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ABSTRACT

We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar
medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to
compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas
density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature
value, TB,min = 1.4 K, of the J = 1− 0 12CO line, generating 16 synthetic catalogs (four different spatial
resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with
the observations focuses on the mass and size distributions and on the velocity–size and mass–size Larson
relations. The mass and size distributions are found to be consistent with the observations, with no significant
variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO
abundance. The velocity–size relation is slightly too steep for some of the models, while the mass–size relation is a
bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations
show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the
velocity–size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate
adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence
can explain the origin and dynamics of MCs.
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1. INTRODUCTION

The origin, structure, and dynamical evolution of molecular
clouds (MCs) determine the conversion of gas into stars in
galaxies. In the same way as modeling of individual prestellar
cores cannot form the basis of a star formation theory, the
modeling of individual MCs cannot yield a self-consistent
picture of the cold interstellar medium (ISM). Galactic gas
infall, large-scale disk instabilities, spiral arm shocks, and
supernova (SN) explosions force the ISM of galaxies into a
highly dynamic state that couples a broad range of scales,
challenging the view of MCs as isolated systems.

The chaotic nature of the ISM dynamics and the unavoidable
development of supersonic turbulence result in near-universal
statistics and scaling laws, offering a viable theoretical
background to model the fragmentation of the cold ISM
leading to star formation. However, a self-consistent theory or
numerical model of the formation and evolution of MCs cannot
forgo a physical description of the large-scale forces mentioned
above. Although the relative importance of those driving
mechanisms has not been fully established, and large-scale
gravitational instabilities in galactic disks (e.g., Elmegreen
et al. 2003; Bournaud et al. 2010) and gas compression in spiral
density waves (e.g., Semenov et al. 2015) may also contribute
to the turbulence, it is generally accepted that SN explosions
dominate the energy budget of star-forming galaxies at MC
scales (e.g., Ostriker et al. 2010; Ostriker & Shetty 2011;
Faucher-Giguère et al. 2013; Lehnert et al. 2013).

This is the third of a series of papers where we explore the
role of SN driving, based on an adaptive mesh refinement
(AMR) magnetohydrodynamic (MHD) simulation of a

(250 pc)3 ISM volume that could be viewed as a dense section
of a Galactic spiral arm. In Padoan et al. (2016, hereafter
Paper I), we presented the simulation and studied the global
velocity scaling of SN-driven turbulence, the driving and the
scaling of the turbulence within dense clouds, and the resulting
cloud properties in comparison with those of MCs from the
Outer Galaxy Survey (Heyer et al. 2001). The large dynamic
range of the simulation (it reaches a spatial resolution of
0.24 pc) means not only that individual MCs and SN remnants
are well resolved but also that they form self-consistently as the
result of larger-scale dynamics, with realistic initial and
boundary conditions (which is not possible when simulating
individual MCs). The simulation provides a large sample of
clouds and thus constrains also the probability distribution of
could properties. In Paper I, we found that clouds selected from
the simulation have mass and size distributions and velocity–
size and mass–size relations consistent with the observations.
Using tracer particles, we also studied their evolution and
found that they form and disperse in approximately four
dynamical times.6

In the second paper of this series (Pan et al. 2016, hereafter
Paper II), we focused on the compressive ratio (the ratio
between compressive and solenoidal modes) of the turbulence
within individual MCs selected from our simulation and its
relation to the statistics of density fluctuations (e.g., Federrath
et al. 2008; Schmidt et al. 2009; Federrath et al. 2010; Kritsuk
et al. 2010, 2011), which is a main ingredient in models of the
star formation rate (e.g., Padoan 1995; Krumholz &
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6 The dynamical time was defined as the ratio of the cloud radius and the
three-dimensional velocity dispersion: tdyn = Rcl/σv,3D.
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McKee 2005; Hennebelle & Chabrier 2011; Padoan &
Nordlund 2011; Federrath & Klessen 2012) and of the stellar
initial mass function (e.g., Padoan et al. 1997; Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008; Hopkins 2012).
In Paper II, we showed that SN-driven turbulence results in a
broad range of values of the compressive ratio in MCs, with an
approximately lognormal probability distribution with a peak at
≈0.3. The cloud self-gravity does not affect this distribution
significantly, though this remains to be verified with longer
simulations including self-consistent SN feedback (resolving
the formation of massive stars that will later explode as SNe)
and with simulations with larger total column density (or lower
SN rate), possibly generating clouds with lower virial
parameters.

In this third study, we further test the consistency of MC
properties from our simulation with those of observed MCs. As
in Paper I, simulated clouds are compared with those from the
Outer Galaxy Survey (Heyer et al. 2001). In Paper I, we
considered projected properties (e.g., line-of-sight velocity,
equivalent radius) of clouds selected in three spatial dimensions
from the computational volume; here, we solve for the radiative
transfer through the simulation volume and compute synthetic
spectra of CO emission lines that are analyzed to select MCs
with the same criteria as in the observations.

The simulation is briefly presented in the next section, and in
Section 3 we describe our assumed CO abundance models and
the radiative transfer calculations. In Section 4 we describe the
cloud selection, following Heyer et al. (2001), and the
generation of 16 synthetic MC catalogs. In the following two
sections we compare the mass and size distributions and the
Larson relations of the observations with those from our
fiducial catalog, and results from the other catalogs (with
different CO abundance models or spatial resolutions) are
discussed in Section 7. Our conclusions are summarized in
Section 8.

2. SIMULATION

This work is based on an MHD simulation of SN-driven
turbulence in a large ISM volume, carried out with the Ramses
AMR code (Teyssier 2002). The numerical method and setup
are discussed extensively in Paper I and are only briefly
summarized here. We simulate a cubic region of size
Lbox = 250 pc, with a minimum cell size of dx = 0.24 pc,
periodic boundary conditions, a mean density of 5 cm−3

(corresponding to a total mass of 1.9 × 106Me), and a core-
collapse SN rate of 6.25Myr−1. We distribute SN explosions
randomly in space and time (see discussion in Paper I in
support of this choice), so our SN rate could also be interpreted
as the sum of all types of SN explosions. Individual SN
explosions are implemented with an instantaneous addition of
1051 erg of thermal energy and 15Me of gas, distributed
according to an exponential profile on a spherical region of
radius rSN = 3 dx = 0.73 pc, which guarantees numerical
convergence of the SN remnant evolution (Kim &
Ostriker 2015).

Our total energy equation includes the pdV work, the thermal
energy introduced to model SN explosions, uniform photo-
electric heating up to a critical density of 200 cm−3, and
parameterized cooling functions from Gnedin & Hollon (2012).
The simulation is started with zero velocity, a uniform density
nH,0 = 5 cm−3, a uniform magnetic field B0 = 4.6 μG (chosen
to achieve near equipartition with the kinetic energy at large

scales), and a uniform temperature T0 = 104 K. The first few
SN explosions rapidly bring the mean thermal, magnetic, and
kinetic energy to approximately steady-state values, with the
magnetic field amplified to an rms value of 7.2 μG and an
average B∣ ∣ of 6.0 μG, consistent with the value of 6.0 ± 1.8 μG
derived from the “Millennium Arecibo 21 cm Absorption-Line
Survey” by Heiles & Troland (2005). We have run the
simulation for 45Myr without self-gravity and then continued
with self-gravity for 11Myr.
Previous computational work on SN-driven turbulence was

briefly reviewed in Papers I and II. A concise review of the
variety of computational setups used to study ISM turbulence
can also be found in Kritsuk et al. (2011), where the formation
of MCs as a result of large-scale ISM turbulence is outlined
based on simulations of a 200 pc region of the multiphase ISM
driven by a random external force, instead of SN explosions.

3. RADIATIVE TRANSFER CALCULATION

For calculations of synthetic CO spectra, the density and
velocity data are resampled onto a 5123 grid. Because the
simulation does not include the computation of chemical
networks, the CO abundance must be modeled based on results
of previous studies. We adopt a simple model where the CO
relative abundance, [CO]/[H2], depends only on the local gas
density, and we test four different versions of such dependence:
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where A = 1.4 × 10−4 and nH is in cm−3. These models are
shown in Figure 1. The density threshold for the appearance of
CO molecules systematically increases from version V0 to
version V3. Version V0 has a constant abundance; it is not a
realistic model, but we include it as a reference. Versions V2
and V3 correspond to the two main groups of model
predictions shown in Glover & Clark (2012; see their Figure
3(a)). Those model predictions are results of simulations of
chemistry in turbulent clouds with a mean density of
n = 100 cm−3. The higher density threshold (thus V3) is

Figure 1. Relative abundance of CO vs. gas density in the four models adopted
in this work. Versions V2 and V3 correspond to the two main groups of model
predictions shown in Glover & Clark (2012; see their Figure 3(a)).
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preferred on the grounds that it corresponds to more complete
models of carbon chemistry. On the other hand, in clouds of
higher mean density, CO can appear already at lower local
densities. Therefore, we include the abundance profile V1 to fill
in the gap between the constant-abundance case and version
V2. In all cases, at high densities the relative abundance
approaches the same chosen value of [CO]/[H2] = 1.4 × 10−4,
corresponding to the assumed total elemental abundance of
carbon (Glover & Clark 2012). Considering the expense of full
chemistry calculation, a pure density dependence is a
convenient way to take into account the first-order effects of
abundance variations. However, it is only an approximation,
and in reality the relation between abundance and density
contains a significant scatter (see, e.g., Glover et al. 2010).

The radiative transfer calculations are carried out using the
new line transfer program LOC (M. Juvela 2016, in
preparation) that uses OpenCL libraries to parallelize the
calculations. To speed up the convergence of optically thick
lines, the program also uses accelerated lambda iterations
(Olson et al. 1986), similar to the implementation in Juvela &
Padoan (2005). The program has been tested against the
Cppsimu Monte Carlo code (Juvela 1997), which was used to
repeat the calculations for a few of the models. LOC simulates
the radiation field with the ray-tracing method, the present
calculations employing rays with 48 different directions. The
calculations cover a velocity bandwidth of 49.6 km s−1 with
0.202 km s−1 channels. The channel width is chosen so that the
average of four channels exactly corresponds to the
0.81 km s−1 channel width used in the cloud extraction. The
simulation of the radiation field and the updates of the level
populations are iterated until convergence. In particular, the
line intensity maps are monitored to make sure that the
changes, even over several consecutive iterations, have
decreased to a level of 1% or below. Maps of 512 × 512
spectra, in units of brightness temperature, l= nT k I2B

2 ( ) , are
calculated for the three orthogonal coordinate directions, one
map pixel thus corresponding to a linear scale of 0.49 pc.

Four molecular transitions are computed, J = 1− 0 and
J = 2− 1 of 12CO and 13CO. However, here we use only the
12CO J = 1− 0 line, as our main purpose is the comparison
with observations of the same line from the MCs in the Outer
Galaxy Survey (Heyer et al. 2001). Results from the other lines
will be discussed elsewhere.

4. MC SELECTION

As in Paper I, the comparison with the observations is based
on the MC catalog by Heyer et al. (2001), extracted from the
12CO Five College Radio Astronomy Observatory Outer
Galaxy Survey (Heyer et al. 1998). With a total number of
10,156 objects, up to a mass of approximately 8 × 105Me and
a size of 45 pc, this is the largest sample of Galactic MCs
available. It is estimated to be complete down to a mass of
approximately 600Me and a cloud size of 3 pc, as velocity
blending is not as serious as in the case of Inner Galaxy
surveys.

As in Heyer et al. (2001), we consider only the subset of
3901 clouds with circular velocities vc < −20 km s−1 because
of kinematic distance accuracy. Given the distances to these
clouds and the angular resolution of the survey, the spatial
resolution varies between 0.4 and 3.8 pc. As discussed below
(see Section 7), we find that the normalization of the velocity–

size relation (and to a lower extent also the slope) depends on
the spatial resolution. In order to make the comparison between
the simulation and the observation more specific, we have thus
divided the observational sample into relatively narrow
distance (spatial resolution) intervals, as described in Section 7.
We select MCs from the synthetic spectra following as

closely as possible the steps described in Heyer et al. (2001).
For the fiducial model presented in the next section, we adopt
version V2 of the CO abundance model and resample the grid
of 512 × 512 synthetic spectra into a 256 × 256 grid, resulting
in a spatial resolution of 0.98 pc, as that is the resolution
corresponding to our distance interval with the largest number
of MCs from the Outer Galaxy Survey. We then average over
four velocity channels to exactly match the 0.81 km s−1

channel width of the observations, and add Gaussian noise to
mimic the median rms temperature of 0.93 K in channels with
no emission reported by Heyer et al. (1998). MCs are then
selected as connected regions in position–position–velocity
(PPV) space above a threshold brightness temperature value7

TB,min = 1.4 K, satisfying the following conditions: (i) at each
spatial position, at least two contiguous velocity channels must
be above the threshold to be selected (single pixels above the
threshold, isolated in velocity, are discarded); (ii) a minimum
of five spatial positions are required for an object to be included
(thus a minimum of 10 PPV pixels, given the first condition).
We apply this selection method to data cubes from three
simulation snapshots at 7, 9, and 11Myr after gravity was
included in the simulation (the third snapshot is the last one of
the run). Because each snapshot is used for three grids of
synthetic spectra (one in each coordinate direction), nine PPV
data cubes are generated, yielding a total of 1250 synthetic
MCs in our fiducial catalog (chemical-abundance model V2
and 0.98 pc resolution).
Besides this fiducial catalog, we create three more using the

same chemical-abundance model and three different spatial
resolutions, using the original grid of 512 × 512 synthetic
spectra, or resampling it into 64 × 64 and 128 × 128 spectra.
We also compute four catalogs of four different spatial
resolutions for each of the other three abundance models, V0,
V1, and V3, for a total of 16 synthetic MC catalogs. The
number of MCs, their total mass, the minimum and maximum
cloud mass, and the average cloud surface density for each of
the 16 catalogs (and for the six observational ones) are given in
Table 1. The table shows that the total cloud number and mass,
as well as the maximum cloud mass, decrease as the CO
abundance decreases from model V0 through V3. On the
contrary, the cloud mean surface density slightly increases, as
cloud contours gradually move toward inner higher-density
regions with decreasing CO abundance (models V0 through
V3). Examples of cloud contours from the four chemical
models are shown in Figure 2.
In our simulation, clouds of a wide range of masses arise as

density fluctuations in the turbulent ISM, where the dynamics
is approximately scale free down to the scale of collapsing
prestellar cores, where gravity is dominant. Thus, as in Paper I,
despite the mass range of up to six orders of magnitude, we
refer to all clouds as MCs, instead of following the usual

7 In Heyer et al. (2001), the threshold value of 1.4 K is for the main-beam
brightness temperature (the antenna temperature corrected for the main-beam
efficiency of the telescope), and the corresponding value in brightness
temperature may be slightly different, depending on the source brightness
distribution within the beam.
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classification into clumps, MCs, giant MCs, and giant MC
complexes, in order of increasing mass.
In the following two sections, we derive the mass and size

distributions and the Larson relations of our synthetic MCs and
compare them with the observations. We only consider the
fiducial catalog (chemical-abundance model V2 and 0.98 pc
resolution—upper boldface row in Table 1) and the subsample
of the observational survey within the corresponding distance
interval (∼4 kpc corresponding to ∼1 pc resolution—lower
boldface row in Table 1) of the observational survey. The other
synthetic catalogs (and distance intervals of the observations)
are discussed in Section 7.

5. MASS AND SIZE DISTRIBUTIONS

Cloud masses are derived with Equation (6) of Heyer et al.
(2001), which assumes a constant CO-to-H2 conversion
factor:

⎛
⎝⎜

⎞
⎠⎟=

- M
L

M4.1
K km s pc

, 1cl
CO

1 2
( )

where LCO is the CO luminosity in units of K km s−1 pc2,
defined as the sum of the brightness temperature, TB(x, y, v),
over all PPV cells contained in a cloud,

å=L T x y v dx dv, , , 2CO
i,j,k

B i j k
2( ) ( )

where dx is the spatial cell size in pc (dx = 0.98 pc in our
fiducial catalog), dv is the velocity channel width in km s−1

(dv = 0.81 km s−1 in all catalogs), and the brightness
temperature is the output of the radiative transfer calculation
described in the previous section.
The cloud radius is defined as the radius of the circle with

area equal to the cloud projected area:

åp
=R dx

1
. 3e

i,j

2 ( )

Given the conditions for cloud selection explained in the
previous section, MCs from our fiducial catalog must have a
mass larger than 10.9Me and a radius larger than 0.55 pc. As
shown in Table 1 (boldface row), the actual minimum mass is
35.2Me.
Before comparing with the observations, we add a random

uncertainty to the derived values of masses and radii,
corresponding to a statistical uncertainty in distance of 10%,
probably somewhat smaller than for most of the observed
clouds (the distance uncertainties for the clouds in the Outer
Galaxy Survey are not given in Heyer et al. 2001).
The mass and size probability distributions of the synthetic

clouds from our fiducial catalog are shown in Figures 3 and 4,
together with those from the observational sample limited to
the 1936 clouds in the distance interval [4/1.25, 4 × 1.25] kpc,
to match the spatial resolution of approximately 1 pc of the
synthetic catalog. The mass and radius completeness limits of
the Outer Galaxy Survey estimated by Heyer et al. (2001) for a
distance of 10 kpc are 600Me and 3.1 pc, respectively.
Because here we consider only a subsample of clouds at a
distance around 4 kpc, we may expect the completeness limit to
be lower by a factor of 4 and 2, respectively. Because of the
finite width of our distance interval, we adopt a slightly more
conservative mass and size limit, only 2 and 2 times smaller

Table 1
Properties of the 16 Synthetic MC Catalogs and the Six Distance Intervals of

the Observational Catalog

Synthetic Catalogs:

CO/H2 dx Ncl Mtot Mmin Mmax Σaver

(pc) (Me) (Me) (Me) (Me pc−2)

V0 0.49 19017 1.0e7 1.5 2.0e6 18.3
V0 0.98 4933 1.0e7 23.6 1.9e6 19.2
V0 1.95 1271 1.0e7 129.2 2.0e6 20.3
V0 3.91 317 0.9e7 685.3 1.7e6 22.3

V1 0.49 6352 5.0e6 2.4 7.2e5 21.7
V1 0.98 2158 4.6e6 36.0 6.4e5 23.3
V1 1.95 612 4.1e6 153.1 3.7e5 25.0
V1 3.91 183 3.4e6 1009.0 2.7e5 26.4

V2 0.49 4021 1.5e6 7.4 8.1e4 23.3
V2 0.98 1250 1.4e6 35.2 7.9e4 24.2
V2 1.95 348 1.1e6 174.8 8.3e4 24.6
V2 3.91 85 0.8e6 732.0 6.3e4 26.0

V3 0.49 1565 3.0e5 7.0 1.2e4 27.6
V3 0.98 438 2.6e5 45.5 1.3e4 29.0
V3 1.95 109 1.6e5 181.2 1.0e4 30.8
V3 3.91 15 0.5e5 1055.4 0.7e4 24.0

Observational Catalogs:

Daver dx Ncl Mtot Mmin Mmax Σaver

(kpc) (pc) (Me) (Me) (Me) (Me pc−2)

2.0 0.50 212 8.1e4 11.1 3.9e4 18.0
3.1 0.78 584 4.0e5 23.0 6.2e4 21.0
4.1 1.04 1936 3.1e6 36.9 3.0e5 21.7
5.4 1.36 1816 4.0e6 49.2 8.2e5 19.2
7.5 1.89 360 5.1e5 131.2 3.3e4 15.8
10.2 2.55 88 1.4e5 319.8 1.9e4 14.2

Note. The two boldface rows indicate the fiducial model and the corresponding
distance interval of the observational catalog.

Figure 2. Example of clouds extracted from the last snapshot of the simulation,
in the area around the most massive MC. The background image is the line area
from model V0 with 0.49 pc resolution. The red, blue, black, and green
contours show the outlines of all clouds extracted in this area from models V0,
V1, V2, and V3, respectively, at a resolution of 0.98 pc.
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than those of the full sample. Thus, we compute power-law fits
for clouds more massive than approximately 300Me and larger
than approximately 2 pc. The same limits are adopted for the
fiducial catalog as well. We find that the slopes of the
distributions from the synthetic catalog are consistent with the
observations within the 1σ uncertainty. Expressing the mass
distribution as µ b-N M Mcl cl

M( ) and the size distribution as
µ b-N R Re e

R( ) , we find βM = 0.83 ± 0.10 and 0.76 ± 0.07
and βR = 1.97 ± 0.21 and 1.76 ± 0.14 for the simulation and
the observations, respectively.

6. LARSON RELATIONS

The line-of-sight rms velocity of a cloud, σv, is computed
from the equivalent width of the cloud composite spectrum, as

in Heyer et al. (2001):

ås
y

y
=

v dv

v

1

8 ln 2 max
, 4v

k

k

k

( )
( )

( )

where ψ(vk) is the composite spectrum,

åy =v T x y v, , . 5k
i,j

B i j k( ) ( ) ( )

The relation between σv and Re is shown in Figure 5 for both
the synthetic catalog (open circles) and the observations (dots).
To derive a power-law fit, we bin the data in logarithmic
intervals of Re and compute the mean and standard deviation of
σv in each interval (thin solid and dashed lines in Figure 5). We
then perform a least-squares fit through these mean values,
yielding

⎛
⎝⎜

⎞
⎠⎟s s=
b

R

1 pc
, 6v v,1pc

e
v

( )

with σv,1pc = 0.83 ± 0.02 km s−1 and βv = 0.29 ± 0.02 for the
synthetic clouds and σv,1pc = 0.75 ± 0.02 km s−1 and
βv = 0.24 ± 0.03 for the observed clouds.
The 2σ discrepancy between the velocity normalizations is

not surprising, because the simulation was not tailored to
reproduce precisely the conditions in the Perseus arm, where
most of the observed MCs are located. The SN rate adopted in
the simulation is relatively large and could easily exceed the
actual SN rate in the Perseus arm, causing a slight excess in the
velocity dispersion of the clouds in the simulations. The
turbulence dissipation rate scales as v3/ℓ, where v is the
velocity dispersion at the scale ℓ. Assuming an equilibrium
between turbulent energy dissipation and SN energy injection
rates, our SN rate should be reduced to approximately 70% of
its current value to recover the observed velocity normalization.
Although this lower SN rate remains reasonable, further studies
of the star formation rate in the Perseus arm are needed to
properly constrain the SN rate. The above assumption of

Figure 3. Probability distribution of cloud masses for the sample of 1250
clouds from our fiducial synthetic catalog, based on the chemical abundance
model V2 and spatial resolution dx = 0.98 pc (shaded histogram). The
unshaded histogram shows the mass distribution from the observational sample
of 1936 Outer Galaxy MCs in the distance interval [4/1.25, 4 × 1.25] kpc. The
power-law fits to the distributions, shown by the dashed and dot-dashed lines,
are evaluated for masses above 300 Me, just above the estimated completeness
limit of the Outer Galaxy Survey at the distance of 4 kpc.

Figure 4. Probability distribution of cloud equivalent radii for the same fiducial
synthetic cloud catalog (shaded histogram) and the same observational sample
(unshaded histogram) as in Figure 3. The power-law fits to the distributions
(dashed and dot-dashed lines) are evaluated for radii above 2 pc, just above the
estimated completeness limit of the Outer Galaxy Survey at the distance
of 4 kpc.

Figure 5. Velocity–size relation for the MCs selected from the fiducial
synthetic catalog (blue open circles) and from the same observational sample as
in Figure 3 (red dots). The values of σv averaged within logarithmic intervals of
Re are shown by the thin solid and dashed lines. The thick solid and dashed
lines show the power-law fits through those average values. Both the slope and
the scatter in the relations from the two samples are very similar. However, the
velocity normalization of the synthetic MCs is approximately 10% larger than
from the observations.
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equilibrium between SN energy injection and turbulent
dissipation is nontrivial for a system with diverse cooling and
heating mechanisms. However, our conclusion holds even if
the two rates are different, as long as their ratio is constant (e.g.,
if the efficiency of the conversion of SN energy into turbulent
motions does not strongly depend on the SN rate). Further-
more, numerical simulations of SN-driven turbulence result in a
gas velocity dispersion approximately proportional to the cubic
root of the SN rate (Dib et al. 2006, Figures 12 and 13), as
assumed in our argument.

Figure 6 in Heyer et al. (2001) shows that the velocity–size
relation derived for the Outer Galaxy MCs continuously
flattens with decreasing values of Re and is very flat for Re 
10 pc. This flattening is likely due to the inclusion of clouds at
different distances in the sample, combined with the depend-
ence of the velocity normalization on spatial resolution
discussed in the next section (and with the limited velocity
resolution). Because we select a subsample of clouds at
approximately the same distance (4 kpc for this comparison
with our fiducial synthetic catalog), the flattening in the
velocity–size relation of the observed MCs is nearly completely
eliminated in our case. Our Figure 5 shows that for this
observational subsample the velocity–size relation is well
approximated by a power law, at least for Re  10 pc.

We should stress that the slope of the velocity–size relation
derived here is affected by the limited velocity resolution.
Using the full velocity resolution of our synthetic spectra, we
derive a significant number of small clouds with smaller
velocity dispersion than in Figure 5. Although we have largely
eliminated the flattening of the lower envelope of the
observational velocity–size relation by selecting clouds within
a relatively narrow distance range, it is very likely that, with
smaller velocity channels, even the observational survey would
result in a large number of small clouds with lower velocity
dispersion than with the current velocity resolution. The real
slope of the velocity–size relation is thus somewhat larger than
the values of βv derived here.

In Figure 6 we plot the mass–size relations. As found in
previous observational studies (e.g., Roman-Duval et al. 2010),
the cloud surface density increases with increasing cloud size,
in agreement with estimates of MC fractal dimensions from

various observational surveys (e.g., Bazell & Desert 1988;
Zimmermann & Stutzki 1992; Elmegreen & Falgarone 1996;
Sánchez et al. 2007) and from simulations of randomly driven
turbulence (e.g., Kritsuk et al. 2007; Federrath et al. 2009).
This trend is reproduced by our fiducial synthetic catalog,
though with a slightly shallower slope than in the Outer Galaxy
Survey. We follow the same binning procedure as for the
velocity–size relation to obtain power-law fits,

⎛
⎝⎜

⎞
⎠⎟=
b

M M
R

1 pc
, 7cl cl,1pc

e
m

( )

with Mcl,1pc = 65 ± 2Me and βm = 2.24 ± 0.04 for the
synthetic clouds and Mcl,1pc = 49 ± 2Me and βm = 2.39 ±
0.05 for the observed clouds. Both mass–size relations
correspond to a mean cloud surface density of approximately
32Me pc−2 at Re = 6.5 pc.
The information from the two Larson relations can be

combined into a relation between the cloud virial parameter and
the cloud mass, which reveals the dynamical state of the MCs.
The virial parameter is defined as

a
s

º ~
R

GM

E

E

5 2
, 8vir,e

v
2

e

cl

k

g
( )

where σv is the one-dimensional velocity dispersion, G the
gravitational constant, Ek the internal kinetic energy, and Eg the
gravitational energy, and the second equality is exact in the
case of an idealized spherical cloud of uniform density
(Bertoldi & McKee 1992). For more realistic cloud mass
distributions, the virial parameter is only an approximation of
the ratio of kinetic and gravitational energies. Because it adopts
the equivalent radius, Re, we refer to this virial parameter as
αvir,e. The dependence of αvir,e on cloud mass is shown in
Figure 7, together with the power-law fits derived from binning
the data in logarithmic intervals of Mcl. Both the scatter and the
trend of αvir,e versus Mcl of the synthetic clouds are
approximately consistent with the observational data. The
exponents of the power-law fits are consistent with those

Figure 6. Mass–size relation for the same synthetic and observational cloud
catalogs as in the previous figures. The solid and dashed lines show the power-
law fits to the binned data, as in Figure 5. The dot-dashed lines mark two values
of constant surface density.

Figure 7. Cloud virial parameter vs. cloud mass for the same synthetic and
observational samples as in the previous figures. The thin lines are the averaged
values of αvir,e in logarithmic intervals of cloud mass, and the thick lines their
power-law fits. The lack of clouds of small mass and small αvir,e is a selection
effect due to the limited velocity resolution.
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derived from combining the Larson relations expressed by
Equations (6) and (7), giving b b b+ -1 2 v m m( ) . Notice that
while the upper envelope of the scatter plots in Figure 7 is real,
the lower envelope is a selection effect due to the limited
velocity resolution. With higher velocity resolution, low-mass
clouds with low values of αvir,e would also be selected.

Figure 7 shows that the most massive clouds are more likely
to be gravitationally bound than smaller clouds. Given the
rather large values of αvir,e, the great majority of clouds must
be transient structures. This result depends to some extent on
the cloud definition as overdensities above a fixed brightness-
temperature threshold, resulting in increasing surface density
with increasing mass. One could always define clouds with a
different criterion, for example, imposing αvir,e = 1, which
could be achieved by adopting a variable brightness-temper-
ature threshold (increasing toward smaller masses), or with a
dendrogram analysis (e.g., Rosolowsky et al. 2008). However,
most reasonable definitions would lead to the conclusion that a
majority of MCs from our simulation and from the Outer
Galaxy Survey are transient structures.

7. SPATIAL RESOLUTION AND CO ABUNDANCE

In the previous sections, we have compared our fiducial
model, V2 at 0.98 pc resolution, with the subset of the
observational sample at the corresponding distance of approxi-
mately 4 kpc. We now consider the effect of changing the CO
abundance model and the spatial resolution of the synthetic
observations. We keep the velocity resolution fixed, to match
that of the observations, because our main focus is the
comparison of the simulation with the Outer Galaxy Survey.
We will study the effect of varying both the spatial and the
velocity resolution in a separate work.

To look for possible trends related to the spatial resolution
also in the observations, we divide the observed clouds into six
slightly overlapping distance intervals, corresponding to the
spatial resolution intervals [xi/1.25, xi × 1.25], with
xi = 0.5 × 2i/2 pc, i = 0, K, 5 (see Table 1). The number of
observed clouds, Ni, in the xi intervals is N0, K5 = 212, 584,
1936, 1816, 360, and 88. The third interval is the most
populated one and has an average resolution of 1.04 pc, nearly
identical to that of our fiducial model. This procedure of
dividing the observed clouds into distance intervals is not
exactly the same as reobserving with different resolutions
clouds at a fixed distance, as in the synthetic observations. In
the real observations, clouds are selected from maps containing
objects with a rather large range of distances. Thus, the
following comparison of the dependence on resolution of
simulated and observed clouds should be considered of a
qualitative nature.

We first consider the dependence of the slopes of the mass
and size distributions, βM and βR, respectively, on the CO
abundance model and on the resolution, shown in Figures 8 and
9. The squares show the mean spatial resolution and mean
slope derived from the observations in each distance interval
(the lowest-resolution bin is not shown because the power-law
fit to the histograms has too large uncertainty due to the small
number of clouds). The shaded areas give the 1σ uncertainty in
the estimated slope and the standard deviation of the spatial
resolution values (the statistical uncertainty in the resolution,
from the cloud distance uncertainty, may be even larger).

The power-law fits are derived for masses and radii above
some minimum values that are set to be the same for the

synthetic and the observational MC catalogs, and just above the
estimated mass and size completeness limits, as mentioned in
Section 5. For the 1 pc resolution, the power-law fits are
computed for masses larger than 200Me and radii larger than
2 pc. For different resolutions, the minimum mass is scaled as
dx2 and the minimum radius as dx.
Figures 8 and 9 show that our fiducial chemical-abundance

model, V2, yields mass and size distributions with slopes
approximately independent of spatial resolution, within the 1σ
uncertainties. The same is true for the observations (shaded
areas) and for the other chemical models, except for a
significant increase in βR between dx = 2 and 0.5 pc in the
V0 model. Furthermore, the slopes derived from the synthetic
observations with variable CO abundance models are also in

Figure 8. Power-law exponents of the fits to the mass distributions vs. spatial
resolution. Each plot shows a different model for the assumed relative
abundance of CO, with the error bars giving the 1σ uncertainty of the estimated
slope. The square symbols are the values from the different distance intervals of
the observational sample (see text), and the shaded areas show the standard
deviation of the mean spatial resolution within each interval and the estimated
1σ uncertainty of βM. The lowest-resolution interval of the observations and the
lowest-resolution value of model V3 are not shown due to their excessive
uncertainty.

Figure 9. Power-law exponents of the fits to the size distributions vs. spatial
resolution. As in the previous figure, each plot shows a different model for the
assumed relative abundance of CO, with the error bars giving the 1σ
uncertainty of the estimated slope. The square symbols are the values from the
different distance intervals of the observational sample (see text), and the
shaded areas show the standard deviation of the mean spatial resolution within
each interval and the estimated 1σ uncertainty of βR.
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good agreement with the slopes from the observations. On the
contrary, the slopes from the constant CO abundance model,
V0, are significantly larger than the observational slopes. The
assumption of constant CO abundance results in the selection
of a large number of small clouds, as illustrated by the red
contours in Figure 2, causing the steeper mass and size
distributions.

The values of βM and βR from model V1 are indistinguish-
able from those of model V2 and thus consistent with the
observations as well. They also have smaller error bars than in
model V2 due to the larger number of clouds (see Table 1).
Finally, model V3 is also consistent with models V1 and V2
and with the observations, but its error bars are very large due
to the small sample size.

Figure 10 shows the values of the exponent of the velocity–
size relation, βv, derived from power-law fits of the data binned
in logarithmic size intervals, as in the previous section. All
models yield a slight decrease in βv with increasing resolution,
at least for dx � 2 pc. A similar trend is also visible in the
values from the observations, but it is not significant within the
1σ uncertainty. The V1 model provides the best match to the
observations. Model V2 is also consistent with the observations
at the 1σ level at our fiducial resolution of 0.98 pc, while it
gives slightly too large values at dx = 0.5 and 2. Model V0
never matches the observations. Its values of βv are very close
to those of model V2, but its error bars are significantly smaller,
due to the larger sample size, so its discrepancy with the
observations is significant. In the case of model V3 the error
bars are very large, but the discrepancy with the observations is
nevertheless very large at dx = 0.5 pc.

The normalization coefficient of the velocity–size relation,
σv,1pc, has a much stronger dependence on spatial resolution
than βv. In Figure 11, all models show an almost linear increase
of the rms velocity at the scale of 1 pc, σv,1pc, with the
logarithm of the resolution. The observational catalogs also
follow the same trend, with σv,1pc ≈ 0.58 km s−1 at dx ≈
2.55 pc and σv,1pc ≈ 0.82 km s−1 at dx ≈ 0.50 pc. This effect is
probably due to the limited velocity resolution of approxi-
mately 0.5 km s−1. When the spatial resolution is increased,
some of the clouds are broken into smaller-size components,
while this further fragmentation is not matched in velocity
space, where the resolution is held constant. Based on the

dependence of the cloud sample size on resolution in the
synthetic catalogs, we can estimate that the characteristic cloud
size decreases almost linearly with dx. Assuming that the cloud
line width is nearly unchanged by the fragmentation on the
plane of the sky, we would expect that σv,1pc grows with
decreasing dx with a slope not much smaller than βv. That is
indeed the case for both the observations and all the synthetic
models with variable CO abundance. On the other hand, the V0
model has a significantly steeper dependence on resolution.
That may be due to the combined effect of the steeper mass and
size distributions, yielding a much larger number of small
clouds, and the inclusion of low-density high-velocity gas that
is not probed by the variable-abundance models.
Although they follow the same trend with resolution as the

observations, the models have generally too large values of
σv,1pc relative to the observations. As commented in the
previous section, this is to be expected because the SN rate in
the simulation is not tailored to match that in the Perseus arm
and is relatively large. We argued above that our fiducial
model, V2 at 0.98 pc resolution, would yield a value of σv,1pc
consistent with the observations if the SN rate were reduced to
70% of its current value. The correction factor is approximately
the same also at dx = 0.5 and 2 pc, although the linear scale in
σv,1pc and the decreasing error bar with decreasing dx in
Figure 11 give the appearance of a larger discrepancy at higher
resolution. The normalization of the velocity–size relation is
significantly larger in the other two variable-abundance models,
V1 and V3, and much larger in model V0 at dx = 0.5 and 1 pc,
due to the stronger dependence on resolution of this model.
Furthermore, the dependence on resolution in model V1 is
significantly weaker than in model V2 and in the observations.
In model V1, the SN rate should be reduced by a factor of 1.55
at dx = 0.5 pc and a factor of 2.5 at dx = 2 pc in order to match
the observed values of σv,1pc.
The dependence of the mass–size relation on the CO

abundance model and spatial resolution is shown in Figures 12
and 13. In the synthetic catalogs, the exponent of the power-
law fits, βm, is essentially independent of both resolution and
CO abundance. The same is true for the observations, although
there is a significant drop as dx decreases from 1 to 0.8 pc. The
values from the synthetic catalogs are consistent with the
observations, except around dx = 1 pc, where the mass–size
relation from the observations is a bit steeper than in the

Figure 10. As in Figures 8 and 9, but for the exponents of the velocity–size
relation. All six cloud distance intervals of the observational samples are
shown here.

Figure 11. As in Figure 10, but for the normalization coefficient of the
velocity–size relation.

8

The Astrophysical Journal, 826:140 (10pp), 2016 August 1 Padoan et al.



models, as already anticipated in Figure 6. As in the velocity–
size relation, the normalization coefficient of the mass–size
relation has a clear dependence on resolution. Mcl,1pc increases
with decreasing dx in all the synthetic catalogs and in the
observations. The only exception is the highest-resolution
interval of the observational sample. In all models but V0 the
clouds are a bit more massive than the observations at
Re = 1 pc. This discrepancy is partly due to the steeper slope
of the observational mass–size relation, causing the discre-
pancy in the normalization at 1 pc, while the cloud masses are
comparable at intermediate cloud sizes of a few parsecs. As
shown in Table 1, the mean MC surface density is
≈20Me pc−2 for both the synthetic and observational samples,
with only a slight increase in surface density as the CO
abundance is reduced from model V0 to model V3. However,
because the simulation is not specifically tailored to match MCs
in the Perseus arm, we should not expect the synthetic catalogs
to yield exactly the same surface density as the observations.

Based on this discussion of the dependence on CO
abundance model and resolution, we can conclude that the
constant-abundance model, V0, is mostly inconsistent with the
observations, as its mass and size distributions and its velocity–
size relation are too steep at all resolutions. Furthermore, the
normalization of its velocity–size relation is both too large and

too strongly dependent on spatial resolution. Matching the
model V0 values of σv,1pc with the observational ones would
require a reduction of the SN rate in the simulation by a factor
of 3.1 at dx = 2 pc and a factor of 2.6 at dx = 0.5 pc. The
inconsistency of model V0 with the observations was to be
expected, as the assumption of constant CO abundance is not
realistic, and this model was included only as a reference.
Among the variable-abundance models, even allowing for its

large error bars, model V3 provides an inferior match to the
observations, relative to models V1 and V2, both with respect
to βR (too steep size distribution at dx � 1 pc) and βv (too steep
velocity–size relation at dx = 0.5 pc). Model V1 provides a
better fit to the slope of the observed velocity–size relation than
model V2. On the other hand, the dependence on resolution of
σv,1pc in model V1 is weaker than in the observations, while in
model V2 it is consistent with the observations. In summary,
both models V1 and V2 compare reasonably well with the
observations. While model V2 may be considered more
realistic than model V1, as it represents the average relation
between CO abundance and gas density from a realistic
simulation including the evolution of a chemical network
(Glover & Clark 2012), it neglects the large scatter in such
relations found in the chemistry simulations.

8. SUMMARY AND CONCLUSIONS

We have carried out a direct comparison of MCs selected
from a simulation of SN-driven ISM turbulence with MCs
selected from the Outer Galaxy Survey, focusing on the mass
and size distributions and on the Larson relations. A similar
comparison was presented in Paper I, but only for clouds
selected in PPP space and without any attempt to model the
relative abundance of CO or the radiative transfer of CO
emission lines. Here we have used three snapshots of the
simulation to compute synthetic CO observations with the same
spatial and velocity resolutions and the same noise level as in
the Outer Galaxy Survey, and we have selected the clouds
following closely the procedure described in Heyer et al.
(2001). As in Paper I, we find a reasonable agreement between
the simulation and the observations, suggesting that SN-driven
turbulence may be the main agent responsible for the formation
and evolution of MCs. However, we have also shown that our
results are sensitive to the assumptions about the CO
abundance. We have not modeled the ISM chemical evolution
and have relied on average relations between CO abundance
and gas density from previous works, neglecting the large
scatter found in those relations. Future tests of ISM turbulence
simulations based on the comparison with observed MC
properties will have to include self-consistently the solution of
chemical networks to compute the spatial distribution of the
observed molecular species.
The main results of this work are summarized in the

following.

1. The mass and size distributions from the synthetic MC
catalogs with variable CO abundance are consistent with
the observations. Their slopes do not vary significantly
with spatial resolution or with chemical model. The
synthetic MC catalog with constant CO abundance yields
too steep mass and size distributions.

2. The mean surface density of the synthetic clouds is
≈20Me pc−2, comparable to that of the MCs from the
Outer Galaxy Survey.

Figure 12. Exponents of the fits to the mass–size relation, derived as for the
velocity–size relation of Figure 10.

Figure 13. Normalization coefficients of the mass–size relation. Same symbols
as in the previous figures.
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3. The velocity–size relation is slightly steeper in the
synthetic MCs than in the observations, except for the
case of the chemical-abundance model V1. Model V2 is
also consistent with the observations in the resolution
interval around 1 pc, within the 1σ uncertainty. The
exponent of the velocity–size relation has a slight
dependence on resolution.

4. The normalization of the velocity–size relation has a clear
dependence on resolution, both in the synthetic catalogs
and in the observations. As the spatial resolution is
increased, while keeping the velocity resolution constant,
the mean velocity and 1 pc, σv,1pc, increases. This
behavior of σv,1pc is to be expected, as smaller-size
clouds are selected at higher spatial resolution without a
significant decrease in their line width due to the constant
velocity resolution, but the effect had never been
demonstrated with real or synthetic observations prior
to this work. This dependence of σv,1pc on resolution is
much too steep in the constant-abundance V0 model
compared with the observations.

5. The normalization of the mass–size relation at 1 pc,
Mcl,1pc, depends on spatial resolution as well, both in the
synthetic catalogs and in the observations. It is a bit
higher in the synthetic catalogs, particularly at the
resolution dx = 1 pc, where the observational mass–size
relation is significantly steeper than in the simulation.

6. The normalization of the velocity–size relation of all the
synthetic catalogs is larger than in the observations. In the
case of our fiducial model, this suggests that the SN rate
in the Perseus arm may be approximately 70% of the
value used in the simulation.

The subdivision of the observational sample into cloud
distance intervals is not exactly equivalent to the procedure of
generating synthetic catalogs of different spatial resolutions.
Thus, the comparison of the synthetic catalogs with the
observations based on the dependence on spatial resolution
should be considered to be of a qualitative nature. Focusing on
the results at 1 pc resolution, where we have the largest number
of observed clouds, we can still conclude that the constant-
abundance model is ruled out, while all variable-abundance
models are consistent with the observations (a bit beyond the
1σ uncertainty in the case of model V3 that has the smallest
sample size and the largest error bars), except for a slightly too
large average velocity dispersion and too shallow mass–size
relation (causing a too large value of Mcl,1pc, although the
average surface density matches the observations nicely).
Although the velocity dispersion is proportional to the cubic
root of the SN rate, it appears that the velocity–size relation of
MCs selected with a constant brightness temperature threshold
provides a rather sensitive constraint for the SN rate.
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