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Abstract: Members of the virus family Sphaerolipoviridae include both archaeal viruses and
bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera
Alpha- and Betasphaerolipovirus comprise viruses that infect halophilic euryarchaea, whereas viruses
of thermophilic Thermus bacteria belong to the genus Gammasphaerolipovirus. Both sequence-based
and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield
three distinct clades corresponding to these three genera. Conserved virion architectural principles
observed in sphaerolipoviruses suggest that these viruses belong to the PRD1-adenovirus structural
lineage. Here we focus on archaeal alphasphaerolipoviruses and their related putative proviruses.
The highest sequence similarities among alphasphaerolipoviruses are observed in the core structural
elements of their virions: the two major capsid proteins, the major membrane protein, and a putative
packaging ATPase. A recently described tailless icosahedral haloarchaeal virus, Haloarcula californiae
icosahedral virus 1 (HCIV-1), has a double-stranded DNA genome and an internal membrane
lining the capsid. HCIV-1 shares significant similarities with the other tailless icosahedral internal
membrane-containing haloarchaeal viruses of the family Sphaerolipoviridae. The proposal to include a
new virus species, Haloarcula virus HCIV1, into the genus Alphasphaerolipovirus was submitted to the
International Committee on Taxonomy of Viruses (ICTV) in 2016.

Keywords: Sphaerolipoviridae; Alphasphaerolipovirus; halovirus; archaeal virus; tailless icosahedral
virus; membrane virus; halophilic archaea; virus classification; International Committee on Taxonomy
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1. Introduction

Viruses associated with the domain Archaea are known to infect crenarchaeal hyperthermophiles,
as well as euryarchaeal halophiles, thermophiles, and methanogens. The total number of isolates is
currently close to 150, and includes ~80 with sequenced genomes [1–3]. So far, all of the characterized
archaeal viruses have a DNA genome, which can be either linear or circular double-stranded DNA
(dsDNA) molecule or a circular single-stranded DNA (ssDNA) [2,3]. In addition, numerous putative
provirus sequences have been detected in the genomes or plasmids of various archaeal strains [4–7].
Metagenomics studies have indicated the presence of archaeal RNA viruses, but none have been
isolated to date [8].
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Collectively, archaeal viruses display 14 morphotypes, some of which are unique to this
group [2,3,9,10]. Archaeal virus morphotypes include tailless icosahedral viruses, of which only
seven have been isolated and described. Two of these, the Sulfolobus turreted icosahedral viruses
STIV and STIV2, infect hyperthermoacidophilic crenarchaea [11,12], while the other five infect
halophilic euryarchaea (see below). STIV, the first of these to be characterized, remains one of the
best studied archaeal viruses [12–17]. Both STIV and STIV2 have been classified as members of the
genus Alphaturrivirus, the sole genus in the family Turriviridae. An amazing feature of the STIV life
cycle is the mechanism of viral egress through pyramid-like structures formed on the surface of its
Sulfolobus solfataricus hosts [18,19]. STIV's 74 nm diameter icosahedral capsid encloses an internal
membrane and bears a turret-like appendage at each vertex [12]. Packaged within is a circular dsDNA
genome of 17.3 kb [12].

The STIV major capsid protein (MCP) possesses a double β-barrel fold and is arranged into
trimeric capsomers of pseudo-hexagonal symmetry (triangulation number T = 31 dextro) [12,15,20].
Archaeal virus STIV2, which infects Sulfolobus islandicus, is closely related to STIV [11]. Sequence
alignment and homology modelling suggested that the STIV2 MCP also adopts a double β-barrel
fold [11]. Similarly folded trimeric capsomers with pseudo-hexameric bases are also found in tailless
icosahedral dsDNA viruses associated with bacteria and eukaryotes, e.g., bacteriophages PRD1 and
PM2 [21,22], human adenovirus [23], and algal Paramecium bursaria Chlorella virus 1 (PBCV-1) [24].
Moreover, these double β-barrel folds are also present in vaccinia virus [25] and in the virophage
Sputnik [26]. Based on their conserved virion architecture and MCP fold, all of these viruses have
been grouped into the PRD1-adenovirus structural lineage [27–31], a lineage that also includes the
algal virus PpV01 [32], Chilo iridescent virus (CIV) [33], Mimivirus, and African swine fever virus [27].
Additional viral structural lineages have been established or suggested that also unite viruses that
infect hosts from all three domains of cellular life [30,34].

The other five of the seven archaeal tailless icosahedral viruses infect halophilic euryarchaeal
strains. Four of them, SH1 [35–37], Haloarcula hispanica icosahedral virus 2 (HHIV-2) [38,39], SNJ1 [40],
and PH1 [41], were classified in the family Sphaerolipoviridae together with viruses of thermophilic
bacteria. The recently described Haloarcula californiae icosahedral virus 1 (HCIV-1) [42] has been
proposed to belong to the same family. Here, we provide an overview of the Sphaerolipoviridae family
with an emphasis on the genus Alphasphaerolipovirus.

2. Family Sphaerolipoviridae

The family Sphaerolipoviridae was approved by the International Committee on Taxonomy
of Viruses (ICTV) [43] in 2014 [44]. The family name describes the spherical appearance of the
membrane-containing virions, i.e., the Latin sphaero for “sphere” and the Greek lipos for “fat”.
The family contains three genera: Alpha-, Beta-, and Gammasphaerolipovirus, for which the type species
are Haloarcula hispanica virus SH1, Natrinema virus SNJ1, and Thermus virus P23-77, respectively (Table 1).
The Alpha- and Betasphaerolipovirus genera comprise archaeal viruses, while bacteriophages P23-77
and IN93 belong to the genus Gammasphaerolipovirus [44–49]. Bacteriophages P23-72 and P23-65H that
infect Thermus thermophilus might also be members of that genus [44]; their structural protein profiles
are highly similar to that of P23-77 and they originated from the same hot spring [45,50]. The genus
Betasphaerolipovirus currently contains only one species, Natrinema virus SNJ1 [7,40,44]. The genus
Alphasphaerolipovirus comprises three virus species: Haloarcula hispanica virus SH1, Haloarcula hispanica
virus PH1, and Haloarcula hispanica virus HHIV2 [35–39,41,51]. Recently, we isolated and characterized
the tailless icosahedral archaeal virus HCIV-1 and showed that HCIV-1 is closely related to SH1, PH1,
and HHIV-2 [42,52]. In 2016, we submitted a proposal to the Executive Committee (EC) of the ICTV to
add HCIV-1 as a new virus species, Haloarcula virus HCIV1, in the genus Alphasphaerolipovirus of the
family Sphaerolipoviridae. The taxonomic status of HCIV-1 was approved by the EC and now awaits
ICTV ratification.
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Table 1. Virus species belonging to the three genera of the family Sphaerolipoviridae.

Genus Virus Species Virus
Isolate Isolation Source Isolation

Host Life Cycle Virion
Diameter (nm) T Number 2 Internal

Membrane 3
dsDNA

Genome 4 Reference

Alpha-sphaero-lipovirus

Haloarcula hispanica
virus SH1

(type species)
SH1 Saline lake,

Australia
Haloarcula
hispanica Lytic ~80 T = 28,

dextro Yes
Linear

30,889 bp
AY950802

[35–37]

Haloarcula hispanica
virus HHIV2 HHIV-2 Solar saltern, Italy Haloarcula

hispanica Lytic ~80 T = 28,
dextro Yes

Linear
30,578 bp
JN968479

[38,39]

Haloarcula hispanica
virus PH1 PH1 Saline lake,

Australia
Haloarcula
hispanica Lytic ~50 nd nd

Linear
28,072 bp
KC252997

[41]

Haloarcula virus
HCIV1 1 HCIV-1 Solar saltern,

Thailand
Haloarcula
californiae Lytic ~70 nd Yes

Linear
31,314 bp
KT809302

[42,52]

Beta-sphaero-lipovirus Natrinema virus SNJ1
(type species) SNJ1 Salt mine

(Natrinema sp. J7-1)
Natrinema sp.

J7-2 Lysogenic ~70–75 nd Yes
Circular

16,341 bp
AY048850.1

[7,40]

Gamma-sphaero-lipovirus

Thermus virus P23-77
(type species) P23-77 Alkaline hot spring,

New Zealand
Thermus

thermophilus Lytic ~78 T = 28,
dextro Yes

Circular
17,036 bp
GQ403789

[45,46,49]

Thermus virus IN93 IN93
Hot spring soil,
Japan (Thermus
aquaticus TZ2)

Thermus
thermophilus Lysogenic ~130 nd nd

Circular
19,604 bp
AB063393

[47,48]

1 Proposed; 2 T, triangulation number; nd, not determined; 3 Lipids have been demonstrated to be a structural component of the virion; 4 Genome type and size and GenBank accession
number. HHIV-2: Haloarcula hispanica icosahedral virus 2; HCIV-1: Haloarcula californiae icosahedral virus 1.
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Sphaerolipoviruses with a lytic infection cycle have been isolated from various locations by plaque
assay (Figure 1) [37,41,45,50,52,53]. Induction of lysogenic host strains has yielded two temperate virus
isolates: bacteriophage IN93 and archaeal virus SNJ1 [40,47].
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Bacterial and archaeal sphaerolipoviruses share a similar virion architecture: an icosahedral capsid
enclosing an internal membrane [7,35–42,45,46,48]. The icosahedral virions are ~80 nm in diameter,
except for PH1 (~50 nm) and IN93 (~130 nm); their genomes are either linear or circular dsDNA
molecules and range from 16,341 bp for SNJ1 to 31,314 bp for HCIV-1 (Table 1).

The three members of the genus Alphasphaerolipovirus (SH1, HHIV-2, and PH1) have highly
similar structural protein profiles, and the recently isolated HCIV-1 follows the same pattern
(Table 1) [35,37,38,41,42]. In addition, the linear dsDNA genome of HCIV-1 is similar in length
to those of SH1, HHIV-2, and PH1, and all four genomes are collinear. It is possible to obtain high titer
virus stocks for all of them, which makes them suitable model systems for halovirus research. Here, we
present the three current members of the genus Alphasphaerolipovirus and the newly proposed member,
HCIV-1, and compare the available information on their life cycles, genomics, and virion components.
We also review the related proviruses that have been identified in the genomes of haloarchaeal strains.

3. Life Cycles of Viruses in the Genus Alphasphaerolipovirus

SH1, which was isolated from Lake Serpentine in Australia [37], is, so far, the best characterized
sphaerolipovirus [35–37,51,55,56]. PH1 originates from another saline lake in Australia (the Pink Lake),
whereas HCIV-1 and HHIV-2 were isolated from solar salterns (Table 1, Figure 1). The host range of
sphaerolipoviruses includes typically 2-4 hosts each [7,37,41,45,48,50,52,53]. Alphasphaerolipoviruses
SH1, HHIV-2, PH1, and HCIV-1 each infect up to four different haloarchaeal strains belonging to the
genera Haloarcula or Halorubrum. All alphasphaerolipoviruses are able to infect Haloarcula hispanica,
which is the isolation host for three of them [37,38,41,53]. The one exception, HCIV-1, was isolated
on Haloarcula californiae, and its plating efficiency is significantly lower with Har. hispanica than with
the original host [52]. HCIV-1 can also infect Haloarcula japonica and Halorubrum sp. SS7-4 [52], and
consequently the breadth of its host range is comparable to that of other viruses in the genus. SH1
infects Halorubrum CSW 2.09.4 and Haloarcula sp. PV7 strains, which are also host strains for PH1 and
HHIV-2, respectively [38,41]. Transfection experiments have shown that some Natrialba and Haloferax
strains, for example, support SH1 and PH1 replication and progeny virus production [41,56], which
suggests that these viruses could have broader host ranges than observed under laboratory conditions.

Most of the investigated haloarchaeal viruses bind very slowly to their host receptors. Their
adsorption rate constants range from ~10−10 to 10−13 mL/min, in contrast to bacteriophages that
have adsorption rate constants of ~10−9 to 10−10 mL/min [57]. Adsorption rate constants of HCIV-1,
SH1, and HHIV-2 fall into the same range as those of the other studied haloarchaeal viruses, being
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5.7 × 10−11, 1.1 × 10−11, and 3.7 × 10−12 mL/min, respectively [38,42]. By 2 h post-infection (p.i.),
~50%, ~60%, and ~80% of HCIV-1, SH1, and HHIV-2 virus particles, respectively, are bound to the host
cells [38,42]. Nothing is yet known about the receptors used by haloviruses. Electron micrographs
taken during the early stages of HCIV-1 infection revealed an interesting phenomenon: tube-like
formations between virus particles and the cell surface [42]. Similar structures are used as a genome
delivery device by the icosahedral membrane-containing bacteriophage PRD1 and other viruses in the
family Tectiviridae [58], thus prompting speculation that HCIV-1 might do likewise.

Alphasphaerolipoviruses are virulent and progeny viruses are released by host cell lysis.
In single-step infection experiments, a concurrent drop in culture turbidity and release of progeny
viruses is observed at 5–6 h, ~4 h, and ~12 h p.i. in SH1, HHIV-2, and HCIV-1, respectively [37,38,42].
By contrast, progeny PH1 virus release begins at ~6 h p.i. and continues, but turbidity does not start to
decrease until ~15 h p.i. [41]. If PH1 adsorbs as slowly as the other haloarchaeal viruses [38,42,57,59],
this observation could be explained by nonsynchronous virus release, which eventually results
in cell lysis.

In addition to classical one-step infection experiments, the life cycles of SH1 and HCIV-1 have also
been studied by real-time electrochemical and luminometric monitoring of cell integrity during virus
exit [42,59]. Here, the measurement of the binding of the lipophilic anion phenyldicarbaundecaborane
(PCB−) to exposed lipid bilayers [60], the level of dissolved oxygen in the medium, and intracellular
ATP concentration assess the physiological state of the cell. Following infection by either SH1 or
HCIV-1, cell integrity is compromised at the time of virus release. Concomitantly, haloarchaeal cell
respiratory activity decreases and ATP leaks out of the cells [42,59]. As shown by transmission
electron microscopy for SH1 and HHIV-2, empty and filled virus particles are observed inside the
cells in the middle of the virus life cycle, which suggests that these viruses package their DNA into
preformed procapsids [37,38]. Host cell lysis and increased cellular debris are observed later in the
infection [37,38,42].

4. Synteny among the Genomes of HCIV-1, SH1, PH1 and HHIV-2

The ~30 kb genomes of alphasphaerolipoviruses are linear, dsDNA chromosomes with inverted
terminal repeats and terminal proteins attached [35,38,41,42]. These properties imply that these viruses
use protein-primed DNA replication [55], but a canonical DNA polymerase gene like that found in
bacteriophage Φ29 [61] has not been identified in their genomes. Alphasphaerolipovirus genomes
share over 56% nucleotide identity (Table 2); the most similar pair, SH1 and PH1, share 75.5% identity.

Table 2. Overall nucleotide identities (%) between virus genomes.

SH1 PH1 HHIV-2

HCIV-1 63.0 58.1 56.5
SH1 100 75.5 57.9
PH1 75.5 100 56.4

HHIV-2 57.9 56.4 100

Alphasphaerolipovirus genomes contain about 50 predicted open reading frames (ORFs) or genes
that are arranged in a conserved order (Figure 2A). Some ORFs are found in all four genomes, others
in as few as one. Nomenclature of viral structural proteins (VPs) is consistent for all four viruses
and follows that established for SH1 [35]. The most conserved genes (or ORFs) are those that encode
the small and large major MCPs (VP7 and VP4), the major membrane protein (VP12), and a putative
packaging ATPase (Figure 2A). The least conserved of these genes (or ORFs) are those encoding the
proteins of the vertex complex. Homologous genes encode the spike complex proteins of SH1, PH1,
and HCIV-1. The HHIV-2 genes coding for the spike-associated host receptor recognition complex
are sharply distinct from those in the other alphasphaerolipoviruses, as is the structure of their spikes
(see below).
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Figure 2. (A) Genomes of alphasphaerolipoviruses and (B) comparison of HCIV-1 genome with
related putative proviral regions in archaeal chromosomes. (A,B) Grey arrows: open reading frames
(ORFs)/genes. Coloured arrows: homologous genes coding for structural proteins. Light blue arrows:
inverted terminal repeats (ITR). Virus ORFs or gene products are noted above the coding regions.
The nomenclature for the virion proteins (VPs) is consistent in all four viruses except that the putative
spike proteins (marked with an asterisk) of HHIV-2 (VP16 and VP17) correspond to VP3 and VP6 in
the other viruses. The genomic regions including the genes encoding putative spike complex proteins
are bordered with black lines. (A) Pairwise amino acid similarities (%) between the major membrane
proteins (VP12), major capsid proteins (MCPs), or putative packaging ATPases are shown in between
the genomes; (B) Designated ORFs/genes: HCIV-1 ORFs/genes with similarity to putative proviral
sequences. Coloured arrows and coloured frames: similar structural proteins and putative proteins,
respectively. Integrase and transposase encoding genes, as well as tRNA genes, are indicated in the
putative proviruses.

The abundance of proviral sequence elements related to alphasphaerolipoviruses in the
chromosomes of halophilic archaea suggests that these viruses are more ubiquitous in saline
environments than previously concluded. Putative proviruses have been identified in the chromosomes
of Haladaptus cibarius (whole genome sequence; provirus HalaCibP1), Haladaptus paucihalophilus
(draft genome; provirus HalaPauP1), and Halobiforma lacisalsi (draft genome; provirus HaloLacP1)
(Figure 2B) [38,41–44]. Alphasphaerolipovirus-related sequences in these putative proviruses include
ORFs coding for a putative packaging ATPase and for MCPs. ATPase and MCPs sequences are less
conserved between proviral and viral ORFs (~65%–76% amino acid similarity) than among the four
viruses. In the putative provirus HalaCibP1, alphasphaerolipovirus-related ORFs are located between
an integrase gene and a tRNA gene. An integrase-encoding gene is also found in the putative provirus
HalaPauP1 (Hap. paucihalophilus contig No. 27), while the adjacent contig (No. 28) contains a tRNA
gene. In Halobiforma lacisalsi, the alphasphaerolipovirus-like provirus HaloLacP1 is located in contigs
Nos. 123 and 124 where it is flanked by a transposase gene on contig No. 123 and a tRNA gene, two
integrase genes, and two transposase genes on contig No. 124. It remains to be seen whether these
putative proviruses are active and functional, or whether they represent proviral remnants.
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5. Virion Organization of Alphasphaerolipoviruses

SH1, HHIV-2, and HCIV-1 assemble icosahedral virions, ~80 nm in diameter, that contain a
dozen or more structural proteins (Figure 3A) [35,38,41,42]. The PH1 virion is reported to be smaller
(~50 nm) [41]. Specific functions and locations were assigned to several of these structural proteins
based on biochemical quantitative dissociation data and cryo-electron microscopy (cryo-EM) structural
analysis [36,39,51]. For all four viruses, the icosahedral protein shell is decorated by spike complexes
at the five-fold symmetry positions and encloses an internal lipid bilayer (see Figure 3B,C).
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Figure 3. (A) Protein profiles of highly purified SH1, HHIV-2, and HCIV-1 virions with structural
proteins designated. Asterisks: MCPs. Left column: molecular mass marker (kDa); (B) Electron
micrograph of highly purified HCIV-1 particles stained with 3% (w/v) uranyl acetate. Scale bar:
100 nm; (C) Schematic model of HCIV-1 virion.

Spike complexes most likely function as host recognition devices, but the host range of these four
viruses does not correlate with the observed spike complex shapes. The SH1 spikes are horn-shaped
complexes with two-fold symmetry [36]. Sequence similarities suggest that PH1 and HCIV-1 have
comparable, SH1-like spike structures. Although SH1, PH1, and HHIV-2 infect the same host species,
HHIV-2 possesses a distinctly different host recognition complex. Cryo-EM observations of HHIV-2
virions reveal five-fold symmetric propeller-like objects with a fiber stemming from the center of
the complex [39]. The vertex complex protein VP2 and large vertex structural protein VP1 were
found in all four viruses. Proteins VP3 and VP6 are present in the complexes of SH1, PH1, and
HCIV-1 [36,38,39,41,42,51]. The minor capsid protein VP9 is conserved in SH1, HHIV-2 and HCIV-1,
but is not present in HHIV-2. Lastly, the complexes in HHIV-2 contain two proteins, VP16 and VP17,
that do not show sequence similarity to any SH1 structural protein.

The internal viral membrane is composed of virus-encoded proteins and host lipids, the latter
selectively acquired from the host lipid pool during virus assembly [35,39,42]. In the virion, the
membrane closely underlies the capsid and takes on its shape. The apparent ordered density
between the membrane and the overlying capsid that is revealed by cryo-EM might correspond to
protein–membrane interactions that guided the assembly [36,39]. The two major membrane-associated
proteins, VP10 and VP12, are conserved (57%-83% and 92%-97% amino acid similarity, respectively)
among the alphasphaerolipoviruses and could serve as a scaffold for the capsid lattice. The major
phospholipid species present in the virions of SH1, HHIV-2, and HCIV-1 are phosphatidylglycerol,
phosphatidylglycerophosphate methyl ester, and phosphatidylglycerosulfate [35,39,42].

Cryo-EM and image reconstructions of SH1 and HHIV-2 virions revealed that their capsids
are arranged in a pseudo T = 28 dextro lattice composed of MCPs VP4 and VP7 [36,39]. The only
other known virus that has the same lattice symmetry is Thermus bacteriophage P23-77 in the genus
Gammasphaerolipovirus [49]. Among the four alphasphaerolipoviruses, the small MCPs (VP7) share
86%–99% amino acid similarity, whereas the large MCPs (VP4) are even more conserved, having



Viruses 2017, 9, 32 8 of 15

90%–97% amino acid similarity. In SH1 and HHIV-2, MCPs VP4 and VP7 form pseudo-hexameric
capsomers with either two or three towers [36,39]. VP7 is most probably a single β-barrel protein;
VP4 most probably stacks two single β-barrel domains on top of each other, with the upper one
forming a tower. An assembly model has been proposed for the HHIV-2 capsid [39], and the other
alphasphaerolipoviruses likely mimic it. The capsid lattice is assembled from VP4-VP4 homodimers
and VP4-VP7 heterodimers. The stability of the HHIV-2 capsid is compromised in a reducing
environment, suggesting that disulphide bridges stabilize the protein-protein interactions in the
capsid [39]. Conserved cysteine residues are found in both MCPs in SH1, PH1, and HHIV-2, but in
only the small MCP VP7 in HCIV-1. The absence of such residues in the VP4 of HCIV-1 suggests a role
for other capsid stabilization mechanisms, such as the observed membrane–capsid interactions.

6. Phylogenic Analysis and Structural Clustering of the Virion Core Elements
of Sphaerolipoviruses

Sequence-based phylogenetic analysis of the most conserved virion proteins—two MCPs and a
packaging ATPase—revealed that seven sphaerolipoviruses and their related proviruses cluster into
three distinct clades that correspond to the three genera in the family (Figure 4) [42].

Viruses 2017, 9, x FOR PEER REVIEW  4 of 15 

 

capsomers with either two or three towers [36,39]. VP7 is most probably a single β-barrel protein; 

VP4 most probably stacks two single β-barrel domains on top of each other, with the upper one 

forming a tower. An assembly model has been proposed for the HHIV-2 capsid [39], and the other 

alphasphaerolipoviruses likely mimic it. The capsid lattice is assembled from VP4-VP4 homodimers 

and VP4-VP7 heterodimers. The stability of the HHIV-2 capsid is compromised in a reducing 

environment, suggesting that disulphide bridges stabilize the protein-protein interactions in the 

capsid [39]. Conserved cysteine residues are found in both MCPs in SH1, PH1, and HHIV-2, but in 

only the small MCP VP7 in HCIV-1. The absence of such residues in the VP4 of HCIV-1 suggests a 

role for other capsid stabilization mechanisms, such as the observed membrane–capsid interactions. 

6. Phylogenic Analysis and Structural Clustering of the Virion Core Elements of 

Sphaerolipoviruses 

Sequence-based phylogenetic analysis of the most conserved virion proteins—two MCPs and a 

packaging ATPase—revealed that seven sphaerolipoviruses and their related proviruses cluster into 

three distinct clades that correspond to the three genera in the family (Figure 4) [42].  

 
 

Figure 4. Maximum likelihood phylogenetic trees derived from protein sequences of the members of 

the family Sphaerolipoviridae and their related proviruses. (A) Packaging ATPases. (B) Large MCPs. 

(C) Small MCPs. Bars (0.1): the inferred number of substitutions per site. Reproduced with permission 

from [42] © American Society for Microbiology, mBio, 2016, vol. 7, no.4, e00699-16, doi: 

10.1128/mBio.00699-16. 

Figure 4. Maximum likelihood phylogenetic trees derived from protein sequences of the members
of the family Sphaerolipoviridae and their related proviruses. (A) Packaging ATPases. (B) Large
MCPs; (C) Small MCPs. Bars (0.1): the inferred number of substitutions per site. Reproduced with
permission from [42] © American Society for Microbiology, mBio, 2016, vol. 7, no.4, e00699-16,
doi:10.1128/mBio.00699-16.
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The same clustering is observed when the MCPs and packaging ATPases are structurally
compared among the same viruses (Figure 5). This comparison used the high resolution structures
of the P23-77 large and small MCPs (VP16 and VP17) [49] together with structural models of other
proteins generated by the Iterative Threading ASSEmbly Refinement (I-TASSER) web server [62]. Since
the amino acid sequence similarities are sometimes low within this group of viruses (Figure 5A), each
protein structural model was predicted separately. The large and small MCPs were all modeled using
the structures of Thermus phage P23-77 MCPs VP16 and VP17, respectively, as the initial templates
(Protein Data Bank (PDB) ID: 3ZN4 and 3ZMN) [49]. Similarly, templates for the putative packaging
ATPases were (i) for HCIV-1 and PH1: Escherichia coli FtsK motor domain (PDB ID: 2IUS); (ii) for
HHIV-2 and SH1: HerA ATPase (PDB ID: 4D2I); and (iii) for IN93, SNJ1 and P23-77: the putative
packaging ATPase of Sulfolobus virus STIV2 (PDB ID: 4KFR).

All virus protein models used possessed good C-scores (a confidence score for estimating the
quality of predicted models) and TM-scores (a parameter for structural similarity of two protein
models), as well as good coverage. We identified a structural core composed of 196 amino acid residues
common to all large MCPs. The 2.3 Å average root-mean-square deviation (rmsd) (Figure 5B,C, left)
demonstrated that these MCPs share the same protein fold, a fold that is characterized by two single
β-barrels stacked one on top of the other. The structural model of HCIV-1 VP7 is compared with the
structures of P23-77 VP16 and the common core in Figure 5C (left).

A similar investigation found a total of 120 residues common to all sphaerolipovirus small MCPs.
Their average rmsd of 2.3 Å (Figure 5B, middle) indicated that they are all single β-barrel proteins
with a fold similar to that of P23-77 VP17 [49]. Turning to the putative packaging ATPases, we found
that, although the initial templates differed, the final models were extremely similar and shared a
common core of 193 residues (Figure 5B,C, right). Overall, all three of the identified common cores
shared 82%–87% equivalent residues (see next paragraph) when compared to the shortest protein used
in the comparison. In all three cases, that protein was the one from P23-77.

The structural models and the available structures were also clustered using the Homologous
Structure Finder (HSF) (Figure 5D) [63]. When given a set of protein structures and models, HSF
identifies a structural core of equivalent amino acid residues among them based on similarities of amino
acid geometry, secondary structure, and physicochemical properties. This method of structure-based
clustering yielded results that paralleled the previously established sequence-based classification
(Figures 4 and 5D). In addition, in these HSF analyses, the structural model closest to that of HCIV-1
was always that of HHIV-2.
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Figure 5. Structural phylogeny based on the predicted structural models of the large MCPs (left), small
MCPs (middle), and putative packaging ATPases (right) of the viruses in the family Sphaerolipoviridae.
(A) Amino acid similarities (%) between proteins calculated with EMBOSS Needle [64]; (B) The
clustering based on structural models generated by Iterative Threading ASSEmbly Refinement
(I-TASSER) sequence-based predictions [62]. Each protein was compared against the corresponding
common core (asterisks). Brackets: the number of amino acid residues used in comparisons. Tree
node labels: MMM/NNN@X.Y Å, where MMM = number of identical residues at equivalent positions,
NNN = total number of equivalent residues in the common core for all proteins in the subtree below that
node, and X.Y Å = average root-mean-square deviation (rmsd) of atomic positions over all equivalent
(structurally aligned) residues; (C) The average α-carbon positions of the common cores (asterisks)
with equivalent residues depicted in green; the initial structural templates used: X-ray structures of
Thermus phage P23-77 VP17 (PDB ID: 3ZMN) and VP16 (PDB ID: 3ZN4), and Sulfolobus virus STIV2
NTPase (PDB ID: 4KFR); models of the HCIV-1 MCPs (VP7 and VP4) and putative packaging ATPase,
as examples. Yellow: β-sheets; red: α-helices; green: loops. Visualized with the PyMOL Molecular
Graphics System, Version 1.8 Schrödinger, LLC; (D) Phylogenic trees of the protein models based
on their common cores and including only equivalent residues (Homologous Structure Finder (HSF)
Program) [63]. Branch lengths are calculated as in [63]. The trees were visualized with Dendroscope [65].
For methodological details, see [63].
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7. Conclusions

Currently the genus Alphasphaerolipovirus of the family Sphaerolipoviridae comprises four halophilic
archaeal viruses—SH1, HHIV-2, PH1, and HCIV-1—that were isolated from different hypersaline
environments. All four assemble tailless, icosahedral virions that contain an internal membrane
(Figure 1). Despite their widely-separated sites of origin, these four possess a high level of sequence
similarity, especially in their core structural and assembly proteins, i.e., the two MCPs and a packaging
ATPase (Figures 4 and 5). A pseudo-hexameric capsid lattice arranged in T = 28 symmetry is
common to alphasphaerolipoviruses SH1 and HHIV-2 and the gammasphaerolipovirus P23-77
(Figure 6A) [36,39,45]. The MCPs of alpha- and gammasphaerolipoviruses share low sequence
similarities (24%–29%; Figure 5A), but the predicted folding of their MCPs (Figure 5C) and their
overall virion architecture are highly conserved. By contrast, the vertex complexes, most probably
involved in host recognition, may differ significantly (Figure 6B).
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Figure 6. Icosahedral membrane-containing viruses with conserved capsid elements but highly
divergent host recognition structures. (A) Radial cross sections at the base of the conserved
pseudo-hexameric capsomers (red indicates the base of one capsomer). The capsomers of HHIV-2, SH1,
and P23-77 are composed of six vertical single β-barrel MCPs, whereas STIV represents an example
that uses instead three vertical double β-barrel MCPs. EMDataBank accession numbers are provided.
HHIV-2 is deposited under the accession number of EMD-3109 (“this study” here refers to [39]); (B) The
five-fold vertex complexes of these four viruses (not to scale). Reproduced with permission from [39]
Reprinted from Structure, vol. 23, no. 10, David Gil-Carton, Salla T. Jaakkola, Diego Charro, Bibiana
Peralta, Daniel Castaño-Díez, Hanna M. Oksanen, Dennis H. Bamford, and Nicola G.A. Abrescia,
Insight into the assembly of viruses with vertical single β-barrel major capsid proteins, Pages No.
1866-1877, Copyright 2015, with permission from Elsevier. doi: 10.1016/j.str.2015.07.015.

From a structural perspective, the virion architecture of the sphaerolipoviruses places them within
the PRD1-adenovirus structural lineage [30]. This lineage comprises viruses with a pseudo-hexameric
virion lattice built of either (i) one type of MCP with two vertical β-barrel domains, or (ii) two MCP
species with single β-barrels [30,39]. The first subgroup is well-established and includes at least
bacteriophages PM2 (Corticoviridae) and PRD1 (Tectiviridae), archaeal viruses STIV and STIV2
(Turriviridae), as well as eukaryotic viruses PBCV-1 (Phycodnaviridae), vaccinia virus (transition
state in particle maturation; Poxviridae), human adenovirus (Adenoviridae), and virophage Sputnik
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(Lavidaviridae) [11,13,21–26]. The second subgroup currently includes sphaerolipoviruses together
with halophilic bacterial virus Salisaeta icosahedral phage 1 (SSIP-1; unclassified) [66]. Thus, all of the
above-mentioned viruses that are currently classified in at least eight viral families can be grouped into
one structural lineage [30,31]. It will be intriguing to see how far this structural conservation extends
and what novel virus morphotypes may await discovery in extreme environments.
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