values estimated by consistently including
lensing and by neglecting it, respectively. Gaussian error bars
accounting for cosmic variance and shot noise for the consistent
analysis are shown as gray regions. The indices for the correlated
redshift bins are shown in the legend. The model neglecting
lensing cannot fit the data, especially due to redshift cross-
correlations.
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demonstrates that large biases, exceeding by far 1σ, are
to be expected even for not very ambitious survey
specifications.
We illustrate this here by repeating our analysis with a

Fisher matrix technique. The results are presented in Fig. 3,

where we also show the shifts of the best-fit values
estimated via Fisher matrices (see Appendix B for details).
Fisher matrix contours are reported for both cases, without
and including lensing. This information is also reported in
Table II, where the standard deviations, σ, refer to the case

FIG. 3. 2D and 1D posteriors for the cosmological parameters inferred from the Fisher analysis excluding (orange solid) and including
(red dotted) lensing. We stress that, in the former case, to compute error ellipses within the Fisher formalism, we forecast parameter
constraints in a universe where lensing is absent (see the text for more details). The 68% and 95% confidence intervals are shown.
Intersections of dashed lines denote the fiducial cosmology. The expected systematic shifts in the best fit due to neglecting lensing in the
theoretical modeling are shown, including all bin correlations (circles) and including only autocorrelations (squares). For comparison,
we also show the corresponding results from the MCMC analysis. While the Fisher formalism is reliable for a qualitative understanding
of parameter degeneracies, the systematic errors are seriously misestimated. See Table II for more details about statistical quantities.

LENSING CONVERGENCE AND THE NEUTRINO MASS … PHYSICAL REVIEW D 94, 043007 (2016)

043007-5



without lensing, which provides more conservative infor-
mation about the importance of the systematic error. We
stress that in both cases, without and with lensing, Fisher
matrices only forecast error contours around a universe
described by the fiducial parameters and assume a Gaussian
likelihood. While the MCMC analysis allows us to fit the
wrong or the correct model to the data, in the Fisher
context, this is not possible. This means that in the Fisher
formalism we predict the error contours for both a model
and a universe without lensing. Hence, while the red dotted
contours with lensing can be compared between Figs. 1 and
3, the other contours have no correspondence between the
two figures. In our case, Fisher matrices provide a good
qualitative description of degeneracy between different
parameter constraints. The 68% confidence intervals are
in disagreement with MCMC results by a factor 2–3, but
the shapes and inclinations of the ellipses very roughly
follow the MCMC contours. However, the magnitude and
direction of the best-fit shift in parameter space due to
neglecting lensing is seriously misestimated. Indeed, the
first-order formalism that we use to estimate the shift in the
best fits due to a systematic error is only valid to the extent
that the shift is small compared to the errors (error contours
are themselves meaningful only close enough to the
fiducial cosmology) and also assuming that the systematic
error does not affect the ellipse contours [23]. Neither of
these conditions is actually satisfied.

C. MCMC with Planck priors

A more realistic analysis makes use of prior knowledge
of parameters from previous experiments. We therefore
repeat our MCMC analysis using Planck priors for all the
cosmological parameters except the bias, which is not
measured in Planck, and the neutrino mass. The latter is our
most interesting parameter, and we want to test how
strongly it is biased in an analysis which neglects lensing.

Planck chains are publicly available through the Planck
Legacy Archive. In this paper, we use the chain for the
extended model with a free neutrino mass based on the
Planck TT, TE, EEþ lowP likelihoods (Eq. (54c) in [16]).
We compute the covariance matrix C for the cosmological
parameters ~x ¼ ðωb;ωcdm; ns; As; H0Þ and assume a
Gaussian distribution for the prior. The χ2 relative to the
fiducial model including the Planck prior is then the Δχ2 in
Eq. (2) plus

Δχ2prior ¼
X
i;j

ðxi − xfidi Þ2C−1
ij ðxj − xfidj Þ2; ð3Þ

where ~xfid denotes parameters of the fiducial model andC−1

is the inverse of the covariance matrix. In this way, we
marginalize the Planck prior over the neutrino mass and the
optical depth, τ, which are parameters that we want to leave
free sincewewant to determine the first and our survey is not
sensitive to the second. The results are shown in Table III
and Fig. 4.

TABLE II. Fisher matrix results for the shift in the best-fit
values due to neglecting lensing, in units of standard deviations
(see Fig. 3). The numbers in parentheses refer the case including
only bin autocorrelations. For comparison, we also give in
columns 4 and 5 the corresponding values from the MCMC
analysis presented in Table I and Fig. 1. While Fisher matrices
give a good qualitative description of parameter degeneracies,
estimates of the shifts in the best fits seriously misestimate the
magnitude and direction in parameter space.

Parameter Shift of best fit For MCMC

ωb 1.2σ (0.9σ) −0.1σ (−0.9σ)
ωcdm 1.7σ (1.1σ) 1.1σ (1.5σ)
ns −1.9σ (−1.3σ) −1.8σ (−3.8σ)
ln 1010As −1.1σ (0.005σ) −0.3σ (−0.8σ)
H0ð km

s·MpcÞ 1.2σ (0.9σ) −0.1σ (−1.5σ)
mν (eV) 3.3σ (0.6σ) 2.2σ (2.5σ)
b0 1.7σ (0.1σ) 0.7σ (1.4σ)

TABLE III. MCMC results with Planck priors. We show the
mean and best-fit values, the standard deviation, and the
amplitude of the shift of the mean and best fit with respect to
the fiducial value in units of the standard deviation, σ, of the
corresponding analysis. The large value of Δχ2 for case ii shows
that cross-correlations cannot be fitted if lensing is neglected.

(i) Consistently including lensing: Δχ2 ¼ 0
Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02223 0.02226 0.00013 0.2σ < 0.1σ
ωcdm 0.1200 0.1196 0.0011 0.2σ 0.2σ
ns 0.9642 0.9651 0.0041 0.1σ 0.1σ
ln 1010As 3.092 3.098 0.026 0.1σ 0.2σ
H0ð km

s·MpcÞ 67.08 67.25 0.70 0.3σ < 0.1σ

mν (eV) 0.08 0.04 0.05 0.4σ 0.4σ
b0 1.005 0.994 0.018 0.3σ 0.3σ

(ii) Neglecting lensing: Δχ2 ¼ 2082
Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02220 0.02219 0.00017 0.3σ 0.4σ
ωcdm 0.1215 0.1214 0.0014 1.2σ 1.1σ
ns 0.9643 0.9640 0.0049 < 0.1σ 0.1σ
ln 1010As 3.085 3.090 0.034 0.3σ 0.1σ
H0ð km

s·MpcÞ 65.66 65.64 0.87 1.8σ 1.9σ

mν (eV) 0.35 0.34 0.06 4.8σ 4.7σ
b0 1.072 1.070 0.022 3.3σ 3.3σ

(iii) Neglecting lensing: (only autocorrelations) Δχ2 ¼ 230
Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02185 0.02181 0.00014 2.8σ 3σ
ωcdm 0.1240 0.1240 0.0013 3.4σ 3.3σ
ns 0.9529 0.9536 0.0044 2.7σ 2.5σ
ln 1010As 3.079 3.081 0.033 0.5σ 0.4σ
H0ð km

s·MpcÞ 62.72 62.71 1.01 4.5σ 4.5σ

mν (eV) 0.50 0.52 0.05 8.6σ 8.8σ
b0 1.127 1.127 0.022 5.7σ 5.7σ

CARDONA, DURRER, KUNZ, and MONTANARI PHYSICAL REVIEW D 94, 043007 (2016)

043007-6



Cosmological parameters in this case are clearly better
determined than for the case without priors. While the
spectral index ns shows now a smaller relative shift, the
neutrino masses and galaxy bias actually acquire larger
shifts. The incompatibility of the data and model pulls the
Hubble parameter H0 away from the fiducial value by over
4σ in spite of the Planck prior. Hence, while the details of
the analysis are important in determining the actual size of
error bars and degeneracies in parameter space, a large bias

2σ − 9σ in the neutrino masses is a feature that persists in
all the analyses here performed.

D. Significance of the lensing detection

We can quantify the strength with which we detect the
lensing signal in our setup with the help of Bayesian model
probabilities, comparing the case with lensing to the case
without lensing. To do this, we introduce formally an

FIG. 4. 2D and 1D posteriors for the cosmological parameters inferred using Planck priors. We show the full analysis including
lensing (red dotted), an analysis neglecting lensing (blue dashed), and considering only autocorrelations (gray solid). The 68% and
95% confidence intervals are shown. Intersections between vertical and horizontal lines denote the fiducial cosmology. See Table III for
numerical values of the statistical quantities.
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extended model ML with an additional “lensing ampli-
tude” parameter AL that multiplies the lensing contribution
in the model. For the “with lensing”modelM1, we then set
AL ¼ 1, while the “without lensing” case M0 corresponds
to AL ¼ 0. In this way, the two models are nested within the
extended model, and we can use the Savage-Dickey density
ratio (SDDR) method to derive model probabilities (see,
e.g., Ref. [24] for an explanation of the SDDR and Sec. III
of Ref. [25] for a more detailed description of the same
reasoning as that used here); with the SDDR, the Bayes
factor B between the case with fixed AL and the general
case is given by the posterior for AL (marginalized over all
other parameters) of the general model divided by prior,
both taken at the nested point,

Bx ≡ PðDjMxÞ
PðDjMLÞ

¼ PðAL ¼ xjD;MLÞ
PðAL ¼ xjMLÞ

: ð4Þ

Here, P denotes probabilities, D denotes the data, and x is
either 0 or 1. The Bayes factor between two models with
given fixed values for AL is then simply the ratio of the
Bayes factors relative to the extended model,

Bxy ≡ PðDjMxÞ
PðDjMyÞ

¼ PðDjMxÞ
PðDjMLÞ

PðDjMLÞ
PðDjMyÞ

¼ Bx

By

¼ PðAL ¼ xjD;MLÞ
PðAL ¼ yjD;MLÞ

; ð5Þ

where the last equality holds if PðAL ¼ xjMLÞ ¼
PðAL ¼ yjMLÞ, e.g., for a uniform prior in AL, which is
what we will use. We see that the only information needed
to determine Bxy is the relative value of the posterior at
AL ¼ x and at AL ¼ y, and this is approximately given by
the χ2 difference between these cases. As by construction
AL ¼ 1 (the case where we include lensing consistently)
has Δχ2 ¼ 0, we find simply that lnB01 ≈ −Δχ2no lensing=2.
We find thus that lnB01 ≈ −1000 when using auto- and
cross-correlations and lnB01 ≈ −90 to −115 when only
taking into account autocorrelations. Both Bayes factors
are way out on the often-used Jeffreys scale [26] where
anything larger than 5 is considered as strong. In other
words, lensing is detected in both cases with overwhelming
evidence.
We can also translate the Δχ2 value into an order-of-

magnitude estimate of “the number of sigmas” with which
we detect the lensing signal in our setup. Assuming a
Gaussian probability distribution function for AL so that
Δχ2 ≈ ðAL − 1Þ2=σ½AL�2, we find that σ½AL� needs to be
0.022 in order to explain the observed Δχ2 values of 2064
and 2082. This implies that the lensing is measured roughly
at the 45σ level. Lensing is clearly a strong signal in the
photo-z type survey that we have considered here. As also

discussed above, most of the lensing signal is contained in
the off-diagonal spectra. The Δχ2 values of 180 and 230
when only looking at the autocorrelations correspond
to about 13σ to 15σ, roughly comparable to the strength
of the lensing detection in the Planck temperature power
spectrum [16].
This also confirms the result of Ref. [14], which found

that the lensing amplitude AL can be determined to an
accuracy of the order of (1–2)% with a Euclid like photo-
metric survey, with the constraints coming especially from
the off-diagonal (interbin) correlations.

IV. CONCLUSIONS

In this paper, we have shown that neglecting lensing
convergence leads to large shifts in the best-fit values of
cosmological parameters for the data sets available from
future surveys. As in the CMB, where the lensing of the
power spectra is detected at over 10σ [16], it will become
mandatory to include lensing also in the analysis of galaxy
surveys.
In the case studied here, we have seen mainly an increase

in the neutrino massmν and a decrease in the spectral index
ns when neglecting lensing. Also, the product Asb20 which
determines the amplitude of fluctuations increases. This
comes from the fact that the magnification bias for the
Euclid specifications is relatively large [14] (see also
Appendix A), so that the density-lensing correlation in
bins with z > 1 contributes with a positive sign. At smaller
redshifts, which mainly measure correlations on smaller
scales, this has to be corrected since there the total lensing
term ∝ ð5s − 2Þκ contributes negatively. This can be
achieved by lowering ns and increasing the neutrino mass.
We note that the specific shifts which we have obtained

in our analysis depend on the details of the survey. The
main, generic result is that, in order to estimate cosmo-
logical parameters reliably with future galaxy surveys, we
have to correctly include lensing with the measured
magnification bias function, sðzÞ, defined by

sðzÞ≡ ∂log10Nðz;m < m�Þ
∂m�

;

where m� is the limiting magnitude of the survey and
Nðz;mÞ is the galaxy luminosity function of the survey at
redshift z.
The fact that deep galaxy surveys are so sensitive to

lensing, however, is not only a curse but also a blessing. It
means that these surveys will allow us to determine a map
of the lensing potential at different redshifts, i.e., perform
“lensing tomography” with galaxy clustering. This will
be a very interesting alternative to lensing tomography
with shear measurements proposed, e.g., in Ref. [27].
Both techniques are challenging, but they have different
systematic errors and allow valuable cross-checks. So,
clearly both paths should be pursued.
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APPENDIX A: THE EUCLID
PHOTOMETRIC SURVEY

Angular power spectra, depending on two redshifts zi
and zj, can be written as integrals of transfer functions
Δi

lðkÞ over wave numbers k:

Cij
l ¼ 4π

Z
d ln kPRðkÞΔi

lðkÞΔi
lðkÞ: ðA1Þ

Here, PRðkÞ ¼ Askns−1 is the primordial power spectrum
of curvature perturbations. The transfer functions Δi

lðkÞ
include an integral over a window function WiðzÞ describ-
ing the binning in redshift, multiplied by the number of
galaxies per redshift interval dN=dz:

Δi
lðkÞ ¼

Z
dz

dN
dz

WiðzÞΔlðz; kÞ: ðA2Þ

The main contributions to the transfer functions Δlðz; kÞ
appearing in the integral of Eq. (A2) are given by the
intrinsic galaxy density perturbation, redshift space dis-
tortions, and lensing effects:

Δlðz; kÞ ¼ bGðzÞδðz; kÞjlðkrðzÞÞ þ
k
H

Vðz; kÞ d
2jlðkrðzÞÞ
dðkrðzÞÞ2

þ
�
2 − 5s

2

�
lðlþ 1Þ

×
Z

rðzÞ

0

d~r
rðzÞ − ~r
rðzÞ~r ½Φð~z; kÞ þΨð~z; kÞ�jlðk~rÞ:

ðA3Þ

We introduced the Fourier transforms of the density
perturbations (in comoving gauge), of the metric perturba-
tions Φ, Ψ and of the velocity potential, vi ≡ −∂iV, in the
Newtonian gauge.2 The functions jlðkrðzÞÞ denote the
spherical Bessel functions. The integral along the line of
sight describes the effects of lensing convergence which
affects number counts by magnifying the sources, hence
affecting their number density per steradian. The factor sðzÞ

is called the magnification bias, and it depends on the
luminosity function of the given galaxy population. Note
that for the special value s ¼ 2=5 lensing has no effect on
number counts, while it has opposite sign for larger or
smaller values, respectively.
Following Refs. [5,15], we consider Euclid photometric

specifications and approximate the number of galaxies per
redshift and per steradian, the galaxy density, the covered
sky fraction, the galaxy bias, and magnification bias as

dN
dzdΩ

¼ 3.5 × 108z2 exp

�
−
�
z
z0

�
3=2

�
for 0 < z < 2.0;

ðA4Þ

d ¼ 30 arcmin−2; ðA5Þ

fsky ¼ 0.364; ðA6Þ

bGðzÞ ¼ b0
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
; ðA7Þ

sðzÞ ¼ s0 þ s1zþ s2z2 þ s3z3; ðA8Þ

where z0 ¼ zmean=1.412 and the median redshift is
zmean ¼ 0.9. We set b0 ¼ 1 in our fiducial model and
then vary it in the MCMC chains. The magnification
bias is computed in Ref. [14], and the coefficients are
s0 ¼ 0.1194, s1¼ 0.2122, s2 ¼ −0.0671, and s3 ¼ 0.1031.
Figure 5 shows the division into five Gaussian bins
containing the same number of galaxies. For numerical
convenience, we set the lower redshift bound to z ¼ 0.1;
this affects our results by a negligible amount. Figure 6
shows the redshift dependence of galaxy and magnification
bias. We assume constant galaxy bias and magnification

FIG. 5. Euclid photometric galaxy density distribution (black
line) with a division into five bins containing the same number of
galaxies.

1https://github.com/cmbant/getdist.
2With initial conditions such that Rðzin; kÞ ¼ 1.
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bias within each bin, the values being determined by the
mean redshift of the bin.

APPENDIX B: BASIC EXPRESSIONS
FOR THE FISHER ANALYSIS

The Fisher approach used in the literature [19–22] and
applied in Sec. III B for comparison with the results from
our MCMC forecasts is based on the Fisher information
matrix given by

Fαβ ¼
X
l

X
ðijÞðpqÞ

∂Cij
l

∂θα
∂Cpq

l

∂θβ Cov−1Cl½ðijÞ;ðpqÞ� ; ðB1Þ

where θa denotes a given cosmological parameter. We
compute the derivatives with a five-point stencil [14], and
the derivative step for each parameter is set with an iterative
procedure to be of the same size as the 1-σ levels obtained
when fixing the other parameters σθα ¼ 1=

ffiffiffiffiffiffiffiffi
Fαα

p
. We

verified that the final results do not depend significantly

on the particular step values. We sum up to l ¼ 400, while
the second sum is over the matrix indices ðijÞ with i ≤ j
and ðpqÞ with p ≤ q which run from 1 to the total number
of bins when all bin auto- and cross-correlations are taken
into account. Using the same notation as in Eq. (1), the
covariance matrix is

CovCl½ðijÞ;ðpqÞ� ¼
CA;ðipÞ
l CA;ðjqÞ

l þ CA;ðiqÞ
l CA;ðjpÞ

l

ð2lþ 1Þfsky
: ðB2Þ

If only autocorrelations are taken into account, the covari-
ance must be first reduced to the relevant components and
subsequently inverted. We estimate the shift in the best-fit
values due to the wrong model assumption ~Cl by defining
the systematic error as ΔCl ¼ Cl − ~Cl [21,23,28,29],

Δθα ¼
X
β

½ð ~FÞ−1�αβBβ; ðB3Þ

where we defined

Bβ ¼
X

ðijÞðpqÞ

X
l

ΔCij
l
∂ ~Cpq

l

∂θβ Cov−1~Cl½ðijÞ;ðpqÞ�
: ðB4Þ

A tilde always denotes the quantity computed according to
the wrong model ~Cl. This expression assumes that the
systematic error does not affect the covariance, and it is
only valid if the shifts are small compared to the variances
Δ2

θα
=σ2θα < 1. As mentioned in the text, neither of these

hypothesis is satisfied in our case. Furthermore, note that
Eq. (B1) can only be used to estimate error contours by
assuming that the underlying universe is described either by
Cl or by ~Cl and does not give information about error
contours obtained when fitting the wrong model ~Cl to data
consistent with the full Cl spectra.
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