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It has been conjectured that the speed of sound in holographic models with UV fixed points has an upper
bound set by the value of the quantity in conformal field theory. If true, this would set stringent constraints
for the presence of strongly coupled quark matter in the cores of physical neutron stars, as the existence of
two-solar-mass stars appears to demand a very stiff equation of state. In this article, we present a family of
counterexamples to the speed of sound conjecture, consisting of strongly coupled theories at finite density.
The theories we consider include N ¼ 4 super Yang-Mills at finite R-charge density and nonzero gaugino
masses, while the holographic duals are Einstein-Maxwell theories with a minimally coupled scalar in a
charged black hole geometry. We show that for a small breaking of conformal invariance, the speed of
sound approaches the conformal value from above at large chemical potentials.
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I. INTRODUCTION

Quantitatively understanding the properties of strongly
interacting matter in the cold and extremely dense region
realized in the cores of neutron stars constitutes a long-
standing problem in nuclear physics [1,2]. The situation is
complicated by a lack of first principles field theory tools;
perturbative QCD is only applicable at extremely high
densities [3,4], while lattice Monte Carlo simulations are
altogether prohibited due to the sign problem [5]. Add
to this the fact that robust nuclear physics methods—
including their modern formulations, such as the Chiral
Effective Theory [6]—are only reliable below the nuclear
saturation density ns ≈ 0.16=fm3 [7]. It becomes clear that
fundamentally new approaches to the problem are urgently
needed. In this context, a highly promising avenue is the
application of the holographic duality [8], which has indeed
been lately applied to the description of both the nuclear
[9–16] and quark matter [17–19] phases inside a neutron
star.
The most fundamental quantity that governs the thermo-

dynamic behavior of neutron star matter is its equation of
state (EoS), i.e. the functional dependence of its energy
density ε on the pressure p. Oftentimes, it is, however, more
illuminating to inspect the derivative ∂p=∂ε, which equals
the speed of sound squared in the system, v2s . This quantity
namely describes the stiffness of the matter—a property
needed to build massive stars capable of resisting gravi-
tational collapse into a black hole. Causality restricts this
parameter to obey the relation v2s < 1 (and thermodynamic

stability guarantees that v2s > 0), but it has been widely
speculated that a more restrictive bound might exist as well.
In particular, the lack of known physical systems in a
deconfined phase with a speed of sound exceeding the
conformal value v2s ¼ 1=3 has prompted a conjecture that
this might represent a theoretical upper limit for the
quantity [20,21] in the same spirit that η=s ¼ 1=ð4πÞ
was initially thought to represent a lower limit for the
shear viscosity to entropy ratio in any strongly coupled
fluid [22]. Some support for this argument comes from the
fact that both the inclusion of a nonzero mass to a
conformal system as well as the introduction of perturba-
tively weak interactions in an asymptotically free theory are
known to lead to a speed of sound below the conformal
limit.
The speed of sound conjecture has been widely dis-

cussed in the context of neutron star physics, and it has
been shown to be in rather strong tension with the known
existence of two-solar-mass neutron stars [23,24], which
requires a very stiff EoS [25]. This points toward a highly
nontrivial behavior of vs as a function of the baryon
chemical potential. Namely, at low densities, the speed
of sound is known to have a very small value, while its
behavior at asymptotically large μB is a logarithmic rise
toward v2s ¼ 1=3. This implies that, should the speed of
sound bound be violated somewhere, vs needs to possess at
least two extrema, a maximum and a minimum, between
which the quantity may either behave continuously or jump
from the maximum to the minimum value.
Recalling the success of holographic methods in the

description of strongly coupled quark gluon plasma pro-
duced in heavy ion collisions [2,26], it is clearly worth-
while to study the behavior of the speed of sound in
holographic models of quark matter. Here, one, however,
quickly realizes that the speed of sound bound is not easily
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violated; all known examples of asymptotically five-
dimensional Anti-de Sitter spacetime (AdS5) geometries
predict v2s ≤ 1=3 [21].1 The known violations of the bound
occur in theories that do not flow to a four-dimensional
conformal field theory (CFT) in the UV and thus do not
correspond to ordinary renormalizable field theories in four
dimensions. Such examples include the 3þ 1-dimensional
brane intersections D4 −D6, D5 −D5, and D4 −D8 (the
Sakai-Sugimoto model [29]), corresponding to the respec-
tive speeds of sound v2s ¼ 1=2; 1; 2=5 [30–32]. It is well
known that, even after a compactification to 3þ 1 dimen-
sions, it is not possible to disentangle four-dimensional
dynamics from the additional degrees of freedom that live
on the higher-dimensional color branes, and thus the
thermodynamic properties may be very different from a
bona fide four-dimensional theory. Another class of exam-
ples that violate the bound are nonrelativistic geometries,
such as the Lifshitz ones [33–36], for which a scaling
symmetry fixes ∂p=∂ε ¼ z=3, with z the dynamical expo-
nent of the dual nonrelativistic theory. For any z > 1, the
EoS of the nonrelativistic theory is stiffer than the con-
formal one. In this case, the violation of the bound is in
some sense trivial, since the dual theory is nonrelativistic.
For the reasons listed above, it is very challenging to

build a holographic description for dense strongly inter-
acting quark matter that would allow for the existence of
deconfined matter inside even the heaviest neutron stars
observed. Indeed, in a recent study of hybrid neutron
stars by the present authors [19], where a holographic
EoS was constructed for the quark matter phase, it was
discovered that the stars became unstable as soon as even
a microscopic amount of quark matter was present in
their cores. This was attributed to a very strong first order
deconfining phase transition in the model, which was
ultimately due to the relatively low stiffness of the
conformal quark matter EoS, corresponding to
v2s ¼ 1=3. These findings are in line with the analysis
of Ref. [37], where it was seen that large speeds of sound
were necessary to obtain stars containing nonzero
amounts of quark matter in their cores.
One possible resolution to the speed of sound puzzle is

clearly that the quantity rises to a value vs > 1=
ffiffiffi
3

p
in the

nuclear matter phase, then discontinuously jumps to a
low value at a first order deconfinement phase transition,
and finally slowly rises toward the conformal limit in the
deconfined phase. In the paper at hand, we propose
another viable scenario, involving a violation of the speed
of sound bound in the deconfined phase and thereby
paving the way to the existence of quark matter in
neutron star cores. We do this by constructing a holo-
graphic EoS for dense deconfined matter that not only
exhibits a speed of sound above the conformal limit but

in addition involves an asymptotically anti-de Sitter
(AdS) spacetime. This provides an explicit counterexam-
ple to the common lore that asymptotically AdS space-
times necessitate vs < 1=

ffiffiffi
3

p
,2 and suggests that there

may exist a large class of realistic holographic models for
dense deconfined QCD matter that involve speeds of
sound significantly above this bound.
Our paper is organized as follows. In Sec. II, we

consider a class of models involving an Einstein-Maxwell
action with a minimally coupled charged bulk scalar and
show that the speed of sound bound is violated in it for
different values of the charge and the mass of the scalar.
In Sec. III, we consider a top-down string theory setup in
this class, dual to N ¼ 4 super–Yang-Mills theory at
nonzero R-charge density and confirm that the speed of
sound is larger than the conformal value before the
system becomes unstable toward the formation of a
homogeneous condensate. In Sec. IV, we finally discuss
the implications of our findings, while Appendixes A, B,
and C are devoted to a closer look at some technical
details of our computation.

II. SPEED OF SOUND AT FINITE DENSITY

In order to construct a holographic model for a finite
density system, in which the speed of sound bound might
be violated, we should clearly incorporate both a nonzero
charge density and a breaking of conformal invariance. The
simplest such model is Einstein-Maxwell gravity mini-
mally coupled to a scalar field (charged or not), for which
the action reads

S ¼ 1

16πG5

Z
d5x½R − L2F2 − jDϕj2 − Vðjϕj2Þ�; ð2:1Þ

where L will be fixed to be equal to the AdS radius. The
field ϕ appearing here is a complex scalar with charge q,
such that the covariant derivative acting on it reads

Dμϕ ¼ ∂μϕ − iqAμϕ: ð2:2Þ

The potential V can, on the other hand, be expanded to
quadratic order as

Vðjϕj2Þ≃ −
12

L2
þm2jϕj2; m2L2 ¼ ΔðΔ − 4Þ: ð2:3Þ

Following the usual AdS/CFT dictionary, we take the scalar
field to be dual to a relevant operator of dimension
1 < Δ < 4, while the gauge field Aμ is dual to a Uð1Þ
conserved current. The equations of motion following from
this action are

1For two exceptions to this that are, however, dynamically
unstable, see Refs. [27,28].

2Note, however, that there is no apparent reason on the field
theory side to suspect that the speeds of sound in theories that are
UV complete would exhibit a universal upper bound.
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DMð
ffiffiffiffiffiffi
−g

p
gMNDNϕÞ −m2 ffiffiffiffiffiffi

−g
p

ϕ ¼ 0

4L2∂Mð
ffiffiffiffiffiffi
−g

p
FMNÞ ¼ iq

ffiffiffiffiffiffi
−g

p
gMN ½ϕ�ðDMϕÞ − ðDMϕÞ�ϕ�

TðAÞ
MN þ TðϕÞ

MN ¼ RMN −
1

2
RgMN

TðAÞ
MN ¼ 2L2

�
FMAFN

A −
1

4
F2gMN

�

Tϕ
MN ¼ 1

2
½ðDMϕÞ�DNϕþ ðDNϕÞ�DMϕ

− ðjDϕj2 þ VÞgMN �: ð2:4Þ

If the scalar field is turned off, i.e. ϕ ¼ 0, a homo-
geneous and isotropic charged state in the field theory has a
gravity dual description given by the AdS Reissner-
Nordström (AdSRN) metric

ds2 ¼ L2
dr2

r2fðrÞ þ
r2

L2
½−fðrÞdt2 þ d~x2�;

fðrÞ ¼ 1þQ2

r6
−
M
r4

: ð2:5Þ

The gauge potential in the AdSRN solution is

A0 ¼ μ

�
1 −

�
rH
r

�
2
�
; ð2:6Þ

where rH is the position of the black hole horizon and

M ¼ r4H þQ2

r2H
; μ ¼

ffiffiffi
3

p Q
2L2r2H

: ð2:7Þ

The Hawking temperature is then

T ¼ rH
2πL2

ð2 − r−6H Q2Þ: ð2:8Þ

At the critical value Qc ¼
ffiffiffi
2

p
r3H, the solution becomes

extremal (T ¼ 0). The horizon radius can be determined by
the temperature and the chemical potential to be

rH
L2

¼ T
6

 
3π þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π2 þ 24μ2

T2

r !
: ð2:9Þ

The AdSRN solution is dual to a charged state in
a CFT, and therefore the speed of sound is fixed to the
conformal value v2s ¼ 1=3. In order to deviate from this
value, we need to break conformal invariance. For this, we
will consider a nonvanishing scalar field ϕ ≠ 0. The
asymptotic expansion of the scalar close to the AdS
boundary is

ϕ≃
�
L
r

�
4−Δ

L4−Δ ~ϕð0;0Þ þ
�
L
r

�
Δ
LΔϕð0;0Þ: ð2:10Þ

In this expansion, the first term has the interpretation as a
deformation of the CFT by the relevant operator with a
coupling J ≡ ~ϕð0;0Þ, while ϕð0;0Þ determines the expectation
value of the dual operator. An explicit breaking of conformal
invariance then corresponds to solutions for which J ≠ 0.
In order to simplify the analysis, we will restrict to a

small breaking of conformal invariance J=μ4−Δ ≪ 1 and/or
J=T4−Δ ≪ 1. In this case, the amplitude of the scalar field
will be small and can be treated as a probe in the AdSRN
geometry. Furthermore, we can approximate the potential
by the quadratic and constant term, as in (2.3), and reduce
the problem to solving the linearized equations of motion
for the scalar field

1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMNð∂Nϕ − iqANϕÞÞ

− iqAMgMNð∂Nϕ − iqANϕÞ −m2ϕ ¼ 0: ð2:11Þ

Taking ϕ ¼ ϕðrÞ and defining Δ ¼ 2þ ν, the equation
of motion in the AdSRN background reduces to

ϕ00 þ
�
5

r
þ f0

f

�
ϕ0 þ

�
4 − ν2

r2f
þ q2L4

r4f2
A2
0

�
ϕ ¼ 0: ð2:12Þ

For computational purposes, it will be convenient to work
with a different radial coordinate u ¼ r2H=r

2 and introduce
a parameter Q such that Q ¼ r3HQ. In this coordinate, the
equation of motion takes the form

0 ¼ ϕ00 þ ζ1ðuÞ
u

ϕ0 þ ζ2ðuÞ
u2

ϕ; ð2:13Þ

where

ζ1 ¼
uþ 2

Q2u2 − u − 1
þ 1

u − 1
þ 2

ζ2 ¼
u½3q2Q2ðu − 1Þ − 4ðν2 − 4ÞðQ2u − 1Þ� þ 4ðν2 − 4Þ

16ðu − 1ÞðQ2u2 − u − 1Þ2 :

ð2:14Þ

In these coordinates, the horizon is at u ¼ 1, while the
asymptotic AdS boundary is at u ¼ 0. The expansion close
to the boundary is

ϕ≃ α−u1−
ν
2 þ αþu1þ

ν
2; ð2:15Þ

where α− and αþ are the coefficients of the non-
normalizable and normalizable modes, respectively. They
are related to the coefficients in the expansion (2.10) as

J¼ ~ϕð0;0Þ ¼ α−

�
rH
L2

�
2−ν

; ϕð0;0Þ ¼ αþ

�
rH
L2

�
2þν

: ð2:16Þ
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A. Near-extremal solutions

Our first goal will be to determine the behavior of the
speed of sound in the limit of large densities μ ≫ T. The
AdSRN geometry will be very close to the extremal
solution, and it will deviate only in the neighborhood of
the black hole horizon, where in the extremal case the
geometry becomes AdS2 × R3 while in the nonextremal
case there is an ordinary black hole horizon.
Let us introduce a small parameter ϵ ≪ 1, such that the

solution becomes extremal when ϵ → 0:

Q ¼
ffiffiffi
2

p
ð1 − ϵÞ: ð2:17Þ

In the region away from the horizon, 1 − u ≫ ϵ, we can
simply set ϵ ¼ 0 to leading order and solve the equations
of motion. Deviations from the extremal limit can be
computed in a systematic way by means of a perturbative
expansion in ϵ.
In the region close to the horizon 1 − u ∼ ϵ the naive

expansion in ϵ breaks down, since the geometry deviates
from the extremal AdSRN. Instead, one can take a near-
horizon expansion by introducing a new radial coordinate v
defined as

u ¼ 1 −
4

3
ϵv ð2:18Þ

and expanding the equations to leading order in ϵ. The
resulting solution will be a good approximation in the near-
horizon region 1 ≫ 1 − u. We impose the condition that the
solution is regular at the horizon, which completely
determines it up to an overall constant.
A full solution valid throughout the full geometry can be

constructed by matching both kinds of expansions in the
overlapping region 1 ≫ 1 − u ≫ ϵ. We give the full details
of the calculation and the matching in Appendix A 1.
The ratio between the coefficients of the normalizable and
non-normalizable modes in the boundary expansion (2.15)
is given in (A11), reading schematically

αþ
α−

¼ Zν;q
1þ β1ð4ϵ9 Þλ=

ffiffi
3

p

1þ β2ð4ϵ9 Þλ=
ffiffi
3

p ; ð2:19Þ

where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −

q2

2
− 1

r
: ð2:20Þ

We see that, depending on whether λ is real or imaginary,
there can be two qualitatively different behaviors. For
imaginary λ, the ratio will have an oscillatory behavior
with a period that depends logarithmically on ϵ. On the
other hand, if λ is real, the terms depending on ϵ can be
neglected in a first approximation. For the rest of this
section, we will take λ to be real, which imposes a lower
bound on the conformal dimension of the scalar,

ν2 > 1þ q2

2
⇒ Δ > 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

2

r
≥ 3: ð2:21Þ

This agrees with the condition that the effective mass of the
scalar field is above the Breitenlohner-Freedman bound in
the two-dimensional Anti-de Sitter spacetime (AdS2)
region of the extremal black hole [38,39]:

m2
effR

2
AdS2

≥ −
1

4
; R2

AdS2
¼ R2

12
; m2

eff ¼ m2 −
q2

2R2
:

ð2:22Þ

Assuming the bound is satisfied, the ratio between the two
coefficients is, to leading order in ϵ,

αþ
α−

¼ −3ν
Γð1 − νÞΓð1þν

2
þ λþq

2
ffiffi
3

p ÞΓð1þν
2

þ λ−q
2
ffiffi
3

p Þ
Γð1þ νÞΓð1−ν

2
þ λþq

2
ffiffi
3

p ÞΓð1−ν
2
þ λ−q

2
ffiffi
3

p Þ : ð2:23Þ

B. Nonextremal solutions

If the bound of the speed of sound is violated at large
densities, it will approach the conformal value from above.
At zero density, the results of Refs. [20,21] tell us that at
zero density and large temperatures the conformal value is
approached from below. Therefore, one expects an inter-
polation between the two behaviors as the ratio μ=T is
varied from infinity to zero, and in particular there should
be a maximal value of the speed of sound at some
intermediate value. In order to study this behavior, we
need to go beyond the near-extremal limit. Another
important reason to do it is that it will allow us to study
the stability of the solutions against a condensation of the
scalar.
In order to construct the nonextremal solutions, we will

resort to numerics to solve the equation (2.13). We impose
regularity of the scalar field at the horizon and shoot toward
the boundary, where we read the values of the coefficients
for the normalizable and non-normalizable modes. The
parameters of the numerical calculation that we can vary are
Q in the equations (2.13) and the amplitude of the scalar
solution, α−, in the boundary expansion (2.15). They can be
used to determine the value of the chemical potential and
the temperature normalized by the coupling of the relevant
deformation,

μr ≡ μ

J
1

4−Δ
¼

ffiffiffi
3

p

2
Qα

1
ν−2− ;

tr ≡ T

J
1

4−Δ
¼ 2 −Q2

2π
α

1
ν−2− : ð2:24Þ

The value of the normalizable coefficient αþ is extracted
from the numerical solution and can be used to determine
the expectation value of the dual operator and the compo-
nents of the energy-momentum tensor.
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The way we proceed is the following. We first expand
close to the horizon u ¼ 1 and impose regularity. The scalar
field has a Taylor expansion that we truncate at, say, the
fifth order,

ϕhðuÞ ¼
X5
n¼0

ϕH
ðnÞð1 − uÞn: ð2:25Þ

The coefficients ϕH
ðnÞ for n > 0 are determined by ϕH

ð0Þ and
ν, q, andQ in (2.14). We fix ϕH

ð0Þ ¼ 1 and use the truncated
expansion to give initial conditions for the numerical
calculation

ϕnð1 − ϵ0Þ ¼ ϕhð1 − ϵ0Þ;
ϕ0
nð1 − ϵ0Þ ¼ ϕ0

hð1 − ϵ0Þ; ð2:26Þ

where ϕn is the numerical solution and we take ϵ0 ¼ 10−5

as the cutoff in the radial direction. We shoot toward
the boundary using NDSolve in Mathematica 10 and
find a numerical solution ϕn defined in the interval
ϵ0 ≤ u ≤ 1 − ϵ0. We do this for ν ¼ 1, q ¼ 10−5 to study
the speed of sound and for ν ¼ 1, 1.1, 1.3, 1.6 and q ¼ 0.5,
1, 4, 5 and the critical values q� ¼ 1.47, 1.64, 1.97, 2.44 for
the stability analysis. In all cases, we vary Q starting at
Q ¼ 10−5 with a step ΔQ ¼ 0.005 and keeping Q <

ffiffiffi
2

p
.

Once we have obtained the numerical solution, we
extract the values of the coefficients of the normalizable
and non-normalizable modes by evaluating the solution at
the boundary cutoff u ¼ ϵ0. For ν > 1, we define the
numerical values as

ðα−Þn ¼ u
ν
2
−1ϕnðuÞju¼ϵ0

ð2:27Þ

ðαþÞn ¼
1

ν
u1−ν∂u½uν

2
−1ϕnðuÞ�j

u¼ϵ0
: ð2:28Þ

These values are determined by Q, ν, and q. In the
numerical calculation, we have fixed the amplitude of
the scalar field. Since the equations of motion are linear, we
can generate a full set of values by doing a trivial rescaling,

α− ¼ aðα−Þn; αþ ¼ aðαþÞn; ð2:29Þ

for some real number a. We determine the value of a by
fixing the temperature in units of the relevant coupling
(2.24) for each value of Q.

C. Thermodynamics

Following the usual AdS=CFT dictionary, the free
energy (grand canonical potential) is proportional to the
renormalized on-shell action in Euclidean signature
F ¼ TSEren. Since there is a nonzero chemical potential,
it will be convenient to work in Lorentzian signature, such
that the renormalized on-shell action reads

Sren ¼
Z

dtLren ¼ V3

Z
dtLren: ð2:30Þ

In (2.30), we have used the fact that the backgrounds we
study are homogeneous, and V3 is the corresponding
spatial volume along the boundary directions. The free
energy density becomes then

F ¼ −Lren; ð2:31Þ

which we have computed in (C4) in terms of the coef-
ficients of the asymptotic expansions given in (B8).
Comparing with the pressure p ¼ hTiii, given in (C9),
we see that the free energy is equal to minus the pressure
F ¼ −p. The expressions for the energy density ε ¼ hT00i
and the charge density n ¼ hJ0i can be found in (C8)
and (C11), respectively. Using these expressions as well as
(B45) and (B43), one finds the usual thermodynamic
relation

εþ p ¼ μnþ Ts: ð2:32Þ

It will be convenient to use dimensionless quantities
given in units of the scale introduced by the coupling for the
scalar operator J. We will also omit a common factor that
depends on the AdS radius L.3 We then define the reduced
quantities:

εr ¼
ε

L3

16πG5
J

4
2−ν

; pr ¼
p

L3

16πG5
J

4
2−ν

;

vr ¼
hOi

L3

16πG5
J

2þν
2−ν

; nr ¼
n

L3

16πG5
J

3
2−ν

: ð2:33Þ

The energy density and pressure depend on the enthalpy
w ¼ εþ p and the expectation value of the scalar
operator as

εr ¼
3

4
wr þ

1

2
ð2 − νÞvr ð2:34Þ

pr ¼
1

4
wr −

1

2
ð2 − νÞvr ð2:35Þ

vr ¼ −2ν
αþ
α−

α
2ν
ν−2− : ð2:36Þ

Note that in the linearized approximation the ratio αþ=α−
is independent of α−.
Comparing the Reissner-Nordström solution for the back-

ground metric (2.5) with the expansions (B8) and renormal-
ized values (C8), (C9), one can write the enthalpy as

3L3=G5 ∝ N2
c following the usual AdS=CFT dictionary, so this

just amounts to omitting a constant factor proportional to the
number of degrees of freedom of the theory.
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wr ¼
4M

J
4

2−νL8
¼ 4r4H

J
4

2−νL8
ð1þQ2Þ þO

�
J2

J
4

2−ν

�
: ð2:37Þ

Neglecting the subleading terms and using (2.24), this can be
written as

wr ≃ 4α
4

ν−2− ð1þQ2Þ: ð2:38Þ

D. Speed of sound

There are several possible definitions of the speedof sound
in a charged system, depending on which thermodynamic
quantities are held fixed. The speed of the sound waves is
usually associated with a quantity called the adiabatic speed
of sound, but for us it will be easier to compute the isothermal
speed of sound. The difference between the two is propor-
tional to the ratio T=μ, so the distinction is unimportant for
large values of the chemical potential. In our calculation, we
can vary the relative values of the temperature and chemical
potential with respect to the scale fixed by the symmetry
breaking coupling J. Through (2.24), those can be para-
metrized by variations of α− andQ. An isothermal variation
tr ¼ constant will satisfy

α−ðQÞ ¼ ðπtrÞν−2
�
1 −

Q2

2

�
2−ν

: ð2:39Þ

The changes in the enthalpy and the vacuum expectation
value (VEV) for large values of the chemical potential are

dwr ≃ 24α
4

ν−2− Q
2þQ2

2 −Q2
dQ ð2:40Þ

dvr ≃ −2να
2ν
ν−2−

�
4ν

Q
2 −Q2

αþ
α−

þ d
dQ

�
αþ
α−

��
dQ; ð2:41Þ

leading to the ratio

dvr
dwr

¼−
ν

3ð2þQ2Þα
2
−

�
ν
αþ
α−

þ2−Q2

4Q
d
dQ

�
αþ
α−

��
: ð2:42Þ

The isothermal speed of sound becomes in turn

v2s ¼
�∂pr

∂ϵr
�

tr

¼ 1

3

1 − 2ð2 − νÞ dvr
dwr

1þ 2
3
ð2 − νÞ dvr

dwr

≃ 1

3

�
1 −

8

3
ð2 − νÞ dvr

dwr

�
: ð2:43Þ

At large values of the chemical potential, the solution is
near extremal, Q≃ ffiffiffi

2
p

, and

α2− ≃
� ffiffiffi

2

3

r
μr

�2ν−4

≪ 1; ð2:44Þ

while the speed of sound becomes

v2s ≃ 1

3
ð1þ 4Cνμ

2ν−4
r Þ: ð2:45Þ

The coefficient that appears in the correction to the
conformal value is

Cν ¼
1

8

�
2

3

�
ν

ν2ð2 − νÞ αþ
α−

; ð2:46Þ

where the value of the ratio αþ=α− is given in (2.23). The
sign of Cν determines whether the speed of sound is above
the conformal value (positive Cν) or below (negative). As
one can see in Fig. 1, there are values of ν and q for which
Cν > 0 is possible. In particular, for q ¼ 0 the speed of
sound is above the conformal value for any ν.
We have determined the asymptotic form of the speed of

sound at very large densities. When μr=tr is finite, there
will be temperature-dependent corrections, and eventually,
for μr=tr ≪ 1, one should recover the results of
Refs. [20,21] and find that the speed of sound is always
below the conformal value. Using our numerical solutions,
we plot the speed of sound as a function of the chemical
potential for fixed values of the temperature in Fig. 2. We
have chosen q and Δ in such a way that the near-extremal
analysis predicts an asymptotic speed of sound above the
conformal value, which can be appreciated in the large-μr
part of the plot. For small values of μr, we observe that
indeed the speed of sound falls below the conformal value.
One also notices that as tr is increased, the speed of sound
becomes globally closer to the conformal value, as
expected. The position of the maximum in the speed of
sound depends strongly on the temperature, and, not
surprisingly, it gets pushed to larger values of the chemical
potential as the temperature is increased. The maximum
amplitude seems to become steeper as the temperature is

1.2 1.4 1.6 1.8 2.0

0.10

0.05

0.05

C

FIG. 1. Cν vs ν (1 ≤ ν ≤ 2) for different values of 0 ≤ q <
ffiffiffi
6

p
.

For q ¼ 0 (the upper curve), Cν > 0∀ν, but as q increases, a
range of values of ν exists for which Cν < 0. If q is close to

ffiffiffi
6

p
,

then Cν becomes positive again.
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lowered, which suggests that the stiffest equations of state
would be realized at very low temperatures and chemical
potentials of order of the scale set by the relevant coupling.

E. Stability

We have confirmed the existence of finite density states
for which the bound on the speed of sound is violated in
holographic models with a UV fixed point. Note that
violations were also observed in Ref. [27] at zero density,
but the states for which this happened are unstable [28], so
they may be discarded as unphysical. In principle, the same
could happen for the states we are considering here, so it is
important to check the stability of our solutions. A full-
fledged analysis would require a study of the full spectrum
of quasinormal modes at finite frequency and momentum.
This is beyond the scope of the present paper, but we will
analyze stability against the formation of a homogeneous
condensate, which is usually the first kind of instability one
encounters as the density is increased. This implies that we
will restrict the discussion to zero momentummodes. Other
instabilities may occur for nonzero momentum that would
involve the breaking of translational and/or rotational
symmetries; see e.g. Refs. [40–42].
At zero chemical potential and finite temperature, the

state will be dual to a thermal state of a CFT. If the relevant
coupling is zero, J ¼ 0, the expectation value of the scalar
operator will vanish. Technically, there is no solution to the
equations of motion for the scalar such that one has a
solution which is both normalizable and regular at the black
hole horizon at zero frequency (we should remark that we
are discussing configurations for which the scalar is close to
the critical point of the potential, ϕ ¼ 0). There are
normalizable and regular solutions that correspond to the
quasinormal modes of the scalar field for complex values of
the frequency. Stability of the large temperature state
implies that those modes are located on the lower complex
frequency plane.

If we turn on the chemical potential and start increasing
its value, eventually there could be a point where a zero
frequency normalizable and regular solution exists for the
scalar. This can be seen as having a quasinormal mode that
moves on the complex frequency plane as the chemical
potential is varied and reaches the origin. Further increasing
the chemical potential typically makes the quasinormal
mode migrate to the upper complex frequency plane, thus
becoming an instability. Therefore, one can determine the
onset of the instability as the point where a regular and
normalizable solution appears for the first time. From the
field theory perspective, this is the critical point that marks
the onset of spontaneous symmetry breaking and the
formation of a condensate.
The form of the near-extremal solutions suggests that if

the bound (2.21) is not satisfied, the oscillatory behavior of
the coefficients will probably lead to the appearance of zero
frequency quasinormal modes and hence instabilities, so
this puts a bound on the charge of the scalar relative to its
dimension. However, this does not show whether an
instability appeared before the near-extremal regime was
reached, and so we need to resort to the numerical solutions
to shed some light on this issue. In Fig. 3, we plot the
dimensionless ratio of the expectation value and the
relevant coupling, in terms of the normalizable and non-
normalizable coefficients of the numerical solutions, for
different values of Q ∝ μr=tr. At the points where the ratio
becomes zero, there is a zero frequency quasinormal mode,
and most likely there will be an instability at larger values
of Q. In all cases, the plots show that the onset of the
instability ventures into the nonextremal region only for
values of the charge of the scalar q that are above the bound
(2.21). Therefore, as long as the values of the dimension
and the charge are such that the near-extremal solution is
stable, we do not expect the solution to be unstable against
condensation. Keeping in mind the possibility of having
other instabilities, we conclude that the speed of sound
bound can be violated in physical states at large densities.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.10

0.08

0.06

0.04

0.02

0.00

1 5 10 50 100
10 6

10 5

10 4

0.001

FIG. 2. Left figure: 3v2s − 1 as a function of chemical potential for fixed values of the temperature. The black curve (lowest at μr ¼ 0)
is for tr ¼ 0.1, and the orange curve (highest at μr ¼ 0) is for tr ¼ 1. Curves in between have intermediate values separated byΔtr ¼ 0.1
steps. We have taken q ≈ 10−5, ν ¼ 1.1. Right figure: the same plot in logarithmic scale, from where one can see the maximum more
clearly.
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III. SPEED OF SOUND IN R-CHARGED STATES

In the previous section, we found a family of models for
which the bound on the speed of sound was violated. Our
approach in this was bottom up; we considered a generic
Einstein-Maxwell action with a minimally coupled charged
scalar, but we did not try to embed it in any string theory
construction. A natural concern is whether the results we
obtained also apply in a bona fide gravity dual or whether
the additional structures in string theory will always restrict
parameters in such a way that the bound is preserved.
In order to answer this question, we will study a closely

related string theory model. The field theory is N ¼ 4
SUðNcÞ super–Yang-Mills at nonzero R-charge density.
There are a variety of charged states that have a holographic
dual description in terms of rotating branes and giant
gravitons [43–45] in an asymptotically AdS5 × S5 space.
A subclass is captured by the consistent truncation of five-
dimensional N ¼ 8 SUGRA found in Ref. [46] (the

truncation is nicely presented in Ref. [47], which we

follow closely). There are three Uð1Þ gauge fields AðIÞ
μ ,

I ¼ 1, 2, 3 corresponding to the three commuting R-
charges in the Cartan subgroup of the SUð4Þ R-symmetry
group. There are also four complex scalars
ζi ¼ tanhðφiÞeiθi , i ¼ 1, 2, 3, 4 dual to the gaugino
bilinears

φi ↔ trλiλi þ H:c:; ð3:1Þ

and two real scalars α, β dual to the N ¼ 4 scalar bilinears

α ↔ trðX2
1 þ X2

2 þ X2
3 þ X4

4 − 2X2
5 − 2X2

6Þ;
β ↔ trðX2

1 þ X2
2 − X2

3 − X2
4Þ: ð3:2Þ

For convenience, we define ρ ¼ eα and ν ¼ eβ, whereby
the Lagrangian density becomes

FIG. 3. Ratio of non-normalizable over normalizable coefficients of zero frequency regular solutions Rα ¼ α−=αþ as a function of
Q ∝ μr=tr. The curves represent different values of the charge of the scalar: q ¼ 0.5 (orange), q ¼ 1 (green), q ¼ 4 (black), and q ¼ 5
(blue). For ν ¼ 1, we have plotted in addition the curve for q ¼ 2 (purple), corresponding to the string theory model introduced in
Sec. III. The red dashed curve denotes the approximate value of the charge q� at which the first instability appears at Q ¼ ffiffiffi

2
p

− 10−3.
Each plot corresponds to a different value of the conformal dimensions of the scalar. From left to right and top to bottom: ν ¼ 1,
q� ≃ 1.47; ν ¼ 1.1, q� ≃ 1.64; ν ¼ 1.3, q� ≃ 1.97; and ν ¼ 1.6, q� ≃ 2.44. As the conformal dimension is increased, the onset of the
instability for a fixed q happens at larger values of μr=tr.
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e−1L ¼ 1

4
R −

1

4g2
½ρ4ν−4Fð1Þ

μν Fð1Þμν þ ρ4ν4Fð2Þ
μν Fð2Þμν

þ ρ−8Fð3Þ
μν Fð3Þμν� þ 1

2

X4
i¼1

ð∂μφiÞ2 þ 3ð∂μαÞ2

þ ð∂μβÞ2 þ
1

8

X
i

sinh2ð2φiÞð∂μθi þ ciIA
ðIÞ
μ Þ2 − V;

ð3:3Þ

where

ciI ¼

0
BBB@

1 1 −1
1 −1 1

−1 1 1

−1 −1 −1

1
CCCA: ð3:4Þ

The scalar potential is determined by a superpotentialW as
follows [48],

V ¼ g2

8

�
1

6

�∂W
∂α
�

2

þ 1

2

�∂W
∂β
�

2

þ
X4
i¼1

�∂W
∂φi

�
2
�
−
g2

3
W2;

ð3:5Þ

where

W ¼ −
1

4ρ2ν2
½ð1þ ν4 − ν2ρ6Þ coshð2φ1Þ

þ ð−1þ ν4 þ ν2ρ6Þ coshð2φ2Þ
þ ð1 − ν4ν2ρ6Þ cosð2φ3Þ
þ ð1þ ν4 þ ν2ρ6Þ cosð2φ4Þ�: ð3:6Þ

When the three charges are equal, AðIÞ
μ ¼ 2Aμ=

ffiffiffi
3

p
, and

the scalars are turned off, the SUGRA action reduces to
Einstein-Maxwell with a cosmological constant, and AdS
Reissner-Nordström is a solution to the equations of motion
[49,50] (see also Ref. [47] for more general charged black
hole solutions).
If we take the scalars into account but remain in the equal

charge case, then it is consistent with the equations of
motion to set α ¼ β ¼ 0. By setting φi ¼ φ=ð2 ffiffiffi

2
p Þ and

θ1 ¼ θ2 ¼ θ3 ¼ −θ=
ffiffiffi
3

p
; θ4 ¼

ffiffiffi
3

p
θ; ð3:7Þ

the action becomes

e−1L ¼ 1

4
R −

1

g2
FμνFμν þ 1

4
ð∂μφÞ2

þ 1

2
sinh2

�
φffiffiffi
2

p
�
ð∂μθ − 2AμÞ2 − Vφ; ð3:8Þ

where

Vφ ¼ −
3g2

16
ð3þ coshð

ffiffiffi
2

p
φÞÞ: ð3:9Þ

The coupling constant g is related to the AdS radius as
g ¼ 2=L. If we expand to quadratic order in φ, we get that
the scalar terms of the action are

e−1Lφ ≃ 1

4

�
ð∂μφÞ2 þ φ2ð∂μθ − 2AμÞ2 −

12

L2
−

3

L2
φ2

�

¼ 1

4

�
jDμϕj2 −

12

L2
−

3

L2
jϕj2
�
: ð3:10Þ

In this Lagrangian, we have defined the complex scalar
field ϕ ¼ φeiθ and the covariant derivative Dμϕ ¼
∂μϕ − 2iAμϕ. Therefore, for a small amplitude of the
scalar field, the dynamics reduce to those of a field of
charge q ¼ 2 and mass m2L2 ¼ −3, dual to a Δ ¼ 3 scalar
operator which is a combination of components of the
gaugino bilinears. The coefficient of the quartic term as
in (B11) is V4 ¼ −1. This is within the class of models we
are considering, but the dimension is integer, and the
relation between the dimension and the charge does not
satisfy the bound (2.21). This introduces some technical
complications, as the asymptotic expansion of the scalar
close to the AdS boundary is modified by the introduction
of logarithmic terms

ϕ≃ L2

r
~ϕð0;0Þ þ

L6

r3
~ϕð2;1Þ log

r
L
þ
�
L
r

�
3

L3ϕð0;0Þ: ð3:11Þ

We will redo the analysis for this special case in the
following.

A. Solutions

The equations of motion for the scalar field can be
obtained from (2.13) by setting ν ¼ 1 in (2.14). The leading
terms in the expansion close to the AdS boundary are

ϕ≃ α−u1=2 þ ~αþu3=2 loguþ αþu3=2; ð3:12Þ

where ~αþ is determined by α−. We can find an analytic
near-extremal solution following the same procedure dis-
cussed in the previous section, although the details are
slightly different because the dimension of the scalar
operator is an integer number. The full calculation can
be found in Appendix A 2. The ratio between normalizable
and non-normalizable coefficients takes the same form as in
the previous examples (2.19), but in this case λ ¼ i=

ffiffiffi
2

p
is

complex [the bound (2.21) is not satisfied]. To go beyond
the near-extremal limit, we use numerics, and the solutions
are computed in the same way as in the previous section.
Once we have obtained the numerical solution, we

extract the values of the coefficients of the normalizable
and non-normalizable modes by evaluating the solution at

BREAKING THE SOUND BARRIER IN HOLOGRAPHY PHYSICAL REVIEW D 94, 106008 (2016)

106008-9



the boundary cutoff u ¼ ϵ0. For ν ¼ 1, we define the
numerical values as

ðα−Þn ¼ u−1=2ϕnðuÞju¼ϵ0
ð3:13Þ

ð ~αþÞn ¼ u∂2
u½u−1=2ϕnðuÞ�ju¼ϵ0

ð3:14Þ

ðαþÞn ¼ ∂u½u−1=2ϕnðuÞ� − ð ~αþÞnðlog uþ 1Þju¼ϵ0
: ð3:15Þ

These values are determined by Q and q. In the numerical
calculation, we have fixed the amplitude of the scalar field.
Since the equations of motion are linear, we can again
generate a full set of values by doing a trivial rescaling,

α−¼aðα−Þn; ~αþ¼að ~αþÞn; αþ¼aðαþÞn; ð3:16Þ

for some real number a. We determine the value of a by
fixing the temperature in units of the relevant coupling
(3.18) for each value of Q.

B. Thermodynamics

We have computed the free energy density in (C14), in
terms of the coefficients of the asymptotic expansions
given in (B12). Comparing with the pressure p ¼ hTiii,
given in (C16), we see that it is equal to minus the pressure
F ¼ −p. The expressions for the energy density ε ¼ hT00i
and the charge density n ¼ hJ0i can be found in (C15)
and (C18), respectively. Using these expressions as well as
(B48) and (B43), one finds the usual thermodynamic
relation

εþ p ¼ μnþ Ts: ð3:17Þ

We again introduce the reduced quantities (2.24) and (2.33)
with ν ¼ 1; in particular, the reduced temperature and
chemical potential read

μr ≡ μ

J
¼

ffiffiffi
3

p

2

Q
α−

; tr ≡ T
J
¼ 2 −Q2

2πα−
: ð3:18Þ

The energy density and pressure depend on the enthalpy
w ¼ εþ p and the expectation value of the scalar
operator as

εr ¼
3

4
wr þ

1

2
~vr ð3:19Þ

pr ¼
1

4
wr −

1

2
~vr ð3:20Þ

~vr ¼ vr −
1

2
q2μ2r þ

�
1

6
þ V4

4

�
: ð3:21Þ

Comparing with the Reissner-Nordström solution for the
background metric (2.5) with the expansions (B12) and

using the expressions for the renormalized values (C22)
and (C23) and the relation with the coefficients in the u
expansion (B22), the leading order contributions are

wr ¼ 4
1

α4−
ð1þQ2Þ þO

�
log α−
α2−

�
ð3:22Þ

~vr ¼ −2
αþ
α−

1

α2−
þ q2μ2r log α− þ κ1q2μ2r þOðlog α−Þ:

ð3:23Þ

C. Speed of sound and stability

Through (3.18), an isothermal variation will satisfy

α−ðQÞ ¼ 1

πtr

�
1 −

Q2

2

�
: ð3:24Þ

For asymptotically large values of the chemical potential,
the changes in enthalpy and the term associated to the
breaking of conformal invariance are, to leading order,

dwr ≃ 24
Q
α4−

2þQ2

2 −Q2
dQ ð3:25Þ

d~vr ≃ 3

2
q2Q

2þQ2

2 −Q2

logα−
α2−

dQ; ð3:26Þ

giving

dvr
dwr

≃ q2

16
α2− log α−: ð3:27Þ

Similarly, the isothermal speed of sound is

v2s ¼
�∂pr

∂ϵr
�

tr

≃ 1

3

�
1 −

8

3

dvr
dwr

�
: ð3:28Þ

At large values of the chemical potential, the solution is
near-extremal Q≃ ffiffiffi

2
p

and

α2− ≃ 3

2μ2r
≪ 1; ð3:29Þ

while the speed of sound becomes

v2s ≃ 1

3

�
1þ 1

4
q2

log μr
μ2r

�
: ð3:30Þ

The speed of sound will approach the conformal value
from above at asymptotically large densities. However, we
expect to have instabilities in the extremal limit, and in
order to go beyond this limit, we will resort to numerics.
The result will depend on the choice of a finite counterterm
κ1 that is shown explicitly in (C22) and (C23). We will set
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κ1 ¼ 0, noting that as long as this parameter is not large, it
will not qualitatively affect to the results. We present the
deviation of the isothermal speed of sound from the
conformal value, 3v2s − 1, in Fig. 4 for different values
of the temperature. We see that the speed of sound remains
above the conformal value until relatively low values of the
chemical potential. The value μr ¼ 1 corresponds to Q≃
0.83

ffiffiffi
2

p
; 0.43

ffiffiffi
2

p
; 0.24

ffiffiffi
2

p
for tr ¼ 0.1, 0.5, 1, respectively.

As we found in the previous section (see Fig. 3 for
ν ¼ 1), we expect the instability that will trigger the
formation of a homogeneous condensate to appear close
to the near-extremal regime, since we found a critical
charge of q� ≃ 1.47 for Q ¼ ffiffiffi

2
p

− 10−3, which is close to
the value we have in the R-charged solution q ¼ 2. For
q ¼ 2, we find that the instability appears at Q� ≃ 1.396
(purple curve in Fig. 3). This corresponds to values of the
chemical potential μr ≃ 14.8; 74.2; 148.4 for tr ¼ 0.1, 0.5,
1, respectively. We have thus shown that the speed of sound
can be violated in the R-charged state with no obvious
instabilities.

IV. CONCLUSIONS AND OUTLOOK

According to current understanding, it appears likely that
the speed of sound in neutron star matter exceeds the
conformal value vs ¼ 1=

ffiffiffi
3

p
in the dense nuclear matter

phase [25]. Knowing that for ultradense quark matter, the
speed of sound approaches this value from below, we are
in practice left with two possibilities: either the quantity
exhibits a discontinuous jump in a first order phase
transition or it must continuously first decrease and then
increase its value in the quark matter phase. The latter
scenario has, however, been disfavored due to the lack of
first principles calculations exhibiting speeds of sound
larger than the conformal value in deconfined matter. In
addition to perturbative calculations, this statement holds

true for all known holographic setups that flow to a
four-dimensional CFT in the UV, which has prompted
speculation of a more fundamental speed of sound
bound [20,21].
In the paper at hand, we have shown that the conjectured

bound on the speed of sound in holographic models with
UV fixed points is violated for a simple class of models
involving RG flows triggered by relevant scalar operators
charged under a global Abelian symmetry. Within this
class, we were able to find a string theory example: a
charged black hole dual to N ¼ 4 theory at finite R-charge
density, deformed by a gaugino mass term. Since at very
large densities an instability toward the formation of a
homogeneous condensate will develop, we made sure that
the violation occurs in the stable regime. We may conclude
that there is no universal bound for the speed of sound in
holographic models dual to ordinary four-dimensional
relativistic field theories. This comes as good news for
everyone wishing to build realistic holographic models for
high-density nuclear or quark matter.
A natural extension of our work is clearly to go

beyond the approximation of a small breaking of conformal
invariance and study how high values the speed of sound
can be maximally obtained. Of particular interest is to
investigate whether large enough speeds can be obtained
that would allow the building of stable hybrid stars with
holographic quark matter in their cores. Continuing along
these lines, it might be interesting to study the behavior of
bottom-up models designed to match the properties of
QCD at zero [51–55] and finite density [56] and to see if
they give phenomenologically sensible results at very small
temperatures.
A different but equally interesting challenge to pursue

would be to find a top-down model with finite baryon
(rather than R-charge) density. Quark matter is typically
introduced by embedding probe branes in the geometry,
and in the known examples where the theory is truly
(3þ 1)-dimensional, the bound is satisfied even at finite
density. This might change upon considering the back-
reaction of the branes. Solutions with backreacted flavors
at finite density have been recently constructed in
Refs. [57–60]. Another possibility is to take an alternative
large-N limit where (anti)fundamental fields are extrapo-
lated to two-index antisymmetric representations [61] and
where operators with baryon charge map to gravitational
modes. We leave these investigations for future work.
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APPENDIX A: NEAR-EXTREMAL SOLUTIONS

1. Noninteger Δ
a. Near-horizon solution

First, we expand (2.13) in the region close to the horizon.
It is convenient to introduce a new radial coordinate v,
defined as

u ¼ 1 −
4

3
ϵv: ðA1Þ

We then expand (2.13) to leading order in ϵ. In this new
coordinate, the horizon is located at v ¼ 0, and the
asymptotic region gets pushed to v > 1=ϵ → ∞. The
solution to the equation of motion that is regular as
v → 0 is

ϕ ¼ ϕHð1þ vÞ−i q
2
ffiffi
6

p
2F1

�
1

2
− i

q

2
ffiffiffi
6

p −
λ

2
ffiffiffi
3

p ;
1

2

− i
q

2
ffiffiffi
6

p þ λ

2
ffiffiffi
3

p ; 1;−v
�
þ c:c:; ðA2Þ

where we have defined λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − q2

2
− 1

q
and where

ϕð0Þ ¼ ϕH is the value of the scalar field at the horizon.
The expansion as v → ∞ gives, to leading order,

ϕ ∼ ϕH

�
C−v

−1
2
− λ
2
ffiffi
3

p þ Cþv
−1
2
þ λ

2
ffiffi
3

p
�
; ðA3Þ

where

C� ¼
Γ
�
� λffiffi

3
p
�

			Γ�12 − i q
2
ffiffi
6

p � λ
2
ffiffi
3

p
�			2 : ðA4Þ

b. Asymptotic solution

We can find the leading order solution simply setting
ϵ → 0 in the equation, giving the solution in the extremal
Reissner-Nordström geometry

ϕ ¼ αþφþ þ α−φ−; ðA5Þ

where α� are arbitrary coefficients and

φ� ¼ u1�ν
2ð1 − uÞ−1

2
−jq−λj

q−η
λ

2
ffiffi
3

p ð1þ 2uÞ−1�ν
2
þjq−λj

q−λ
λ

2
ffiffi
3

p ðA6Þ

× 2F1

�
1�ν

2
þjq−λj

2
ffiffiffi
3

p ;
1�ν

2
−
qþλ

q−λ

jq−λj
2
ffiffiffi
3

p ;1�ν;
3u

1þ2u

�
:

ðA7Þ
Expanding close to the boundary u → 0, the coefficients
behave as

φ� ∼ u1�ν
2: ðA8Þ

Therefore, φþ is the normalizable mode, and φ− is the
non-normalizable mode. We now evaluate the solution at
u ¼ 1 − 4

3
ϵv and expand for ϵ → 0. The expansion takes

the same form as for the near-horizon solution

φ� ∼
�
D�−v

−1
2
− λ
2
ffiffi
3

p þD�þv
−1
2
þ λ

2
ffiffi
3

p
�
: ðA9Þ

The coefficients and exponents depend on the sign of q − λ,
but the final result is the same for both q > λ and λ < q.

c. Matching

We have to match the coefficients of the near-horizon
and asymptotic solutions in such a way that the leading
order terms in the overlapping region (A3) and (A9) are the
same. This gives the conditions

αþD�þ þ α−D�− ¼ ϕHC�; ðA10Þ

thus fixing αþ and α− in terms of ϕH and the coefficients of
the expansion. In the end, we should fix the coefficient of
the non-normalizable mode to be equal to the source of the
dual operator. That fixes the value of the scalar at the
horizon and the coefficient of the normalizable mode, both
of which are also proportional to the source. The propor-
tionality coefficient of the normalizable mode that deter-
mines the VEV of the dual operator is proportional to

αþ
α−

¼ −3ν
Γð1 − νÞΓ

�
1þν
2

þ λþq
2
ffiffi
3

p
�
Γ
�
1þν
2

þ λ−q
2
ffiffi
3

p
�

Γð1þ νÞΓ
�
1−ν
2
þ λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
þ λ−q

2
ffiffi
3

p
�

×
1þ β1ð4ϵ9 Þλ=

ffiffi
3

p

1þ β2ð4ϵ9 Þλ=
ffiffi
3

p ; ðA11Þ

where

β1¼
Γ
�
− λffiffi

3
p
�
Γ
�
1− λffiffi

3
p
�

Γ
�

λffiffi
3

p
�
Γ
�
1þ λffiffi

3
p
� Γ

�
1
2
− i q

2
ffiffi
6

p þ λ
2
ffiffi
3

p
�
Γ
�
1
2
þ i q

2
ffiffi
6

p þ λ
2
ffiffi
3

p
�

Γ
�
1
2
− i q

2
ffiffi
6

p − λ
2
ffiffi
3

p
�
Γ
�
1
2
þ i q

2
ffiffi
6

p − λ
2
ffiffi
3

p
�

×
Γ
�
1−ν
2
þ λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
þ λ−q

2
ffiffi
3

p
�

Γ
�
1−ν
2
− λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
− λ−q

2
ffiffi
3

p
� ðA12Þ

and
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β2 ¼
cos
�
qπffiffi
3

p
�
þ cos

h
π
�

λffiffi
3

p − ν
�i

cos
�
qπffiffi
3

p
�
þ cos

h
π
�

λffiffi
3

p þ ν
�i β1: ðA13Þ

The terms that go as ∼ϵλ=
ffiffi
3

p
can be neglected only if λ > 0.

This requires

ν2 > 1þ q2

2
⇒ Δ > 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

2

r
: ðA14Þ

If q2 ≥ 6, this is not possible for Δ < 4.

2. Solutions for Δ= 3

We can set ν ¼ 1 in Eq. (2.14) and follow the same
procedure.

a. Near-horizon solution

We can convert the equation of motion in a hyper-
geometric equation by extracting a factor from the scalar
field ϕ ¼ ð1þ vÞ−i q

2
ffiffi
6

p
X. The resulting equation is (we keep

q as a parameter)

vð1þ vÞX00 þ
�
1þ

�
2 − i

qffiffiffi
6

p
�
v

�
X0

þ
�
1

4
− i

q

2
ffiffiffi
6

p
�
X ¼ 0: ðA15Þ

The regular solution is

X ¼ 2F1

�
1

2
;
1

2
− i

qffiffiffi
6

p ; 1;−v
�
: ðA16Þ

In order to make the solution real, we combine it with the
complex conjugate:

ϕ ¼ ϕH

2

�
ð1þ vÞ−i q

2
ffiffi
6

p
2F1

�
1

2
;
1

2
− i

qffiffiffi
6

p ; 1;−v
�

þ ð1þ vÞi q
2
ffiffi
6

p
2F1

�
1

2
;
1

2
þ i

qffiffiffi
6

p ; 1;−v
��

: ðA17Þ

The expansion as v → ∞ is

ϕ ∼
ϕH

2

�
C−v

−1
2
−i q

2
ffiffi
6

p þ Cþv
−1
2
þi q

2
ffiffi
6

p
�
; ðA18Þ

where

C� ¼
Γ
�
�i qffiffi

6
p
�

ffiffiffi
π

p
Γ
�
1
2
� i qffiffi

6
p
� : ðA19Þ

b. Asymptotic solution

We can find the leading order solution simply setting
ϵ → 0 in (2.13):

ϕ00 −
1þ uþ 4u2

uð1 − uÞð2uþ 1Þϕ
0 þ 3

8

2þ ð4þ q2Þu
u2ð1 − uÞ2ð1þ 2uÞ2 ϕ ¼ 0:

ðA20Þ
We can convert this in a hypergeometric equation by
defining

φ̂∓ ¼ ð2uþ 1Þ�i q
2
ffiffi
6

p ð1 − uÞ−1
2
∓i q

2
ffiffi
6

p
u

1
2X∓

�
3u

2uþ 1

�
ðA21Þ

and changing variables to

z ¼ 3u
2uþ 1

; u ¼ z
2z − 3

: ðA22Þ

Equation (A20) becomes

zð1 − zÞX00∓ þ
�
�i

qffiffiffi
6

p
�
zX0∓ þ q2

8
X∓ ¼ 0: ðA23Þ

The two independent solutions are

X∓ ¼ 2F1

�
q

2
ffiffiffi
3

p
�
1 ∓ iffiffiffi

2
p
�
;

−
q

2
ffiffiffi
3

p
�
1� iffiffiffi

2
p
�
; 1 ∓ i

qffiffiffi
6

p ; 1 − z

�
: ðA24Þ

The general scalar solution is thus

ϕ ¼ α̂þφ̂þ þ α̂−φ̂−; ðA25Þ

where α̂� are arbitrary coefficients.
Expanding close to the boundary u → 0,

φ̂∓ ∼ A∓u1=2 þ B∓u3=2: ðA26Þ

The coefficients A∓ correspond to the non-normalizable
mode, and the coefficients B∓ correspond to the normal-
izable mode. We define the non-normalizable φ− and
normalizable φþ modes as

φ− ¼ B−φ̂þ − Bþφ̂−

B−Aþ − BþA−
ðA27Þ

φþ ¼ A−φ̂þ − Aþφ̂−

A−Bþ − AþB−
: ðA28Þ

The general solution is

φ ¼ αþφþ þ α−φ−: ðA29Þ
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We now evaluate the solution at u ¼ 1 − 4
3
ϵv and expand

for ϵ → 0. The expansion takes the same form as for the
near-horizon solution

φ� ∼
�
D�−v

−1
2
−i q

2
ffiffi
6

p þD�þv
−1
2
þi q

2
ffiffi
6

p
�
: ðA30Þ

c. Matching

We have to match the coefficients of the near-horizon
and asymptotic solutions in such a way that the leading
order terms in the overlapping region (A18) and (A30) are
the same. This gives the conditions

α−D�− þ αþD�þ ¼ ϕHC�: ðA31Þ

This fixes α− and αþ in terms of ϕH and the coefficients of
the expansion. In the end, we should fix the coefficient of
the non-normalizable mode to be equal to the source of the
dual operator. That fixes the value of the scalar at the
horizon and the coefficient of the normalizable mode, both
of which are also proportional to the source. The propor-
tionality coefficient of the normalizable mode that deter-
mines the VEV of the dual operator is proportional to

αþ
α−

¼
�
1

2
− i

ffiffiffi
6

p
q

4
−
3

8
q2ðH2þi

ffiffi
2

p
4
ffiffi
3

p q
þH−2þi

ffiffi
2

p
4
ffiffi
3

p q
þ log 3Þ

�

×
1þ β1ð4ϵ9 Þiq=

ffiffi
6

p

1þ β2ð4ϵ9 Þiq=
ffiffi
6

p ; ðA32Þ

where

β2 ¼
−3þ i

ffiffiffi
6

p
q

q2ΓðqcÞ
�Γð1 − i qffiffi

6
p Þ

Γði qffiffi
6

p Þ
�2

×
Γ
�
− 1

2
þ i qffiffi

6
p
�

Γ
�
1
2
− i qffiffi

6
p
� Γ

�
2þi

ffiffi
2

p
4
ffiffi
3

p q
�
Γ
�
−2þi

ffiffi
2

p
4
ffiffi
3

p q
�

Γ
�
2−i

ffiffi
2

p
4
ffiffi
3

p q
� : ðA33Þ

Here,

c ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i2

ffiffiffi
2

pp
2
ffiffiffi
6

p ≃ −0.29 − 0.2i: ðA34Þ

The other coefficient is

β1 ¼
1þ i

ffiffi
3
2

q
q − 3

4
q2
�
−1þH2−i

ffiffi
2

p
4
ffiffi
3

p q
þHcq þ log 3

�
1 − i

ffiffi
3
2

q
q − 3

4
q2
�
−1þH2þi

ffiffi
2

p
4
ffiffi
3

p q
þH−2þi

ffiffi
2

p
4
ffiffi
3

p q
þ log 3

� β2:
ðA35Þ

Note that the terms that go as ∼ϵiq=
ffiffi
6

p
cannot be neglected.

APPENDIX B: USEFUL FORMULAS

1. Equations of motion and boundary expansions

In the presence of a nonzero scalar ϕðrÞ and gauge
field A0ðrÞ, we consider an ansatz for the metric of the
form

ds2 ¼ L2

r2fðrÞ dr
2 þ r2

L2
e2AðrÞð−fðrÞdt2 þ dx2Þ: ðB1Þ

The equations of motion (2.4) become

0 ¼ f00 þ
�
4A0 þ 5

r

�
f0 − L4e−2A

�
4

r2
A02
0 þ 2q2

r4f
A2
0ϕ

2

�
ðB2Þ

0 ¼ A00
0 þ

�
2A0 þ 3

r

�
A0
0 − q2

ϕ2

2r2f
A0 ðB3Þ

0 ¼ A00 þ 1

r
A0 þ 1

3

�
ϕ02 þ L4q2e−2A

A2
0ϕ

2

r4f2

�
ðB4Þ

0 ¼ ϕ00 þ
�
4A0 þ f0

f
þ 5

r

�
ϕ0

þ
�
L4q2e−2A

A2
0

r4f2
−
ΔðΔ − 4Þ

r2f

�
ϕ ðB5Þ

0 ¼ L4e−2A
A02
0

r2f
þ A0

�
12

r
þ 3

2

f0

f
þ 6A0

�
þ 6

r2

�
1 −

1

f

�

þ 3f0

2rf
−
1

2
ϕ02 þ ϕ2

�
ΔðΔ − 4Þ
2r2f

− L4q2e−2A
A2
0

2r4f2

�
:

ðB6Þ

Assuming the mass of the scalar is such that there are no
logarithmic terms (noninteger Δ), the gravity solution
admits the series expansion

f ¼ 1þ
X
n;m

fðn;mÞ
rnþmΔ ; A0 ¼ μþ

X
n;m

A0ðn;mÞ
rnþmΔ ;

A ¼
X
m;n

Aðn;mÞ
rnþmΔ

ϕ ¼ L2ð4−ΔÞ

r4−Δ
X
n;m

~ϕðn;mÞ
rnþmΔ þ L2Δ

rΔ
X
n;m

ϕðn;mÞ
rnþmΔ ; ðB7Þ

where we will identify ~ϕð0;0Þ as the source and ϕð0;0Þ as the
VEV, with dimensions 4 − Δ andΔ, respectively. Using the
equations of motion, we fix the leading coefficients to be
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ϕ ∼
L2ð4−ΔÞ

r4−Δ
~ϕð0;0Þ þ

L2Δ

rΔ
ϕð0;0Þ þ

L6ð4−ΔÞ

r3ð4−ΔÞ
Δ − 4

12ðΔ − 3Þ
~ϕ3
ð0;0Þ þ

L2ð6−ΔÞ

r6−Δ
μ2q2

4ðΔ − 3Þ
~ϕð0;0Þ þ � � �

A ∼ −
1

12

L4ð4−ΔÞ

r2ð4−ΔÞ
~ϕ2
ð0;0Þ −

L8ð4−ΔÞ

r4ð4−ΔÞ
Δ − 4

96ðΔ − 3Þ
~ϕ4
ð0;0Þ −

L5ð4−ΔÞ

r2ð5−ΔÞ
μ2q2ðΔ2 − 8Δþ 18Þ
24ðΔ − 3ÞðΔ − 5Þ2

~ϕ2
ð0;0Þ þ

L8

r4
ΔðΔ − 4Þ

24
~ϕð0;0Þϕð0;0Þ þ � � �

f ∼ 1þ L8

r4
fð4;0Þ þ

L4ð5−ΔÞ

r2ð5−ΔÞ
μ2q2

2ðΔ − 3ÞðΔ − 5Þ
~ϕ2
ð0;0Þ þ � � �

A0 ∼ μþ L4

r2
A0ð2;0Þ þ

L4ð4−ΔÞ

r2ð4−ΔÞ
μq2

8ðΔ2 − 7Δþ 12Þ
~ϕ2
ð0;0Þ þ � � � : ðB8Þ

For Δ ¼ 3, the expansions are modified due to the presence of logarithmic terms, and the asymptotic behavior of the scalar
field becomes

ϕr→∞ ∼
L2

r
~ϕð0;0Þ þ

L6

r3

�
~ϕð1;1Þ log

r
L
þ ϕð0;0Þ

�
þ � � � ; ðB9Þ

where again we identify ~ϕð0;0Þ as the source and ϕð0;0Þ as the VEV. Due to the presence of the logarithmic term, which is
leading, the near-boundary series expansions for the gauge field and warp factors differ this time from (B8),

f ¼ 1þ
X
n≥m

fðn;mÞ
rn

�
log

�
r
L

��
m
; A0 ¼ μþ

X
n≥m

A0ðn;mÞ
rn

�
log

�
r
L

��
m
; A ¼

X
n≥m

Aðn;mÞ
rn

�
log

�
r
L

��
m
: ðB10Þ

We will also allow a potential that is not purely quadratic but has an expansion

VðΦ†ΦÞ ¼ −
12

L2
−

3

L2
Φ†Φþ V4

2L2
ðΦ†ΦÞ2 þ � � � : ðB11Þ

Inserting these series into the equations of motion, we fix the leading coefficients to be

ϕ ∼
L2

r
~ϕð0;0Þ þ

L6

r3

�
~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

�
log

r
L
þ ϕð0;0Þ

�
þ � � �

A ∼ −
L4

r2
~ϕ2
ð0;0Þ
12

þ L8

r4
~ϕ2
ð0;0Þ
48

�
1

6

�
−9μ2q2 þ ð2þ 3V4Þ ~ϕ2

ð0;0Þ − 36
ϕð0;0Þ
~ϕð0;0Þ

�
þ ðð2þ 3V4Þ ~ϕ2

ð0;0Þ − 3μ2q2Þ log r
L

�
þ � � �

f ∼ 1þ L8

r4

�
fð4;0Þ −

1

2
ðμq ~ϕð0;0ÞÞ2 log

r
L

�
þ � � �

A0 ∼ μþ L4

r2

�
A0ð2;0Þ −

1

4
q2μ ~ϕ2

ð0;0Þ log
r
L

�
þ � � � : ðB12Þ

The expansion in the u ¼ r2H=r
2 coordinate will take the form

ϕ ∼ α−u1=2 þ u3=2ðαþ ~αþ log uÞ þ � � �
f ∼ 1þ u2ðf4 þ ~f4 log uÞ þ � � �
A0 ∼ μþ μuðA02 þ ~A02 log uÞ þ � � � : ðB13Þ

Comparing the two expansions, one finds the following relations between the coefficients:

α− ¼ L2

rH
~ϕð0;0Þ ðB14Þ
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~αþ ¼ −
1

2

L6

r3H

�
~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

��
ðB15Þ

αþ¼L6

r3H

�
ϕð0;0Þ− ~ϕð0;0Þ

�
1

2
μ2q2−

�
1

3
þV4

2

�
~ϕ2
ð0;0Þ

�
log

rH
L

�
ðB16Þ

~f4 ¼
1

4

L8

r4H
ðμq ~ϕð0;0ÞÞ2 ðB17Þ

f4 ¼
L8

r4H

�
fð4;0Þ þ

1

2
ðμq ~ϕð0;0ÞÞ2 log

rH
L

�
ðB18Þ

~A02 ¼
1

8

L4

r2H
q2 ~ϕ2

ð0;0Þ ðB19Þ

A02 ¼
L4

r2

�
1

μ
A0ð2;0Þ þ

1

4
q2 ~ϕ2

ð0;0Þ log
rH
L

�
: ðB20Þ

Since the equations of motion in the u coordinate are
independent of the ratio rH=L, we can extract the loga-
rithmic dependence of the subleading terms explicitly,

ϕð0;0Þ ¼ ϕ̂ð0;0Þ þ ~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

�
log

rH
L

fð4;0Þ ¼ f̂ð4;0Þ −
1

2
ðμq ~ϕð0;0ÞÞ2 log

rH
L

A0ð2;0Þ ¼ Â0ð2;0Þ −
1

4
q2μ ~ϕ2

ð0;0Þ log
rH
L

; ðB21Þ

with

ϕ̂ð0;0Þ ¼αþ
r3H
L6

; f̂ð4;0Þ ¼f4
r4H
L8

; Â0ð2;0Þ ¼μA02

r2H
L4

:

ðB22Þ

2. On-shell action

We can write Einstein’s equations as

RMN ¼ TðAÞ
MN þ Tϕ

MN þ 1

2
gMN

�
L2

3
F2 þ jDϕj2 þ 5

3
V

�
:

ðB23Þ

From the trace of Einstein equations, we find that the Ricci
scalar is

R ¼ L2

3
F2 þ jDϕj2 þ 5

3
V: ðB24Þ

Therefore, the on-shell action (2.1) is evaluated as

Son-shell ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
2

3
V −

2

3
L2F2

�
: ðB25Þ

Let us now use that for our solutions

Γα
μν ¼ Γr

rν ¼ Γα
rr ¼ 0;

Γr
μν ¼ −

1ffiffiffiffiffiffi
grr

p Kμν; Γα
μr ¼

ffiffiffiffiffiffi
grr

p
Kα

μ;

Γr
rr ¼

1

2
grr∂rgrr; ðB26Þ

where

Kμν ¼
1

2
ffiffiffiffiffiffi
grr

p ∂rgμν ðB27Þ

is the extrinsic curvature and Kα
μ ¼ gαβKβμ, K ¼ gμνKμν.

We will also use that

∂r
ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp ¼ Γr

rr þ
ffiffiffiffiffiffi
grr

p
K: ðB28Þ

This allows us to write

gμνRμν ¼ −
1ffiffiffiffiffiffi−gp ∂r

� ffiffiffiffiffiffi−gpffiffiffiffiffiffi
grr

p K

�
¼ −

1ffiffiffiffiffiffi−gp ∂rð ffiffiffiffiffiffi
−γ

p
KÞ:

ðB29Þ

We defined γμν ¼ gμν as the boundary metric and usedffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi
grr

p ffiffiffiffiffiffi−γp
. On the other hand, from Einstein’s

equations,

gμνRμν ¼ −
2L2

3
F0rF0r þ 4

3
V þ q2g00A2

0ϕ
2; ðB30Þ

where we only focused on the nonzero components on the
solutions.
Solving for V and introducing the result in the on-shell

action, one gets

Son-shell ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
−

1

2
ffiffiffiffiffiffi−gp ∂rð ffiffiffiffiffiffi

−γ
p

KÞ

− L2Fr0Fr0 −
q2

2
g00A2

0ϕ
2

�
: ðB31Þ

Let us now use the equation of motion for the gauge field:

4L2∂rð
ffiffiffiffiffiffi
−g

p
Fr0Þ ¼ 2q2

ffiffiffiffiffiffi
−g

p
g00A0ϕ

2: ðB32Þ

We can then replace the q2 term in the action by a derivative
term and write the action as a total derivative:
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Son-shell ¼
1

16πG5

Z
d5x

�
−
1

2
∂rð

ffiffiffiffiffiffi
−γ

p
KÞ − L2 ffiffiffiffiffiffi

−g
p ∂rA0Fr0

− L2A0∂rð
ffiffiffiffiffiffi
−g

p
Fr0Þ

�

¼ 1

16πG5

Z
d5x∂r

�
−
1

2

ffiffiffiffiffiffi
−γ

p
K − L2 ffiffiffiffiffiffi

−g
p

A0Fr0

�

¼ −
1

16πG5

Z
d4x
�
1

2

ffiffiffiffiffiffi
−γ

p
K þ L2 ffiffiffiffiffiffi

−g
p

A0Fr0

�
r¼rΛ

r¼rH

:

ðB33Þ

3. Connecting boundary and horizon values

We can rewrite the equations for f (B2) and A0 (B3) as

½e4Ar5f0�0 − L4

�
4e2Ar3ðA0

0Þ2 þ 2q2
re2AA2

0ϕ
2

f

�
¼ 0

ðB34Þ

½e2Ar3A0
0�0 −

q2

2

re2AA0ϕ
2

f
¼ 0: ðB35Þ

We can multiply the second equation by −4L4A0 and add it
to the first one, yielding

½e4Ar5f0 − 4L4e2Ar3A0
0A0�0 ¼ 0: ðB36Þ

By introducing the function

σðrÞ ¼
Z

r

rH

dr1
r1e2AA0ϕ

2

f
; ðB37Þ

the equations become

½e4Ar5f0 − 4L4e2Ar3A0
0A0�0 ¼ 0 ðB38Þ

�
e2Ar3A0

0 −
q2

2
σ

�0
¼ 0: ðB39Þ

Let us further define

βðrÞ ¼ e4Ar5f0 − 4L4e2Ar3A0
0A0;

γðrÞ ¼ e2Ar3A0
0 −

q2

2
σ: ðB40Þ

By the equations above, these are independent of the radial
coordinate, and it is convenient to evaluate them at the
horizon r → rH,

βðrHÞ ¼ e4AðrHÞr5Hf
0ðrHÞ≡ βH

γðrHÞ ¼ e2AðrHÞr3HA
0
0ðrHÞ≡ γH: ðB41Þ

Note that the temperature and entropy density are
given by

T ¼ r2Hf
0ðrHÞ

4πL2
eAðrHÞ; s ¼ 1

4G5

r3H
L3

e3AðrHÞ: ðB42Þ

Then,

βH ¼ 16πG5L5Ts: ðB43Þ

The constant γH is related to the charge density. We should
expand now the solutions (B40) close to the boundary and
compare with the values at the horizon (B41). For Δ ≠ 3, σ
has the following expansion,

σ ≃ L16−4Δ μ ~ϕ2
ð0;0Þ

4ðΔ − 3Þ ðr
2Δ−6
H − r2Δ−6Þ þ σb; ðB44Þ

where σb is a constant. The divergent term cancels out in
the boundary expansion of γðrÞ. Then, the matching of the
constant terms at the boundary and the horizon leads to

A0ð2;0Þ ¼ −
γH
2L4

þ q2
�

μ ~ϕ2
ð0;0Þ

8ðΔ − 3Þ
�
rH
L2

�
2ðΔ−3Þ

þ σb
2L4

�

fð4;0Þ ¼ −
1

4

βH
L8

þ 2μA0ð2;0Þ: ðB45Þ

For Δ ¼ 3, the expansion of σ close to the boundary is

σ ≃ μL4 ~ϕ2
ð0;0Þ

�
log

�
r
L

�
− log

�
rH
L

��
þ σb; ðB46Þ

where again σb is a constant. The divergent term cancels
out in the boundary expansion of γðrÞ, and the matching of
the constant terms at the boundary and the horizon leads to

A0ð2;0Þ ¼ −
γH
2L4

− q2
�
1

8
μ ~ϕ2

ð0;0Þ

�
1 − 2 log

rH
L

�
þ σb
4L4

�
ðB47Þ

fð4;0Þ ¼ −
1

4

βH
L8

þ 2μA0ð2;0Þ þ
1

8
q2μ2 ~ϕ2

ð0;0Þ: ðB48Þ

APPENDIX C: HOLOGRAPHIC
RENORMALIZATION

In order to compute renormalized quantities, we follow
the holographic renormalization prescription [62–64]. First,
we introduce a cutoff in the radial direction rΛ such that the
divergences of the bulk action (2.1) are regulated. To this,
we should add the Gibbons-Hawking term in order to have
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a well-defined variational principle for the metric and
boundary counterterms to remove the divergences. We
distinguish between two cases, noninteger Δ and Δ ¼ 3.
We assume that the form of the metric is

ds2 ¼ N2dr2 þ γμνdxμdxν ðC1Þ

and define the extrinsic curvature and Brown-York tensors
in the usual way:

Kμν ¼
1

2N
∂rγμν;

K ¼ γμνKμν;

Πμν
BY ¼ ðKμν − γμνKÞ: ðC2Þ

1. Noninteger Δ
The boundary terms are

SGH ¼ 1

8πG5

Z
r¼rΛ

d4x
ffiffiffiffiffiffi
−γ

p
K

Sc:t: ¼
1

16πG5

Z
r¼rΛ

d4xLc:t:

Lc:t: ¼ ffiffiffiffiffiffi
−γ

p �
−
6

L
þΔ− 4

L
Φ†Φþ L

2ðΔ− 3Þ γ
μνðDμΦÞ†DνΦ

þ 1

12L
ðΔ− 4Þ2
Δ− 3

ðΦ†ΦÞ2
�
:

The renormalized action is then

Sren ¼ lim
rΛ→∞

½Sbulk þ SGH þ Sc:t:�: ðC3Þ

The free energy is determined by the renormalized action
βV3F ¼ −Sren (where β ¼ 1=T and V3 is the spatial
volume). Using the formula for the on-shell action (B33)
and the boundary expansions (B8) and the relation (B45),
we find

F ¼ 1

16πG5

�
−
1

4
e4AðrHÞ

�
rH
L

�
5

f0ðrHÞ þ 2L3μA0ð2;0Þ

þ L3ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ

�

¼ −
L3

16πG5

�
−
1

4

βH
L8

þ 2μA0ð2;0Þ

þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ

�

¼ L3

16πG5

½fð4;0Þ þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�: ðC4Þ

Renormalized expectation values can be computed from
variations of the action, using the same boundary terms,

hTμνi ¼ 1

8πG5

lim
r→∞

r2

L2

�
−
ffiffiffiffiffiffi
−γ

p
Πμν

BY þ δLc:t:

δγμν

�
ðC5Þ

hOi ¼ 1

16πG5

lim
r→∞

L2ð4−ΔÞ

r4−Δ

�
−
ffiffiffiffiffiffi
−g

p
grr∂rϕþ δLc:t:

δΦ†

�
ðC6Þ

hJμi ¼ 1

16πG5

lim
r→∞

�
−4L2 ffiffiffiffiffiffi

−g
p

grrgμαFrα þ
δLc:t:

δAμ

�
: ðC7Þ

Introducing (B8) in the formulas (C5)–(C7), we get

hT00i ¼ −
L3

16πG5

½3fð4;0Þ − ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�

ðC8Þ

hTiii ¼ −
L3

16πG5

½fð4;0Þ þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�

ðC9Þ

hOi ¼ −
L3

8πG5

ðΔ − 2Þϕð0;0Þ ðC10Þ

hJ0i ¼ −
L3

2πG5

A0ð2;0Þ: ðC11Þ

Note that the Ward identity for the trace holds,

hTμ
μi ¼ hTμνiημν ¼ −ð4 − ΔÞðhOi ~ϕ†

ð0;0Þ þ hO†i ~ϕð0;0ÞÞ:
ðC12Þ

2. Δ= 3

The boundary terms are

SGH¼
1

8πG5

Z
r¼rΛ

d4x
ffiffiffiffiffiffi
−γ

p
K

Sc:t:¼
1

16πG5

Z
r¼rΛ

d4xLc:t:

Lc:t:¼ ffiffiffiffiffiffi
−γ

p �
−
6

L
−
1

L
Φ†ΦþL

�
log

r
L
þW1

�
γμνðDμΦÞ†DνΦ

þ 1

L

��
1

3
þV4

2

�
log

r
L
þW2

�
ðΦ†ΦÞ2

�
;

where W1, W2 are finite contributions. The renormalized
action is then

Sren ¼ lim
rΛ→∞

½Sbulk þ SGH þ Sc:t:�: ðC13Þ

The free energy is determined by the renormalized action
βV3F ¼−Sren (where β¼1=T and V3 is the spatial
volume). Using the formula for the on-shell action (B33)
and the boundary expansions (B12) and the relation (B48),
we find
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F ¼ 1

16πG5

�
−
1

4
e4AðrHÞ

�
rH
L

�
5

f0ðrHÞ þ 2L3μA0ð2;0Þ − L3 ~ϕð0;0Þϕð0;0Þ

þL3

�
1

4
þW1

�
q2μ2 ~ϕ2

ð0;0Þ − L3

�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�

¼ −
L3

16πG5

�
−
1

4

βH
L8

þ 2μA0ð2;0Þ − ~ϕð0;0Þϕð0;0Þ þ
�
1

4
þW1

�
q2μ2 ~ϕ2

ð0;0Þ −
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�

¼ L3

16πG5

�
fð4;0Þ − ~ϕð0;0Þϕð0;0Þ þ

�
1

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þ −
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
: ðC14Þ

Renormalized expectation values can be computed from variations of the action, using the same boundary terms.
Introducing (B12) in the formulas (C5)–(C7) (with Δ ¼ 3), we get

hT00i ¼ −
L3

16πG5

�
3fð4;0Þ þ ~ϕð0;0Þϕð0;0Þ þ

�
3

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þþ
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
ðC15Þ

hTiii ¼ −
L3

16πG5

�
fð4;0Þ − ~ϕð0;0Þϕð0;0Þ þ

�
1

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þ−
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
ðC16Þ

hOi ¼ −
L3

16πG5

�
2ϕð0;0Þ −

�
1

2
þW1

�
q2μ2 ~ϕð0;0Þ þ

�
1

3
þ V4

2
þ 2W2

�
~ϕ3
ð0;0Þ

�
ðC17Þ

hJ0i ¼ −
L3

16πG5

½8A0ð2;0Þ þ ð1þ 2W1Þq2μ ~ϕ2
ð0;0Þ�: ðC18Þ

The Ward identity for the trace has an anomalous contribution,

hTμ
μi ¼ hTμνiημν ¼ −ðhOi ~ϕ†

ð0;0Þ þ hO†i ~ϕð0;0ÞÞ þA; ðC19Þ

where

A ¼ −
L3

16πG5

�
ημνðDμ

~ϕð0;0ÞÞ†Dν
~ϕð0;0Þ þ

�
1

3
þ V4

2

�
ð ~ϕ†

ð0;0Þ ~ϕð0;0ÞÞ2
�
: ðC20Þ

It will be convenient to extract the explicit logarithmic dependence (B21) and define the finite counterterms as

W1 ¼ log ð ~ϕð0;0ÞLÞ þ κ1; W2 ¼
�
1

3
þ V4

2

�
log ð ~ϕð0;0ÞLÞ þ κ2: ðC21Þ

Then,

hT00i ¼ −
L3

16πG5

�
3f̂ð4;0Þ −

�
μ2q2 ~ϕ2

ð0;0Þ þ
�
1

3
þ V4

2

�
~ϕ4
ð0;0Þ

�
log

rH
L2 ~ϕð0;0Þ

þ ~ϕð0;0Þϕ̂ð0;0Þ

þ
�
3

8
þ κ1

�
q2μ2 ~ϕ2

ð0;0Þ þ
�
1

12
þ V4

8
þ κ2

�
~ϕ4
ð0;0Þ

�
ðC22Þ

hTiii ¼ −
L3

16πG5

�
f̂ð4;0Þ −

�
μ2q2 ~ϕ2

ð0;0Þ −
�
1

3
þ V4

2

�
~ϕ4
ð0;0Þ

�
log

rH
L2 ~ϕð0;0Þ

− ~ϕð0;0Þϕ̂ð0;0Þ

þ
�
1

8
þ κ1

�
q2μ2 ~ϕ2

ð0;0Þ −
�
1

12
þ V4

8
þ κ2

�
~ϕ4
ð0;0Þ

�
ðC23Þ
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hOi ¼ −
L3

16πG5

�
2ϕ̂ð0;0Þ þ

�
μ2q2 ~ϕð0;0Þ − 2

�
1

3
þ V4

2

�
~ϕ3
ð0;0Þ

�
log

rH
L2 ~ϕð0;0Þ

−
�
1

2
þ κ1

�
q2μ2 ~ϕð0;0Þ þ

�
1

3
þ V4

2
þ 2κ2

�
~ϕ3
ð0;0Þ

�
;

ðC24Þ

hJ0i ¼ −
L3

16πG5

�
8Â0ð2;0Þ − 2μq2 ~ϕ2

ð0;0Þ log
rH

L2 ~ϕð0;0Þ
þ ð1þ 2κ1Þq2μ ~ϕ2

ð0;0Þ

�
: ðC25Þ
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