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Abstract

We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled 
by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent z and with 
hyperscaling violation exponent θ . Our main focus will be on the collective excitations of the dense matter 
in the presence of an external magnetic field. Constraining the defect field theory to 2 + 1 dimensions, we 
will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic 
fluid. We will deduce the universal properties of holographic matter and show that the Einstein relation 
always holds.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Gauge/gravity duality has achieved its stature in theorists’ arsenal to attack problems noto-
riously difficult to fight with perturbative tools. This applicability stems from the fact that the 
duality relates a theory at strong coupling to another theory at weak coupling, and vice versa. 
This is a particularly useful property when dealing with situations that one would normally de-
scribe using gauge field theory techniques, but when such systems are subject to conditions 
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where strong interactions are expected and thus behave drastically differently. The prototypical 
example is the theory of strong interactions, QCD, at finite baryon chemical potentials. Here the 
implementation of the gauge/gravity duality, holography, has been successfully utilized both at 
high [1] and at low temperatures [2], natural environments for dense quark matter in heavy ion 
collisions and at the cores of neutron stars, respectively.

In its best understood scenario, the gauge/gravity correspondence relates string theory living in 
an Anti-de Sitter (AdS) spacetime (times a compact manifold) to a conformal field theory (CFT) 
in one less non-compact spatial dimension. Natural extensions consist of those bulk spacetimes 
which are still asymptotically AdS and act as dual geometries to relativistic matter. However, 
in many cases the configurations one deals with in the laboratories are not relativistic. The bulk 
geometries then ought to be warped products of Lifshitz spaces with compact manifolds. How-
ever, only a few examples of top-down constructions have been found to possess Lifshitz scaling. 
Moreover, it seems very subtle to nail down the precise holographic dictionary [3].

While there is no obvious obstruction to deriving generic metrics possessing Lifshitz scaling 
from string theory, the progress has been excruciatingly slow due to highly technical reasons. 
For this reason, most of the holographic studies related to Lifshitz geometries have been bottom-
up, meaning that some broader form of the gauge/gravity correspondence is assumed while the 
string theory embedding of the background is lacking. In this paper, we will also follow this 
approach and start with a background metric possessing Lifshitz scaling with dynamical expo-
nent z. We will also allow hyperscaling violation, introduced via an additional parameter θ in 
the background metric. The matter in our model is introduced by adding flavor D-branes with 
appropriate bulk gauge fields turned on in the worldvolume of the brane, in particular, in such 
a manner that the matter has finite charge density. We note that this has been under systematic 
study also in the past [4–6], though essentially only at zero temperature. In this paper, we will 
also consider thermal effects on the collective excitations of the system, putting special focus 
on exploring how the system enters in the hydrodynamic regime. We will also discuss charge 
diffusion and establish the Einstein relation for all parameter values.

An important new development that we will report is the analysis of the matter in the back-
ground of an external magnetic field. The standard prescription of introducing an external mag-
netic field in holography is via introducing new non-vanishing components for the gauge field 
living on the brane, Fxy ∝ B . In generic dimensions, one needs to keep B fixed, corresponding 
to Dirichlet boundary conditions. However, when the bulk spacetime is four-dimensional, an al-
ternative scheme for quantizing the gauge field opens up [7,8]. In particular, one can implement 
combined Dirichlet/Neumann (or Robin) boundary conditions for the gauge field [9,10], leading 
to dynamical gauge fields. In such a scenario, the magnetic field is not kept fixed, but one allows 
for it to adjust its own expectation value. This leads us to the study of matter which is not only 
charged electrically, but also carries magnetic charges. These are anyons, particles of fractional 
statistics, which are the subject of the latter part of our work.

There has been a tremendous amount of work devoted to the study of anyons, since their in-
ception in the late seventies [11]. Yet, they are very mysterious and the field is still in its infancy. 
The main reason for the difficulties arise from the property that multi-anyon states cannot be ex-
pressed as a simple product of single particle states. The anyons are linked together via braiding, 
which might be suggestive of strong interactions. This is precisely where the holography applies 
and may help in rearranging thoughts in seeking answers to puzzles raised by anyonic fluids. 
The anyonic fluids have been studied in several holographic works [9,12–17]. The most recent 
work [10] was able to obtain the explicit equation of state for anyons (holographically modeled 
using a dyonic black brane), an achievement that has been extremely challenging to reach with 



N. Jokela et al. / Nuclear Physics B 916 (2017) 727–768 729
perturbative methods. Clearly, one should try to implement the prescription given in [10] to other 
setups as well, in particular to those that are presented in this paper. This is, however, beyond the 
scope of current work.

The collective excitations of our system are dual to the quasinormal modes of the D-brane 
probes, which are obtained from the fluctuations of the Dirac–Born–Infeld action. At sufficiently 
high temperature, the system is in a hydrodynamical diffusive regime, characterized by a diffu-
sion constant. We will find a closed expression for this constant and we will study its dependence 
on the scaling exponents z and θ , as well as on the magnetic field B . At low temperature, the 
dominant excitation is the so-called holographic zero sound [18,19]. We will determine analyt-
ically the dispersion relation of the zero sound in the Lifshitz geometry for non-zero magnetic 
field. We will show that the zero sound mode is gapped when B �= 0, generalizing similar pre-
vious results in other geometries [20,21]. We will generalize this analysis to include alternative 
quantization conditions in the case of (2 + 1)-dimensional field theories on the boundary. We 
will find that the effect of the new boundary conditions on the zero sound is similar to the one 
of a magnetic field. In particular, we will show that one can adjust them to make the zero sound 
gapless, as was found in [15–17] for relativistic backgrounds. We will also study the diffusion 
constant and the conductivities of the anyonic fluid.

The organization of the rest of this paper is the following. We will begin by introducing the 
background geometry in section 2. We embed a probe D-brane in a generic black hole metric 
possessing both Lifshitz scaling with dynamical exponent z and hyperscaling violating expo-
nent θ . We review the basic thermodynamic properties and then focus on deriving the fluctuation 
equations extracted from perturbing the flavor brane embedding function and the gauge fields. 
Section 3 solves the fluctuation equations in various limits of the background charge density, 
magnetic field, and temperature. We also compare the analytic results that we will obtain to 
those from numerics. In section 4, we switch gears by constraining to 2 + 1 dimensions to allow 
the gauge fields become dynamical via alternative quantization. We will discuss collective exci-
tations of the resulting anyonic fluid. One important result that we can establish is the Einstein 
relation in the most generic case. This result we will take literally in section 5 and predict the 
conductivity of the matter at finite (and large) magnetic field strength, a regime where some of 
the other approximation schemes fall short. Section 6 contains a brief summary of our results 
together with remarks on a few open problems left in future works. The paper is complemented 
with several appendices which contain technical steps filling in the gaps in the calculations of the 
bulk text.

2. Set-up

We begin by introducing the bulk geometry which exhibits Lifshitz scaling and hyperscaling 
violation. We then embed flavor probe D-brane in this background, thus introducing massless 
quenched fundamental degrees of freedom localized on a lower-dimensional defect field theory 
with flavor symmetry U(Nf ). We analyze the thermodynamics of such holographic matter at 
non-zero baryonic charge density by introducing a chemical potential for the diagonal U(1) ⊂
U(Nf ).

2.1. Background

Let us consider the following (p + 2)-dimensional metric,
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ds2
p+2 = gtt (r)fp(r)dt2 + gxx(dxi)2 + grr

fp(r)
dr2

= r
− 2θ

p

[
−fp(r)r2zdt2 + r2(dxi)2 + dr2

fp(r)r2

]
, i = 1, . . . , p , (2.1)

where the blackening factor reads

fp = 1 −
( rh

r

)p ξ+z

, (2.2)

and where the metric components we record separately for ease of reference

gtt (r) = −r2ξ+2(z−1) , gxx(r) = r2ξ , grr (r) = r2ξ−4 . (2.3)

In (2.2) we have defined a parameter ξ , which is related to the hyperscaling violating parameter 
θ as follows:

ξ = 1 − θ

p
, (2.4)

and z is the dynamical exponent. We note that the radial coordinate r is defined as is standard, 
i.e., r = ∞ corresponds to the boundary, where the field theory lives and rh is the horizon radius 
of the black hole. By demanding the absence of conical singularity in the bulk, the horizon radius 
can be related to the field theory temperature according to

rh =
(

4πT

p + z − θ

) 1
z

. (2.5)

Here we are assuming that

z ≥ 1 , θ ≤ 0 . (2.6)

Realizations of z < 1 seem pathological as they lead to violations of the null energy condition 
[22], whereas the latter requirement comes from thermodynamic stability (see below).

We now wish to embed Nf probe D-branes in this background, so that the branes are extended 
in q ≤ p spatial dimensions of the Lifshitz spacetime (2.1). In the generic case then the flavor 
fields reside on a (q +1)-dimensional defect. We will consider the following ansatz for the gauge 
field on the probes:

F = A′
t dr ∧ dt + Bdx1 ∧ dx2 , (2.7)

where the prime denotes a derivative with respect to r . The Dirac–Born–Infeld (DBI) action for 
massless probes thus reads

S = −Nf TDV

∫
dtdrdqx

√−det (g + F) = −N
∫

dr
√

H

√
|gtt |grr − A′ 2

t , (2.8)

where N = Nf TDVq+1V , TD is the tension, V is the volume of the internal space which the 
D-branes may be wrapping, and the function H is

H = g2
xx + g

q−2
xx B2 = r2qξ + r2(q−2)ξB2 . (2.9)

Notice that we have not included a dilaton which is generically non-trivial in top-down string 
theory constructions dual to non-conformal field theories.

The equation of motion for At , which follows from (2.8), can be integrated once to find
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A′
t = d

√
grr |gtt |√

H + d2
, (2.10)

where d is an integration constant, proportional to the physical charge density of the field theory: 
〈J t 〉 ≡Nd . From now on, we will consider d to be positive.

2.2. Thermodynamics

Let us now proceed with discussing some properties of the probe brane system. We are, in 
particular, interested in thermodynamic relations and how the parameters z, ξ , and q affect them.

Zero temperature Let us first consider the system at T = 0 with vanishing magnetic field B = 0. 
From (2.10) we have that:

A′
t = d

r2ξ+z−3

√
r2qξ + d2

. (2.11)

Therefore, the (zero-temperature) chemical potential is:

μ0 = At(∞) =
∞∫

0

dr A′
t = d

∞∫
0

r2ξ+z−3

√
r2qξ + d2

dr ≡ d I2ξ+z−3 , 2qξ (r = 0) . (2.12)

The integrals of the kind (2.12) appear frequently in this paper, for sake of which we have defined 
two classes of integrals and collected their useful properties in Appendix A. The explicit form of 
the chemical potential follows

μ0 = γ d
2ξ+z−2

ξq , γ = 1

2ξq
B
(2ξ + z − 2

2ξq
,

ξ(q − 2) + 2 − z

2ξq

)
. (2.13)

The on-shell action is:

Son-shell = −N
∞∫

0

dr

√
grr |gtt |√
H + d2

H = −N
∞∫

0

r2ξq+2ξ+z−3

√
r2qξ + d2

dr . (2.14)

This is a divergent integral. We regulate it by subtracting an on-shell action for probe branes at 
zero density:

S
reg

on-shell = −N
∞∫

0

dr rξq+2ξ+z−3

[
rξq

√
r2qξ + d2

− 1

]
. (2.15)

To evaluate this integral we use the general result:

∞∫
0

r
λ2
2

[ r
λ1
2√

rλ1 + d2
− 1
]
dr = 1

λ1
B
(

− λ2 + 2

2λ1
,

1

2
+ λ2 + 2

2λ1

)
d

λ2+2
λ1 , (2.16)

which is valid for λ2 < 2(λ1 − 1). We get:

S
reg

on-shell = − N
2qξ

B
(

− qξ + 2ξ + z − 2

2qξ
,

2qξ + 2ξ + z − 2

2qξ

)
d

1+ 2ξ+z−2
qξ . (2.17)

The (zero temperature) grand potential �0 = �0(μ0) = −S
reg reads,
on-shell
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�0 = − 2ξ + z − 2

qξ + 2ξ + z − 2
N γ d

1+ 2ξ+z−2
qξ = − 2ξ + z − 2

qξ + 2ξ + z − 2
N γ

− ξq
2ξ+z−2 μ

1+ ξq
2ξ+z−2

0 .

(2.18)

It is now straightforward to obtain the density ρ = 〈J t 〉 as:

ρ = −∂�0

∂μ0
= N d , (2.19)

i.e., d is proportional to ρ, as promised. The energy density can be obtained by Legendre trans-
formation ε = �0 + μ0 ρ:

ε = qξ

qξ + 2ξ + z − 2
N γ d

1+ 2ξ+z−2
qξ . (2.20)

For the pressure we find:

P = −�0 = 2ξ + z − 2

qξ + 2ξ + z − 2
N γ d

1+ 2ξ+z−2
qξ = 2ξ + z − 2

qξ
ε . (2.21)

Therefore, the speed of first sound is:

u2
s = ∂P

∂ε
= 2ξ + z − 2

qξ
. (2.22)

This result agrees with the one found in [6].

Non-zero temperature To extract more useful information, we commit to heat up the system. 
Let us begin by analyzing the chemical potential at T �= 0:

μ = d

∞∫
rh

r2ξ+z−3

√
r2qξ + d2

dr = μ0 − r
2ξ+z−2
h

2ξ + z − 2
F
(1

2
,

2ξ + z − 2

2qξ
;1+ 2ξ + z − 2

2qξ
;− r

2qξ
h

d2

)
,

(2.23)

where μ0 is the chemical potential at zero temperature (2.12). The grand potential at T �= 0 is:

� = N
∞∫

rh

dr rξq+2ξ+z−3

[
rξq

√
r2qξ + d2

− 1

]
. (2.24)

We evaluate this integral using the formula:
∞∫

rh

r
λ2
2

[ r
λ1
2√

rλ1 + d2
− 1
]
dr = 1

λ1
B
(

− λ2 + 2

2λ1
,

1

2
+ λ2 + 2

2λ1

)
d

λ2+2
λ1 + 2

2 + λ2
r

λ2+2
2

h

− 2

λ1 + λ2 + 2
r

1+ λ1+λ2
2

h F
(1

2
,

2 + λ1 + λ2

2λ1
; 2 + 3λ1 + λ2

2λ1
;− r

λ1
h

d2

)
. (2.25)

We find

�� = �0 − N
2qξ + 2ξ + z − 2

r
2qξ+2ξ+z−2
h

d
F
(1

2
,1 + 2ξ + z − 2

2qξ
;2

+ 2ξ + z − 2

2qξ
;− r

2qξ
h

d2

)
, (2.26)
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where �0 is the grand potential at zero temperature (2.18) and �� is the density-dependent part 
of �, defined as:

�� = � − r
qξ+2ξ+z−2
h

qξ + 2ξ + z − 2
. (2.27)

Notice that the natural variable of � is μ, as d depends on it through (2.23). At low temperature 
we can explicitly invert (2.23). Indeed, let us consider the low temperature case in which rh is 
small. The chemical potential can then be expanded as:

μ = μ0 − r
2ξ+z−2
h

2ξ + z − 2
+ 1

2

1

2qξ + 2ξ + z − 2

r
2qξ+2ξ+z−2
h

d2
+ . . . . (2.28)

The expansion of �� is:

�� = − 2ξ + z − 2

qξ + 2ξ + z − 2
N γ d

1+ 2ξ+z−2
qξ − N

2qξ + 2ξ + z − 2

r
2qξ+2ξ+z−2
h

d
+ . . . .

(2.29)

Plugging in the expression for d = d(μ) from (2.28), we can write at leading order in tempera-
ture:

�� = − 2ξ + z − 2

qξ + 2ξ + z − 2
N γ

− qξ
2ξ+z−2

[
μ + r

2ξ+z−2
h

2ξ + z − 2

] qξ
2ξ+z−2 + . . . . (2.30)

Let us then compute the entropy

s = −∂�

∂T

∣∣∣
μ

= − ∂�

∂rh

∣∣∣
μ

∂rh

∂T
. (2.31)

After some calculation we get (at low temperature):

s ≈ N q(p − θ)

z(p(q + z) − (2 + q)θ)

d

μ

[ 4π

p + z − θ

]1− 2θ
pz

T
− 2θ

pz . (2.32)

Notice that the T behavior coincides with the one found in [5] but the coefficient is different. The 
specific heat at low temperature thus scales as:

cv = T
∂s

∂T

∣∣∣
d

∼ T
− 2θ

pz . (2.33)

The stability of the system (i.e., cv ≥ 0) then requires θ/z ≤ 0.

2.3. Fluctuations

Having understood the thermodynamics of the underlying holographic fluid and the scaling 
upon varying ξ and z, we now wish to lay out a framework to exploring the response of the fluid 
under small perturbations. The relevant physics we are after are due to vector (gauge) fluctua-
tions; the scalar deformations turn out to decouple as we focus on massless flavor degrees of 
freedom. We will thus consider fluctuations of the form:

A = A(0) + a(r, xμ) , (2.34)

where A(0) = A
(0)
ν dxν = Atdt + Bx1dx2 and a(r, xμ) = aν(r, xμ)dxν . The total gauge field 

strength is:
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F = F (0) + f , (2.35)

where F (0) = dA(0) is the two-form written in (2.7) and f = da. We note that we consider the 
fluctuations to depend only on r, t, x1 as we can always choose the momentum vector to align 
along one of the spatial directions.

The powerful method to fluctuating the DBI action is the approach introduced in [15]. In fact, 
we can just quote the corresponding results in [15] by first stating the relevant elements of the 
open string metric:

Gt t = − 1

fp

grr

grr |gtt | − A′ 2
t

= − H + d2

fp |gtt |H
Grr = fp

|gtt |
grr |gtt | − A′ 2

t

= H + d2

grr H
fp

Gx1 x1 = Gx2 x2 = gxx

g2
xx + B2

, (2.36)

while those of the antisymmetric matrix J are:

J tr = −J rt = − A′
t

grr |gtt | − A′ 2
t

= − d√|gtt |grr

√
H + d2

H

J x1 x2 = −J x2 x1 = − B

g2
xx + B2

. (2.37)

The Lagrangian for the fluctuations is:

L ∼
√

grr |gtt |√
H + d2

H
(
Gac Gbd − J ac J bd + 1

2
J cd J ab

)
fcd fab , a, b, c, d ∈ {t, x, y, r} .

(2.38)

The corresponding equation of motion for ad then follows:

∂c

[√
grr |gtt |√
H + d2

H
(
Gca Gdb − J ca J db + 1

2
J cd J ab

)
fab

]
= 0 . (2.39)

From the equation of motion for ar (with ar = 0) we get the transversality condition:

∂t a
′
t − u2(r) ∂x a′

x = 0 , (2.40)

where u(r) is the function:

u2(r) = −Gxx

Gt t
= gxx |gtt |fp

g2
xx + B2

H

H + d2
= fpr2qξ+2 z−2

r2qξ + r2(q−2)ξ B2 + d2
. (2.41)

The next step is to Fourier transform the fields:

aν(r, t, x) =
∫

dωdk

(2π)2
aν(r,ω, k)e−iωt+ikx . (2.42)

We now define the electric field E as the gauge-invariant combination:

E = k at + ωax . (2.43)

Using the transversality condition (2.40) in the momentum space, we obtain a′
t and a′

x in terms 
of E′ as follows:
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a′
t = − k u2

ω2 − k2 u2
E′ , a′

x = ω

ω2 − k2 u2
E′ . (2.44)

Using these relations, we obtain the equation of motion for the electric field E, as follows:

E′′ + ∂r log

[√|gtt |√
grr

gxx fp

g2
xx + B2

√
H + d2

ω2 − k2 u2

]
E′ + grr

|gtt |f 2
p

(ω2 − k2 u2)E

= i B d

√
grr√|gtt |

g 2
xx + B2

gxx fp

ω2 − k2 u2

√
H + d2

∂r

(
1

g2
xx + B2

)
ay . (2.45)

Let us write more explicitly this expression by plugging in the value of the function u and the 
following relation:

ω2 − k2 u2 = (ω2 − r2z−2 fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

r2ξq + r2ξ(q−2)B2 + d2
. (2.46)

The equation for the fluctuation of the electric field E becomes:

E′′ + ∂r log

[
r2ξ+z+1

r4ξ + B2

(r2ξq + r2ξ(q−2)B2 + d2)
3
2 fp

(ω2 − r2z−2 fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

]
E′

+ 1

r2z+2f 2
p

(ω2 − r2z−2fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

r2ξq + r2ξ(q−2)B2 + d2
E

= −4iξBd
r2ξ−z−2

(r4ξ + B2)fp

(ω2 − r2z−2fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

(r2ξq + r2ξ(q−2)B2 + d2)
3
2

ay . (2.47)

Moreover, the equation for ay can be written as:

a′′
y + ∂r log

[
gxx

√|gtt |√
grr

fp

√
H + d2

g2
xx + B2

]
a′
y + grr

f 2
p |gtt | (ω2 − k2 u2) ay

= −iB d

√
grr

gxx

√|gtt |
1

fp

g2
xx + B2

√
H + d2

∂r

(
1

g2
xx + B2

)
E . (2.48)

Using the expressions for u and the metric elements, this equation becomes:

a′′
y + ∂r log

[
r2ξ+z+1

r4ξ + B2
(r2ξq + r2ξ(q−2)B2 + d2)

1
2 fp

]
a′
y

+ 1

r2z+2f 2
p

(ω2 − r2z−2fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

r2ξq + r2ξ(q−2)B2 + d2
ay

= 4iξBd
r2ξ−z−2

(r4ξ + B2)fp

E

(r2ξq + r2ξ(q−2)B2 + d2)
1
2

. (2.49)

The rest of the paper analyzes the solutions to (2.47) and (2.49) in different regimes, at high 
temperature in section 3.1 and at low temperature in section 3.2. A particularly interesting setting 
can be obtained in the special case of q = 2 as one can make use of mixed boundary conditions 
for the gauge fluctuations. This leads us to the study of anyons and is the topic of section 4.
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2.4. Scalings

Let us now see how one can eliminate rh in the equations of motion by rescaling. First of all, 
we define the new rescaled radial coordinate r̂ as:

r = rh r̂ . (2.50)

This rescaling eliminates rh from the blackening factor fp . Moreover, it is easy to see that the 
different factors in (2.47) and (2.49) transform homogeneously if ω, k, d , and B are rescaled as:

ω = rz
h ω̂ , k = rh k̂ , d = r

ξq
h d̂ , B = r

2ξ
h B̂ . (2.51)

Notice that ω and k are rescaled differently for z �= 1, in agreement with the Lifshitz nature of 
the metric. For this same reason the different components of the gauge field aμ must transform 
differently. As the fluctuation equations are linear, we can simply assume that the electric field 
E does not transform. As E = ωax + kat , it is clear that at and ax should be rescaled as:

at = r−1
h ât , ax = r−z

h âx . (2.52)

Due to symmetry of the indices, ay should transform as ax . Thus:

ay = r−z
h ây . (2.53)

It is now straightforward to verify that the two equations of motion scale homogeneously and 
that working with the hatted variables is equivalent to taking rh = 1. Of course, instead of the 
temperature, one could have chosen to scale out d or B , too.

3. Collective excitations

In this section, we will analyze the collective excitations of the magnetized brane probes in 
the Lifshitz background. These collective excitations are dual to the quasinormal modes of the 
fluctuation equations of section 2.3. We consider first the system at non-zero temperature and we 
will look for hydrodynamic diffusive modes. By employing analytical techniques, we obtain the 
expression of the diffusion constant, which we compare with the result obtained from the numer-
ical integration of the fluctuation equations. We then consider the system at zero temperature and 
find the dispersion relation of the zero sound mode in the collisionless regime. Again, we obtain 
analytic results which we then compare with the numerical values. The transition between the 
collisionless and hydrodynamic regime is studied numerically.

3.1. Diffusion constant

Let us start by analyzing the equation (2.47) for the fluctuation of the electric field E near the 
horizon r = rh. The blackening factor fp(r) behaves near r = rh as:

fp = z + p ξ

rh
(r − rh) + . . . . (3.1)

The coefficients of E and E′ in (2.47) can be expanded near r = rh as:

∂r log

[
r2ξ+z+1

r4ξ + B2

(r2ξq + r2ξ(q−2)B2 + d2)
3
2 fp

(ω2 − r2z−2 fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

]
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= 1

r − rh
+ c1 + . . .

1

r2z+2f 2
p

(ω2 − r2z−2fp k2)r2ξq + ω2 B2 r2ξ(q−2) + ω2 d2

r2ξq + r2ξ(q−2)B2 + d2

= A

(r − rh)2
+ c2

r − rh
+ . . . , (3.2)

where A, c1, and c2 are the following constant coefficients:

A = ω2 r−2z
h

(ξp + z)2

c1 = r2z−3
h (ξp + z)(

B2 r
−4ξ
h + d2r

−2ξq
h + 1

) k2

ω2

+ ξ

rh

[
(q − 2)B2r

−4ξ
h + q

B2 r
−4ξ
h + d2 r

−2ξq
h + 1

− 4

B2 r
−4ξ
h + 1

]
+ z + 1 + (4 − p)ξ

2rh

c2 = − r−3
h

(ξp + z)
(
B2 r

−4ξ
h + d2 r

−2ξq
h + 1

) k2 − r−2z−1
h (−ξp + z + 1)

(ξp + z)2
ω2. (3.3)

We want to solve (2.47) in the hydrodynamic diffusive regime in which k and ω are small and ω =
O(k2) = O(ε2). In this regime, we can neglect the right-hand side of (2.47) and the equations 
for E and ay decouple. Near the horizon we solve (2.47) in a Frobenius series of the type:

E = Enh(r − rh)
α
[
1 + β(r − rh) + . . .

]
, (3.4)

where Enh is a constant. One can easily show that the exponent α in (3.4) is given by:

α = −i
ω

(z + p ξ) rz
h

, (3.5)

whereas the coefficient β , at leading order in ε, is given by:

β ≈ −α c1 = i
k2

ω

rz−3
h

1 + B2r
−4ξ
h + d2r

−2ξq
h

. (3.6)

Notice from (3.5) that α ∼ O(ε2) and, therefore, we can neglect the (r − rh)
α prefactor in (3.4). 

Thus we write:

E ≈ Enh

[
1 + β(r − rh)

]
. (3.7)

We now analyze (2.47) by taking the limit at low frequencies first. In this limit, we can neglect 
the terms without derivatives and (2.47) becomes:

E′′ + ∂r log

(
rξ(q−2)−z+3

(
1 + B2r−4ξ + d2r−2ξq

)3/2

1 + B2r−4ξ

)
E′ = 0 , (3.8)

which can be readily integrated to give
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E = E(0) + cE

∞∫
r

(
1 + B2ρ−4ξ

)
ρξ(2−q)+z−3(

1 + B2ρ−4ξ + d2ρ−2ξq
)3/2

dρ , (3.9)

where E(0) and cE are constants. Notice that E(0) = E(r → ∞). The integral in (3.9) does not 
have a closed analytic form in general but we can easily study its properties in the UV and IR 
limits. Near the horizon, it has the form

E = E(0) + cE I − cE

(
1 + B2r

−4ξ
h

)
r
ξ(2−q)+z−3
h(

1 + B2r
−4ξ
h + d2r

−2ξq
h

)3/2
(r − rh) + . . . , (3.10)

where I is defined as the integral:

I =
∞∫

rh

(
1 + B2ρ−4ξ

)
ρξ(2−q)+z−3(

1 + B2ρ−4ξ + d2ρ−2ξq
)3/2

dρ. (3.11)

Let us switch to the rescaled variables d̂ and B̂ defined in (2.51) and change to the variable 
x = ρ/rh in the integral (3.11). We get

I = r
ξ(2−q)+z−2
h

∞∫
1

(
1 + B̂2x−4ξ

)
xξ(2−q)+z−3

(
1 + B̂2x−4ξ + d̂2x−2ξq

)3/2
dx ≡ r

ξ(2−q)+z−2
h Î . (3.12)

Moreover, in the UV limit r → ∞ the electric field E can be expanded as

E = E(0) + cE rξ(2−q)+z−2

ξ(q − 2) + 2 − z
+ . . . . (3.13)

We now match the expansions done in different orders. We have to compare (3.7) and (3.10). 
First, we match the constant terms and get

Enh = E0 + cE I , (3.14)

and then the linear terms to arrive at the condition

(E0 + cE I)
ik2rz−3

h

ω
(

1 + B2r
−4ξ
h + d2r

−2ξq
h

) = −cE

(
1 + B2r

−4ξ
h

)
r
ξ(2−q)+z−3
h(

1 + B2r
−4ξ
h + d2r

−2ξq
h

)3/2
. (3.15)

Imposing the Dirichlet boundary condition, E(0) = 0, (3.15) leads to the following dispersion 
relation

ω = −iD k2 , (3.16)

where D is the diffusion constant, given by

D = r
ξ(q−2)
h

√
1 + B̂2 + d̂2

1 + B̂2
I = rz−2

h

√
1 + B̂2 + d̂2

1 + B̂2
Î. (3.17)

Notice that, in terms of the rescaled frequency and momentum introduced in (2.51), the diffusion 
dispersion relation can be written as:
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ω̂ = −i D̂ k̂2 , (3.18)

where D̂ is related to D as:

D̂ = r2−z
h D =

√
1 + B̂2 + d̂2

1 + B̂2
Î . (3.19)

The diffusion constant D can be related to the charge susceptibility χ by means of the so-
called Einstein relation, which reads:

D = σ χ−1 , (3.20)

where σ is the DC conductivity and χ is defined as:

χ = ∂ρ

∂μ
, (3.21)

and ρ is the charge density (see (2.19)) and μ is the chemical potential, which, for B �= 0, can be 
written as the following integral:

μ = d

∞∫
rh

ρ2ξ+z−3√
ρ2qξ + ρ2(q−2) B2 + d2

dρ . (3.22)

From (3.22) it is straightforward to compute the derivative (3.21) and get χ . We obtain

χ−1 = I
N , (3.23)

where I is the integral (3.11) and N is the normalization constant defined after (2.8). The DC 
conductivity σ can be obtained using several techniques. In Appendix D, we perform this calcu-
lation for our setup, with the result:

σ = N r
ξ(q−2)
h

√
1 + B̂2 + d̂2

1 + B̂2
. (3.24)

It is now immediate to check that the Einstein relation (3.20) gives the same value as our direct 
result (3.17), which confirms the validity of (3.20) for our non-relativistic background.

The Einstein relation was postulated to hold in [23] in a holographic setting. To our knowledge 
[24] is the first work to establish its foundation concretely. Our results are the generalizations 
thereof.

In general, the integral Î cannot be evaluated analytically. However, there are two particular 
cases where this is not the case. These two systems are discussed in the next two subsections.

3.1.1. Diffusion in 2 + 1 dimensions
Let us consider the case in which q = 2, i.e., when the field theory is (2 + 1)-dimensional. 

In this case the integral Î can be written in terms of the integrals Jλ1,λ2 defined in (A.4) of 
Appendix A. Actually, using (A.5) we can write Î as:

Î = 1

2 − z
F
(3

2
,

2 − z

4ξ
;1 + 2 − z

4ξ
;−d̂2 − B̂2

)

+ B̂2

2ξ + 2 − z
F
(3

2
,1 + 2 − z

4ξ
;2 + 2 − z

4ξ
;−d̂2 − B̂2

)
. (3.25)
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Moreover, using the identity

√
1 − x F

(3

2
, α;α + 1;x

)
= F

(
1, α − 1

2
;α + 1;x

)
, (3.26)

we arrive at the following expression of D̂ for q = 2:

D̂ = 1

1 + B̂2

[
1

2 − z
F
(

1,
2 − z − 2ξ

4ξ
; 2 − z + 4ξ

4ξ
;−d̂2 − B̂2

)

+ B̂2

2 − z + ξ
F
(

1,
1

2
+ 2 − z

4ξ
;2 + 2 − z

4ξ
;−d̂2 − B̂2

)]
. (3.27)

3.1.2. Vanishing magnetic field
The integral I in (3.11) can also be computed analytically when B = 0. Using again (A.5), 

we get:

D = rz−2
h

ξ(q − 2) − z + 2
(1 + r

−2ξq
h d2)

1
2

× F
(3

2
,
ξ(q − 2) − z + 2

2ξq
; ξ(3q − 2) − z + 2

2ξq
;−r

−2ξq
h d2

)
. (3.28)

Notice that this expression coincides with the one obtained in section 5.2 of [25] for ξ = 1 and 
q = p. Moreover, this expression can be simplified by using the identity (3.26), leading to the 
following value of the rescaled diffusion constant:

D̂ = 1

ξ(q − 2) − z + 2
F
(

1,
2 − z − 2ξ

2ξq
; 2 − z + (3q − 2)ξ

2ξq
;−d̂2

)
. (3.29)

Notice that (3.27) and (3.29) coincide, as they should, when q = 2 and B = 0.

3.1.3. Limiting behavior
Let us return to the general case and let us study the behavior of D at high and low tempera-

ture. We begin by analyzing the T → ∞ limit, which corresponds to rh → ∞ and d̂, B̂ small. In 
this case we can neglect d̂, B̂ inside the integral (3.11). If z < 2 + ξ(q − 2), we get

D ≈ rz−2
h

ξ(q − 2) − z + 2
= 1

ξ(q − 2) − z + 2

[pξ + z

4π

] 2−z
z

T
z−2
z , (T → ∞) .

(3.30)

This behavior matches the one found in [26] by applying general arguments. We observe that the 
large T behavior changes qualitatively as z is increased and passes through z = 2.

Let us next consider the low T limit of D. In this case we can substitute rh = 0 in the integral 
I and the behavior is determined by the prefactor in (3.17). If B is kept small enough (B̂ � 1), 
we can neglect the contribution of the B field to the prefactor and we get that, for small T , in the 
hydrodynamic regime, D behaves as:

D ∼ r
−2ξ
h . (3.31)

Therefore, for small T the diffusion constant D behaves as:

D ∼ T − 2ξ
z ∼ T

− 2
z
(1− θ

p
)
, (T → 0) . (3.32)
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Fig. 1. We depict the diffusion constant against the charge density in the absence of the magnetic field B̂ = 0 for various 
cases. The numerical data is represented as points, whereas the continuous curves stem from analytic results (3.29).
Left: We set q = 2 and ξ = 1. The different curves correspond to z = 1, 1.5, 1.9, 1.95 (bottom-up). Right: We set
q = 3 and ξ = 2. The different curves correspond to z = 1, 2, 3, 3.5, 3.9, 3.95 (bottom-up). Notice that the plots are 
logarithmic.

3.1.4. Comparison of analytic results to numerical results
Having obtained lots of analytic results using different approximation schemes, we now wish 

to turn to quantifying how good they are in comparison to numerical results. We thus compare 
our analytic results to those coming out of numerically solving the full fluctuation equations of 
motion (2.47) and (2.49). The numerical methods that we use are by now standard, we refer the 
reader to [27,28] for more details. Before direct comparisons, consider the integral Î in (3.12). 
When z approaches the value ξ(q − 2) + 2, it is evident that the integral becomes larger and 
larger, eventually diverging. It is evident that near these values, our approximation ω ∼ k2 is no 
longer valid.

Thus, to be more precise, we wish to find out if the diffusion mode is well-represented beyond 
the critical value of z and what is the lower bound for

g(q, z, ξ) ≡ ξ(q − 2) − z + 2 (3.33)

such that our analytical results differ from the numerical results only by a few percent. Generi-
cally then, the smaller values g takes, the worse analytic results conform with the numerics.

We first consider the case without the magnetic field. Both the analytical and numerical re-
sults are represented in Fig. 1 as functions of d̂ . We see that cleaving the two when g ≥ 0.2
with all values of d̂ , is practically impossible. When g ≥ 0.1, the analytic results are at most 
5% larger than the numeric results. The difference grows slightly when considering larger values 
of d̂ . When g < 0.05, the analytic result differs by more than 30% from the numerics and be-
comes worse as d̂ grows. In the regime g < 0, the diffusion mode persists although the diffusion 
coefficient grows fast with decreasing g. Interestingly, when g goes to more and more negative 
values, the diffusion coefficient scales as D ∝ d as d → ∞. According to our analytic result, the 
diffusion constant should be linear in d already at g = 0, while numerics only support this for 
g � 0.

Now, let us consider the effect of the magnetic field. The analytic and numerical results are 
compared in Fig. 2 in various different cases. Again, we see that for largish values of g, the 
results agree very well.
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Fig. 2. Comparison of the numerically computed diffusion constant D̂ as a function of the charge density d̂ with that 
of analytic prediction. Different panels focus on different magnetic field strengths as indicated in the plots. The points 
stand for numerical data while the curves follow from formulas (3.19). We focus on q = 3, ξ = 2 for all the cases. The 
different curves have dynamical exponent z = 1, 2, 3, 3.5, 3.9, 3.95 (bottom-up). Notice that the plots are logarithmic.

3.2. Zero sound

Let us now study the system in the collisionless regime. With this purpose, let us consider the 
equations for the fluctuations (2.47) and (2.49) at zero temperature and non-zero B field. We will 
assume that B is small. Near the horizon r = 0 the equations (2.47) and (2.49) read:

E′′ +
(

z + 1 − 2ξ

r
+ 4ξB2

r(r4ξ + B2)

)
E′ + ω2

r2z+2
E = −4i B ξ ω2 r2ξ−z−2

r4ξ + B2
ay

a′′
y +
(

z + 1 − 2ξ

r
+ 4ξB2

r(r4ξ + B2)

)
a′
y + ω2

r2z+2
ay = 4i B ξ

r2ξ−z−2

r4ξ + B2
E . (3.34)

Let us define an operator Ô as the one that acts on any function F(r) as follows:

ÔF ≡ F ′′ +
(

z + 1 − 2ξ

r
+ 4ξB2

r(r4ξ + B2)

)
F ′ + ω2

r2z+2
F . (3.35)

Then, the system of coupled equations can be written as:

ÔE = −4i B ξ ω2 r2ξ−z−2

r4ξ + B2
ay , Ô ay = 4i B ξ

r2ξ−z−2

r4ξ + B2
E . (3.36)

These equations can be decoupled. Let us define the functions
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y±(r) = E

iω
± ay . (3.37)

The equations for y±(r) are:(
Ô ± 4B ξω

r2ξ−z−2

r4ξ + B2

)
y± = 0 . (3.38)

Let us study these equations when B is small. Neglecting the terms that are quadratic in B , we 
get:

y′′± + z + 1 − 2ξ

r
y′± +

(
ω2

r2z+2
± 4ξωB

r2ξ+z+2

)
y± = 0 . (3.39)

We now solve this equation in powers of B . As the equation for y+ is obtained from the equation 
of y− by changing B by −B , we can write (at first order in B):

y±(r) = y0(r) ± B y1(r) . (3.40)

The equations of y0 and y1 do not depend on B and are given by:

y′′
0 + z + 1 − 2ξ

r
y′

0 + ω2

r2z+2
y0 = 0

y′′
1 + z + 1 − 2ξ

r
y′

1 + ω2

r2z+2
y1 = − 4 ξ ω

r2ξ+z+2
y0 . (3.41)

The solution for y0 with infalling boundary conditions can be written in terms of a Hankel func-
tion as:

y0(r) = c+ rξ− z
2 H

(1)
1
2 − ξ

z

( ω

z rz

)
. (3.42)

Moreover, if we write y1 = c+ y, we get the following equation for y:

y′′ + z + 1 − 2ξ

r
y′ + ω2

r2z+2
y = − 4 ξ ω

rξ+ 3z
2 +2

H
(1)
1
2 − ξ

z

( ω

z rz

)
. (3.43)

This equation is solved in Appendix B by using the Wronskian method, with the result:

y(r) = r−ξ− z
2 H

(1)

− ξ
z
− 1

2

( ω

zrz

)
. (3.44)

Let us now write the complete near-horizon solution. First we define the functions z1(r) and 
z2(r) as:

z1(r) ≡ rξ− z
2 H

(1)
1
2 − ξ

z

( ω

z rz

)
, z2(r) ≡ r−ξ− z

2 H
(1)

− ξ
z
− 1

2

( ω

z rz

)
. (3.45)

Then, y±(r) are given by:

y+(r) = c+ z1(r) + c+ B z2(r) , y−(r) = c− z1(r) − c− B z2(r) , (3.46)

where, to obtain y− we changed B → −B and c+ → c−. Let us now redefine these constants as 
follows

c1 = iω

2
(c+ + c−) , c2 = iω

2
(c+ − c−) . (3.47)

Then, E and ay can be written in matrix form as:
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(
E

ay

)
=
(

z1(r) B z2(r)

− iB
ω

z2(r) − i
ω

z1(r)

) (
c1
c2

)
. (3.48)

Let us now consider this solution at low frequency (ωr−z � 1). When the index ν is not integer 
(i.e., for z �= 2ξ ) the Hankel function has the following expansion near the origin:

H(1)
ν (αx) = −2ν �(ν)

παν
i
[ 1

xν
+ π

�(ν)�(ν + 1)

(α

2

)2ν (
i − cot(πν)

)
xν + . . .

]
. (3.49)

Using this expression, we expand z1(r) and z2(r) for low ω as:

z1(r) ≈ −2ν �(ν)

παν
i
[
1 + cω1− 2ξ

z r2ξ−z
]

, z2(r) ≈ −2ν �(ν)

παν
i
[
c(z − 2ξ)ω− 2ξ

z

]
,

(3.50)

where ν is the index written in (B.4), α = ω/z and c is the constant

c = π

z − 2ξ

(2z)
2ξ
z

�
(

1
2 − ξ

z

)2

[
i − tan

(πξ

z

)]
. (3.51)

By absorbing the common factor in z1 and z2, we have:

(
E

ay

)
≈
⎛
⎝ 1 + cω1− 2ξ

z r2ξ−z B c(z − 2ξ)ω− 2ξ
z

−iB c(z − 2ξ)ω−1− 2ξ
z − i

ω

(
1 + cω1− 2ξ

z r2ξ−z
)
⎞
⎠ (c1

c2

)
. (3.52)

3.2.1. Matching
Let us now obtain the values of E and ay when the near-horizon and low frequency limits 

are taken in the opposite order. We thus consider ω and k being small and of the same order. It 
is easy to see, that in this limit, the equation of E decouples from that of ay and that one can 
neglect the terms without derivatives in (2.47). Moreover, we will assume that B is small and, 
therefore, we will just take B = 0 in the remaining terms in (2.47). After these approximations, 
the equation for E at low frequency becomes:

E′′ + ∂r log

[
rz+1−2ξ (r2ξq + d2)

3
2

(ω2 − r2z−2 k2) r2ξq + ω2 d2

]
E′ = 0 . (3.53)

This equation can be readily integrated:

E′ = cE

(ω2 − r2z−2 k2) r2ξq + ω2 d2

rz+1−2ξ (r2ξq + d2)
3
2

, (3.54)

with cE being a constant of integration. A second integration yields:

E(r) = E(0) − cE

[
ω2 I (r) − k2 J (r)

]
, (3.55)

where E(0) = E(r → ∞) and I (r) and J (r) are defined in terms of the integrals (A.1) and (A.4)
of Appendix A:

I (r) = I2ξ−z−1 , 2ξq(r) , J (r) = J2ξq+2ξ+z−3,2ξq (r) . (3.56)

From (A.2) and (A.5) we get:
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I (r) = rξ(2−q)−z

z + ξ(q − 2)
F
(1

2
,
z + ξ(q − 2)

2ξq
; z + ξ(3q − 2)

2ξq
;−r−2ξq d2

)

J (r) = rξ(2−q)+z−2

ξ(q − 2) − z + 2
F
(3

2
,
ξ(q − 2) − z + 2

2ξq
; ξ(3q − 2) − z + 2

2ξq
;−r−2ξq d2

)
.

(3.57)

Let us now expand I (r) and J (r) near the horizon r = 0. From (A.3) we have:

I (r) = I0 + r2ξ−z

z − 2ξ
d−1 + . . . , (3.58)

with

I0 = 1

2ξq
B
(2ξ − z

2ξq
,

z + ξ(q − 2)

2ξq

)
d

2ξ−z
ξq

−1
. (3.59)

Moreover, at the order we are working we can take J (r) as its value at r = 0:

J (r) ≈ J0 = 2ξ + z − 2

2ξ2 q2
B
(2ξ + z − 2

2ξq
,

1

2
− 2ξ + z − 2

2ξq

)
d

2ξ+z−2
ξq

−1
. (3.60)

Therefore, near r = 0, we have:

E(r) ≈ − cE

z − 2ξ

ω2

d
r2ξ−z + E(0) − cE

(
ω2 I0 − k2 J0

)
. (3.61)

Let us now consider the fluctuations of ay . At low frequency and small B , (2.49) becomes:

a′′
y + ∂r

[
rz+1−2ξ (r2ξq + d2)

1
2

]
a′
y = 0 . (3.62)

This equation can be integrated once as:

a′
y = cy

rz+1−2ξ (r2ξq + d2)
1
2

, (3.63)

where cy is an integration constant. An additional integration yields:

ay(r) = a(0)
y − cy

∞∫
r

dρ

ρz+1−2ξ (ρ2ξq + d2)
1
2

. (3.64)

Clearly, a(0)
y = ay(r → ∞). Moreover, ay(r) can be written in terms of the integral I (r) defined 

in (3.56). We get:

ay(r) = a(0)
y − cy I(r) . (3.65)

The expansion of ay(r) near the horizon r = 0 can be readily obtained from (3.58). We get:

ay(r) = a(0)
y − cy I0 − cy

(z − 2ξ)d
r2ξ−z , (3.66)

where I0 has been defined in (3.59).
Let us now compare (3.61) and (3.66) to (3.52). From the terms depending on r we get:

c1 = − cE ω1+ 2ξ
z

, c2 = −i
cy ω

2ξ
z

. (3.67)

(z − 2ξ)c d (z − 2ξ)c d
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Fig. 3. We present a typical dispersion relation at low energy at vanishing magnetic field strength B̂ = 0. The parameters 
here are chosen such that q = 3, z = 1.5, ξ = 1, and d̂ = 2000. The continuous curves denote imaginary parts of the 
modes, whereas dashed curves represent the corresponding real parts, if non-vanishing. The red curve starting from the 
origin is the diffusion mode which merges at k̂ ∼ 0.04 with another purely imaginary mode (blue curve), that can be 
traced to the longitudinal excitation mode (can be identified k̂ = 0). At k̂ = 0 there is degeneracy for the longitudinal 
and transverse (orange curve) gauge field fluctuations. The merging point k̂ ∼ 0.04 defines the transition point from 
the hydrodynamical regime to the collisionless regime. Beyond this point, the lowest excitation mode is the zero sound 
(black curves). (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Using these results we get the following matrix relation from the comparison of the constant 
terms:

(
E(0)

a
(0)
y

)
=
⎛
⎜⎝ω2 I0 − k2 J0 − ω

1+ 2ξ
z

(z−2ξ) c d
−i B

d

i B
d

I0 − ω
1+ 2ξ

z

(z−2ξ) c d

⎞
⎟⎠ (cE

cy

)
. (3.68)

The non-trivial solution in which the sources E(0) and a(0)
y vanish only exists when the determi-

nant of matrix in (3.68) is zero. This condition is equivalent to the equation:

(
ω2 − J0

I0
k2 − ω1+ 2ξ

z

(z − 2ξ) c dI0

)(
1 − ω

2ξ
z

−1

(z − 2ξ) c dI0

)
=
( B

d I0

)2
, (3.69)

which determines the dispersion relation of the zero sound. We will analyze this in great detail 
by starting with the vanishing magnetic field case.

3.2.2. Vanishing magnetic field
Let us consider in detail the case B = 0. By imposing the Dirichlet boundary condition 

E(0) = 0 in (3.68), we get the following dispersion relation:

ω2 I0 − k2 J0 = ω1+ 2ξ
z

(z − 2ξ) c d
. (3.70)

At leading order we can neglect the right-hand side of the equation, which leads to:

ω = ±
√

J0

I
k . (3.71)
0
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Thus, the speed of zero sound is:

c2
s = J0

I0
= 2ξ + z − 2

ξ q
d

2(z−1)
ξq

B
(

2ξ+z−2
2ξq

, 1
2 − 2ξ+z−2

2ξq

)
B
(

2ξ−z
2ξq

,
z+ξ(q−2)

2ξq

) , (3.72)

in agreement with the result found in [5]. Interestingly, this differs from the speed of first sound 
(2.22) only by the power of d and the Euler Beta-functions. Also, it exactly reduces to the speed 
of first sound when z = 1. Let us next take into account the next order contribution and write 
the more general expression in (3.70) in such a way that a comparison to the results of [5] is 
transparent. First of all, we recast the constant c defined in (3.51) as:

c = (2z)
2ξ
z

−1

π

�
(

ξ
z

+ 1
2

)
�
(

ξ
z

− 1
2

)
i + tan

(
πξ
z

) . (3.73)

Then, we can verify that:

(z − 2ξ) c J0 d = −α1

α3
, (3.74)

where α1 and α3 are the constants defined in [5]:

α1 = (2ξ − z)(2ξ + z − 2) (2z)
2ξ
z

−1

2ξ2 q2 πd
2−2ξ−z

ξq

�
(ξ

z
+ 1

2

)
�
(ξ

z
− 1

2

)

×B
(2ξ + z − 2

2ξq
,

1

2
− 2ξ + z − 2

2ξq

)

α3 = i + tan
(πξ

z

)
. (3.75)

The dispersion relation can now be written as in [5]:

k2 − ω2

c2
s

− α3

α1
ω1+ 2ξ

z = 0 . (3.76)

The next-to-leading order contribution to gives an imaginary part for ω. Introducing δω =
ω − csk, we can solve to linear order

Im δω = −c
2+ 2ξ

z
s

2α1
k

2ξ
z (3.77)

= − (2z2)−
ξ
z d

z2−2ξ
qzξ πqξ

B
(

2ξ−z
2ξq

,
z+(q−2)ξ

2ξq

)
�
(

1
2 + ξ

z

)2

⎛
⎝�
(

2−z+(q−2)ξ
2qξ

)
�
(

z+2ξ−2
2qξ

+ 1
)

�
(

2ξ−z
2qξ

)
�
(

z+(q−2)ξ
2qξ

)
⎞
⎠

ξ
z

k
2ξ
z .

(3.78)

3.2.3. Non-zero magnetic field
Let us continue solving (3.69) at non-zero B �= 0 but at leading order in frequency and mo-

mentum. In this case, we can write

ω2 = c2 k2 + ω2 , (3.79)
s 0
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Fig. 4. Left: We present a comparison of numerical computation of the gap in the zero sound mode to our analytical result 
(3.81) by varying d̂ . The parameters are q = 3, ξ = 2, and z = 1.5. The different curves correspond to different values 
of the magnetic field: B̂ = 1, 2, 16, 100, 150 (bottom-up). Right: We show a comparison of the numerical and analytical 
results (3.79) for the real part of the zero sound mode as a function of k̂. The parameters are: q = 3, z = 1.5, ξ = 2, and 
d̂ = 105. The values used for the magnetic field are B̂ = 0.5, 1, 2, 4, and 8 (bottom-up).

where cs is the speed of zero sound written in (3.72) and the gap ω0 is

ω0 = B

d I0
. (3.80)

More explicitly, ω0 can be written as:

ω0 = 2 ξ q B d
z−2ξ
ξq

B
(

2ξ−z
2ξq

,
z+ξ(q−2)

2ξq

) . (3.81)

We notice that the mass gap is linear in the magnetic field strength, in accordance with the 
Kohn’s theorem. At finite temperature, we expect that there is a critical magnetic field above 
which the zero sound will acquire a mass [20] (see also subsequent work in other holographic 
models [15–17,21,29,30]). We have indeed numerically verified this expectation in the current 
system. In Fig. 4, we have restricted to low-temperature regime and plotted numerical data 
against the gap in (3.81). We nicely see that the analytic results conform with full numerical 
analysis for sufficiently small magnetic field strengths. We have also presented the dispersions in 
Fig. 4 following (3.79), which also match the numerics.

Like before, we can obtain the next-to-leading order corrections, where we encounter an imag-
inary part of ω. A straightforward computation yields

Im δω = −π(c2
s k

2 + ω2
0)

ξ
z
−1(c2

s k
2 + 2ω2

0)

2dI0(2z)
2ξ
z �
(

ξ
z

+ 1
2

)2
. (3.82)

3.3. Crossover from hydrodynamic to collisionless regime

We found the zero sound mode analytically in the T = 0 case and the diffusion mode in the 
T �= 0 case. It is natural to expect that for some range of temperatures, both modes would coexist 
although dominate at different momenta. The regime close to the T = 0 is called the collisionless 
(quantum) regime, where the dominant physics are captured by the collective sound mode-like 
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Fig. 5. The damping rate of the most dominant mode is plotted against increasing temperature in the logarithmic scale 
with fixed k̂

d̂1/(qξ)
= 0.01 and at B = 0 for q = 3, z = 1.5, and ξ = 2. We have chosen to normalize the imaginary part 

of the frequency at T = 0. The collisionless T ∼ 0 regime corresponds to the left-most part of the plot, where the zero 
sound is the dominant mode. The zero slope means that its imaginary part is pretty robust to temperature variations up 
until the system enters in the thermal collisionless regime. The transition to the hydrodynamic regime is marked as the 
highest point of the plot, after of which the diffusion mode takes over. The slopes of the lines are 0, 2/3, −2/3, 1/12. We 
find a very accurate match with the numerics and the analytic predictions.

excitation appearing as the pole in the density–density correlator. In usual Landau–Fermi liquids, 
such a mode is visible as due to oscillations of the Fermi surface of the underlying interacting 
fermions. The system is pretty robust to temperature variations. For example, while the attenu-
ation of the zero sound gets corrections from thermal effects, the speed of zero sound is quite 
insensitive to these. At sufficiently high temperatures, there is a phase transition to a hydrody-
namic regime. The scaling of this phase transition point strongly depends on parameters of the 
system.

In Fig. 5 we have plotted the imaginary value of the most dominant mode as a function of 
increasing temperature. In this plot, we notice the different regimes. To the far-left is the colli-
sionless quantum regime, which transitions to thermal collisionless regime, where the attenuation 
of the zero sound assumes (positive) exponential scaling with the temperature. At sufficiently 
large temperature, we find a sharp transition to the hydrodynamic regime, where the physics is 
dominated by the diffusion mode, whose decay rate scales with negative power of the tempera-
ture.

The aim of this subsection is to extract the scaling law of the phase transition point from 
numerical results at B = 0. We were successful in predicting the quite complicated form of the 
scaling exponents (see equation (3.83) below) and they match the numerical results very accu-
rately. More explicitly, we work at finite temperature and small momenta, and set up the numerics 
to finding a transition point where a purely imaginary diffusive mode transforms into a zero sound 
mode. A typical representation of the dispersions is as in Fig. 3, where the transition point from 
the hydrodynamic diffusive mode merging with another purely imaginary mode to form a pair 
of complex sound modes is clearly visible. At this point the angular frequency and momentum 
take what we call critical values: (k̂cr , ω̂cr ). The critical values depend on the temperature and 
chemical potential of the system. Using numerical analysis, we determined how these parameters 
depend on the temperature and on the chemical potential:
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Fig. 6. We depict the frequencies |ω̂cr | (left) and wave vectors k̂cr (right) corresponding to the transition point from the 
hydrodynamical to the collisionless regime for various values of the parameters against increasing temperature (from left 
to right) in a logarithmic scale. We have chosen to plot the various lines that we fit to numerical data (points) such that 
all the cases have slopes corresponding to 1. Notice, that we have included a constant vertical shift to separate the lines. 
The lines correspond to (q = 3, ξ = 1, z = 1), (q = 4, ξ = 2, z = 2), (q = 4, ξ = 3, z = 2), (q = 3, ξ = 2, z = 3), and 
(q = 3, ξ = 3, z = 3) (top-down). We conclude that the scaling laws (3.83) are faithfully captured by the numerical data.

ωcr ∼ T
2ξ
z

μ
2ξ−z

z+2ξ−2
0

, kcr ∼ T
2ξ
z

μ
2ξ−1

z+2ξ−2
0

. (3.83)

Here, we have used the zero temperature chemical potential, μ0. We emphasize that the scaling 
relations in (3.83) are only expected to hold at sufficiently low temperatures. When we set both 
z and ξ to unity, the scaling becomes T

2

μ0
, which is the expected result for conformal background 

generated by D3-branes, see e.g., [15]. In Fig. 6 we plot the transition values as functions of 
increasing temperature. The predicted scaling laws (3.83) match the numerics extremely well.

4. Alternative quantization

In this section, we consider the special case q = 2 as it allows us to move away from the 
traditional Dirichlet boundary condition and consider a mixed Dirichlet–Neumann boundary con-
ditions. We will briefly review the necessary notation and the background of this following [9]
(see also [12–17]), which contains a more detailed analysis of the alternative quantization. For a 
complementary discussion in implementing alternative boundary conditions in holography, see 
[10]. The approach in [10] is slightly more abstract, but has the benefit of straightforward gen-
eralization off-shell as well as an unambiguous way of computing the thermodynamic potentials 
of the anyonized system.

Consider our original action. When we vary the gauge fields and impose the equations of 
motion, we have the boundary term

δSD =
∫

bdry

JμδAμ , (4.1)

where Jμ is interpreted as the conserved current of the boundary theory. In the previous sec-
tions, we have demanded that this be zero, effectively requiring δAμ = 0 at the boundary, i.e., 
the Dirichlet boundary condition. The modified boundary conditions are achieved by adding ad-
ditional boundary terms to the action.
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As ∂μJμ = 0, we can write Jμ = 1
2π

εμνλ∂
νvλ, where vμ is an arbitrary vector corresponding 

to the gauge redundancy.1 In the following, we also write Bμ = 1
2π

εμνλ∂
νAλ. Now, the most 

general action we can write while still retaining the original equations of motion is

S = SD + 1

2π

∫
bdry

[
a1εμνλA

μ∂νvλ + a2εμνλA
μ∂νAλ + a3εμνλv

μ∂νvλ
]

. (4.2)

Variation of both vμ and Aμ gives us

δS =
∫

bdry

(asJμ + bsBμ)(csδv
μ + dsδA

μ) , (4.3)

where

asds = 1 + a1 , bscs = a1 , bsds = 2a2 , ascs = 2a3 . (4.4)

Notice that asds − bscs = 1, as the transformations can be identified with the elements in 
SL(2, R). From the variation of S, we can see that our boundary condition has become

csδv
μ + dsδA

μ
∣∣∣
r→∞ = 0 ⇔ csδJ

μ + dsδB
μ = 0 . (4.5)

In addition, we can read the new current corresponding to the new boundary conditions,

J ∗
μ = asJμ + bsBμ . (4.6)

Having reviewed some basic renditions from adding boundary terms in the action, we will 
now focus on the pole structure of the Green’s functions. The effect of using mixed boundary 
conditions for the electromagnetic fields can be summarized in the following condition

lim
r→∞

[
nrλfrμ − 1

2
εμαβf αβ

]
= 0 , μ = t , x , y . (4.7)

The indices in the second term have been raised with the Minkowski metric ημν whose temporal 
component has been scaled with r2(z−1) to take into account the Lifshitz scaling. The parameter 
λ is determined from the scaling properties of the classical fields. The parameter n measures the 
state of mixedness of the boundary conditions in comparison to the Dirichlet boundary condition. 
When n = 0, we recover the Dirichlet boundary condition and with n → ∞, we asymptotically 
approach the Neumann boundary condition. Equivalently, we could use

lim
r→∞

[
rλfrμ − m

2
εμαβf αβ

]
= 0 , (4.8)

where m = 1/n.
More explicitly, these conditions are for μ = t, x:

lim
r→∞

[
nrλa′

t − ikay

]= 0, lim
r→∞

[
nrλa′

x + iωr2(1−z)ay

]
= 0 . (4.9)

We can use the relation (2.44), to write the two conditions (4.9) in a single condition in terms of 
ay and E:

1 For discussion on how to fix this, see [10]. The freedom parameterized by vμ , does not enter in the pole structure, 
but will be important if one wishes to compute thermodynamic potentials.
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lim
r→∞

[
nrλ+2(z−1)E′

ω2 − k2r2(z−1)
+ iay

]
= 0 . (4.10)

Finally, for μ = y:

lim
r→∞

[
nrλa′

y − ir2(1−z)E
]

= 0 . (4.11)

4.1. Zero sound

We now apply the boundary conditions to our solution for the equations of motion for the 
zero sound mode with magnetic field turned on, (3.55), (3.64). Setting λ = 3 − z, the boundary 
conditions become{

ncE + ia
(0)
y = 0

ncy − iE(0) = 0
. (4.12)

Implementing these conditions to match the two expansions done in different orders, the matrix 
relation (3.68) becomes,

(
E(0) + incy

a
(0)
y − incE

)
=
⎛
⎜⎝ω2 I0 − k2 J0 − ω

1+ 2ξ
z

(z−2ξ) c d
−i
(

B
d

− n
)

i
(

B
d

− n
)

I0 − ω
1+ 2ξ

z

(z−2ξ) c d

⎞
⎟⎠
(

cE

cy

)
. (4.13)

For the non-trivial solution, we require that the determinant of the matrix vanishes. We see that 
the dispersion relation can be obtained from our previous solution by a simple shift B → B −dn. 
With this, we can have a gapless dispersion relation even with the magnetic field. More explicitly, 
the dispersion relation in leading order is

ω = ±

√√√√√c2
s k2 +

⎛
⎝4ξ(B − dn)d

z−2ξ
2ξ

B
(

2ξ−z
4ξ

, z
4ξ

)
⎞
⎠

2

. (4.14)

The next-to-leading order contribution can also be found by modifying the previous results 
accordingly. The effect of mixing the boundary conditions agrees exactly with [15]. We also 
compare the analytic expression in (4.14) with the numerics in Fig. 7. We have chosen to present 
the dispersion of (4.14) for a given set of parameters, but the numerical match is very good for 
other choices ξ and z, as well.

4.2. Diffusion constant

For the diffusion constant, we consider the case without a magnetic field.2 For this calculation, 
we need the solution to the finite temperature equations of motion for the transverse field ay . The 
calculation can be found in Appendix C. Applying these solutions to the new boundary conditions 
and setting λ = 3 − z we get

2 The calculation could be generalized to finite, and small, B . To streamline the discussion, we have decided not to 
include it in as it would be a very long illustration.
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Fig. 7. A comparison of real part of the zero sound mode with a non-zero B and alternative quantization. The 
parameters are d̂ = 104, B̂ = 1000, q = 2, z = 1.5, and ξ = 2. We vary the alternative quantization parameter 
n = 0, 250/104, 500/104, 750/104, 1000/104 (top-down).

{
n

k2 cE + ia
(0)
y = 0

nα0Z(ω,k) − iE(0) = 0
, (4.15)

where α0 and Z(ω, k) appear in (C.26). We can reduce this to a single equation,

E(0) = n2Z(ω,k)

k2
cE (4.16)

which we can plug into the matching condition for E (3.15), to solve for the dispersion relation

ω = −iDnk2 , Dn = D∗ + (D − D∗)r4ξ
H

r
4ξ
H + n2(d2 + r

4ξ
H )

, (4.17)

where we have employed D∗ from (C.32). We see that the diffusion constant starts from D and 
ends up at D∗ as we vary n2 from 0 to ∞. This agrees qualitatively with the results in [12,15]. In 
these papers, the authors obtained the results using the properties of SL(2, R) transformations.

4.3. Conductivities

We now make use of our previous results to determine the conductivities of the system. We 
will stick to the case with no magnetic field. In general, the conductivity can be calculated as 
follows

σij (ω) = 1

iω
〈Ji(−ω,0)Jj (ω,0)〉 . (4.18)

As we wish to compute the whole Green’s function and not focus solely on the poles, we need 
to analyze the on-shell action. We first focus on the original Lagrangian written in (2.38). We 
will then proceed to adding appropriate boundary terms, as discussed in the beginning of this 
section, to extracting the Green’s function for the anyonized system. To simplify the procedure, 
we will restrict to SL(2, Z) transformations. For complementary discussion on computing the 
alternatively quantized conductivities, see [10,12,15,17].



754 N. Jokela et al. / Nuclear Physics B 916 (2017) 727–768
4.3.1. Conductivities with the Dirichlet boundary condition
First, we compute the conductivities at the low frequency limit using the Dirichlet boundary 

conditions. Notice that q can take any value in this subsection, whereas in the following sub-
section, where we consider the alternative quantization, it is assumed to be 2. The part of the 
Lagrangian density involving E is

L ∝ −N
2

Gtt

√
grr |gtt |√
H + d2

H
[
−Grrv2a′ 2

x + Grra′ 2
t − GxxE2

]
(4.19)

which can be easily partially integrated to give, after using the constraint (2.44),

Son-shell = −N
2

∫
dω dqk GttGrr

√
grr |gtt |√
H + d2

H
E(−ω,−k)E′(ω, k)

ω2 − k2u2

∣∣∣
r→∞. (4.20)

Using the solutions to the equations of motion at zero temperature, we have

Son-shell = N
2

∫
dω dqk E(0)(−ω,−k)cE(ω, k). (4.21)

Using the matching condition (3.68), we get

〈Jx(−ω,−k)Jx(ω, k)〉 = δ2Son-shell

δax(ω, k)δax(−ω,−k)
(4.22)

= dE(ω,k)

dax(ω, k)

dE(−ω,−k)

dax(−ω,−k)

δ2Son-shell

δE(ω, k)δE(−ω,−k)
(4.23)

= − ω2N(
ω2 I0 − k2 J0 − ω

1+ 2ξ
z

(z−2ξ) c d

) . (4.24)

At the low-frequency limit, the conductivity is

σxx(ω) = iN

⎧⎨
⎩

1
I0

ω−1 if z < 2ξ

−(z − 2ξ)cdω− 2ξ
z if z > 2ξ

, T = 0 . (4.25)

In addition, when z = 2ξ , there is also a logarithmic contribution.
When we consider the system at finite temperature, we get

Son-shell = N
2

∫
dωdqk

E(0)(−ω,−k)cE(ω, k)

k2
(4.26)

and using the matching condition (3.15), we have the two-point function

〈Jx(−ω,−k)Jx(ω, k)〉 =N
ω2r

ξ(q−2)
H

√
1 + d2r

−2ξq
H

k2D − iω
, (4.27)

from which we get the DC conductivity (for any q),

σxx(ω) = 1

iω
〈Jx(−ω,0)Jx(ω,0)〉 = N r

ξ(q−2)
H

√
1 + d2r

−2ξq
H . (4.28)

Due to the absence of the magnetic field, there is no coupling between E and ay , and therefore 
the conductivity tensor is diagonal, σij ∝ δij . However, in the following we will consider the 
alternative boundary conditions jazzing up the situation. These boundary conditions have the 
effect that, while the equations of motion remain intact, they link E and ay together, and will 
therefore generate off-diagonal elements in the conductivity tensor.
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4.3.2. Effect of alternative quantization on conductivity
In the following, we will calculate the effect of the S and T transformations of SL(2, Z) on 

the conductivity tensor and also a more general SL(2, Z) transformation. We will only consider 
the case k = 0.

Let a(ω) = (at (ω), ax(ω), ay(ω))T be a vector of the gauge fields on the boundary. Also, 
let Mμν(ω) be a 3 × 3 matrix with the property Mμν(−ω) = Mνμ(ω). Now, for the Dirichlet 
boundary condition, let the action on the boundary be

S
(2)
on-shell = 1

2

∫
dωaμ(−ω)Mμν(ω)aν(ω) . (4.29)

The current terms with the Dirichlet boundary conditions are

Jμ(ω) = δS
(2)
on-shell

δaμ(−ω)
= Mμν(ω)aν(ω) , (4.30)

or expressing them in terms of the vector vμ defined earlier around (4.2), we have

J t (ω) = 0 , J x(ω) = − iω

2π
vy(ω) , J y(ω) = iω

2π
vx(ω) . (4.31)

Restricting ourselves to the spatial components of M , we can express the relation above of the 
spatial components neatly with a matrix S:

�J (ω) = − iω

2π

(
0 1

−1 0

)
�v(ω) = − iω

2π
S · �v(ω) (4.32)

�v(ω) = − i2π

ω
S · �J = −i

2π

ω
S · M(ω) · �a . (4.33)

The new boundary conditions can be written in a matrix form

cs �v(ω) + ds �a(ω) =
(

− ics2π

ω
S · M + ds

)
�a(ω) ≡ �H(ω) = 0 (4.34)

�a(ω) =
(

− ics2π

ω
S · M(ω) + ds

)−1
�H(ω) . (4.35)

Consider the additional boundary terms given at the beginning of this section around (4.2). 
First, we consider a T K transformation, for which as = ds = 1, bs = K and cs = 0. Thus, the 
new additional boundary terms will be (with �a = �H )

− iK

4π

∫
dωω �aT (−ω) · S · �a(ω) , (4.36)

thus the full action integral is modified to the following form

ST K = 1

2

∫
�aT (−ω)

(
M − i

Kω

2π
S

)
�a(ω) , (4.37)

which gives us the transformed conductivities

σ ∗
L,T K (ω) = Mxx(ω)

iω
= σL(ω) (4.38)

σ ∗
H,T K (ω) = Mxy − K = σH (ω) − K

. (4.39)

iω 2π 2π
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The S transformation can be done similarly although the calculation is slightly more involved. 
This time as = ds = 0 and bs = 1 = −cs . The additional boundary term is

− i

2π

∫
dωω�aT (−ω) · S · �v(ω) = −

∫
dω �aT (−ω) · M(ω) · �a(ω) (4.40)

= −
∫

dω �HT (−ω)ST M−1(ω)S �H(ω) . (4.41)

Thus, the full action takes the form

−1

2

∫
dω

ω2

4π2
�HT (−ω)ST M−1(ω)S �H(ω) , (4.42)

from which we can compute the conductivities

σ ∗
L,S = 1

(2π)2

σL

σ 2
L + σ 2

H

, σ ∗
H,S = 1

(2π)2

−σH

σ 2
L + σ 2

H

. (4.43)

The above results agree with previous results in the literature. Let us finally note, that the 
general transformation for the ST K reads

σ ∗
L,ST K = 1

(2π)2

σL

σ 2
L + K2

4π2

, σ ∗
H,ST K = 1

(2π)3

K

σ 2
L + K2

4π2

. (4.44)

Recall the relation n−1 =m = K
2πN . It is noteworthy that we recover the longitudinal conduc-

tivity of Dirichlet quantization by multiplying the expression of σ ∗
L,ST K with 4π2

n2 and taking the 
limit n → 0. This is due to the fact that the alternative quantization not only alters position of 
poles in the Green function but also the source fields and currents. For more discussion on this 
limiting procedure, we refer the reader to [12].

4.4. Einstein relation

Let us illustrate that the Einstein relation holds in our system. The Einstein relation states that 
the diffusion coefficient, charge susceptibility, and longitudinal DC conductivity are related by

Dχ = σL , (4.45)

where χ =
(

∂ρ
∂μ

)
T

. Recalling our previous results in the absence of magnetic field, (2.23), (3.29), 

and (4.28), we can indeed verify that the Einstein relation holds exactly for all z, ξ , and q when 
the system obeys Dirichlet boundary conditions. We revisit this claim in the presence of B in 
section 5.

When we consider the case of alternative quantization, we face the obstacle of defining what 
we mean with the chemical potential and charge density. However, we can easily circumvent 
most of this by considering the alternatively quantized current–current correlator [14],

χ∗ = 〈J ∗
t (−k)J ∗

t (k)〉
∣∣∣∣
ω=0,�k�1

. (4.46)

The computation of this quantity is similar to the above computation of conductivity.
We start working with the action with the Dirichlet boundary condition

S
(2)
on-shell = 1

∫
dk aμ(−k)Mμν(k)aν(k) (4.47)
2
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which bears a striking resemblance to (4.29) with the difference that we have set ω = 0 and 
we are working with k ≡ kx dependence only. Following the steps we took previously, we can 
compute the currents and relate the function v to the currents(

vt

vy

)
= −2πi

k
S ·
(−Jt

Jy

)
= −2πi

k
S · M ·

(
at

ay

)
, (4.48)

with which we can write the modified boundary conditions,(
−cs2πi

k
S · M + ds

)(
at

ay

)
≡
(

Ht

Hy

)
= 0 (4.49)

(
at

ay

)
=
(

−cs2πi

k
S · M + ds

)−1(
Ht

Hy

)
. (4.50)

We consider the T K transformation first. This transformation does not affect the susceptibility 
as it only modifies the non-diagonal terms:

Mty → Mty − i
kK

2π
. (4.51)

We can also recall from our previous discussion that the T transformation does not affect the lon-
gitudinal conductivity or the diffusion coefficient either, trivially satisfying the Einstein relation.

Then, consider the effect of S transformation. Following the steps taken with conductivity, we 
can easily see that

χ∗
S = − k2

4π2

Mtt

MttMyy + M2
ty

. (4.52)

Thus, after an ST K transformation, the susceptibility of our system is

χ∗
ST K = −1

4π2

χ

−χD∗
√

1 + d2r
−2ξq
H − K2

4π2

, (4.53)

where we used the coefficient D∗ from (C.32) and χ is the original susceptibility. Combining 
all of our results from discussions of conductivity and diffusion with alternative quantization, we 
can verify that the Einstein relation is satisfied in this case, too.

5. Comments: DC conductivity with a magnetic field

Encouraged by the successful confirmation of the Einstein relation above, we attempt to obtain 
an expression for longitudinal DC conductivity by considering the Einstein relation true even in 
the presence of B . Both the numerical and analytical evidence for the Einstein relation was 
overwhelming in the absence of the magnetic field in the preceding sections, so we now take the 
next logical step and predict the DC conductivity of the (normally quantized) system also in the 
presence of the magnetic field B .

Let us collect together the pieces needed for the Einstein relation, in the presence of the 
magnetic field. First, the diffusion coefficient appears in (3.17). Second, for the susceptibility we 
need first the chemical potential. This can be computed using (2.23) but now with the magnetic 
field turned on, i.e., we need to use the expression (2.10) for A′

t . Susceptibility then follows from 

χ =N
(

∂μ
∂d

)−1
.

B,T
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Fig. 8. A comparison of the numerical (points) and the analytical (continuous curves from (5.1)) results for both the 
longitudinal (left) and Hall (right) DC conductivities of the system with d̂ = 1 (lower) and d̂ = 5 (upper).

However, the situation is less straightforward as both the diffusion coefficient and suscepti-
bility contain integrals that we were not able to evaluate. Luckily, it turns out that these integrals 
are the same upto a constant coefficient and that they cancel when considering the product of the 
diffusion coefficient and susceptibility. This gives us the longitudinal DC conductivity

σL = Dχ =N r
ξ(q−2)
H

√
1 + d̂2 + B̂2

1 + B̂2
. (5.1)

We note that we have also included an alternative derivation of this result in Appendix D, which 
we were able to utilize with probe branes.

It is somewhat surprising that the DC conductivity could have such a simple expression. In ad-
dition, when considering the dimensionless expression σ̂L = σL r

ξ(2−q)
H , there is no dependence 

on the parameters q , ξ , or z. Furthermore, even though our expression for D became unreli-
able when g in (3.33) was smaller than 0.1 and even divergent when g < 0, no such difficulties 
are present in our current situation. Indeed, comparing our results to numerical calculations (see 
Fig. 8), the expression we have in (5.1) agrees virtually perfectly, even if we go to parameter 
region where g < 0.

6. Conclusions

In this paper, we studied holographic matter with both Lifshitz scaling z and hyperscaling 
violating exponent θ . We allowed these parameters to take any values with only modest assump-
tions on their range. Moreover, we did not constrain the spatial dimensionality of the (defect) 
conformal field theory and thus maintained as generic approach as possible. We aimed at draw-
ing general lessons of what are the universal features shared by different holographic models. An 
important conclusion is the following. While the holographic matter under study has four dif-
ferent parameters: the spatial dimensionalities of the ambient p and defect field theories q ≤ p, 
together with z and θ , only three parameters (say q, z, and ξ ≡ 1 − θ/p) were needed for com-
plete description of all physics processes.

We extracted several key properties of the cold, dense matter as modeled holographically by 
adding probe D-branes in the background of the most generic metric possessing the parameters 
z �= 1 and θ �= 0. However, as such metrics are not yet derived from first principles using concrete 
brane constructions (except for a few exceptions), our work should be regarded as string inspired. 
In particular, we did not allow for a non-trivial dilaton in the background geometry. This, how-
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ever, has the advantage that it is much more straightforward to apply the rules of holographic 
dictionary for the Lifshitz backgrounds [3].

We worked out the standard thermodynamics, and put special emphasis on the thermody-
namic first sound. We then focused on the fluctuations of the probe D-branes and computed the 
quasi-normal mode spectrum. We carefully contrasted the results that we obtained for the collec-
tive modes (e.g., zero sound and diffusion mode) to those from the background thermodynamics. 
Most of the results that we obtained were completely novel, in particular all B �= 0 results are 
original.

The latter part of the paper focused on holographic matter with fractional spin. That is, we 
restricted the field theory to reside in 2 +1 dimensions and studied a dense system of anyons both 
at finite magnetic field and temperature. The holographic realization of rendering the standard 
charge carriers to anyons is to perform alternative quantization for the bulk gauge field. We 
briefly reviewed this procedure, but quickly turned to analyzing the collective excitations of the 
anyonic fluid. Our focus was again on the diffusion mode and the zero sound and their behavior 
under varying z and θ . One of the great successes was to show that the Einstein relation holds, 
no matter the parameter values.

There are several avenues where our work could be directed in the future. One of the most 
pressing issues is to try to come up with an approximation scheme to analytically capture temper-
ature corrections for the dispersion relation for the zero sound. This has not been achieved in any 
holographic model. Another important question is to understand the effect of the backreaction of 
the charge density on the background geometry. For example, it is currently an open question if 
the zero sound exists in such settings, e.g., in electron star/cloud geometries [31–33]. We hope to 
give a definite answer to this puzzle in near future [34].
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Appendix A. Some useful integrals

Let us collect in this appendix some integrals which are useful in the analysis of the collective 
excitations of the Lifshitz matter. First of all, we define the integral Iλ1,λ2(r) as:

Iλ1,λ2(r) ≡
∞∫
r

ρλ1 dρ

(ρλ2 + d2)
1
2

. (A.1)

This integral can be explicitly performed in terms of the hypergeometric function:

Iλ1,λ2(r) = 2

λ2 − 2λ1 − 2
r1+λ1− λ2

2 F
(1

2
,

1

2
− λ1 + 1

λ2
; 3

2
− λ1 + 1

λ2
;− d2

rλ2

)
. (A.2)

For small r , assuming that λ2 and λ1 + 1 are positive, we have the expansion:
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Iλ1,λ2(r) = 1

λ2
B
(λ1 + 1

λ2
,

1

2
− λ1 + 1

λ2

)
d

2
λ1+1
λ2

−1 − rλ1+1

(λ1 + 1)d
+ . . . . (A.3)

Let us next define Jλ1,λ2(r) in the form:

Jλ1,λ2(r) ≡
∞∫
r

ρλ1 dρ

(ρλ2 + d2)
3
2

, (A.4)

which can also be computed explicitly:

Jλ1,λ2(r) = 2

3λ2 − 2λ1 − 2
r1+λ1− 3λ2

2 F
(3

2
,

3

2
− λ1 + 1

λ2
; 5

2
− λ1 + 1

λ2
;− d2

rλ2

)
. (A.5)

For small r , when λ2 and λ1 + 1 are both positive, we can expand Jλ1,λ2(r) as:

Jλ1,λ2(r) = 1

λ2
B
(λ1 + 1

λ2
,

3

2
− λ1 + 1

λ2

)
d

2
λ1+1
λ2

−3 − rλ1+1

(λ1 + 1)d3
+ . . . . (A.6)

Appendix B. The Wronskian method

Let us now solve the inhomogeneous equation (3.43) by applying the Wronskian method. 
First, we define a new function Y as:

Y ≡ r
z
2 −ξ y(r) , (B.1)

and a new independent variable x as:

x ≡ ω

z
r−z . (B.2)

In terms of Y(x), the inhomogeneous equation (3.43) becomes:

d2 Y
d x2

+ 1

x

d Y
dx

+
(

1 − ν2

x2

)
Y = dz x−2ν H (1)

ν (x) , (B.3)

where ν and dz are the following constants:

ν = 1

2
− ξ

z
, dz = −4ξ

ω

( z

ω

)−2ν

. (B.4)

It is actually more convenient to write (B.3) in terms of Hankel functions of index

ν̄ = −ν = ξ

z
− 1

2
. (B.5)

Taking into account that

H
(1)
−ν (x) = eiπν H (1)

ν (x) , H
(2)
−ν (x) = e−iπν H (2)

ν (x) . (B.6)

We can rewrite (B.3) as:

d2 Y
d x2

+ 1

x

d Y
dx

+
(

1 − ν̄2

x2

)
Y = f (x) (B.7)

where f (x) is the function:

f (x) = d̄z x2ν̄ H
(1)

(x) , (B.8)
ν̄



N. Jokela et al. / Nuclear Physics B 916 (2017) 727–768 761
with

d̄z = eiπν̄ dz . (B.9)

Let Y1(x) and Y2(x) be two independent solutions of (B.3) with f (x) = 0. Then, the solution of 
(B.3) for f (x) �= 0 can be written as:

Y(x) = I1(x)Y1(x) + I2(x)Y2(x) , (B.10)

where I1(x) and I2(x) are the following indefinite integrals:

I1(x) = −
∫ Y2(x)f (x)

W(Y1,Y2)
dx , I2(x) =

∫ Y1(x)f (x)

W(Y1,Y2)
dx , (B.11)

and W(Y1, Y2) is the Wronskian function of Y1 and Y2:

W(Y1,Y2) = Y1 Y2
′ − Y2 Y1

′ . (B.12)

The homogeneous version of (B.3) is just the Bessel equation. Therefore, we can take the Hankel 
functions of index νp as the two independent solutions Y1 and Y2:

Yi (x) = H
(i)
ν̄ (x) , (i = 1,2) . (B.13)

The Wronskian of two Hankel functions is rather simple, namely:

W(H
(1)
ν̄ (x),H

(2)
ν̄ (x)) = − 4i

πx
. (B.14)

Therefore, I1(x) and I2(x) are given by:

I1(x) = −i
πd̄z

4

∫
x2ν̄+1 H

(2)
ν̄ (x)H

(1)
ν̄ (x) dx

I2(x) = i
πd̄z

4

∫
x2ν̄+1 H

(1)
ν̄ (x)H

(1)
ν̄ (x) dx . (B.15)

Taking into account that (for ν + μ �= 1):∫
xμ+ν+1 H(α)

μ (x)H(β)
ν (x) dx

= xμ+ν+2

2(μ + ν + 1)

[
H(α)

μ (x)H(β)
ν (x) + H

(α)
μ+1(x)H

(β)

ν+1(x)
]

, (B.16)

we get that I1(x) and I2(x) are given by:

I1(x) = −i
πd̄z

8

x2ν̄+2

2ν̄ + 1

[
H

(2)
ν̄ (x)H

(1)
ν̄ (x) + H

(2)
ν̄+1(x)H

(1)
ν̄ (x)

]

I2(x) = i
πd̄z

8

x2ν̄+2

2ν̄ + 1

[
H

(1)
ν̄ (x)H

(1)
ν̄ (x) + H

(1)
ν̄+1(x)H

(1)
ν̄+1(x)

]
. (B.17)

Let us plug these values in (B.10) and use the following property of the Hankel functions:

H
(1)
ν̄+1(x)H

(2)
ν̄ (x) − H

(1)
ν̄ (x)H

(2)
ν̄+1(x) = −4i

x
. (B.18)

We get that Y is given by:

Y = d̄z
x2ν̄+1 H

(1)
ν̄+1(x) = r−2ξ H

(1)
ξ 1

( ω

z

)
. (B.19)
2(2ν̄ + 1) −
z
− 2 zr
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Therefore, we get the following solution for y(r):

y(r) = r−ξ− z
2 H

(1)

− ξ
z
− 1

2

( ω

zrz

)
. (B.20)

Appendix C. Transverse correlators at finite temperature

To fully compute the effect of mixed boundary conditions, we need to solve the equations of 
motion for the transverse field ay at finite temperature. It turns out, however, that the effect of 
the magnetic field is rather large and the kind of approximation scheme that we pursued did not 
provide satisfactorily accurate results. Therefore, we will set B = 0 in this appendix.

First, we expand equation (2.49) near the horizon. The coefficient of the term multiplying ay

is same as the corresponding term in (2.47). For the derivative term, we have

∂r log

[√|gtt |√
grr

fp

√
H + d2

gxx

]
= 1

r − rH
+ d1 +O(r − rH ) , (C.1)

where

d1 =
ξ

(
2qr

2ξq
H

d2+r
2ξq
H

− p − 4

)
+ z + 1

2rH
. (C.2)

Once again, we solve this equation with a Frobenius series of the form ay = (r − rH )α(1 +β(r −
rH ) + . . .). We see that the α here is equal to the one in (3.5). Coefficient β is solved as before 
and, in the hydrodynamic regime with k2 ∼ ω ∼ ε2, we get

β ≈ k2r
2ξq−3
H

(ξp + z)
(
d2 + r

2ξq
H

) + iω
r−z−1
H

(
(d2 + r

2ξq
H )(−ξ(p + 4) + z + 1) + 2ξqr

2ξq
H

)
2(ξp + z)

(
d2 + r

2ξq
H

) .

(C.3)

Let us take the opposite order. We write the equation (2.49) in the form

a′′
y + G′

G
a′
y + k2Qay = 0 , (C.4)

where the coefficients in the low frequency limit are

G = r−2ξ+z+1(r2ξq + d2)
1
2 fp (C.5)

Q = −r2qξ−4

(d2 + r2qξ )fp

. (C.6)

As we wish to match our solution to our previous expansion, we introduce the function αy(r),

ay = F(r)αy(r) , (C.7)

where F(r) = (r − rH )α . The α in the expression is the same as before, i.e., α ∼ ε2. The function 
αy should now be finite near the horizon. The equation for αy becomes

α′′
y +
(

G′
+ 2

F ′)
α′

y + (k2Q + ωP)αy = 0 , (C.8)

G F
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where

ωP = F ′′

F
+ G′

G

F ′

F
. (C.9)

Due to α, we note that F ′ ∼ F ′′ ∼ ε2.
We now expand αy as a series in ε, αy(r) = α0(r) +α1(r) + . . ., where αn ∝ ε2n. The equation 

for α0 becomes

α′′
0 + G′

G
α′

0 = 0 (C.10)

which is solved by

α′
0 = c0

G(r)
. (C.11)

This solution diverges when approaching the horizon unless c0 = 0. Thus, we must have α0 =
constant.

The equation for α1 is

α′′
1 + G′

G
α′

1 = α0(−k2Q − ωP) . (C.12)

We see that the homogeneous part is the same as before, thus we use the method of variation of 
constants with

α′
1 = α0

�(r)

G(r)
, (C.13)

which leads to

�′(r) = G
[
−k2Q − ωP

]
= −k2GQ − ω∂r(G∂r logF) , (C.14)

where the last step is valid upto order ε2. This is now easily integrated,

� = −G(r)
F ′

F
− k2

r∫
rH

Q(ρ)G(ρ)dρ − c1 (C.15)

= −α
G

r − rH
+ k2

r∫
rH

ρ2ξ(q−1)+z−3√
d2 + ρ2ξq

dρ − c1 , (C.16)

where c1 is a constant which we will determine later on. For future use in this section, we will 
denote the integral in the last step as I(r). Thus, we find that α′

1 is

α′
1 = −α0

(
α

r − rH
+ c1

G(r)

)
+ k2 I(r)

G(r)
. (C.17)

We require that α1 be finite at the horizon. We do not need to consider the I(r) term as the 
integral vanishes linearly, taking care of the divergence caused by 1/G(r). The expansion of 
1/G near the horizon is
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1

G
= r

2ξ−z
H

(r − rH ) (ξp + z)

√
d2 + r

2ξq
H

−
r

2ξ−z−1
H

(
(−ξ(p + 4) + z + 1)

(
d2 + r

2ξq
H

)
+ 2ξqr

2ξq
H

)
2(ξp + z)

(
d2 + r

2ξq
H

)3/2
+ . . . , (C.18)

from which we can see that

c1 = −α(ξp + z)r
z−2ξ
H

√
d2 + r

2ξq
H = iωr

−2ξ
H

√
d2 + r

2ξq
H , (C.19)

for α1 to be finite at the horizon. Thus,

α′
y = −α0α

⎛
⎜⎝ 1

r − rH
− (ξp + z)r

z−2ξ
H

√
d2 + r

2ξq
H

G

⎞
⎟⎠+ α0k

2I(r) . (C.20)

We should now check that our two solutions match. As the IR expansion of I(r) is,

I(r) = r
2ξ(q−1)+z−3
H√
d2 + r

2ξq
H

(r − rH ) + . . . , (C.21)

we can calculate that

α′
y(r = rH ) = α0β , (C.22)

as it should be. Furthermore,

ay = F(r)(α0 + α1) +O(ε4) = α0 + α1 + α0α log(r − rH ) +O(ε4) (C.23)

a′
y = α0

G(r)

(
k2I(r) − iωr

−2ξ
H

√
d2 + r

2ξq
H

)
+O(ε4) . (C.24)

For the UV limit, we need to evaluate I(r) as r → ∞. The integral can be evaluated analyti-
cally by using the formula (A.1) in Appendix A:

I(r → ∞) = Iλ1,λ2(rH ) =
r
ξ(q−2)+z−2
H 2F1

(
1
2 ,− z+(q−2)ξ−2

2qξ
; −z+(q+2)ξ+2

2qξ
;−d2r

−2qξ
H

)
2 − ξ(q − 2) − z

.

(C.25)

Thus, the UV limit of a′
y is

a′
y = α0r

−ξ(q−2)−z−1
(

k2I(∞) − iωr
−2ξ
H

√
d2 + r

2ξq
H

)
(C.26)

= α0r
−ξ(q−2)−z−1Z(ω,k) , (C.27)

where we have defined function Z(ω, k) to shorten the notation for later use.
Finally, we compute the two-point function 〈Jy(−k)Jy(k)〉. In the action, ay appears only in 

the form∫
dq+1kdrF(a′

y)
2 , (C.28)
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where

F = −N
2

√
grr |gtt |√
H + d2

HGyyGrr = −N
2

G(r) . (C.29)

Performing a partial integration along the radial coordinate and using the equations of motion, 
we can transform the integral to a boundary one

Son-shell(ay) =
∫

dq+1kFaya
′
y |r→∞ . (C.30)

As per the usual prescription, varying twice with respect to the boundary value α0(k), we get 
the two-point function of the current Jy , i.e.,

〈Jy(−k)Jy(k)〉 = −N
(

k2I(∞) − iωr
−2ξ
H

√
d2 + r

2ξq
H

)
. (C.31)

We notice that the two-point function has a zero at

ω = −iD∗k2, D∗ =
rz−2
H 2F1

(
1
2 ,− z+(q−2)ξ−2

2qξ
; −z+(q+2)ξ+2

2qξ
;−d2r

−2qξ
H

)
(2 − ξ(q − 2) − z)

√
1 + d2r

−2ξq
H

. (C.32)

We emphasize that this is not a diffusion mode. The use of symbol D∗ will be useful when 
considering alternative quantization.

Appendix D. DC conductivity from Karch–O’Bannon

It is not surprising that there are other methods of computing DC conductivity which do not 
require explicit computations of dispersion relations and two-point functions. In particular, for 
probe branes, there is a powerful non-linear method developed by Karch–O’Bannon [35]. We 
will apply this method to solve both the longitudinal and Hall conductivity of the system in the 
presence of a magnetic field.

We will consider background electric field and the corresponding currents by turning on addi-
tional gauge fields in our original DBI action. We need an electric field in the x direction, denoted 
by e, and the corresponding currents, jx and jy , will be encoded in the radial components of the 
gauge field. Thus, the additional non-zero terms are

Ftx = e , Frx = a′
x(r) , Fry = a′

y(r) . (D.1)

The DBI action in this case takes the form

SDBI = −N
∫

dq+1xdr r−3+z+(2+q)ξ
√

Y , (D.2)

where

Y =
(

1 + B2

r4ξ
− e2r2−2z−4ξ

fp

)
− r6−2z−4ξ

(
1 + B2

r4ξ

)
A′

t
2 (D.3)

+ fpr4−4ξ

(
1 − e2r2−2z−4ξ

fp

)
a′ 2
y + fpr4−4ξ a′ 2

x − 2Ber6−2z−8ξA′
t a

′
y . (D.4)

When extremizing the action, we see that the gauge fields are all cyclic variables, which allows us 
to introduce three constants of motion, d , jx , and jy corresponding to At , ax , and ay , respectively. 
Using this to our advantage, we can write down the equations of motion
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r3−z+(q−6)ξ
(
Bea′

y + (B2 + r4ξ )A′
t

)
= d

√
Y (D.5)

a′
xfpr1+z+(q−2)ξ = −jx

√
Y (D.6)

r1−z+(q−6)ξ
(
(r2(z+2ξ)fp − e2r2)a′

y − eBr2A′
t

)
= −jy

√
Y . (D.7)

We reshuffle the above equations to obtain expressions for the gauge fields

a′
x = −jx

√
Y

fpr1+z+(q−2)ξ
(D.8)

a′
y =

√
Y (Bde − (B2 + r4ξ )jy)

fpr1+z+(q+2)ξ
(

1 + B2

r4ξ − e2r2−2z−4ξ

fp

) (D.9)

A′
t =

√
Y
(
fpdr2(z+2ξ)(1 − e2

fp
r2(1+z+2ξ)) + Ber2jy

)
fpr3+z+(q+2)ξ

(
1 + B2

r4ξ − e2r2−2z−4ξ

fp

) , (D.10)

and then substitute these into our expression of Y and then solve Y in terms of jx , jy , and d :

√
Y =

r(q−2)ξ+4ξ+2zfp(1 + B2

r4ξ − e2r2−2z−4ξ

fp
)

√
X

(D.11)

X = r2(z+2ξ)fp

(
1 + B2

r4ξ
− e2r2−2z−4ξ

fp

)
(r2z(d2 + r2ξq)fp − (j2

x + j2
y )r2) (D.12)

− (ejyr
2 − Bdr2zfp)2 . (D.13)

Now we take a closer look at X. We see that it cannot go to zero or have negative values 
at any point as this would cause a divergence of the gauge fields. We see that the first brackets 
in the first term has a zero near the horizon as long as e is non-zero. This zero corresponds to 
the location of the pseudo-horizon. We label this radius with r∗. We also require that the term 
in the second brackets of the first term and the last term vanishes at r∗. These give us two new 
conditions which we can use to determine jx and jy . To get analytic results, we expand all results 
to first non-trivial order in e. The conditions are

e2r2 = r2z(B2 + r4ξ )fp(r∗) (D.14)

(j2
x + j2

y )r2∗ = r2z∗ (d2 + r
2qξ∗ )fp(r∗) (D.15)

ejyr2∗ = Bdr2z∗ fp(r∗) . (D.16)

Solving for r∗ in first order of e and evaluating fp at r∗, we get

r∗ = rH + e2r3−2z
H

(B2 + r
4ξ
H (z + pξ)

(D.17)

fp(r∗) = e2r2−2z
H

B2 + r
4ξ
H

. (D.18)

Solving for jy and jx at first order in e, we get
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jy = Bde

B2 + r
4ξ
H

(D.19)

jx = e
d2r

4ξ
H + r

2qξ
H (B2 + r

4ξ
H )

B2 + r
4ξ
H

. (D.20)

Similarly to the relation between d and the physical charge density ρ, we must also multiply 
jx and jy by N to obtain the conductivity of this system. Thus, we get for the longitudinal and 
Hall conductivity

σL =N r
(q−2)ξ
H

√
1 + B̂2 + d̂2

1 + B̂2
, σH =N r

(q−2)ξ
H

B̂d̂

1 + B̂2
, (D.21)

where we have used the scaled variables in accordance with our previous results for DC con-
ductivities. We find that our result for longitudinal conductivity exactly matches with our result 
obtained from the Einstein relation.
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