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SUMMARY

The application of human bone marrow derived mesenchymal stromal cells (hBMSCs) for regenerative or

immunomodulatory therapies, e.g. treatment of the graft-versus-host disease, requires in vitro expansion

of the cells. The hBMSCs undergo subtle changes during expansion which may compromise their

functionality. In order to evaluate these changes lipidomics techniques were applied and the fatty acid

(FA) and glycerophospholipid (GPL) profiles of hBMSCs were determined. During the cell passaging,

arachidonic acid (20:4n-6) -containing species of phosphatidylcholine (PC) and phosphatidyl-

ethanolamine (PE) accumulated while the species containing monounsaturated fatty acids (MUFA) or n-3

polyunsaturated fatty acids (n-3 PUFAs) decreased.  The accumulation of 20:4n-6 and deficiency of n-3

PUFAs correlated with the decreased immunosuppressive capacity of the hBMSCs, which suggests that

extensive expansion of hBMSCs harmfully modulates membrane GPLs profiles, affects lipid signaling

and eventually impairs the functionality of the cells. Experiments, in which hBMSCs were cultured with

different PUFA supplements revealed that the cells may limit the proinflammatory 20:4n-6 signaling by

elongating this precursor with high biological activity to the less active precursor, 22:4n-6. It was also

found that the ability of hBMSCs to produce long chain highly unsaturated fatty acids from C18 PUFA

precursors was limited apparently due to the low desaturase activity of the cells. Thus, when the n-3

PUFA precursor, 18:3n-3, had little potency to reduce the GPL 20:4n-6 content, the eicosapentaenoic

(20:5n-3) and docosahexaenoic (22:6n-3) acid supplements efficiently displaced the 20:4n-6 acyls,

allowing attenuation of inflammatory signaling. These findings call for specifically designed optimal

PUFA supplements for the cultures with sufficiently 20:5n-3 and 22:6n-3 but moderately 20:4n-6. Studies

on the dynamics of PUFA incorporation into the major GPL classes revealed that the PUFAs in PC are

remodeled at first, then those of the PEs and phosphatidylserines (PS). These results demonstrate that not

only the type of PUFA administered but also the treatment time largely determines the resulting

composition of the membrane GPL species, which serve as PUFA donors for the synthesis of lipid

mediators. This thesis work highlights the importance of using lipidomics data to complement genomics

or proteomics approaches when aiming at understanding of the therapeutic mechanisms of stem/stromal

cells. The work provides tools to develop the protocols of hBMSCs culture and manipulate the

functionality of the cells.
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1

INTRODUCTION

1. MESENCHYMAL STROMAL CELLS

1.1. History of MSCs

The present day knowledge of mesenchymal stromal/stem cells (MSCs) is largely based on the works

of Alexander Friedenstein and Arnold Caplan. They were able to successfully isolate adherent, fibroblast-

like, clonogenic cells from subpopulations of guinea pig-derived bone marrow (Friedenstein, 1990).

Their works also showed the high replicative capacity and multilineage differentiation potential of the

isolated MSCs including their ability to constitute the hematopoietic microenvironment (Friedenstein et

al., 1968, 1970, 1974).

Following these pioneering works, Caplan and others were able to describe optimal seeding density and

differentiation conditions for inducing chondrogenic development in both animal as well as human bone

marrow derived MSCs (hBMSCs) (Caplan, 1981, 1984; Johnston et al., 1998; Yoo et al., 1998).  These

experiments together with his own initial findings made Caplan conclude that such inducible progenitor

cells that formed cartilage and/or bone can be called as adult MSCs and he proposed a simplistic scheme

for depicting their lineage termed the Mesengenic process (Fig. 1).

1.2. Origin of MSCs

The most common source for human MSCs is bone marrow aspirate from the iliac crest (Pittenger et

al., 1999). Bone marrow stroma is found within the central cavities of axial and long bones, houses

yellow marrow (mostly of adipose cells) and red marrow (consisting mainly hematopoietic tissue) and is

the major site of hematopoiesis. The stromal microenvironment which occupies approximately 85% of the

bone cavity is made up of complex network of cells including endothelial, reticular, adipocyte cells and

stromal fibroblasts which are loosely supported by extracellular matrix (Clark and Keating, 1995; Vande

et al., 1998; Muraglia et al., 2000). It is then from within this mesh of stroma system that the

mesenchymal progenitor cells or MSCs are believed to originate; although the exact anatomical

localization remains controversial. Selected immunophenotypic markers and infusion of genetically

marked cultured cells are techniques used to ascertain the natural distribution of MSCs in vivo (Bianco et

al., 2001; Shi and Gronthos, 2003). The ability of MSCs to engraft nonspecifically in different injured

areas and the lack of definitive markers for these cells make the systematic isolation of MSCs from

different organs and tissues a complicated task. Nonetheless, MSCs have been successfully isolated and
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characterized from the following sources; adipose tissue and umbilical cord blood (Erices A. et al., 2000;

Zuk et al., 2001; Panepucci et al., 2004; Laitinen et al., 2016). MSCs have also been found in various

other organs and tissues such as liver, spleen, pancreas, kidney, aorta, vena cava, brain and muscle,

periodontal ligament, synovial membrane and lungs (de Bari et al., 2001; da Silva et al., 2006; Seo et al.,

2004; Sabatini et al. 2005; Meirelles et al., 2006).

1.3. Characterization of MSCs

The term MSCs refers to a set of self-renewing, non-hematopoietic, adult multipotent progenitor cells

capable of differentiating into multiple mesodermal lineages including osteocytes, chondrocytes and

adipocytes (Caplan, 2009). After the initial characterization of MSCs by Friedenstein and colleagues in

the late 1960s as plastic-adherent, spindle shaped stromal cells, the precise morphological and

phenotypical definition remained divisive. In order to address this issue the International Society for Cell

Therapy (ISCT) described a minimal criteria to characterize human MSCs (Dominici et al., 2006).

Accordingly, human MSCs can be identified by their; i) adherence to plastic in a standard culture

condition, ii) expression of specific surface antigen markers, and iii) differentiation potential into multiple

mesodermal lineages (Fig.  1). It should be noted that these criteria apply solely to human MSCs since

other animal sources have been shown to differ in marker expression and phenotype (Peister et al., 2004).

As the majority of plastic adherent bone marrow-derived MSCs lack the ability to self-renew (Horwitz et

al., 2005), with the exception of a subset of cells that express CD146 (melanoma cell adhesion molecule,

MCAM) (Sacchetti et al., 2007), the nomenclature of these cells has been in favor of the term stromal

instead of stem cells. In this study we will use the designation MSCs to mean Mesenchymal Stromal

Cells.

1.4. Multilineage potential of MSCs

One of the defining features of MSCs is their multipotency i.e. their ability to differentiate into

several mesenchymal lineages both in vitro and in vivo (Fig. 1). The expression of phenotypic markers for

osteocytes, adipocytes, myocytes and chondrocytes has been demonstrated in several studies, by

supplementing MSCs growth media with general differentiation-inducing agents e.g. dexamethasone,

ascorbic acid, β-glycerophosphate and transforming growth factor (TGF) β-3 or bone morphogenetic

protein 2 (Rogers et al., 1995; Wakitani et al., 1994; Pittenger et al., 1999; Jaiswal et al., 1997; Johnstone

et al., 1998; Jiang et al., 2002; Yuasa et al., 2015).   MSCs have also been shown to differentiate into non-
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Fig. 1. Mesodermal tissues serve as the source of bone, cartilage, muscle, marrow stroma, tendon, fat, dermis in developing

embryos and adult organisms. The continual processes through which these tissues get replenished is referred to as the

Mesengenic Process. This involves proliferative and commitment steps from the progenitors mesenchymal stromal cells

(MSCs). Their progeny get committed to a specialized lineage and subsequent differentiation steps produces definitive

phenotypes such as osteoblasts, chondrocytes and myoblasts. This differentiation multipotency together with ability to plastic

adherence in standard culture and cellular surface markers (CD90, CD73) help to characterize and isolate MSCs from several

sources. Modified from Caplan, A.I., 1994. The mesengenic process. Clinics in plastic surgery, 21(3), pp.429-435, copyright

1994.
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mesodermal lineages such as neural cells and hepatocytes (Sanchez-Ramos et al., 2000; Woodbury et al.,

2000; Lee et al., 2004; Sato et al., 2005). The results from the aforementioned experiments demonstrate

the multipotency of MSCs and thereby their importance for tissue engineering and therapeutic

applications.

1.5. Immunology of MSCs

MSCs express very low levels of major histocompatibility complex class I but completely lack

expression of costimulatory molecules CD80 and CD86 (di Nicola et al., 2002; Le Blanc et al., 2003;

Majumdar et al., 2003). These characteristics of MSCs aids to evade recognition by host immune systems

during allogenic co-transplantation along with hematopoietic stem cells (HSCs). However, a prominent

immunological feature of MSCs is their ability to inhibit allogeneic T cell and natural killer cell (NK cell)

proliferation through a suppressive mechanism which does not involve alloantigen or costimulatory

molecules such as CD80, CD86 and CD40 (di Nicola et al., 2002; William et al. 2003; Klyushnenkova et

al., 2005). Consequently, MSCs have been shown to alleviate graft-versus-host diseases, promote cardiac

repair and modulate both innate and adaptive immune responses (Fig. 2) (Tomita et al., 1999; Le Blanc et

al., 2004; Pittenger et al., 2004; Aggarwal and Pittenger, 2005). It is believed that MSCs exert these

immune modulatory functions either through direct cellular contacts or via secretion of soluble factors

such as nitric oxide, indoleamine 2, 3-dioxygenase (IDO), prostaglandin E2 (PGE2) and soluble human

leukocyte antigen G (HLA-G5) (Fig. 2) (Meisel et al., 2004; Krampera et al., 2006; Ryan et al., 2007;

Spaggiari et al., 2008; Selmani et al., 2008). For instance, expression of Jagged-1 by hBMSCs inhibits T

cell proliferation via the Notch signaling pathway. However, ligation of toll-like receptor (TLR) 3 or 4 on

hBMSCs, with poly (I:C) and lipopolysaccharide (LPS) respectively, downregulates expression of

Jagged-1 at both mRNA and protein level and subsequently inhibits hBMSCs suppressive effect on T cell

proliferation (Liotta et al., 2008). Recent investigation underlined adenosinergic signaling as possible

immunosuppressive mechanism of MSCs (Kerkelä et al., 2016). Human MSCs use AMP produced by

activated T cells to synthesize adenosine (Ado), a highly immunosuppressive compound (Saldanha-

Araujo et al., 2011; Sattler et al., 2011). Subsequent blocking of adenosinergic signaling raised T cell

proliferation, providing evidence that Ado may partially be involved in the immunosuppressive

functionality of MSCs.

Another valuable aspect of MSCs is their anti-inflammatory property which puts a rein on excessive

inflammatory responses. Inflammation is a beneficial process in which the immune system successfully

removes offending factors and repairs damaged tissue before eventually physiological homeostasis is re-
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Fig. 2. Immunomodulatory characteristics of mesenchymal stem cells (MSCs). MSCs utilize direct cell-to-cell contact and

paracrine factors to modulate immune responses. A | MSCs induce regulatory M2 macrophages and suppress their polarization

to M1 type. The differentiation of monocytes to immature myeloid dendritic cells and subsequent maturation is hindered by

MSCs. Furthermore, MSCs induce regulatory type of DC cells that promote TReg cell induction. Constitutive production and

release of IL-6 by MSCs dampens the respiratory burst of neutrophils and prolong their life span. MSCs repress the cytotoxicity

and proliferation of NK cells. Mast cell migration, and IgE-mediated degranulation is inhibited by MSCs. B | The main effector

cells of the adaptive immunity are T cells which proliferation and cytotoxicity of  especially CD4+ and CD8+ T cells is inhibited

by MSCs. MSCs maintain the survival and suppressive phenotype of TReg cells. Culturing B cells together with MSCs induces

cell cycle arrest, reduces immunoglobulin production and halts differentiation of B cells. Such regulatory and

immunosuppressive characteristics of MSCs is mediated by bioactive lipids i.e. PGE2 and several other soluble factors such as

IDO, HLA-G5, TGF β-1, TSG-6, NO, IL-10 and IL-6. (Abbreviations described in the abbreviation and acronyms list).
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stored. However, if this fragile process is not properly phased it may lead to pathological inflammation

involving tissue damage and auto-immune diseases. It is believed that maintenance of the cell’s normal

homeostasis requires active balancing between pro- and anti- inflammatory molecules rather than

sustaining a passive state that entails absence of proper inflammatory stimuli (Nathan, 2002).

Systemically administered MSCs aid this active process by migrating and, homing to sites of injured

tissue and secreting anti-inflammatory factors that assist in recovery. Expression of adhesion molecules,

P-selectin and vascular cell adhesion molecule 1 enable MSCs to infiltrate the basement membrane and

access injured sites (Rüster et al., 2006). During acute inflammation, the body produces both pro- and

anti- inflammatory cytokines; interleukin (IL) 1β, IL6 and tumor necrosis factor α (TNFα) in an attempt

to defend itself (Serhan et al., 2008). Expression of such molecular signals by resident macrophages at

sites of injured tissues activates MSCs to secrete anti-inflammatory factors; TNF-α stimulated gene 6

(TSG-6) and PGE2 (Haynesworth et al., 1996; Aggarwal and Pittenger, 2005; Caplan and Dennis, 2006;

Németh et al., 2009; Prockop et al., 2012).Both these factors create a negative feedback loop in resident

macrophages. MSCs secretion of TSG-6 reduces nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-κB) signaling to reduce the cascade of pro-inflammatory cytokines and PGE2 signaling alters

the macrophage type to that which produces IL-10 i.e. an anti-inflammatory cytokine involved in the

downregulation of T cell proliferation (Kim et al., 2009; Gordon and Martinez., 2010; Medzhitov, 2010).

1.6. Therapeutic use of MSCs

The immunoregulatory characteristics of MSCs in addition to their multipotency has made them the

primary choice in cellular therapeutic applications. At present, the international clinical trial registry has

over 500 clinical trials conducted using MSCs in variety of cases related either to their tissue regeneration

or immunomodulatory capacities. Furthermore, there has been a major shift in the knowledge of the

mechanism involved during MSCs-mediated tissue regeneration from an initial view that MSCs replaced

damaged tissue to the idea that a wide range of bioactive molecules secreted by MSCs instead conveyed

this therapeutic effect via cellular reprogramming and paracrine mechanisms (Caplan and Dennis, 2006;

Rose et al., 2008; Ranganath et al., 2012). Such observations highlighted the need to further investigate

the soluble factors produced by cells and how this signaling can be manipulated to enhance MSCs

functionality. These wide ranges of secretomes from MSCs leads the way in the cellular crosstalk within

the microenvironment and mediate physiological functions.

The efficacy of MSCs based cellular therapy will likely be influenced by the micro-environmental cues

encountered either during in vitro expansion or subsequent in vivo administration.  A number of strategies
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have been implemented thus far in order to modify this micro-environment such as preconditioning of

MSCs using physiological, molecular or pharmacological factors in vitro or even by cell-to-cell

interaction during co-culturing experiments. For instance, growing MSCs in hypoxic/anoxic conditions

resulted in the upregulated expression of vascular endothelial growth factor (VEGF), insulin-like growth

factor 1, hepatocyte growth factor and angiopoietins that promote cell survival (Kinnaird et al., 2004;

Rehman et al., 2004; Tögel et al., 2007; Uccelli et al., 2008; Ranganath et al. 2012; Tran and Damaser,

2015). In another work, growing hBMSCs in 3D spheroids boosted the secretion of PGE2 that changed

activated macrophages to an anti-inflammatory M2 phenotype via prostaglandin E2 receptor 4 signaling

(Ylöstalo et al., 2012; Bartosh et al., 2013). However, several issues remain unsolved with respect to the

safety, tolerability and efficacy of MSCs therapies. In order to develop safer and more widely applicable

cellular therapies, it is crucial to elucidate the mechanisms as well as the secretomes involved in the

immunomodulatory effects of the MSCs.

2. CELLULAR LIPIDS

2.1. Lipidomics

The view of lipids has come a long way from the early 1950’s when they were recognized for their

role as energy stores and building blocks of cell membranes, to the current view giving them roles as

signaling molecules or their precursors. Currently, lipids have been implicated in several human

metabolic diseases such as cancer, diabetes, neurodegenerative and infectious disorders. The pathology of

these ailments commonly involve the disruption of lipid metabolic enzymes and pathways. These findings

are a result of recent advancements in Lipidomics; the systems-level analysis of lipids and their

interacting partners using novel analytical approaches such as Electrospray Ionization Mass Spectrometry

(ESI-MS). The lipidomics approach involves the quantification of local concentrations of lipids, the

characterization of enzymes involved in their metabolism and the identification of lipid-lipid or lipid-

protein interactions, which elucidate some of the major factors that regulate lipid functionality. Thus,

lipidomic analysis deals with the quantitative as well as qualitative features of lipids in cells that

underwent certain physiological or pathological changes. Due to the advanced ESI-MS methodologies,

cellular lipidomics has now been able to supplement biomedical genomics and proteomics studies aiming

for drug and biomarker discoveries.
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2.2. Classification of lipids

The internationally adopted classification system based on chemical structure of hydrophobic and

hydrophilic elements that make up lipids categorizes these molecules into eight groups; fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids and

polyketides (Fahy et al., 2005). Eukaryotic membranes are primarily composed of glycerophospholipids

(GPLs), the prominent types being phosphatidylcholine (PC), phosphatidylethanolamine (PE),

phosphatidylserine (PS) and phosphatidylinositol (PI). Simple glycerolipids such as triacylglycerol (TAG)

and diacylglycerols (DAG) are mainly found in cytosolic lipid droplets while cholesterol, a major sterol

lipid, is an important constituent of plasma membrane (van Meer et al., 2008).

2.3. Structure and origin of lipids

Membrane GPLs consist of two fatty acyl molecules esterified at the sn-1 and sn-2 positions of

glycerol backbone, and contain a head group linked by a phosphate residue at the sn-3 position. The

functional head groups (choline, ethanolamine, serine and inositol) are linked to the glycerol by a

phosphodiester bond. Sphingolipids have a single fatty acid joined to a sphingoid base; and sterols

contain rigid molecule of four fused hydrocarbon rings. The hydrophilic moieties in these amphipathic

compounds may be either -OH group at one end of the sterol ring system or they may be charged alcohols

and phosphate groups. The most common lipid class in nature, the TAG consist of a glycerol backbone

with three hydroxyl groups esterified to a fatty acid. Various combinations of the fatty acyl chains and

polar head groups result in a huge variety of lipids.

The building blocks of lipids, fatty acids (FA) are synthesized via malonyl coenzyme A condensation

reaction catalyzed by fatty acid synthase. Complex lipids such as GPLs are mainly synthesized in the

endoplasmic reticulum alongside ceramide, galactosylceramide, cholesterol and ergosterol (Vance, 1990;

Henneberry et al., 2002). The Golgi apparatus is another lipid biosynthetic organelle where ceramide

containing sphingolipids such as sphingomyelin (SM) and glycosphingolipids are synthesized (Futerman

and Riezman, 2005). Non-structural lipids, TAG and cholesteryl esters are synthesized in the endoplasmic

reticulum (Bell et al., 1981).
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2.4. Cellular distribution of lipids

Despite the localized synthesis of lipids in certain organelles, the resulting composition is varied

among different membranes in different cell types (van Meer, 1989). The lipid classes present in different

organelles are the same but the different lipid transport and sorting mechanisms contribute to create

organelle and membrane specific lipid ratios i.e. compositions. In addition to this organelle specificity,

membranes also maintain lipid asymmetry by differential enrichment of certain lipid classes in either the

cytosolic or exoplasmic leaflet of membranes assisted by ATP-dependent flippases (Martin and Pagano,

1987). Lipid rafts are an example of heterogeneous distribution/composition of lipids in plasma

membrane preferentially enriched with sphingolipids and cholesterol. These dynamic clusters serve as

docking sites for transmembrane proteins, as relay stations in intracellular signaling and as sorting factors

for lipids and proteins involved in the secretory pathway (Simons and Ikonen, 1997; Brown and London,

1998; Simons and Toomre, 2000).

2.5. Synthesis of Lipids

Cellular metabolism of lipids involves the uptake, synthesis, and degradation of these compounds in a

tightly regulated process. Liver, the main site of de novo lipogenesis, has been the model tissue for

numerous studies dealing with the pathways and regulatory mechanisms of lipid metabolism in mammals.

This focus in liver stems from the fact that it is the main site of cholesterol synthesis, can convert free

fatty acids to ketone bodies and supports the absorption of dietary lipids by secreting bile acids (Van

Golde and Van den Bergh, 1977).

Lipid metabolism in mammalian cells starts with hydrolysis of the glycerophospholipid to produce

glycerol and fatty acids. The sequential acylation of fatty acyl-CoA to glycerol-3-phosphate at the sn-1

and sn-2 positions by acyl-CoA: glycerol-3-phosphate acyltransferase and lysophosphatidic acid acyl

transferase (LPAAT) marks the initial steps of de novo phospholipid synthesis. This process is the main

biosynthetic route for the formation of the most common precursor of all GPLs; phosphatidic acid (PA)

(Smith et al., 1957). The biosynthetic path for GPLs separates into two branches that both employ PA as

substrate. The first route involves the hydrolysis of PA by cytosolic phosphatidic acid phosphatase in the

endoplasmic reticulum to yield DAG. In addition to being the precursor for subsequent biosynthetic

pathways of PC and PE, DAG is utilized in the synthesis of TAG. The second route involves the

replacement of the phosphate group of PA by other phosphate functional groups to form additional

phospholipids; PI, PG or cardiolipin. This step is catalyzed by CDP-diacylglycerol synthase and involves
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the condensation of PA and cytidine trisphosphate to create CDP-diacylglycerol molecule which is

utilized for synthesis of other lipids (van Meer et al., 2008; van den Bosch and de Vet, 1997).

2.6. Remodeling of lipids

The distinct lipid composition of cellular membranes is a result of the diverse acyl chain as well as

polar head group arrangements in each tissue. This diversity is achieved by the concerted actions of

several lysophospholipid acyltransferases and CoA-dependent and CoA-independent transacylases (CoA-

IT) involved in the remodeling pathway first proposed by Lands in 1958 (Lands, 1958). After the initial

de novo biosynthesis of GPLs from glycerol-3-phosphate and acyl-CoAs via the Kennedy pathway,

subsequent cycles of deacylation and reacylation follows by the actions of phospholipase A2 (PLA2s) and

lysophospholipid acyltransferases. These enzymes exhibit different specificities as is shown by acyl-

CoA:1-acyl-2-lysophopholipid acyltransferase preference for polyunsaturated fatty acyl-CoAs and by

acyl-CoA:2-acyl-1-lysophospholipid acyltransferase preference for saturated ones. Moreover, CoA-

independent transacylase specifically catalyze the transfer of C20 and C22 polyunsaturated fatty acids

(PUFA) to ether-containing lysophospholipids while CoA-dependent transacylase have preferences for

specific FA; 18:0, 18:2 and 20:4 (Yamashita et. al., 1997).

The fatty acyl composition of GPLs is strictly regulated and the distribution of FA follows a non-random

route. Consequently, the sn-1 position of phospholipids has a SFA residue while the sn-2 position is

commonly esterified to unsaturated FA such as 20:4n-6. In the de novo biosynthesis of PA, the human

LPAAT1 is shown to have preference for 14:0-, 16:0-, and 18:2-CoAs but LPAAT2 had higher activity

for 20:4-CoA over 16:0- or 18:0-CoA. Since the rest of GPLs are a consequence of the dephosphorylation

or activation to CDP-diacylglycerol of PA; the fatty acyl chain compositions of newly synthesized

phospholipids is expected to mirror that of PA. However, the molecular species of phospholipids is

independent of PA profile because remodeling actions are performed only after de novo synthesis is

completed. So far five lysophosphatidylcholine acyl transferases (LPCAT) have been identified and of

these the Ca2+-independent LPCAT1 have been shown to catalyze the synthesis of disaturated- PC and -

PG in alveolar cells and Ca2+-dependent LPCAT2 catalyzes PC and platelet-activating factor production

in inflammatory cells. The third enzyme LPCAT3 is expressed ubiquitously and synthesizes PUFA

containing PC, PE and PS at the sn-2 position (Nakanishi et al., 2006; Shindou et al., 2007; Shindou et al.,

2009).  A lyso-phosphatidylinositol acyltransferase catalyzes 20:4-CoA incorporation into PI (Yamashita

et al., 1997; Lee et al., 2008). Such specificities, are however maintained only at physiological

concentrations of substrate and the nature of acyltransferases can be influenced by other factors. For
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instance, when oleoyl-CoA and arachidonoyl-CoA are present in saturating amounts 20:4n-6 was

assimilated at higher proportion leading to the conclusion that acyl-CoA:1-acyl-GPC acyltransferase has

high affinity for the low-level acceptor 1-acyl-GPC (Okuyama et al., 1975). Furthermore, during

abundant supply of acyl-CoAs, cells have been shown to make phospholipids with two-identical acyl

chains (diPUFA) opting for the high-capacity and low-affinity pathway for PUFA incorporation rather

than the default low-capacity and high-affinity route (Okuyama et al., 1972; Sundler et al., 1974; Chilton

and Murphy, 1986).

Some of the fatty acids, in particular 18:1 and 20:4n-6, are introduced into phospholipids primarily via the

remodeling pathway rather than through de novo biosynthesis. The level of free 20:4n-6 is tightly

regulated in cells and is directly related to the activity of acyl-CoA: lysophospholipid acyltransferase.

Enhanced PLA2 activity leads to the release of PUFAs such as 20:4n-6 from the sn-2 residue of GPLs

and the free FA is used for the production of various eicosanoids. The excess FA is reacylated back to the

lysophospholipid by the action of acyl-CoA synthetase (ACS) and acyl-CoA: lysophospholipid

acyltransferases. Several PLA2s including cytosolic PLA2 (cPLA2) and Ca2+ independent PLA2 (iPLA2),

have been shown to have lysophospholipase/transacylase activity since inhibition of these enzymes

prevents the incorporation of 20:4n-6 into phospholipids (Reynolds et al., 1993; Balsinde et al., 1995).

Exogenous 20:4n-6 and 22:6n-3 are both similarly incorporated first into diacyl PC by the actions of ACS

and acyl-CoA:1-acyl-GPC acyltransferases. Sequential assimilation of these FAs to alkyl-acyl PC and

alkenyl-acyl PE occurs in the presence of CoA-IT (Colard et al., 1984; Sugiura and Waku, 1985; Shikano

et al., 1993). Thus both 20:4n-6 and 22:6n-3 are competing for the same remodeling enzyme, with CoA-

IT having slightly higher affinity for the latter. The function of acyltransferases and transacylases extends

beyond the remodeling system and they are also involved in the biosynthesis of lipid mediators, such as

N-acylethanolamines and anandamides (Reddy et al., 1983; Devane and Axelrod, 1994; Kruszka and

Gross, 1994; Sugiura et al., 1996).

2.7. Biological function of lipids

Eukaryotic cells invest a relatively small percentage of their genes to synthesize extremely diversified

and complex repertoire of lipid molecules (Cotter et al., 2006; van Meer et al., 2008).  The wide variety of

lipid structures speaks for the diverse functional roles of lipids in mammalian cells. First, being small

molecules with reduced carbon, lipids are used as energy storage units in the form of cytosolic droplets.
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These droplets are made up of neutral lipids; TAGs and steryl esters.  Cells can utilize these stores in their

aerobic metabolism to fulfill energy needs or carry out membrane biogenesis using the FA stored in the

droplet lipids. Second, the amphipathic nature of lipids forms the biophysical platform that is the basis for

the spontaneous formation of biological membranes (Fig.  3). The hydrophobic moieties of lipids are

repelled from the internal aqueous cytosolic environment, while the hydrophilic segment readily associate

with this milieu. Such interactions of these two opposing moieties of lipids enables the

compartmentalization of the internal cellular milieu and the consequent formation of discrete organelles.

Finally, current research is highlighting the signaling role of lipids in pathophysiological as well as

metabolic processes.

2.8. Signaling role of lipids

The degradation of membrane lipids by numerous enzymes produces a variety of effectors and second

messengers collectively termed as bioactive lipids. Lysophosphatidic acid, sphingosine-1-phosphate

(S1P) and phosphoinositides are some of the specialized lipids whose signaling functions have been

studied in great detail (Edwards et al., 2002; Wenk and de Camilli, 2004; zu Heringdorf and Jakobs,

2007; Adams et al., 2016). Different types of PLAs act on GPLs to produce lysoPC, lysophosphatidic

acid, PA, and DAG that bind membrane receptors to propagate important signaling pathways (Fernandis

and Wenk, 2007; zu Heringdorf and Jakobs, 2007). Sphingomyelinase-catalyzed hydrolysis of SM

produces Cer, a precursor for a type of lipid mediator, S1P (Perry and Hannun, 1998).

In addition, kinases and phosphatases reversibly phosphorylate the head group of PI to produce unique set

of second messengers called phosphoinositides that have roles in a variety of cellular processes (Berridge

and Irvine, 1984; Hawkins et al., 2006). These lipid mediators employ their signaling action via specific

membrane receptors such as G-protein-coupled receptors, TLR or by recruiting cytosolic proteins

(Fernandis and Wenk, 2007).

Metabolism of lipids to generate bioactive mediators is not limited to the head groups of these molecules.

Hydrolysis of the hydrocarbon tail of phospholipids by PLAs generates FA in addition to a variety of

lysophospholipids (Fig.3). The sn-2 position in the fatty acyl branch of membrane lipids is preferentially

made up of PUFAs. PLA2 cleaves the sn-2 acyl bond of phospholipids releasing different PUFAs mainly

20:4n-6, 20:5n-3, and 22:6n-3. Downstream modifications of 20:4n-6 by cyclooxygenases (COX) and

lipoxygenases (LOX) produces potent bioactive compounds termed prostaglandins (PG) and leukotrienes

(LT) which are for the most part proinflammatory and lipoxins (LX) with anti-inflammatory
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characteristics (Fig.3). These lipid mediators are collectively termed as Eicosanoids. The 20:5n-3 is also a

substrate for COX and LOX pathways that lead to the synthesis of anti-inflammatory mediators such as

PGE3 and leukotriene B5 respectively (Goldman and Goetzl, 1983; Hawkes et al., 1991). The most

unsaturated of the n-3PUFAs, 22:6n-3 is metabolized by COX-2 and LOX to produce novel anti-

inflammatory mediators termed D-series resolvins, protectins and maresins (Serhan et al., 2002; Serhan et

al., 2015).

Classic lipid mediators such as PG and LT serve to magnify the fundamental signs of inflammation

(Samuelsson, 1983; Flower, 2006). However, during the resolution phase of inflammation PGE2 and

prostaglandin D2 (PGD2) initiate the synthesis of pro-resolving non-immunosuppressive lipid mediators

such as resolvins and protectins, to advance tissue homeostasis (Serhan et al., 2000; Hong et al., 2003). In

other cases, PGE2 has been shown to promote inflammation when other lipid or protein mediators are

present (LTB4 or C5a) (Williams, 1983). PGD2 on the other hand has been noted to exert anti-

inflammatory actions by raising cyclic adenosine monophosphate (cAMP) levels and pro-resolving

effects by suppression of NF-κB activation in certain cell types (Pons et al., 1994; Haworth and Levy,

2007). LX can act as pro-resolving/anti-inflammatory mediator by inhibiting polymorphonuclear

neutrophil chemotaxis and adhesion as well as preventing neutrophil diapedesis into tissues (Colgan et al.,

1993; Gewirtz et al., 1998; McMahon et al., 2000). The more readily recognized anti-inflammatory lipid

mediators are the resolvins and protectins. The E-series resolvins that stem from 20:5n-3 bind to GPCR,

chemokine-like receptor 1 and leukotriene B4 receptor 1, subsequently attenuating NF-κB activation and

pro-inflammatory signaling (Arita et al., 2005; Arita et al., 2007). The 22:6n-3 serves as substrate for the

D-series resolvins that regulate neutrophil activity and suppress the production of inflammatory cytokines

such as IL-1β (Hong et al., 2003). Another class of lipid mediators stemming from 22:6n-3 are the

protectins. These mediators inhibit T cell migration while promoting their apoptosis and attenuate the

secretion of pro-inflammatory cytokines (Ariel et al., 2005).

2.9. Functional Lipidomics

It is now evident that bioactive lipids such as phosphoinositides, S1P, eicosanoids, docosanoids and

FAs play an important role in the regulation of numerous cellular processes.  These mediators can exert

their biological responses via different mechanisms. For instance, in hMSCs ligation of EP2 receptor by

PGE2 employs β-arrestin-1/JNK signaling pathways promoting proliferation and migration of the cells

(Yun et al., 2011). Another mechanism by which lipid mediators can influence cell metabolism and

growth is that they serve as ligands or coactivators for nuclear transcription factors, such as peroxisome
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proliferator-activated receptors, Sterol regulatory element-binding proteins and NF-κB, which affect e.g.

the expression of key proteins of lipid metabolism, energy utilization, growth and differentiation

(Rajasingh and Bright, 2006; Liu et al., 2007; Chapkin et al., 2009). It is therefore, plausible to assume

that PUFAs and their metabolites will have profound effects on hBMSCs’ characteristics and fate.

However, the role of lipids in MSCs multilineage and anti-inflammatory functions have not been

investigated. Currently, only few studies exist on the significance of FAs, lipid rafts and bioactive lipids

focusing on embryonic stem cell (ES) and neural stem cell (NSC) functions (Rajasingh and Bright, 2006;

Yamazaki et al., 2006; Kim and Hermatti, 2009; Lee et al., 2010; Bieberich, 2012).

In general, n-6 and n-3 PUFAs and their metabolites can promote stem cell survival and differentiation.

For instance, PGE2 can enhance HSCs homing and proliferation by upregulating the C-X-C chemokine

receptor type 4 and increase their survival by stabilizing the β-catenin protein through cAMP/PKA

signaling (Goessling et al., 2009; Hoggatt et al., 2009). In mouse ES cells, PGE2 is noted to inhibit

apoptosis and stimulate proliferation by inducing phosphorylation of mitogen-activated protein kinase

(MAPK) through signaling pathways involving EP1 receptor-dependent protein kinase C (PKC) and

epidermal growth factor receptor-dependent PI3K/Akt (Yun et al., 2009). Human umbilical cord blood-

derived MSCs (hUCB-MSCs) proliferation can be stimulated by PGE2 through β-catenin-mediated c-

Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation (Jang et al., 2012). In addition,

inhibition of COX-2 resulted in suppressed neural progenitor cells proliferation in adult mice showing the

important role of PGE2 on NSC (Sasaki et al., 2003; Goncalves et al., 2010). NSC proliferation can also

be regulated by a metabolite of PGD2 via epidermal growth factor-dependent pathways (Katura et al.,

2010; Sakayori et al., 2011). Other 20:4n-6 derived lipid mediators including LTB4, leukotriene D4 and

thromboxane A2 have all been shown to promote proliferation in different types of stem cells. Signaling

mechanisms involving extracellular signal–regulated kinases (ERK) and p38 MAPK are employed by

thromboxane A2 to modulate the migration and proliferation of adipose tissue-derived MSCs (Yun et al.,

2009). In addition, leukotriene D4 is noted to increase mouse ES cell proliferation and migration via the

PI3K/Akt, Ca2+-calcineurin, and glycogen synthase kinase 3β/β-catenin pathways (Kim et al., 2010).

While the role of n-6 PUFAs and their metabolites have mainly been involved in stem cell proliferation, the n-

3 PUFAs are associated mostly with the stem cell differentiation aspect. The highly unsaturated 22:6n-3 can

upregulate dendritic spine-related genes F-actin, growth associated protein 43, glutamate receptor 1 synapsin-1

and postsynaptic density protein 95 to initiate the differentiation of ES into neurons. Evidence indicated that

20:5n-3 and 22:6n-3 can induce neuronal differentiation by reducing hairy and enhancer of split-1 expression

while increasing that of cyclin-dependent kinase inhibitor 1B to enable cell cycle arrest (Katakura et al., 2009

and 2013). Furthermore, activation of the AMP-activated protein kinase (AMPK) reinforced by the binding of
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PGE2 to prostaglandin E2 receptor 4, leads to endothelial differentiation from bone marrow derived-cells (Zhu

et al., 2011). There is evidence suggesting that 22:6n-3 can modulate the canonical pathway to influence the

pluripotency of ES cells (Massaro et al., 2015). These findings all suggest that n-6 and n-3 PUFAs together

with their metabolites are capable of influencing stem cell fate and have significant roles in regulating their

proliferation as well as differentiation characteristics.

In the case of hBMSCs, the role of PUFAs and lipid mediators in their multipotency or immune

regulation, is still an under researched topic and important information on the basic lipidome of these

therapeutic cells is lacking to the most part. So far we know that bioactive lipids such as PGE2 can be

induced in hBMSCs since they do express the COX-2 enzyme constitutively and PGE2 has been

implicated as one of the mechanisms by which MSCs exert their immunomodulatory effects (Aggarwal

and Pittenger, 2005; Chen et al., 2010; Yanez et al., 2010). Studies found that MSCs from different

sources when co-cultured with T cells, can produce high amounts of PGE2 in the presence of interferon

gamma (IFN-γ) and TNF-α, IL-1α, or IL-1α. All these inflammatory cytokines together with cell-to-cell

contact are crucial to elicit the immunosuppressive characteristics of MSCs (Hegyi et al., 2012).

In light of the available evidence, n-6 and n-3 PUFAs and their metabolites, present a practical

opportunity to influence hBMSCs’ characteristics. A key issue in using such therapeutic cells for clinical

purposes is the control of their fate in vivo for which safe and practical methods are limited.

Characterization of lipids in hBMSCs is essential to further elucidate PUFAs’ role in regulating gene

expressions and signaling pathways related to proliferation as well as immunregulation by hBMSCs.

Manipulation of the FA and lipid mediator profiles of hBMSCs may present a safe technique which

creates a favorable environment to determine their cellular fate in clinical applications.
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AIMS OF THE CURRENT STUDY

The therapeutic use of MSCs is dependent on their regenerative and immunoregulatory

capacities. The available evidence suggests that n-6 and n-3 PUFA, which have an integral role in

mammalian cell structure and function, can influence the proliferation as well as differentiation

characteristics of stem/stromal cells. Therefore, in this thesis work we planned to investigate the lipidome

profile of hBMSCs. More specifically, we aimed to:

I. Establish the FA and GPL profile of hBMSCs

II. Study the effect of long-term expansion on hBMSCs’ lipidome and functionality

III. Examine PUFA metabolism in hBMSCs

IV. Study the dynamics of PUFA incorporation into hBMSCs’ GPL

V. Investigate the correlation between  the lipidome and functionality of hBMSCs
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MATERIALS AND METHODS

The research work entailed in this dissertation were made possible by using methods listed in

Table 1. The detailed description of these methods can be found in the original publications (I – III).

However, concise descriptions of the methods used and the experimental materials are mentioned below

for the reader’s convenience.

Table 1 Methods applied in the experiments performed for the publications I-II and manuscript III.

METHOD PUBLICATION

Cell culture I, II, and III (manuscript)

Co-culture assay I

Microarrays I, II

Flow cytometry I, II

ELISA II, III

Folch – total lipid extraction I, II and III (manuscript)

Fatty acid methyl ester preparation I, II and III (manuscript)

Mass spectrometry (ESI-MS/MS) I, II and III (manuscript)

Gas chromatography (GC-FID and GC-MS) I, II and III (manuscript)

1. EXPERIMENTAL MATERIALS

The mesenchymal stromal cells derived from human bone marrow aspirates were provided by

Professor Petri Lehenkari, University of Oulu (Table 2). Sample collections were done after written

informed consent were attained according to patient protocols approved by the Ethical Committee of

Northern Ostrobothnia Hospital District of Helsinki and Uusimaa and the Declaration of Helsinki accords

were followed concerning the use of human material. For comparative analysis purposes FA metabolism

were studied in HepG2 (liver hepatocellular carcinoma) cells purchased from BioNordika Oy. Peripheral

blood mononuclear cells were obtained from the Finnish Red Cross Blood Service. Unconjugated FA

were 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3 purchased from Nu-Chek-Prep, Inc.
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Table 2 List of hBMSCs samples used in the experiments performed for publications I-II and manuscript III.

Donor (code) Age Gender Publication

081 20 male I

088 21 male I

089 23 female I

091 23 female I

092 23 male I

164 75 male I

172 72 female I

194 82 male I

271 75 male I

437 16 male III

471 19 male III

481 70 male I

492 75 female I

500 37 female I, II, III

517 52 male I, II, III

RE1 63 female I, II, III

RE7 74 female I

RE8 42 female I, II, III

RE9 54 male I

2. METHODS

2.1. Cell Culture and co-culture assays

The hBMSCs and HepG2 cells were cultured in the appropriate media detailed in the articles I-

III.  Briefly, the growth media were supplemented with fetal bovine serum (FBS) and maintained in 37ºC

prior to harvesting at 70 – 80% confluency. Cells were washed with PBS and centrifuged down and

stored at -70°C for experimentation. Peripheral blood mononuclear cells labeled with CFSE (5(6)-

Carboxyfluorescein diacetate N-succinimidyl ester) were cultured in a 48-well plate together with
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hBMSCs at a 1:10 ratio. Flow cytometry was used to record the proliferation rate of T-cell as well as

ascertain the expression of certain surface antigens (FACSAria Becton Dickinson, San Jose, CA USA and

FlowJo 7.6.1 software Treestar, Asland, OR, USA).

2.2. Gas chromatography of fatty acids

The total FA from the cells were first converted to their respective methyl esters as detailed in

Christie (1993). The transmethylated fatty acids were dissolved in hexane and analyzed using Shimadzu

GC-2010 Plus. The initial identification and quantification of the fatty acids methyl esters were based on

the retention time and flame ionization detection (FID) responses of standard mixtures. The

identifications were confirmed by parallel runs by GC-MS (Agilent 6490 Triple Quad LC/MS and

GCMS-QP2010 Ultra, Shimadzu). The results were presented as molar percentages (mol%) and the FA

were marked by using the abbreviations: [carbon number]:[number of double bonds] n-[position of the

first double bond calculated from the methyl end] (e.g. 22:6n-3).

2.3. Mass spectrometry of glycerophospholipids and triacylglycerols

The Folch et al. (1957) protocol for total lipid extraction was applied to prepare samples for GPL

and TAG analysis. Lipids dissolved in chloroform/methanol (1:2 v/v) were spiked with a mixture of

internal standards, and 1% NH4OH was added just prior to the analysis. The sample aliquot was then

infused into an electrospray ionization (ESI) chamber of a triple quadrupole mass spectrometer (Waters

Quattro Micro triple quadrupole mass spectrometer Micromass, Manchester, UK) and a LC-MS/MS

(Agilent 5490 Triple Quad LC/MS with iFunnel technology, California, USA).  The instrument settings

are described in detail in the articles I – III. Detection of different lipid classes was carried out using head

group specific precursor or neutral loss scanning modes. Acid hydrolyzed samples were prepared for the

analysis of PE plasmalogens (PEp) that were detected in the MS/MS using specific fragments of the vinyl

ether chain at the sn-1 position of the lipid. The triple quadruple MS/MS also served to establish the acyl

chain constituents of each lipid species by setting it to negative ion mode and scanning for the product ion

of the anion fragments for all common fatty acids. Specific multiple reaction monitoring method was

employed for the detection and quantification of various PUFA metabolites (Le Faouder et al., 2013). The

mass spectra data produced from the above analysis were processed using their associated software

namely, MassLynx (Micromass, Manchester, UK), and MassHunter Workstation Qualitative Analysis
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(Agilent Technologies, Inc. California, USA). Identification and quantification of the found lipid species

were carried out by using the LIMSA software (Haimi et al., 2006).

2.4. Microarrays and gene expression analysis

The Qiagen AllPrep DNA/RNA mini kit was used to extract RNA and an accompanying protocol

was implemented for the purification of the relative miRNA and DNA.  SurePrint G3 Human GE 8 × 60

K from Agilent was used to assess the hybridized RNAs and the raw data files (.txt files) were imported

into the R v. 2.13 software and preprocessed by the BioConductor package limma v.3.4.5 before matching

the probes with the same Entrez Genes or lincRNAs from public data repository; Gene Expression

Omnibus and GeneSapiens/IST online.

2.5. ELISA assay

A selection of PUFAs conjugated to BSA were supplemented to hBMSCs as described above.

The cells, after 24h incubation period, were transferred to a serum-free starvation α-MEM medium and

cultured for an additional 48h. The growth medium was ultra-centrifuged, and the resulting supernatant

was analyzed for PGE2 levels using a PGE2 ELISA Kit (Monoclonal Item No 514010 Cayman Chemical,

Ann Arbor, USA).

21



22

RESULTS AND DISCUSSION

1. FATTY ACID PROFILE OF CULTURED hBMSCs DIFFERS FROM THAT OF FBS AND MARROW

Research on stem cell biology has mainly focused on the genomics and proteomics aspects while

corresponding knowledge in lipidomes is lacking. Recent studies have highlighted a lipogenesis-

dependent regulation of stem cell fate advancing the paradigm of a metabolic cell fate control in these

types of cells. For instance, the quiescent state of NSC is maintained by the high expression of Spot14

gene which limits the malonyl-CoA available for fatty acid synthase-dependent lipogenesis resulting in

the impairment of proliferation (Knobloch et al., 2013). In another case, the promyelocytic leukemia

regulation of peroxisome proliferator-activated receptor δ signaling and fatty-acid oxidation has been

identified as a metabolic switch that maintains the asymmetric division of HSC (Ito et al., 2012). Lipid

mediators such as PGE2 have be shown to promote the migration and proliferation of hBMSCs and are

involved in the regulation of vertebrate HSC homeostasis (North et al., 2007; Yun et al., 2011). Therefore,

in our work we determined the lipidome profile of hBMSCs as an initial step to investigate the role of

lipids and lipid-derived mediators in the functionality that could contribute for advancement of

understanding the mechanism of action of these therapeutically practical cells.

The micro-environment of cells influences their characteristics through biochemical soluble factors or

cellular contacts. In the case of hBMSCs this micro-environment is either the bone marrow in vivo or the

ingredients of the culture medium in vitro, including FBS as the main supply of nutrients. In order to

understand the role of such micro-environments, we analyzed the FA profiles of the marrow, hBMSCs

and FBS. The hBMSCs were cultured in a 5% FBS supplement and the total FA content studied by GC

analysis. Comparative study of the FA profiles between hBMSCs, FBS and bone marrow samples

revealed clear differences.  The total amount of monounsaturated fatty acids (MUFA) in marrow samples

was higher by 53% compared to the hBMSCs and by 48% from FBS samples mainly due to the relatively

high level of 18:1n-9 in the marrow samples (Fig. 4A, B). The levels of 16:0 and 18:0 were higher in FBS

samples than in the marrow samples (Fig. 4B). Consequently, the ratio of MUFA to saturated fatty acids

(SFA) was low in hBMSCs and FBS samples (Fig. 4B inserts). Prolonged exposure to elevated levels of

SFA such as 16:0 have previously been reported to decrease proliferation and induce apoptosis in various

cell types including hBMSCs (Lu et al., 2012). By functioning as a substrate in the synthesis of Cer, a

potent cell death mediator, 16:0 may help to propagate this process. The 16:0 activates ERK1/2 and p38

MAPK to induce endoplasmic reticulum stress in hBMSCs but this effect was rescued by administering

physiologically relevant levels of 18:1n-9 in studies carried out by Fillmore et al. (2015). Deacylation of
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Fig. 4. The FA profiles from hBMSCs (SC, in control medium, n = 4), FBS (n = 5) and human bone marrow (BM, n = 4)

samples. Values calculated in mol % of total fatty acids, mean ± SD. A: The total proportions of SFA, MUFA, PUFA, and n-6

PUFAs or n-3 PUFAs. The ratio of n-3 to n-6 PUFAs (n-3/n-6) as an insert. B: Individual SFAs and MUFAs. The ratio of MUFA

total to SFA total as an insert. C: The C18, C20 and C22 n-6 PUFAs. D The C18, C20 and C22 n-3 PUFAs. The Kruskal–Wallis

non-parametric one-way analysis of variance was used for statistical analysis. In addition post hoc Mann-Whitney test for the

means were used after initial Kruskal Wallis testing. The means with no common letter differed at P < 0.05 level. Adapted from

Tigistu-Sahle et al., 2017 (Article II)

23



24

16:0, which is an essential component of Lipid A moiety, results in the loss of LPS endotoxic activity

(Raetz, 1990). One of the LPS-induced signaling pathways is TLR4 which when coupled to CD14

activates NF-κB and consequent expression of mRNA for several proinflammatory cytokines including

COX-2 (Chow et al., 1999). Studies done using RAW 264.7 cells reported that SFA namely 16:0 and 18:0

were potent in inducing COX-2 expression via TLR4/ NF-κB pathway whereas unsaturated fatty acids

inhibited this induction through a common signaling pathway derived from TLR4 (Lee et al., 2001;

Suganami et al., 2007; Håversen et al., 2009). Taken together, these observations indicate that SFA can be

potent endogenous ligands of TLR4/ NF-κB at physiologically high levels to induce inflammatory

signals. Therefore our results showing the relatively high ratios of SFA/MUFA in FBS as compared to

marrow samples, may put the hBMSCs in a microenvironment that favors the induction of inflammatory

processes in these cells.

The PUFA profile showed higher levels of 18:2n-6 and 18:3n-3 in both FBS and marrow samples as

opposed to hBMSCs (Fig. 4C and D). A prominent difference was apparent when comparing the

proportions of 20:4n-6 which were found to be 1.4-fold higher in hBMSCs compared to FBS (Fig. 4C).

Additionally, 20:5n-3 and 22:6n-3 levels were on average 4 fold higher in hBMSCs and FBS but marrow

samples were deficient in these n-3 PUFA bioactive precursors (Fig. 4D).  Consequently, the ratio of n-

3/n-6 PUFA was 1.8fold lower in marrow samples when compared to the levels of both FBS and

hBMSCs (Fig. 4A inserts).

Studies on Paleolithic nutrition state that humans developed on a diet that was much lower in SFA and

containing roughly equal amounts of n-6 and n-3 PUFA (Nutrition, 1985; Simopoulos, 1991). However,

current data on Western diets indicate that this balance has been offset in favor of n-6 PUFAs resulting in

a large increase of the n-6/n-3 ratio, from ancient 1:1 to modern time’s 20:1 (Nutrition, 1985;

Simopoulos, 2016). The n-6 and n-3 PUFAs have been designated as essential FA that must be derived

from the diet due to the lack of endogenous enzymes for n-3 desaturation in mammalian cells

(Simopoulos, 2001; Kang, 2004). These two classes of PUFAs have distinct functionality and opposing

physiological roles in mammalian cells and their balance is important for homeostasis and normal

development. Research has revealed that increased ratio of n-6 to n-3 PUFAs elicit pathophysiological

responses by disrupting lipid homeostasis and most importantly inducing systemic inflammation (Banni

and Di Marzo, 2010). For instance, hyperactivity of endocannabinoid signaling has been associated to

high ratio of n-6/n-3 PUFA in the diet, which results in increased inflammatory state of peripheral tissues

(Banni and Di Marzo, 2010). However, this inflammatory response was lowered in Fat-1 mice, a

genetically modified mouse capable of converting n-6 PUFA to n-3 PUFA, which increased its n-3 PUFA

tissue content compared to wild type (Delpech et al., 2015). In contrast, the gradual decrease of n-6 to n-3
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PUFA ratio in the diets of rats fed for six weeks resulted in suppression of spleen lymphocyte

proliferation and NK cell activity in response to T cell activation and consequent decline in graft versus

host response (Jeffery et al., 1996; Simopoulos, 2016). Our results from marrow samples, representative

of the natural microenvironment of these stromal cells, resemble the modern western diet with a high n-6

to n-3 ratio of 1:0.21. The FBS, the primary source of FA to cultured hBMSCs, had similarly high ratio of

1:0.33. These results imply that the ideal ratio of n-6 to n-3 PUFAs (i.e. 1:1) has not been achieved by the

artificial supplementation of FBS which should be optimized to increase the proportion of n-3 PUFAs in

these sources for enhanced performance of hBMSCs.

2. CHARACTERIZATION OF hBMSCs FROM DIFFERENT DONORS

The relationship between donor age and the biological activity of hBMSCs have been studied.  The

results reported are inconclusive by far regarding the effect of donor age on the number of colony-

forming units-fibroblastics (CFU-Fs), multilineage plasticity as well as proliferative capacity of MSCs

from different sources. Initial human studies found that donor age had no effect on the characteristics of

hBMSCs (Stenderup et al., 2001) while others reported a negative correlation between age and

proliferative capacity and differentiation potential (Quarto et al., 1995; Choumerianou et al., 2010; Alves

et al., 2012; Siegel et al., 2013). Other research showed that there is huge variation on the ability of

hBMSCs to suppress T cell proliferation and an overall loss of MSC fitness with age (Fehrer et al., 2005;

Stolzing et al., 2008; François et al., 2012). In light of such inconsistencies, we studied the role of donor

age as well as cumulative population doublings (passage number) on overall characteristics of hBMSCs

and tried to correlate the found results with the changes in lipidome profile.

2.1. Proliferation potential and gene expression

We examined the proliferation and immunosuppressive capacity of hBMSCs isolated from five young

adults (from 20 to 24 years, mean 22.2 years) and five elderly donors (from 62 to 82 years, mean 74.6

years). Calculations of the cumulative population doublings of the cells starting from passage 4 showed

that hBMSCs from the old donors had greater individual variation compared to those from young donors

(I,  Fig.  1B).  Since the seeding density of 1000cells/cm2 were applied for both sources of hBMSCs and

the method of isolation was also similar, this difference in growth kinetics can only be attributed to the

difference in donor age and/or other physiological disparities. For instance, impaired proliferative
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capacity was observed for MSCs from myelodysplastic syndromes and amyotrophic lateral sclerosis

patients (Ferrero et al., 2008; Ferrer et al., 2013; Pavlaki et al., 2014).

In order to identify potential differentially expressed markers and to check the variation among different

donors we made gene expression analysis of hBMSCs from both young and old donors and compared

them between early (p8-p4) and late (p8-p14) passages.  In the earliest passage 4, altogether 707 genes

were found to be differentially expressed between the young and old donor samples (I, Fig. 6A). Further

look into the functional role of these genes revealed that gene ontologies (GO) related to lipid

metabolism, immunological processes, differentiation and developmental functions were downregulated

in the hBMSCs from old donors (I, Fig. 6C). Changes in gene expression were the highest for these

samples after an extended period of cellular expansion. Moreover, gene ontologies related to apoptosis

and signal transduction were upregulated in the samples from old donors (I, Fig. 6D). These differences

highlight the fact that hBMSCs from various donors do in fact differ in their expression of various

housekeeping genes important for biosynthetic as well as developmental processes.

Long-term expansion of hBMCs from both donor groups however, resulted in increased expression of

cell-cycle components cyclin-dependent kinase inhibitor 2A and cyclin-dependent kinase inhibitor 1 in

addition to shortening of telomere length in passage 11 cells compared to passage 4 (I, Figs. 1C and D). It

has been reported that cyclin-dependent kinase inhibitor 2A is enriched in senescent fibroblasts and a

similar increment in the expression of cyclin-dependent kinase inhibitor 1 in HeLa cells resulted in G2 cell

cycle arrests hindering proliferation (Hara et al., 1996; Sato et al., 2002). Both these proteins represent a

type of cyclin-dependent kinase inhibitors which are involved in the regulatory process in cellular

proliferation phases, and are in general overexpressed in senescent cells. The loss in telomere length from

hBMSCs of late passages is in line with previously reported effects of in vitro expansion of these cells

and signifies a gradual cellular senescence (Bonab et al., 2006). Our results indicating the increased

expression of these proteins in hBMSCs from late passages, can therefore signify a decline in their

proliferative capacity as a consequence of long-term in vitro expansion.

2.2. Immunosuppressive capacity of hBMSCs

In contrast, donor age did not produce significant effect in the immunosuppressive capacity of

hBMSCs, despite what has previously been reported (Stolzing et al., 2008; François et al., 2012).

Inflammatory activation of hBMSCs using TNF-α and IFN-γ upregulates IDO activity which is a known

negative regulator of T cell proliferation (Meisel et al., 2004; François et al., 2012; Laranjeira et al.,

26



27

2015). This inducible enzyme was shown to have significantly higher activity in nonagenarians compared

to young individuals (Pertovaara et al., 2006). Thus, a possible interpretation of our result is that the

immunosuppressive ability of hBMSCs is governed mainly by the amount and type of inflammatory

stimuli rather than the age of the donor. The mechanism of immune regulation by hBMSCs is a research

area that still needs further investigation. However, these discrepancies in reporting may also be the

consequence of variations in the intrinsic differences in; the immune plasticity of MSCs from diverse

population groups, culturing conditions, tissue sources and isolation techniques.

On the other hand, the number of population doublings/passage numbers of hBMSCs had significant

effect not only on their proliferative capacity but also their immunosuppressive potential. We cultured

PBMC together with hBMSCs in ratio of 1:10 for four days. Flow-cytometry results indicated that

hBMSCs ability to suppress T cell proliferation was the highest for those from early-passage (p4-p8) than

the late-passage cells (I, Fig. 1E). Furthermore, this lose in immune regulation of hBMSCs negatively

correlated with the level of 20:4n-6 in the cells but had a positive correlation coefficient with 22:6n-3 (I,

Table 2). As mentioned above the immunosuppressive ability of hBMSCs is governed by factors such as

IDO activity which increases with augmented inflammatory stimuli. One of the first reports examining

the role of FA on IDO activity demonstrated that 20:4n-6 inhibited the signal transducer and activator of

transcription 1 phosphorylation on tyrosine 701 resulting in deterrence of IDO induction in THP-1 cells

and monocytes (Bassal et al., 2012). Consequent work by Bassal and coworkers (2016) successfully

identified PGD2 as the potent suppressor of IDO mRNA and protein levels via the

DP1/cAMP/PKA/CREB pathway. Taken together, our results suggest that the larger population doublings

result in the accumulation of 20:4n-6 and its subsequent metabolism via COX1/2 pathway produces

PGD2 that contributes to the loss of hBMSCs immune regulatory activity via downregulation of IDO

activity.

The immunomodulatory activity of hBMSCs is affected by several genes among which the suppressors of

cytokine signaling (SOCS1 and SOCS2), and ASB family (Ankyrin repeat and SOCS box-containing

proteins) had lowered expression levels in the samples from old donors (I, Table 3). The PTGS1 gene that

encodes for COX1 enzyme, and catalyzes the synthesis of PGE2, was markedly suppressed in the late-

passage cells unlike the genes of inflammatory cues TGF β receptor 1 and IL6 which were both

upregulated. The expression level of enzymes involved in Lands remodeling pathway; LPCAT2 and

LPCAT3 were significantly lower in the hBMSCs from old donors perhaps indicative of an impaired

shuffling of 20:4n-6 to different GPL classes. Impaired synthesis of GPLs classes with 20:4n-6 acyl

residues, marks the increased availability of this FA for eicosanoid production in the cells from old

donors. The increased expression of inflammation associated proteins TGF β receptor 1 and IL6 may
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increase IDO activity but the inhibitory effect of 20:4n-6 on IDO may compromise the immune

suppression capabilities of hBMSCs from late passages.

3. In vitro EXPANSION OF hBMSCs ALTERS THEIR LIPIDOME PROFILE

One of the main aims of this study was to establish the FA and GPLs profile of the therapeutically

well-endowed hBMSCs. GC-FID and ESI-MS/MS methodologies were employed to constitute the lipid

profiles of hBMSCs from five young and five old donors. Due to lack of published data on the lipid

profile of hBMSCs, the results from these analyses were compared to the well outlined lipidome of

human primary fibroblasts which had similar immunosuppressive functionality (Haniffa et al., 2007). The

average values for GPL class totals for hBMSCs were: PC 43%, PE 36 %, PI 4-5%, and PS 5-8% (I,

Table 1). In general, the values for GPL class totals in hBMSCs from both the young and old donors

resembled that of the fibroblasts as well as other mammalian cells (Blom et al., 2001; Vance and

Steenbergen, 2005). However, the relative amount of PE in the GPL class totals was higher for hBMSCs

than the human fibroblasts. A closer look into the GPL molecular species profile identified PE38:4

(18:0/20:4n-6) as the main component but in the profiles of human fibroblasts the most abundant species

were PE36:1, 36:2 and 38:4 (Blom et al., 2001).

Mammalian tissues maintain a constant composition of phospholipids under normal physiological

conditions thus enabling the comparative analysis of lipidome profiles from different cell types.

Therefore, PE is the second most abundant structural lipid in mammalian cells and can be synthesized via

three main biochemical pathways; de novo production of CDP-ethanolamine (Kennedy) pathway,

decarboxylation of PS in mitochondria (decarboxylation pathway) and acylation to lysoPE pathway

(Gibellini and Smith, 2010; Vance and Tasseva, 2013). In cultured cells, the PS decarboxylation pathway

is taken to be the predominant biosynthesis route of PE and the molecular species formed differ from that

made through the Kennedy pathway in that the former pathway creates species with a larger proportion of

PUFA at sn-2 position (Bleijerveld et al., 2004; Vance and Tasseva, 2013). Although the regulation of PE

synthesis is not well known, reports have shown that the amount of cellular PE is to a certain extent

regulated by degrading to plasmalogens (Baburina and Jackowski, 1999; Dorninger et al., 2015). The data

from the GPL class totals of hBMSCs from young and old donors is in line with this report, since a

decrease in PE totals is accompanied by a relative increase in the PE alkenyl totals. In view of these facts,

the relative abundance of PE totals in hBMSCs compared to fibroblasts might reflect i) a difference in the

biosynthetic pathway which in hBMSCs is possibly the PS decarboxylation one i.e. increased PE species

28



29

with PUFA residues in their sn-2 positions ii) since hBMSCs FA pool has an augmented 20:4n-6 content

this may contribute to the enrichment of the PE predominant species 18:0/20:4n-6.

3.1. Expansion of hBMSCs increases membrane PI content in relation to PS

The lipid composition is in a state of dynamic and rapid turnover in the case of cultured cells. Pulse

labeling experiments using BHK-21 cells demonstrated the half-lives of the major phospholipids to be

only 2.5 – 4h with PC, DAG and TAG having the fastest and PS the slowest turnover (Gallaher et al.,

1973). Under serum-supplemented culture conditions where adequate supplies of lipids exist, de novo

lipid biosynthesis is inhibited while a lipid-rich culture medium increased the accumulation of TAG and

cholesteryl esters but the membrane phospholipids remained intact (Spector et al., 1980). Mammalian

cells regulate their PI synthesis in a number of ways including inositol concentrations and in vitro by the

local concentrations of other phospholipids (Fischl et al., 1986; Nuwayhid et al., 2006).

During long term culturing of hBMSCs, it was observed that the relative ratio of PI/PS was increased

especially in the late passage samples (I,  Fig.  3). This ratio was also significantly high in the hBMSCs

from old donors as opposed to young ones in passage 4. Several factors could be behind such changes in

phospholipid composition of hBMSCs in vitro.  The predominant molecular species in PI is a moiety

containing 20:4n-6 in the sn-2 position while PS had a substrate preference for 22:6n-3 in its principal

species (Chilton and Murphy, 1986; Tanaka et al., 2001; Kim et al., 2004). Since the long term expansion

of hBMSCs resulted in enrichment of 20:4n-6 at the expense of n-3 PUFAs such as 22:6n-3 in the total

FA pool, a corresponding increase in the PI totals coupled with a decline in PS levels seem logical. This

notion is further supported by reports which showed that high concentrations of activated 20:4n-6 raise

the rate of PI synthesis (Tanaka et al., 2001; Nuwayhid et al., 2006). Another explanation for the increase

in PI totals may be the consequence of balancing the membrane net charge under conditions of reduced

PS synthesis (Becker and Lester, 1977). According to some studies, increased PI:PS ratio might signify a

stationary growth phase (Homann et al., 1987) and this might be the case of hBMSCs from late passages,

that naturally exhibit a higher proportion of cellular apoptosis.

The significance of an increasing PI:PS ratio in long term expanded hBMSCs is manifold. Anionic lipids

such as PI and PS are known to stimulate PLA2 activity, which results in the production of repertoires of

lipid mediators with both inflammatory as well as anti-inflammatory roles (Leslie and Channon, 1990).

The intermediate products of PLA2 action, lysophospholipids and PUFA are potent regulators of PKC

which has a central role in several cellular processes including proliferation, differentiation and secretion
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(Kochs et al., 1993; Fadeel and Xue, 2009). This family of kinases is also stimulated by lipid classes;

initially by DAG coupled with an increased intracellular Ca2+ levels leading to the translocation of PKC

to plasma/nuclear membrane whereby PS, PI or even PIP2 serve as cofactors to complete the activation of

this signaling pathway (Kochs et al., 1993). Therefore, an imbalance in the ratio of PI:PS may disrupt the

regulation and activities of kinases, and phospholipases with resounding consequences.

3.2. Increase in 20:4n-6 containing GPL species at the expense of n-3 PUFA containing ones

Data obtained from our initial studies illustrate the type of FA modifications that result from long

term culturing of hBMSCs. GPL profiles showed that 20:4n-6 containing PC and PE species, specifically

36:4 and 38:4, were enriched in the hBMSCs samples from late passages (I, Figs. 4A and B). Parallel to

this, a decline in shorter and MUFA containing GPL species was found coupled with a decrease in n-3

PUFA containing species. The FA profiles from GC-FID analysis revealed a decline in the relative

proportions of MUFAs as well as n-3 PUFAs including 22:5n-3 and 22:6n-3 in the hBMSCs samples

from late passages (I, Fig. 5A). This decline was coupled with an increase in 16:0, 18:0, and 20:4n-6 and

a subsequent raise in the ratio of total n-6 to the total n-3 PUFA. As discussed earlier, increased ratio of n-

6 to n-3 PUFAs as well as physiologically elevated levels of SFA elicit pathophysiological responses in

several types of cells including macrophages and monocytes and that such increase can be correlated to

the loss of hBMSCs functionality (Raetz, 1990; Jeffery et al., 1996; Lee et al., 2001; Suganami et al.,

2007; Håversen et al., 2009; Lu et al., 2012; Simopoulos, 2016). It is therefore, crucial to regulate the

level of these FAs in cultured hBMSCs in such a way that promotes the healthy expansion of these cells.

Stem cell research suggests the role of PUFA to be mainly in proliferation and differentiation with the

main focus being on eicosanoids. These lipid mediators arise from the action of COX, LOX and

cytochrome P450 enzymes on 20:4n-6. Therefore, increased availability of 20:4n-6 in hBMSCs from late

passages augments production of PGs, thromboxanes (TX), LT and LX. The most abundant eicosanoid

PGE2 has a stimulatory effect on the proliferation of HSCs, but may also dose-dependently inhibit growth

of macrophages in vitro (Feher and Gidáli, 1974; Pelus et al., 1979). In addition, it has been demonstrated

that PGE2 increases the expression of VEGF and c-Myc through the cooperative signaling pathway of

cAMP/Ras-related protein 1 (Rap1)/Akt plus PKA resulting in the stimulation of hUCB-MSC

proliferation (North et al., 2007; Yun et al., 2011; Jang et al., 2012). Other classes of eicosanoids such as

LT have been shown to, at physiologically relevant levels promote proliferation but excessive amounts

inhibited this growth in NSC (Wada et al., 2006). The n-6 COX pathway also produces TX which

facilitate platelet aggregation and also mediate the migration and proliferation of adipose tissue-derived
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MSCs via ERK and p38 MAPK signaling routes (Yun et al., 2009). The n-3 PUFAs 20:5n-3 and 22:6n-3

are also primary sources of lipid mediators with mainly anti-inflammatory roles such as the 3-series

prostaglandins, resolvins, and protectins (Serhan et al., 2008). Supplementation of 20:5n-3 and 22:6n-3

decreased production of inflammatory cytokines in macrophages, lymphocytes and peripheral

mononuclear cells (Khalfoun et al, 1996; Verlengia et al., 2004; Weldon et al., 2007; Vedin et al., 2008).

Treating Jurkat T cell line with 20:5n-3 resulted in the displacement of linker for activation of T cells

protein and 16:0-labeled Src family kinase Lck from lipid rafts and subsequent inhibition of T

lymphocyte activation (Stulnig et al., 2001; Horejsi, 2003; Shaikh and Edidin, 2006). During the

resolution phase of inflammation, 22:6n-3 derived maresins stop the infiltration of neutrophils and induce

their subsequent clearance by phagocytosis (Serhan et al., 2009).

The majority of these lipid mediators are synthesized from free 20:4n-6 which level is increased by

enhanced activity of PLA2 enzymes either under inflammatory stimuli or even under normal

physiological conditions. Lysophospholipid acyltransferases are enzymes that regulate the freely available

PUFA content of resting cells, by constant reacylation of the cleaved PUFAs (Pérez-Chacón et al., 2009).

The accumulation of 20:4n-6 containing GPL in the long term cultured hBMSCs may therefore tip this

sensitive balance in favor of synthesis of potent inflammatory lipid mediators by increasing the precursor

20:4n-6 containing lipid moieties which is then readily available for cleavage by PLA2. Consequently, the

hBMSCs from late passages are more likely to exhibit pro-inflammatory characteristics and this is

negatively correlated to the loss of immunoregulatory functions of these cells.

4. METABOLISM OF EXOGENOUS PUFA BY hBMSCs DIFFERS FROM HepG2 CELLS

Since n-6 and n-3 PUFAs are natural compounds that are readily incorporated into tissues and their

metabolites can be altered with drugs, this presents a practical approach to manipulate the lipidome of

stem/stromal cells. By doing so, we can better understand the importance of PUFAs and their metabolites

on stem cell biology as well functionality.

In the second phase of our project, we were interested to see what effect FA 18:3n-3 and 18:2n-6 might

have on hBMSCs lipidome profile. The contents of both SFA as well as MUFA (18:1n-9 and 18:1n-7)

and 22:5n-3 and 22:6n-3 all had decreased significantly after 18:2n-6 supplementation (II, Figs. 2A–D).

The rate limiting enzyme in MUFA synthesis is stearoyl-CoA desaturase, which activity has been shown

to be suppressed by dietary PUFA (Ntambi, 1995). The decrease in MUFA content might reflect the

hBMSCs’ effort to maintain proper lipid viscosity at the impeding high PUFA content, and by doing so
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may decrease the rate of cellular metabolism and division that are characteristic of cancer cells (Ntambi,

1995).

Supplementation of 18:2n-6 resulted in a 10-fold increase of its relative amount and also raised the

immediate elongation product 20:2n-6 (II, Fig. 2C). However, its desaturation product 20:4n-6 showed a

60% decrease as compared to the hBMSCs grown in control medium. On the other hand, exogenous

18:3n-3 proved effective to raise the content of its desaturation product 20:5n-3 albeit slightly, but

resulted in the decline of the longer PUFAs 22:5n-3 and 22:6n-3 by 40% (II,  Fig.  2D). Similar

supplementation regime in HepG2 cells effectively metabolized the C18 precursors into their respective

long chain PUFA counterparts. As a result, the content of 20:4n-6, 20:5n-3 and 22:6n-3 in HepG2 showed

significant increase (II, Fig. 2C and D).

The disparity in the desaturation capability between the hBMSCs and the neoplastic HepG2 cells lies in

the differential expression level of the fatty acid desaturases (FADS) FADS1 (∆5 desaturase) or FADS2

(∆6 desaturase) in these cells. The conversion of C18 precursors to their respective C20 PUFA products

proceeds in three successive reactions; an initial ∆6-desaturation, elongation and a final ∆5-desaturation.

The ∆6-desaturase catalyzes conversion of 18:2n-6 to 18:3n-6 and 18:3n-3 to 18:4n-3. Most diploid

human cells have an active ∆6-desaturase and are therefore able to desaturate C18 precursors successfully

unlike transformed cells. For example, mouse fibrosarcoma cells and transformed mouse fibroblasts

cannot desaturate 18:2n-6 due to loss of ∆6-desaturase activity (Mathers and Bailey, 1975; Spector et al.,

1980). The expression of ∆6-desaturase in hBMSCs was 1.2 times to HepG2; thus they had the ability to

carry out the initial steps of desaturation (Fig. 5). Despite the ability of most studied cell lines to convert

20:3n-6 to 20:4n-6 and 20:4n-3 to 20:5n-3 using ∆5-desaturase; the protein expression data revealed that

the expression level of this enzyme was significantly lower (0.6 times) in hBMSCs than those found in

HepG2 cells (Fig.  5). This result indicates the hBMSCs have an impaired ∆5-desaturase activity

compared to HepG2 cells, thus cannot convert C18 precursors to their C20 counterparts in efficient

amount.
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Fig. 5. Schematic representation the biosynthetic route together with catalyzing enzymes of n-6 and n-3 PUFAs in the hBMSCs

and HepG2.  Bars represent the average levels (mol%) of specific PUFAs in hBMSCs and HepG2 grown in non-supplemented

control (Ctrl) media. Blue ovals indicate the mRNA levels of the elongases (ELOVL5 and ELOVL2) and desaturases (FADS2,

FADS1). The values from average expression levels of the enzymes are marked inside the arrows and were obtained for

mesenchymal stem cells (SC) from a public data base ISTonline and normalized against hepatocyte (Hep) values of the data base.

Adapted from Tigistu-Sahle et al., 2017 (Article II)
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5. INCORPORATION OF EXOGENOUS FATTY ACIDS IN hBMSCs IS GPL CLASS SPECIFIC

The effects of longer, highly unsaturated FA were also assessed by supplementing the hBMSCs

culture with 20:4n-6, 20:5n-3 or 22:6n-3 for a 9-day period. The supplementation resulted in decreased

contents of SFA and MUFA similar to the effect observed with C18 PUFA addition but albeit to a lesser

extent (II, Figs. 4A–C). In GPL molecular species profile, the percentages of PC 36:4, 38:4, 38:5 and

42:8 were raised due to 20:4n-6 supplementation (II, Figs. 5–7). Highly unsaturated PE species (42:7,

42:8, 42:9) also emerged after n-6 PUFA supplements. In a similar trend, the percentage of 20:4n-6

containing PS 38:4 doubled compared with the control values but the percentages of PS 40:6 (18:0/22:6n-

3) decreased after 20:4n-6 addition. The general trend observed as a consequence of exogenous 20:4n-6

supplementation, is therefore the increased proportion of GPL molecular species with 20:4n-6 in their

acyl residues coupled with the percentage decrease of n-3 PUFA containing molecular species. In

contrast, adding either 20:5n-3 or 22:6n-3 had a lowering effect on the 20:4n-6 levels and overall n-6

PUFA content (II, Fig. 4C). From these results it is evident that hBMSCs can effectively incorporate

exogenous PUFA and preferentially place them in different GPL classes. Furthermore, the added n-3

PUFAs ability to replace 20:4n-6 containing GPL molecular species is beneficial to limit the PUFA

availability that serve as precursors for eicosanoid production. The emergence of diPUFA GPL molecular

species is a consequence of the high-capacity/low-affinity pathway for PUFA remodeling that is opted for

by cultured cells in times of abundant FA supply (Okuyama and Lands, 1972; Chilton and Murphy,

1986). Moreover, studies have shown that diPUFA species made up of 20:4n-6 are preferentially

hydrolyzed by cPLA2IV over 22:6n-3/22:6n-3 species. (Batchu, 2016). The C42 species of the hBMSCs

containing 20:4n-6 coupled with 22:4n-6 or 22:5 (n-6 or n-3) resulting from 20:4n-6 addition have

beneficial consequences. The COX-2 enzyme synthesizes 1a,1b-dihomo PGE2 from 22:4n-6, which has a

much lower biological activity as compared to PGE2, thus deterring possible proinflammatory signaling

(Zou et al., 2012; Dong et al., 2016). These results taken together imply that hBMSCs employ different

biosynthetic and remodeling routes to regulate the level of free 20:4n-6 that may serve as precursor for

the production of inflammatory linked eicosanoids.

The addition of exogenous PUFA to hBMSCs culture revealed the distribution patterns of these FA

among the different GPL classes. Data from the mol% sums of all molecular species with specific PUFA

species in each GPL class, indicated that in general n-3 PUFA supplements efficiently displaced 20:4n-6

in PE and PS in addition to halving the PC 20:4n-6 content (from 14% to 7%) (Fig. 6B and C).

Exceptionally, PI class which had strict preferences for 20:4n-6, was replaced with 20:5n-3. In contrast,

the addition of 20:4n-6 doubled its content in PC and PS with PE and PEp 20:4n-6 content also exhibiting
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Fig. 6. Distribution of lipid species, having either 20:4n-6, 20:5n-3 or 22:6n-3 as their acyl residues, between different

glycerophospholipid (GPL) classes in hBMSCs. Cells were grown in conditioned medium supplemented with either 18:2n-6,

20:4n-6, 18:3n-3, 20:5n-3 or 22:6n-3 and in the control (Ctrl) medium (mol % sums of all species with the specific PUFA in each

GPL class). Distribution of GPL molecular species containing A: 20:4n-6 B: 20:5n-3 C: 22:6n-3 between the different classes.

Statistics as in Fig. 3. Adapted from Tigistu-Sahle et al., 2017 (Article II)
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a significant raise (Fig. 6A). The n-6 PUFA supplements in general decreased the 22:6n-3 content of the

GPL classes.

The actions of ACS and acyl-CoA: lysophospholipid acyltransferases makes possible the reacylation and

incorporation of 20:4n-6 into different GPL classes. In the remodeling route, exogenous 20:4n-6 and

22:6n-3 are incorporated into diacyl PC by these enzymes. The fact that 22:6n-3 supplementation

successfully replaced 20:4n-6 content in hBMSCs GPL classes, is therefore logical because these two

PUFAs are incorporated through the same remodeling system. Both the CoA-IT and CoA-dependent

transacylases which catalyze the transfer PUFAs to different GPL classes exhibit preferences for specific

FA (Yamashita et al., 1997). However, this specificity is only maintained at physiological concentrations

and that other factors such as substrate/acceptor concentrations also determine PUFA distribution

(Okuyama et al., 1975).

Basing the hBMSCs inefficiency to desaturate C18 PUFA precursors in the classic n-6 and n-3 PUFA

biosynthetic pathway; we evaluated the incorporation dynamics of the C20 and C22 PUFA products

instead. In this experiment we supplemented hBMSCs with either 20:4n-6, 20:5n-3 or 22:6n-3 for 2h, 6h

and 24h (III, Figs. 1-3). Results from this unpublished data showed that the fastest relative incorporation

rate (fold change) was observed for 20:5n-3 (2h mark) unlike 20:4n-6 and 22:6n-3 which had a steady

rate of assimilation. Considering the GPL class profile changes, PC exhibited the initial remodeling

modifications already after 2h supplementation (Fig.  7). A gradual and steady change in the PUFA acyl

chains of PE molecular species was observed at 6h (Fig.  7). However, PS with predominantly 22:6n-3

containing molecular species exhibited remodeling effects between the 6h and 24h supplementation time

(Fig.  7). The rate at which the major GPL class profiles were modified due to exogenous PUFA

supplementation is in line with previous reports. Pulse-labeling studies with radioactive FAs indicated

that turnover kinetics of PC to be the fastest, an intermediate rate for PE and much slower turnover rate

for PS and SM (Gallaher et al., 1973; Spector et al., 1980).

Although the desaturation steps required to produce C20 and C22 PUFAs from their C18 precursors was

limited in hBMSCs, the elongation steps however progressed successfully to produce respective long

chain FA (Fig. 7). The profiles from FA analysis showed that the promptly incorporated exogenous

20:5n-3 increased its mol% by 7-fold in 2h time, compared to the levels of non-supplemented hBMSCs

(III, Fig. 1B). However, the mol% of its elongation product 22:5n-3 changed considerably in between 6h

and 24h time points. Similarly, 20:4n-6 supplementation increased the mol% of its elongation product

22:4n-6 only after the 24h time point (III, Fig. 1A). The GPL molecular species containing the elongated

products, 22:5n-3 and 22:4n-6, increased their fold change values towards the 24h time point (III, Fig. 2).
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Fig. 7. The time scales of structural modifications and incorporations of PUFA into PC, PE and PS diacyl species by

hBMSCs. The incorporation of exogenous PUFA into PC already happens in a 2h period followed by assimilation

into PE and finally into PS just before the 24h mark. The elongation process starts after 2h of supplementation and

proceeds steadily while PUFA desaturation, which is limited in hBMSCs as compared to HepG2 cells, occurs only

after the 24h mark. The size of the arrows corresponds to the proportion of these cellular processes.

This results show that in hBMSCs chain elongation of the C20 PUFAs occur at a relatively slower rate

than their incorporation and may require the initial accumulation of these shorter chain species in

different GPL classes. The elongation products, 22:4n-6 and 22:5n-3 have inhibitory effects on COX-1

and COX-2 activities and consequently hinder the synthesis of eicosanoids (Akiba et al., 2000; Zou et al.,

2012, Dong et al., 2016). For that reason, the gradual increase of 22:4n-6 and 22:5n-3 containing GPL

molecular species may suggest a protective mechanism in hBMSCs to limit the availability of C20

eicosanoid precursors especially 20:4n-6, in order to avoid pro-inflammatory signaling. Therefore, the

specific type of PUFA as well as the incubation time used to culture hBMSCs in such conditioned

medium may determine the type of modifications at both GPL molecular species and FA profile levels.

This in turn will have a ripple effect for instance in raft mediated signaling. This is because increased

incorporation of either 20:5n-3 or 22:6n-3 into the plasma membrane results in alteration of raft domain

size and composition, which in turn suppresses raft mediated cell function such as activation of T cells

and transcriptional factors and secretion of cytokines (Turk and Chapkin, 2013).
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CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Prior to the commencement of this study information regarding the lipidome profile of hBMSCs

was missing. Attaining this type of data opens the opportunity to investigate the role of lipids in the

maintenance of hBMSCs characteristics during long-term expansion that is required prior to clinical

application. The work done in this thesis also aimed to contribute to the mounting evidence which

suggests n-6 and n-3 PUFAs and their metabolites influence stem/stromal cell characteristics.

In this thesis work we were able to establish, for the first time the FA and GPL profile of hBMSCs.

Comparative studies of the lipidome profile of hBMSCs from early and late passages indicated that long

term in vitro expansion altered their FA and GPL profiles. The main findings included the increase in the

relative mol% of GPL molecular species containing 20:4n-6 as acyl residues (PC38:4 and PE36:4) in the

hBMSCs from late passages (p8 – p14). In addition, the long term expansion increased the ratio of PI/PS

and n-6/n-3 PUFA. The FA profiles from GC-FID analysis showed that the enrichment in 20:4n-6 came

at the expense of n-3 PUFAs such as 20:5n-3 and 22:6-3 which decreased considerably. Co-culture assays

indicated that the ability of hBMSCs to suppress T cell proliferation was diminished because of long term

expansion and this loss in functionality strongly correlated with the increased 20:4n-6 content of these

cells. Expansion related lipidome changes in hBMSCs may have tipped the sensitive balance between n-6

PUFAs and n-3 PUFAs in the total FA pool of these cells, in such a way that may advance the production

of pro-inflammatory mediators thereby diminishing hBMSCs’ immunosuppressive functionality.

Evidence suggest that MSCs are influenced by the cues they get from their extracellular

microenvironment. Therefore, we compared the FA profiles of hBMSCs to that of marrow and

FBS (representative of the natural vs artificial microenvironment). The proportions of n-6

PUFAs were considerably higher especially in hBMSCs and FBS than the totals of n-3 PUFAs.

Elevated ratios of n-6/n-3 PUFAs are associated with increased inflammatory activities in

different types of cells and therefore signify the in vitro culturing conditions to be sub-optimal

for hBMSCs features.

However, with the proceeding experiments we were able to show that supplementing the culture

medium with 20:4n-6, 20:5n-3 or 22:6n-3 can successfully alter this important marker i.e. ratio

of n-6/n-3 PUFAs in hBMSCs. Specifically, supplementing culture medium with 20:5n-3 or

22:6n-3 increased the proportions of n-3 PUFAs totals in hBMSCs in such a way that the initial
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prevalence of n-6 PUFAs was diminished. Furthermore, abundant supply of hBMSCs medium

with either 20:5n-3 or 22:6n-3 resulted in the replacement of 20:4n-6 from the acyl residues of

GPL classes. Manipulation of hBMSCs’ PUFA profile in such a way will subsequently modify

the bioactive lipids which are generated from the membrane GPLs by the action of various

phospholipases.

In conclusion, the expansion of hBMSCs is a crucial step in their therapeutic application and

cannot be avoided. Our results suggest that the expansion induced changes in hBMSCs’ lipidome

negatively correlates with loss of immunomodulatory functions in these cells. PUFA-based

modifications however, present an opportunity to create a favorable environment for hBMSCs.

Regulating the cellular level of 20:4n-6 in hBMSCs is crucial to limit the production of various

eicosanoids and subsequent induction of proinflammatory signals.

Future studies should focus on elucidating the specific effects of n-6 and n-3 PUFA derived

metabolites on hBMSCs functionality as well as proliferative and differentiation capacity. In

addition, direct effects of different PUFAs on membrane micro domain structure (size and

composition of rafts) and the consequences of the altered lateral organization of the membrane

on cellular functions should be studied. Furthermore, characterization of the specific effects of n-

6 and n-3 PUFAs on hBMSCs’ metabolism of soluble factors such as IDO, PGD2 and HLA-G5

that have a role in their functionality should also be considered. Finally, the formulation, dosage

and timing of PUFA supplementation should be taken into consideration in order to successfully

manipulate the lipidome profile of hBMSCs and create a favorable in vitro environment which

advances their functionality.
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