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ABSTRACT
We present two novel methods for the estimation of the angular power spectrum of cosmic
microwave background (CMB) anisotropies. We assume an absolute CMB experiment with
arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from the earlier
ones in that the power spectrum is estimated directly from the time-ordered data, without first
compressing the data into a sky map, and they take into account the effect of asymmetric
beams. In particular, they correct the beam-induced leakage from temperature to polarization.
The methods are applicable to a case where part of the sky has been masked out to remove
foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first
method (deconvolution quadratic maximum likelihood) is derived as the optimal quadratic
estimator, which simultaneously yields an unbiased spectrum estimate and minimizes its
variance. We successfully apply it to multipoles up to � = 200. The second method is derived
as a weak-signal approximation from the first one. It yields an unbiased estimate for the full
multipole range, but relaxes the requirement of minimal variance. We validate the methods
with simulations for the 70 GHz channel of Planck surveyor, and demonstrate that we are
able to correct the beam effects in the TT, EE, BB and TE spectra up to multipole � = 1500.
Together, the two methods cover the complete multipole range with no gap in between.
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1 IN T RO D U C T I O N

Present-day cosmic microwave background (CMB) experiments re-
quire accurate methods for the estimation of the angular power spec-
trum of the CMB. Several methods have been developed for this
purpose. The methods fall roughly into two categories, according
to the multipole range that they are applicable to. The quadratic
maximum likelihood (QML) estimator (Tegmark 1997; Tegmark &
Oliveira-Costa 2001) gives an unbiased minimum-variance estimate
for the low-multipole range, when given a CMB sky map as input.
A practical implementation of the method is the BolPol estimator
(Gruppuso et al. 2009), which has been applied to multipoles up to
�= 32.

The high-multipole regime requires different techniques. To men-
tion the ones most relevant for this work, the Master (Hivon
et al. 2002) method provides an unbiased estimate of the CMB tem-
perature spectrum. The method consists of computing the pseudo-C�

spectrum of the input map through harmonic transform, and correct-
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ing it through a kernel matrix that depends on sky coverage. Similar
methods have been developed for polarization (Kogut et al. 2003;
Chon et al. 2004; Grain, Tristam & Stompor 2009). For a more
extensive review of power spectrum estimation (PSE) methods, we
refer to Gruppuso et al. (2009).

Beam effects are typically not considered part of the PSE prob-
lem, but are taken into account at a later stage in the form of
a beam window function. A scalar beam window (for instance,
Mitra et al. 2011) captures the average smoothing effect of the beam.
A scalar window function does not correct the leakage from tem-
perature to polarization. Methods for correcting the latter include
matrix window function formalism (Planck Collaboration IV 2016)
and QuickPol (Hivon, Mottet & Ponthieu 2016).

On the other hand, methods have been developed for full-beam
deconvolution at map level (Armitage & Wandelt 2004; Armitage-
Caplan & Wandelt 2009; Harrison, van Leeuwen & Ashdown 2011;
Keihänen & Reinecke 2012). Deconvolution map-making yields a
sky map with a symmetrized effective beam. This is achieved at
the cost of more complicated noise structure, which makes it more
difficult to use the deconvolved maps for PSE. The impact of decon-
volution on noise properties has been discussed in Keihänen et al.
(2016). A low-multipole noise covariance matrix for deconvolved
maps has been derived in the same paper.
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In this paper, we aim at combining the best of the two worlds.
We present a method that combines full-beam deconvolution with
techniques of PSE. The deconvolution technique is based on the
artDeco deconvolver (Keihänen & Reinecke 2012). Our goal
is to estimate the power spectrum directly from the time-ordered
data (TOI), without constructing a sky map along the way, at the
same time eliminating the smoothing by an asymmetric beam. In
particular, we aim at removing the beam-induced leakage from
temperature to polarization.

The situation we have in mind is the following. Assume we have
successfully performed component separation for our data. We thus
have an estimate of how much foreground emission there is in each
sky pixel. This is the starting point in pixel-based PSE methods as
well. Instead of proceeding with the foreground-cleaned CMB map,
we go back to the TOI. We can scan the foreground map into a TOI,
convolving it with the known beam and subtract it from the original
TOI. It is unlikely that the cleaning can be done with sufficient
accuracy for all of the sky. Therefore, the regions with the strongest
foreground emission are masked out. We are thus left with a pure
CMB time stream, but with incomplete sky coverage.

We aim at deriving the optimal quadratic method that yields an
unbiased estimate of the CMB spectrum, at the same time minimiz-
ing its variance, when given a TOI stream as input. The technique
is inspired by the work of Tegmark (1997), with the distinction that
we include beam effects, and, instead of maps, operate at TOI level.
The required inputs beside the TOI itself are pointing information
and known beam shapes.

We derive yet another method that is applicable to the full mul-
tipole range of interest. Again, the method yields an unbiased esti-
mate of the CMB spectrum, however not necessarily with minimal
variance. Formally, we derive the high-ell method from the op-
timal method as a weak-signal approximation. A key element in
both methods is a kernel matrix that is applied to a raw spectrum
to correct simultaneously for beam effects and for incomplete sky
coverage.

We validate both new methods with simulations. As the basic
simulation case, we take the 4-yr data set of the Planck LFI instru-
ment’s 70 GHz channel.

This paper is organized as follows. We start by presenting the
fiducial simulation case in Section 2. We review the deconvolution
map-making method of artDeco in Section 3. To set a reference
point, we compare some pixel-based PSE methods in Section 4.
The optimal PSE method is presented in Section 5, and the high-
multipole version in Section 6. We validate the methods with sim-
ulations in Section 7. In Section 8, we present an idea for future
development, statistical estimation of the optimal kernel matrix.
Finally, we give our conclusions in Section 9.

2 TEST CASE

We selected as test case the Planck LFI instrument and its 2015
data release (Planck Collaboration I 2016). We run simulations on
all LFI channels: 30, 44 and 70 GHz. We consider both temperature
and polarization. From the cosmology point of view, the 70 GHz
channel is the most interesting, and we select it as the fiducial test
case. This channel offers a wide multipole range (�= 0–1500) and
detector beams asymmetric enough to demonstrate various beam
effects. It is also, computationally, the most demanding one due
to the size of the data set and the wide multipole range covered.
The FWHM beam widths for the 70 GHz channel vary in the range
12.8–13.5 arcmin, allowing us to estimate the power spectrum up
to �max = 1500. The results shown in this paper are mainly based on

the fiducial 70 GHz data set. In some cases, where an effect under
study is more prominent at another channel, or the computation is
very heavy, we show results from 30 GHz or 44 GHz.

We used the LEVELS software package (Reinecke et al. 2006) to
generate detector pointings, to convolve the input sky with realistic
beams, and to produce time-ordered data from it. The simulations
cover 4 yr of mission, during which the sky is scanned eight times.
Because we are focusing on CMB PSE, we allowed some simplifi-
cations with respect to full Planck data analysis. We did not include
systematics such as calibration errors and added white noise only.
The beams, however, were fully realistic, and included the main and
intermediate side-lobe components of real Planck beams (Planck
Collaboration IV 2016).

The input sky contained the polarized CMB signal, but no
foregrounds. We applied the Planck calibration masks (Planck
Collaboration V 2016) to remove the Galactic region from the data
set. This mimics a situation where an estimate of the foreground sig-
nal has been subtracted from the TOI before passing it to PSE, and
the regions of the strongest contamination have been cut out. We are
left with a data set that consists of pure CMB, but with incomplete
sky coverage. The sky coverage at 70 GHz is 89.67 per cent. As
input CMB sky, we used one realization from the FFP8 simulation
set (Planck Collaboration XII 2016)

We also performed a series of pure white noise simulations, which
we processed through the same deconvolution procedure as the
CMB simulations. The noise parameters were taken from Planck
Collaboration II (2016). Here, we are assuming that the data have
been destriped or otherwise cleaned of correlated noise before the
PSE phase, in sufficient degree that the residual noise can be con-
sidered white. We discuss the effect of non-white residuals briefly
in the Results section.

The noise simulations serve several purposes. We use them to
evaluate the noise bias, which is subtracted from the estimated
spectrum to reveal the actual CMB spectrum and to study the prop-
erties of residual noise. We utilize them also in the statistical kernel
evaluation method presented in Section 8.

3 D E C O N VO L U T I O N M A P - M A K I N G

3.1 artDeco deconvolver

Our work builds on the beam deconvolution formalism presented in
Keihänen & Reinecke (2012). Consider a time-ordered data stream
of the form

ti =
∑
s�m

Ai,s�mas�m + ni. (1)

Here, index i labels the samples in the data stream, ni is noise
and harmonic coefficients aslm represent the sky signal. The spin
index s takes values 0 and ±2, 0 representing temperature and ±2
polarization. There is a linear dependence between the sky as�m and
the data t, collected in matrix A. The explicit formula for A is given
in Keihänen & Reinecke (2012) as

Ai,s�m =
∑

k

b∗
s�kD

�∗
mk(ωi). (2)

Here, bs�k is the harmonic expansion of the detector beam, D�
mk is

a Wigner matrix and ωi is the combination of three pointing angles
{θ , φ, ψ} that define the pointing and orientation of the beam for
sample i.

In deconvolution map-making, we perform a linear fit to the TOI
to obtain an estimate for the coefficients as�m. From those, one can
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Figure 1. Simulated CMB sky, seen through Planck LFI 70 GHz beams.
Top: map binned directly from the time-ordered data. Galaxy and strong
point sources are masked out, leaving a pure CMB signal. Bottom: beam-
deconvolved version of the same map, constructed through harmonic expan-
sion from deconvolved as�m coefficients. Deconvolution restores the CMB
signal in the observed region, but creates artefacts in the unobserved region.

construct a sky map, where the effective beam is symmetric and
Gaussian. The general deconvolution solution can be written in
vector notation as

â = (A†N−1A + S−1)−1A†N−1 t. (3)

Here, S represents an optional prior in the form of a first-guess CMB
power spectrum. Formally, it is a diagonal matrix, with elements
of the angular power spectrum spread along the diagonal. In usual
deconvolution map-making, it is omitted, but it has an important
role in our PSE method.

3.2 Direct spectrum estimation

The harmonic coefficients obtained from equation (3) are not di-
rectly useful for the estimation of the CMB power spectrum if
sky coverage is not complete. The deconvolution as implemented
in artDeco can be performed under incomplete sky coverage as
well, and it works correctly in the sense that it recovers the sky map
outside the mask. However, the output as�m does not represent the
correct CMB spectrum. One can imagine filling the missing sky
region by an arbitrary CMB realization. Each possible realization
corresponds to a different set of as�m, each of which gives the correct
sky map in the region outside the mask. From these realizations,
artDeco arbitrarily picks one, depending on the starting point of
the conjugate-gradient iteration. Without additional information, it
is not possible to identify the correct realization.

We demonstrate deconvolution map-making in Fig. 1. We show
two versions of the temperature map, constructed from a simulated
timeline with Planck 70 GHz beams. We show first the binned

Figure 2. TT spectrum as constructed directly from deconvolved aT�m co-
efficients. Simulation data consist of a pure CMB signal, convolved by
Planck 70 GHz beams. Here, as throughout the paper, we plot the quan-
tity D� = C��(� + 1)/(2π), which shows the high-multipole structure more
clearly. In the lower panel, we plot the absolute error in the same units. In the
ideal case with 100 per cent sky coverage, the deconvolved as�m coefficients
directly give a reliable estimate of the CMB spectrum. This is no longer
true when deconvolution is applied to a data set where the part of the sky is
masked out. Scaling the spectrum by the inverse of sky fraction fsky = 0.8967
provides a rough correction (green), but still leaves a systematic error of the
order of 1 per cent.

map, which is constructed by coadding the TOI samples into a two-
dimensional sky, without attempting to correct for beam shapes.
Below it, we show the deconvolved version of the same map. To
construct the latter, we run the data through artDeco deconvolver
to obtain a beam-free as�m expansion of the sky, reconstruct the
sky map through harmonic transform and apply Gaussian smooth-
ing with FWHM = 12 arcmin. Both maps make use of HEALPIX

pixelization at resolution Nside = 1024 (3,5 arcmin). Despite there
being no data available from the masked region, deconvolution in-
serts a signal there as well.

In Fig. 2, we show the raw TT spectrum constructed directly from
the deconvolved harmonic coefficients as

ĈT T
� = 1

2� + 1

∑
m

a∗
T lmaT lm (4)

for full sky, and in presence of a mask. In the lower panel, we show
the absolute error. Throughout the paper, we follow the convention
where we compare the recovered spectrum to the spectrum of the
single CMB realization that was used as input to the simulation.
We plot the quantity D� = C��(� + 1)/(2π), which shows the high-
multipole range more clearly. As a measure of error, we plot the
absolute error, calculated as the difference between the recovered
spectrum and the input spectrum. This allows us to use the same
error measure for the TE cross-spectrum, for which the relative error
is an inconvenient measure.

We see in Fig. 2 that in the ideal case where the sky coverage is
complete and no noise is included in the simulations, deconvolution
recovers the true CMB spectrum almost perfectly. The situation
changes when a mask is applied. Direct deconvolution yields a
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Figure 3. Comparison of selected pixel-based methods for PSE, applied to the fiducial 70 GHz simulation. We show the spectrum of the input CMB realization,
the un-corrected Anafast spectrum (dashed) and a series of estimates with increasing complexity: scaling by sky fraction fsky and Gaussian beam window, and
PolSpice mask correction combined with Gaussian beam, scalar beam window function or matrix beam window function. The difference between scalar
and matrix window functions reveals the level of beam-induced leakage from temperature to polarization. The spectra are averaged over 5 adjacent multipoles
to reduce scatter, except for BB, which is averaged over 10 multipoles. The absolute error given in the lower panel is averaged over 20 multipoles.

spectrum that falls below the input at low multipoles, but rises
steeply at high multipoles. The effect at low multipoles corresponds
roughly to scaling the spectrum by the sky coverage, and can as first
approximation be corrected for by inverse scaling. There remains,
however, a 1 per cent error, which is unacceptably high for present-
day precision cosmology. More accurate methods are thus needed.
At high multipoles (above � = 800), the deconvolved spectrum
becomes useless.

Even if we cannot determine the individual harmonic coefficients,
we still may be able to estimate their spectrum. The main goal of
this paper is to derive a method that extracts the spectral information
in an optimal way, given the pre-known beam shapes and known
noise level.

4 B E A M C O R R E C T I O N AT TH E P OW E R
SPECTRUM LEVEL

To put the new methods into context, we first compare some avail-
able map-based methods for PSE. We use again the simulated
Planck 70 GHz data set, with realistic beams. A Galactic mask
with f0 = 0.8967 sky coverage is applied. The methods discussed
here take as starting point the (I, Q, U) Stokes map triplet binned
from time-ordered data. The operation of constructing the map from
the TOI utilizes the known direction of polarization sensitivity for

each detector, encoded in parameter ψpol, but no other information
on beam properties.

The pseudo-spectrum constructed from the map is suppressed by
both the beam shape and the incomplete sky coverage. We refer to
this initial spectrum as Anafast spectrum, according to the standard
HEALPIX (Górski et al. 2005) tool. We show in Fig. 3 the Anafast
spectrum along with various corrections. The simplest correction
consists of dividing the Anafast spectrum by the sky fraction fsky,
and by a Gaussian beam window estimate. The FWHM width of the
Gaussian window was taken from Planck Collaboration IV (2016)
to be 13.315 arcmin. This naive correction works reasonably well
at low multipoles, but overestimates all the spectra towards higher
multipoles.

Several more sophisticated methods exist, that take into account
the exact mask shape and correct the effect of the incomplete
sky coverage. We use the publicly available POLSPICE1 code (Chon
et al. 2004) to apply the correction to our data set. we then apply
the Gaussian beam window to correct for the beam smoothing. The
mask correction improves the spectrum estimate, especially in the
BB spectrum, and in TT at high multipoles.

We may further improve the spectrum estimate by replacing the
Gaussian beam approximation by a proper beam window com-
puted from the full-beam information. The scalar beam window

1 www2.iap.fr/users/hivon/software/PolSpice/
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function Wu
� can be obtained from MC simulations using the known

instrument beam as

Wu
� ≡ 〈C̃u

� 〉MC

Cu
�

, (5)

where Cu
� (u = TT, EE. . . ) is some input spectrum used for the

simulations, C̃u
� is the output (Anafast) full-sky spectrum and 〈〉MC

is an average over many realizations. This method is not suitable
for treating leakage between temperature and polarization signals,
so to treat just the smoothing effect, we use equation (5) for u = TT,
EE, BB with separate T-only, E-only and B-only simulations. For
u = TE, TB, EB we then use

W TE
� =

√
W TT

� W EE
� , etc. (6)

The angular power spectrum estimate Ĉu
� for spectral component

u is obtained from the Anafast spectrum by dividing by the corre-
sponding beam window.

For correcting the beam-induced leakage between temperature
and polarization signals, a matrix window function method was
introduced in Planck Collaboration IV (2016). Here the estimate Ĉ�

is obtained from the spectrum C̃� of the sky map as

Ĉ� = W−1
� C̃� , (7)

where the C� are six-component vectors with components Cu
� and the

W� is a 6 × 6 matrix with components Wuu′
� . The components Wuu′

�

of the matrix window function are obtained from T-only, E-only
and B-only MC simulations as described in (Planck Collaboration
IV 2016). For correcting the effect of the incomplete sky coverage
prior to the beam correction, we again use the PolSpice method.

The difference between the results obtained with scalar beam
window and with matrix beam window is an indicator of the level
of leakage between spectral components, an effect that cannot be
corrected for through a scalar window function. As can be expected,
the difference is significant in polarization components, but negli-
gible in temperature.

Of all the correction methods compared here, the last one (Pol-
Spice mask correction combined with matrix beam window) pro-
vides the best correction. This sets a reference level for the accuracy
that we must require from our deconvolution-based spectrum esti-
mation method.

5 O PTIMAL PSE

5.1 Notation

We now set out to derive a PSE method, which corrects simultane-
ously the effect of the incomplete sky coverage, and that of beam
smoothing, including beam-induced leakage effects. We start by
introducing some formalism used throughout this work.

Consider first the properties of the CMB as�m elements. We denote
by S their covariance,

〈as�ma∗
s′�′m′ 〉 = Ss�m,s′�′m′ . (8)

All elements except the ones with � = �′ and m = m′ vanish. The
non-zero elements are linear combinations of elements of the CMB
power spectra CTT, CEE, CBB, CTE, CTB and CEB. Parity symmetry
indicates CTB = CEB = 0. To keep the formalism as general as pos-
sible, we retain these components as well. The unwanted elements
can be dropped at any later stage.

The spin harmonics are related to the T, E, B harmonic compo-
nents through

a0�m = aT �m

a2�m = −(aE�m + iaB�m)

a−2�m = −(aE�m − iaB�m). (9)

From this, we can derive the linear relation between the spectral
components,

〈a0lma∗
0l′m′ 〉 = CT T

� δ��′δmm′

〈a2�ma∗
2�′m′ 〉 = (CEE

� + CBB
�

)
δ��′δmm′

〈a−2�ma∗
−2�′m′ 〉 = (CEE

� + CBB
�

)
δ��′δmm′

〈a2�ma∗
−2�′m′ 〉 = (CEE

� − CBB
� + i2CEB

�

)
δ��′δmm′

〈a0�ma∗
2�′m′ 〉 = −(CT E

� − iCT B
�

)
δ��′δmm′

〈a0lma∗
−2l′m′ 〉 = −(CT E

� + iCT B
�

)
δ��′δmm′ . (10)

We can write this as

〈as�ma∗
s′�′m′ 〉 = δ��′δmm′

∑
u

gu
ss′Cul, (11)

where u labels the spectra (u = TT, EE, BB, TE, TB, EB), and g is
a 3 × 3 × 6 object whose non-zero elements are

gT T
00 = 1

gT E
0,−2 = gT E

0,2 = gT E
−2,0 = gT E

2,0 = −1

gEE
2,2 = gEE

2,−2 = gEE
−2,2 = gEE

−2,−2 = 1

gBB
2,2 = gBB

−2,−2 = −gBB
2,−2 = −gBB

−2,2 = 1

gT B
0,2 = gT B

−2,0 = −gT B
0,−2 = −gT B

2,0 = i

gEB
2,−2 = −gEB

−2,2 = 2i. (12)

We further define object G as

Gu�′′
s�m,s′�′m′ = δ��′′δ��′δmm′gu

ss′ . (13)

With this definition the relations of equation (10) can be written in
the compact form

〈as�ma∗
s′�′m′ 〉 =

∑
u�′′

Cu�′′Gu�′′
s�m,s′�′m′ . (14)

We introduce combined indices that allow a still more concise
notation. Index n represents the triplet of indices n = {s, �, m} and
index L the combination of indices L = {u, �}. The time-ordered
data of equation (1) becomes

ti =
∑

n

Ainan + ni, (15)

and equation (14) becomes

Snn′ = 〈ana
∗
n′ 〉 =

∑
L

CLGL
nn′ . (16)

It is useful to note that the standard operation of calculating the
spectrum of a given harmonic vector aslm is formally given as

ĈL =
[∑

nn′
G∗L

nn′GL′
nn′

]−1 ∑
nn′

anG
L
nn′a∗

n′ . (17)
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When written out, this gives, for instance, for the TT spectrum the
usual formula

ĈT T
� = 1

2� + 1

∑
m

|a0�m|2. (18)

Matrix G represents a quadratic sum of two as�m vectors, and the
factor in the brackets takes care of normalization.

5.2 Finding the optimal quadratic method

We aim at finding a quadratic method, represented by matrix EL
ij ,

which gives an optimal estimate for the power spectrum CL, given
known beams and time-ordered data. The data are assumed to con-
sist of a CMB signal and noise. We follow the example of the
quadratic maximum likelihood (QML) analysis of Tegmark (1997),
the major difference being that we are dealing with full-time streams
instead of sky maps. We refer to the new method as DQML (decon-
volution quadratic maximum likelihood).

The optimal estimate must fulfil two requirements.
(i) The solution is unbiased (as ensemble average).
(ii) Under condition (i) the solution minimizes the variance.
Consider the first condition (i). Given a time stream t, we want

to find a (symmetric) matrix EL
ij , and constant βL, such that

ĈL =
∑

ij

tiE
L
ij tj − βL (19)

gives an unbiased estimate of the true power spectrum CL, that is

〈ĈL〉 = CL. (20)

The brackets denote an ensemble average over noise realizations
and realizations of an for a given power spectrum.

Inserting equation (15) into (19) and averaging, we obtain, as-
suming that noise and signal are independent,

〈ĈL〉 =
∑

ij

EL
ij

(∑
nn′

Ajn〈ana
∗
n′ 〉A∗

in′ + 〈njni〉
)

− βL (21)

=
∑

ij

EL
ij

(∑
nn′

AjnA
∗
in′

∑
L′

CL′GL′
nn′ + Nji

)
− βL.

We have denoted the noise covariance in TOI domain by

〈ninj 〉 = Nij . (22)

If noise is white, this is a simple diagonal matrix.
The requirement of equation (20) now splits into two conditions.

From the noise part, we get a relation for the noise bias β,

βL =
∑

ij

EL
ijNji , (23)

which we can evaluate once we have found out E. The signal part
gives the condition∑

ij

EL
ij

∑
nn′

AjnA
∗
in′GL′

nn′δLL′ . (24)

These can be written in matrix formalism as

βL = Tr(ELN), (25)

and

Tr(ELAGL′
A†) = δLL′ . (26)

When using matrix formalism we are interpreting EL
ij and Nji as

matrices with i, j as row and column index. Each value of index L

thus identifies one matrix. The trace operation applies to indices i,
j. Similarly, GL

nn′ is interpreted as a matrix with n, n′ as column and
row index.

The condition of equation (26) does not yet uniquely determine
E. Consider then condition (ii). Among all EL that satisfy condition
(26), we want to find the one that minimizes the variance,

V = 〈Ĉ2
L〉 − 〈ĈL〉2. (27)

We can write (β cancels out)

V =
〈∑

ij

tiE
L
ij tj

∑
i′j ′

ti′E
L
i′j ′ tj ′

〉
−

〈∑
ij

tiE
L
ij tj

〉〈∑
i′j ′

ti′E
L
i′j ′ tj ′

〉

=
∑
ii′jj ′

EL
ijE

L
i′j ′ (〈ti tj ti′ tj ′ 〉 − 〈ti tj 〉〈ti′ tj ′ 〉)

=
∑
ii′jj ′

EL
ijE

L
i′j ′ (〈ti ti′ 〉〈tj tj ′ 〉 + 〈ti tj ′ 〉〈ti′ tj 〉)

=
∑
ii′jj ′

EL
ijE

L
i′j ′ (Cii′Cjj ′ + Cij ′Ci′j ). (28)

On the third line, we have used the property of Gaussian random
variates:

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x1x4〉〈x2x3〉. (29)

Matrix C on the last line represents the time-domain covariance,
including both CMB and noise, and is given by

Cii′ = 〈ti ti′ 〉 =
∑
nn′

Ain〈ana
∗
n′ 〉A∗

i′n′ + 〈nini′ 〉

=
∑
nn′

AinSnn′A∗
i′n′ + Nii′ , (30)

or, in matrix notation,

C = ASA† + N. (31)

We want to minimize the variance (28) under condition (26). We
use the technique of Lagrange multipliers (see Tegmark’s work).
The technique is intuitively understood as follows. The constraint
of equation (26) picks a surface in the multidimensional space of
Eij. At a local minimum of V on this surface, the gradient of V
does not have a component along the surface. This is equivalent
to saying that the gradient is included in the subspace spanned by
AG†A† (AG†A†)ij . The proportionality constants are the Lagrange
multipliers, and are adjusted so as to fulfil the constraint (26).

We take the gradient of V with respect to EL
ij , and write

2
∑
i′j ′

(Cii′Cjj ′ + Cij ′Ci′j )EL
i′j ′ = 4

∑
L′

λLL′
∑
nn′

AinG
L′†
nn′ A

∗
jn′ . (32)

We have arbitrarily scaled the right-hand side by 4 (we can think
of it as being absorbed in λ). Rearranging the indices, and remem-
bering that E and C are symmetric, we find that the two terms on
the left-hand side are identical. The factor of 4 cancels out, and
equation (32) becomes in matrix notation

CELC =
∑
L′

λLL′AGL′†A†. (33)

Since C is a covariance matrix, it is invertible. We can thus solve
for E as

EL =
∑
L′

λLL′C−1AGL′†A†C−1. (34)

MNRAS 466, 1348–1362 (2017)



1354 E. Keihänen et al.

This gives the optimal quadratic method we are looking for. We
yet have to determine the Lagrange coefficients λ. Inserting E to
equation (26) we obtain∑

L′
λLL′ Tr

[
A†C−1AGL′†A†C−1AGL′′] = δLL′′ . (35)

From this we can solve the coefficients λ, by inverting the matrix
defined by the trace formula. The minimum-variance estimate for
the power spectrum is then obtained as

ĈL =
∑
L′

λLL′ tT C−1AGL′†A†C−1 t. (36)

We now have a formal solution for our PSE problem. The solution
in its present form is still impractical, since it involves inverting the
huge TOI covariance C. We need to work the solution yet into a
more practical form. With the help of Sherman–Morrison formula
and equation (31), we can write

A†C−1 t = S−1(S−1 + A†N−1A)−1A†N−1 t. (37)

Apart from factor S−1 in front, this is the usual deconvolution
equation of equation (3). With a similar technique we get

A†C−1A = S−1 − S−1(S−1 + A†N−1A)−1S−1. (38)

We have replaced the TOI covariance by the much smaller deconvo-
lution matrix, which has the rank equal to the number of harmonic
coefficients 3(�max − 1)2.

5.3 DQML algorithm

We are now ready to collect the results into a recipe for optimal
PSE.

(i) Run the usual beam deconvolution procedure on the TOI,
using some first estimate of the power spectrum as a prior,

â = (S−1 + A†N−1A)−1A†N−1 t. (39)

This step is performed by the artDeco code.
(ii) Construct the raw spectrum as

PL = â†S−1GL†S−1 â. (40)

Apart from normalization, matrix GL represents the familiar
squared-sum operation of constructing the spectrum of a harmonic
vector â. Explicit from for G is given by equation (13). Matrix S
represents scaling by the CMB spectrum used as prior. Formally, it
is a diagonal matrix with elements of the prior on the diagonal.

(iii) Construct the kernel matrix

�LL′ = Tr
[
MGLM†G†L′]

, (41)

where M is given by

M = S−1 − S−1(S−1 + A†N−1A)−1S−1. (42)

This is the computationally heavy step. It involves constructing
explicitly the full deconvolution matrix. Routines for that exist in
the artDeco code.

(iv) Apply the kernel to the raw spectrum

ĈL =
∑
L′

�−1
LL′PL′ . (43)

(v) If noise is present, evaluate the noise bias βL through Monte
Carlo simulations, and subtract the bias from the estimate of step 4.

Figure 4. 70 GHz TT spectrum used as input in simulations and the one used
as prior. Deconvolution with prior yields a suppressed spectrum estimate.
The suppressed spectrum acts as input to the PSE estimation method of
Section 5.

The solution contains an estimate of the CMB spectrum CL inside
the prior S. It is not known, since it is exactly the quantity we are
trying to determine. It is important to note, however, that S only
enters in the part of calculation where we minimized the variance.
If our estimate of S is inaccurate, the solution will not be that of
minimal variance but the solution is still unbiased.

5.4 Implementation aspects

When implementing the method, we made a couple of further re-
arrangements. We note that the prior S is independent of index m.
From that, and from the special structure of G, it follows that S−1

can be taken out from equation (40) and transferred inside the kernel
of equation (41). Further, we replace the operation G in equation
(40) by the normalized version of equation (17), and apply the name
normalization to the left-hand side of the kernel. The modified ker-
nel is dimensionless, but no more symmetric. The raw spectrum of
step 2 is replaced by

P̃L =
[
Tr(GLGL′†)

]−1
â†GL† â. (44)

Equation (44) represents the standard operation of constructing the
spectrum of a harmonic vector, and is equivalent to equation (17),
only written in matrix notation. The corresponding kernel is

�̃LL′ =
[
TrGLGL′†)

]−1
Tr

[
M̃GLM̃

†
G†L′]

, (45)

where M̃ is given by

M̃ = I − (S−1 + A†N−1A)−1S−1. (46)

The modified algorithm is fully equivalent to the original one,
but is a little more intuitive. The right-hand side ‘raw’ spectrum
has the physical interpretation as the spectrum of the deconvolved
harmonic coefficients, and can be constructed using standard tools.
For us remains the task of constructing the kernel �̃. The raw
TT spectrum in our simulations is depicted in Fig. 4. Because of
the prior, it is suppressed with respect to the input spectrum. A
dimensionless kernel is then applied to the spectrum to correct for
the suppression.

The construction of the kernel in step 3 is the computationally
heaviest part in the algorithm. To construct matrix M, we need
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to construct and invert the full deconvolution matrix. ArtDeco
contains routines that allow us to evaluate any element of the matrix.
Storing and inverting the matrix, however, soon becomes unfeasible,
as the matrix rank increases as proportional to 3(�max+1)2. We were
able to compute the full kernel up to �max = 200. The construction
of the kernel took 4 h on 1440 CPUs.

Constructing the raw spectrum is a lighter task. We run the de-
convolution at full resolution, then extract the multipoles up to the
�max of the kernel.

5.5 Strong signal limit

It is instructive to look at the optimal solution in the ideal case,
where the data cover the full sky, and noise is absent or negligible.
As we saw in Section 3, in this case, direct deconvolution recovers
the input spectrum to a very high accuracy. If the CMB signal is
very strong compared with noise, S−1 becomes negligible compared
with A†N−1A, and we can make the approximation

M̃ ≈ I. (47)

The requirement of complete sky coverage is essential for matrix
A†N−1A to be invertible. The kernel reduces into a unity matrix
�̃LL′ = δLL′ , and we see that the spectrum of the deconvolved âs�m

coefficients is indeed the optimal solution.

6 H I G H MU LT I P O L E S : W E A K SI G NA L
APPROX IMATION

6.1 Weak signal limit

The optimal method of Section 5 is only feasible at a limited mul-
tipole range. To cover the whole multipole range of interest (in
our fiducial simulation up to �max=1500), we have to find another
solution.

In Section 5.5, we considered the extreme case where noise is
negligible and sky coverage is complete. Consider now the opposite
limiting case, where the signal is weak compared to noise,

S−1 	 A†N−1A. (48)

Under this assumption, we can approximate

(S−1 + A†N−1A)−1 ≈ S − SA†N−1AS. (49)

Matrix M of equation (42) then simplifies into

M ≈ A†N−1A. (50)

An explicit formula for A†N−1A for one detector is given by
Keihänen & Reinecke (2012) as

(A†N−1A)s�m,s′�′m′

= 1

σ 2

∑
kk′

(−1)m
′+k′

bs�kb
∗
s′�′k′

∑
�2

(2�2 + 1)W�2
m′−m,k′−k

×
(

� �′ �2

m −m′ (m′−m)

) (
� �′ �2

k −k′ (k′−k)

)
. (51)

Here, bs�k is the harmonic beam expansion; σ 2 is the white
noise variance in TOI domain, and W is the Wigner transform
of the pointing distribution. If several detectors are involved,
equation (51) is replaced by the sum over all detectors.

The Wigner transform W is computed as an expansion in Wigner
functions of the 3D map data structure, which is the input for-
mat assumed by the artDeco deconvolver. A 3D map is a

three-dimensional data object constructed from a time-ordered data
stream through a binning operation that combines data samples with
similar pointing. Two of the dimensions are equivalent to the θ , φ

angles that define an ordinary HEALPIX map; the third keeps track of
the distribution of beam orientations. The Wigner functions offer a
natural orthogonal set of base functions for this data structure.

When we insert equation (51) into the kernel formula (41), we
obtain a formula with four 3j symbols. We disconnect W from
indices m, m′ by writing

W
�2
m′−m,k′−k

(
� �′ �2

m −m′ m′−m

)
=

∑
m2

W
�2
m2,k′−k

(
� �′ �2

m −m′ m2

)
. (52)

All dependence on indices m, m′ is now in the 3j symbols. The sums
over m, m′ can be carried out with the help of the relation

∑
mm′

(
� �′ �2

m m′ m2

) (
� �′ �3

m m′ m3

)
= (2�2 + 1)−1δ�2�3δm2m3 . (53)

All this put together, we obtain for the kernel matrix

�u�,u�′

=
∑
αβ

1

σ 2
α

1

σ 2
β

∑
k1k2k3k4

∑
s1s2

gs1s2
u b1∗

s1�k1
b2

s2�k2

∑
s3s4

g
s3s4
u′ b1

s3�′k3
b2∗

s4�′k4

×
∑
�2

(−1)k3+k4

(
� �′ �2

k1 −k3 k3 − k1

) (
� �′ �2

k2 −k4 k4 − k2

)

× (2�2 + 1)
∑
m2

W
1�2∗
m2,k3−k1

W
2�2
m2,k4−k2

, (54)

where α, β label the detectors involved in the deconvolution process.
This kernel is much cheaper to evaluate than the full kernel that
involves inverting the deconvolution matrix. The required inputs
are the beam expansion bs�k and the pointing Wigner transform W.
The latter we can extract from the artDeco code.

Consider then the raw spectrum of equation (40). Under the same
approximation of equation (49), it simplifies into

PL = tT N−1A†GLAN−1 t. (55)

This is equivalent to taking the spectrum of the right-hand side of
the deconvolution equation. Note that the prior has disappeared both
in the raw spectrum and in the kernel. The solution thus does not
depend on a priori information of the CMB spectrum, as long as we
can assume that the CMB signal is weak in comparison with noise.

6.2 Uniformization

The obvious problem with the recipe above is that for experiments
like Planck, the assumption of weak signal does not hold. In fact,
an attempt to apply the method presented above as it is leads to a
gross misestimation of all the spectra. We can, however, improve
the method through preprocessing of the data. A clue is found in
Hivon et al. (2002), where instead of the actual hit distribution, a
uniform one is assumed when weighting the input map. It turns out
that uniformization of the hit count distribution is an essential step
in our method too.

The error in a quadratic PSE method comes from two sources.
One is the instrument noise and the other is the statistical variation
of the harmonic coefficients. In the process of deriving the optimal
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Figure 5. Recovered 70 GHz CMB spectra. We show the spectrum of the input realization (black) along with recovered estimates with the DQML method up
to �max = 200 and the high-ell deconvolution method with �max = 1500. For comparison, we show also the estimate from the matrix window method (best
estimate from Fig. 3). The spectra are averaged over 5 adjacent multipoles (10 for BB), the error over 20 multipoles. Note the tighter scale of the error plot as
compared to Fig. 3. We show also the effect from pre-cleaning of the temperature signal (only visible in EE and BB).

method, we made the simplification where we replaced the prod-
ucts of the form as�mas′�′m′ by their ensemble average. The actual
products differ from the ensemble average. This deviation acts as
‘noise’ in the spectrum estimation. The DQML method finds the
optimal balance between the error sources and minimizes their com-
bined effect. The approximation of equation (54), instead, ignores
the CMB-induced error component. Thus individual strong T multi-
poles may leak into the regime of a much weaker signal, destroying
the estimate there. To prevent this, we would like to minimize the
connection between distant multipoles.

Analysis of the deconvolution matrix reveals that the correla-
tion between distant multipoles is related to the uneven distribution
of measurements due to scanning strategy. This motivates the fol-
lowing processing step. We uniformize the sample distribution by
setting the total hit count for each HEALPIX pixel that is observed
at all, to a common value that is taken to be the average hit count.
This is done by rescaling of the input 3D map object. In other
words, we are reducing the weight of frequently scanned sky pix-
els. The distribution of beam orientations within a pixel is left
intact. Further, when working with Planck simulations, we set the
assumed noise levels for a detector pair sharing a horn to the same
value. This works further into the direction of reducing the leakage
between temperature and polarization. We recompute the Wigner
transform W with the uniformized distribution as input. This way,
as it turns out, we are able to estimate both the temperature and
polarization spectra over the full multipole range with very good
accuracy.

There is a remarkable similarity between the kernel equation (54)
and the kernel involved in the Master method (Hivon et al. 2002).
An immediate difference is the presence of k 
= 0 beam coefficients
and related 3j symbols in our solution. If we assume perfect delta
beams, b0�k = √

2� + 1δk0, the only non-zero terms of equation
(54) are those involving W�

m0, which is equivalent to the usual har-
monic expansion of the hit count. Under this assumption, our result
becomes identical to that of Master.

In the case of polarization, our kernel can be compared to the
corresponding one presented by Kogut et al. (2003) and Grain et al.
(2009). Despite of obvious similarities, here it is more difficult to
see how the methods relate, since the map-based methods involve
dividing the polarization signal into Q and U components, some-
thing that does not exist in our method. What can be said is that
assuming perfect delta beams alone is not sufficient to make the
results identical.

7 R ESULTS

7.1 Simulations

We have validated both deconvolution methods with simulations.
The simulation procedure was described in Section 2. As prior in
the DQML algorithm, we use a CMB spectrum generated from
slightly different cosmological parameters than those used for the
input spectrum. The TT prior depicted in Fig. 4.
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Figure 6. Zoom into the low-multipole region. Data and line types are the same as in Fig. 5. We show all the individual multipoles without binning.

The main results for the fiducial 70 GHz simulation are shown
in Fig. 5. We plot in the same figure spectrum estimates from the
DQML method of Section 5 and the high-ell method of Section 6.
We apply the DQML method to multipoles � = 0–200, the high-
ell method to multipoles � = 0–1500. For comparison, we show
also results from the PolSpice mask correction combined with
matrix window correction, which was the best of the pixel-based
methods of Section 4. We refer to this combined method for brevity
as ‘matrix window’ method.

All three methods recover the CMB spectrum well in their ap-
plicable multipole range. An exception is the BB spectrum where
the high-multipole methods show a small negative bias. Differences
between the methods become visible in the lower panel, where we
plot the absolute error (difference between the recovered spectrum
and the input spectrum). We observe that in all spectra but BB, the
high-ell deconvolution method yields a still more accurate estimate
than the matrix window method. The improvement is particularly
clear in TT around the first acoustic peak. Also, the matrix window
method for EE and TE shows residuals of temperature leakage,
which are reduced by the high-ell deconvolution method. In BB,
matrix window and high-ell deconvolution give similar results, un-
less we apply pre-cleaning (see Section 7.2).

The drop in the DQML estimate for TT above � = 100 is a fringe
effect, caused by the limited �maxvalue. Extending the multipole
range across the first acoustic peak would probably reduce the effect.

We blow up the low-multipole region in Fig. 6. Here, we show
the individual multipoles without binning. Consequently, the am-
plitude of error is larger than in Fig. 5. The high-ell method is again
superior to the matrix window method, and in EE and and in BB, it

is also more accurate than the DQML method. At the very lowest
TT multipoles (� < 40), the DQML method gives the most accu-
rate estimate. The differences, however, are at the same level as
the cosmic variance. We see also that the two deconvolution meth-
ods give nearly identical results in TT at intermediate multipoles
(20 < � < 100). This means that the two estimates can be joined
without discontinuity. The TE spectrum behaves similarly to TT, i.e.
DQML is more accurate at lowest multipoles, but the differences
are less clear than in TT.

7.2 Pre-cleaning

As discussed in Section 6, the strong low-ell T signal leaking to
higher multipoles or to polarization interferes with the estimation at
these weaker spectral components. The procedure of uniformizing
the hit count distribution was introduced to mitigate the problem.
We can do more than that as follows. We run the usual deconvolution
procedure (with prior) to obtain an estimate of the as�m coefficients
of the sky. We then scan the T components back into a TOI stream,
subtract it from the original TOI, and perform the usual PSE proce-
dure on the cleaned data, to obtain a better estimate of the weaker
spectrum components. The signal components to be subtracted can
be chosen in many ways. In Fig. 5, we show the effect on EE and
BB of removing all of the T signal. In EE the effect is negligible, but
in BB pre-cleaning step removes the negative bias almost perfectly
up to � = 800.

In the case above, pre-cleaning has little practical meaning, since
the small bias in the BB spectrum is well below the noise level of
any current CMB experiment. In some cases, however, pre-cleaning
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Figure 7. An example of a case where pre-cleaning is important. Shown
is the recovered 44 GHz TT spectrum compared against input. The strong
quadrupole moment leaks into the high-multipole regime in a way that is
not captured by the spectrum estimation methods. Subtracting an estimate
of the low-multipole signal up to � = 300 removes the bias.

may become important. One such case is shown in Fig. 7. We
show the recovered TT spectrum from a simulation involving the
44 GHz channel of Planck. Beam leakage effects are known to
be particularly strong for this channel. Without pre-cleaning, the
spectrum is underestimated at high multipoles (� < 700). Note that
this is not specific to deconvolution, but the matrix window method
suffers from the same problem. Analysis of individual multipoles
revealed that the bias arises from the very lowest temperature mul-
tipoles, which leak into the high-multipole regime. We pre-cleaned
the 44 GHz data set by subtracting the deconvolved T multipoles
up to �max = 300. This removed the bias entirely. This particular
realization happened to have a very strong quadrupole, which was
found to be responsible for most of the leakage. The quadrupole of
the actual CMB sky, instead, is known to be small. The simulation
shown here probably represents an overly pessimistic case. How-
ever, leakage effects depend on the specifics beam shapes and the
scanning strategy of a particular experiment, and it is difficult to
predict where such effects may arise. It is thus advisable to check
the robustness of the results against pre-cleaning parts of the data,
or else to validate the results with simulations.

7.3 Instrument noise

At first, it seems surprising that the optimal method appears to be
inferior to the high-ell method for all but the lowest TT multipoles,
considering that the optimal method was specifically designed to
minimize the error. There is an explanation for this. When deriving
the optimal method, we required that it minimizes the combined
error arising from statistical variation in the CMB itself, and from
instrument noise. So far, we have applied the method to a pure CMB
simulation. It is conceivable that when instrument noise is taken into
account, the optimal method will give a smaller total error.

To verify if this is the case, we perform a series of noise simu-
lations. We generate 100 realizations of white noise, at the level of
Planck 70 GHz channel. The parameters were taken from Planck

Figure 8. Noise bias, assuming white noise level of Planck 70 GHz detec-
tors, as estimated from Monte Carlo simulations. The noise bias is plotted
in the C� convention, i.e. without scaling by �(� + 1)/(2π).

Collaboration II (2016). We processed the noise through the same
PSE pipeline as the signal simulations, with the three methods in
question. For each method, we obtain 100 noise spectra with real-
istic properties. We compute the noise bias as the average over the
100 noise spectra. The noise bias for the three methods are plotted
in Fig. 8. We plot the spectrum without the �(� + 1)/(2π) scaling,
to avoid excessive amplification at high multipoles. We cut the plot
at � = 1000 to show the low-multipole region more clearly.

The noise bias for the matrix window method and for the high-
ell deconvolution method are very close at low multipoles. At high
multipoles (� > 600), the bias for the matrix window method begins
to increase more steeply. The noise bias for the DQML method
behaves very differently.

The noise bias itself is not a good measure of residual noise. The
noise bias can be estimated through Monte Carlo simulations, and
subtracted from the actual spectrum. What is more interesting is the
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Figure 9. Residual noise level in the recovered spectra, after subtraction of
the average noise bias. We assume the white noise level of Planck 70 GHz
detectors. Shown is the 1σ variation of the residual noise in both directions
in C� units, as estimated from 100 Monte Carlo realizations.

variation of a single realization that remains after the subtraction of
the mean noise bias. This is the residual noise in the final spectrum
estimate. We estimated the residual noise level from the same MC
simulations that we used for the estimation of the noise bias. We
subtracted the mean bias from the 100 noise spectra, sorted the
100 values at each individual multipole, and picked the 16th and
85th value. These values correspond to one-sigma variation in both
directions around the mean noise bias.

The results are shown in Fig. 9. The DQML method yields a
higher residual noise than the high-ell method in the TT spectrum.
The noise level is, however, negligible compared with the signal-
induced error of Fig. 6, where DQML performed better. In EE and
BB components, the DQML method gives a significantly lower
residual noise level than the high-ell method. Since noise is the
dominant error source in these spectra, this is consistent with the
theoretical expectation that the DQML method minimizes the total
error.

Figure 10. Cross-power spectrum estimation. Shown is the 70 GHz TT
cross-spectrum between two 2-yr data sets, for pure CMB (dark blue) and
for one realization of white noise at Planck level. The fiducial 4-yr data
set is split into two halves, which are cross-correlated to give an unbiased
spectrum estimate.

7.4 Cross-power spectrum

In this work, we have made the simplifying assumption that the
instrument noise is white. This not exactly true for realistic instru-
ments. The TOI of Planck, for instance, is contaminated by slowly
varying 1/f noise. The correlated noise component can partly be
removed by destriping techniques, but there remains a residual that
contaminates the lowest multipoles. If noise properties are well
known, the noise bias can be estimated through MC simulations
and subtracted from the spectrum estimate, to yield an unbiased
spectrum estimate.

Another possibility is to cross-correlate two independent data
sets. If noise is uncorrelated from one set to another, the noise bias
vanishes and the estimate is again unbiased. Both deconvolution
PSE methods presented in this paper extend trivially to cross-power
estimation. Equation (40) is replaced by

PL = â1
†S−1GL†S−1 â2, (56)

where index 1, 2 refers to the two data sets. The kernel of equa-
tion (41) takes the form

�LL′ = Tr
[
M1G

LM†
2G

†L′]
. (57)

The high-ell kernel of equation (54) is already written for a detector
pair, and requires no modification.

We demonstrate the cross-power estimation in Fig. 10. We split
the fiducial 70 GHz simulation into two halves, one consisting of
years 1–2 and the other of years 3–4. The cross-power TT estimate
is remarkably similar to the auto-spectrum estimate of Fig. 5. The
same lows and bumps are present in both error plots, indicating that
the error arises from the CMB sky itself.

We plot also the cross-power spectrum from a simulation where
we add one realization of white noise at Planck level. In the range
�< 200 where the DQML method is applied, noise is negligible. The
results from the simulation with noise are practically identical to
those from the pure CMB simulation and are not shown separately.
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8 STAT I S T I C A L K E R N E L EVA L UATI O N

While the light-weight high-ell method works very well in most
cases, our simulations have indicated that the optimal DQML
method leaves a lower residual noise level. It was also superior
in determining the lowest signal-dominated TT multipoles. With
future CMB experiments also, the polarization signal may enter
the regime of signal domination. It is thus worth the effort to ex-
plore ways of extending the method to a wider multipole range. The
bottleneck is the current implementation is the construction and in-
version of the deconvolution matrix. The rank of the matrix grows
as proportional to �2

max, and the CPU cost of the inversion as �6
max. It

is thus unlikely that the multipole limit can be pushed much further
even with increased computational resources. A numerical method
that allows us to evaluate the kernel of equation (41) without explicit
matrix inversion would be highly welcome, but such a method is
not in sight.

We explore an alternative way of evaluating the kernel matrix,
involving Monte Carlo simulations. To start, we rewrite matrix M
from equation (42) as

M = A†N−1A(S−1 + A†N−1A)−1S−1. (58)

Here, N = 〈nnT 〉 is the white noise covariance in TOI domain. We
rewrite further

N−1 = N−1〈nnT 〉N−1, (59)

where n denotes a white noise realization. We insert this into the first
occurrence of N of equation (58) and that further into equation (41).
Since M appears there twice, we must introduce two independent
noise realizations n1 and n2, so that we can combine the averages
as〈

n1nT
1

〉 〈
n2nT

2

〉 = 〈
n1nT

1 n2nT
2

〉
. (60)

Because a permutation operation leaves the trace unchanged, we
can rearrange the terms to obtain

� =
〈

Tr[nT
1 N−1AGLA†N−1n2nT

2 N−1A(S−1 + A†N−1A)−1S−1

GL′†S−1(S−1 + A†N−1A)−1A†N−1n2]

〉
. (61)

This lengthy construction actually consists of two scalar terms
of the form nT

1 · · · n2. We can thus drop the trace operation (the
trace of a scalar is the scalar itself). The kernel as given by equa-
tion (61) can be evaluated through MC simulations as follows. We
first generate a sequence of white noise realizations nk , k = 1. . . nmc.
For each realization, we evaluate the objects

ak = (S−1 + A†N−1A)−1A†N−1nk

rk = A†N−1nk. (62)

Both objects have the structure of an as�m vector. The first line
represents the usual deconvolution operation. The second operation
is simply the right-hand side of the deconvolution equation. Both
products are standard outputs of artDeco code. We thus already
have all the necessary machinery in place. We evaluate the spectra

P L
r = rT

j GLrk

P L
a = aT

j S−1GLS−1ak (63)

Figure 11. Selected elements of the 30 GHz kernel, evaluated through the
exact numerical method of Section 5 and the statistical method of Section 8.
Shown are elements along the row corresponding to multipole � = 100 in
TT. The TT–TT elements are recovered well with the statistical method,
but the number of realizations (800) is insufficient for the weaker TT–TE
elements.

for all realization pairs j 
= k. This is equivalent to the familiar
operation of evaluating the cross-spectrum between two harmonic
vectors, apart from normalization. An estimate for the kernel is
obtained as an average over all pairs

�̂LL′ = 1

nmc(nmc − 1)

∑
j 
=k

r†jG
Lrk · a†

kS
−1GL′

S−1aj , (64)

where nmc(nmc − 1) counts the pairs j 
= k. The estimate converges
to the true kernel when nmc → ∞. Note that the noise simulations
here have nothing to do with the actual noise properties of the data.
We are simply evaluating the diagonal matrix N statistically.

To validate the procedure, we pick the less demanding Planck
30 GHz channel, and generate 800 white noise realizations. The
procedure took roughly one minute of wall-clock time per realiza-
tion on 768 cores. We evaluate the kernel matrix with the statistical
method up to �max = 800, and with exact DQML up to �max = 200
and compare the kernel elements in the multipole range covered by
both methods. We plot elements of row �= 100 in Fig. 11. The
800 realizations we have are sufficient to recover the structure of
the TT–TT block of the kernel, but the weaker TT–TE cross terms
are totally buried under statistical variation. We conclude that a lot
more realizations are required, for the method to become useful in
practice.

9 C O N C L U S I O N S

We have studied the possibility of combining beam deconvolution
technique with PSE for absolute CMB measurements. We present
two new PSE methods, one suitable for low multipoles, the other
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for a wide multipole range. The methods yield an estimate for the
angular CMB power spectrum in both temperature and polarization.
The methods correct simultaneously the effect of incomplete sky
coverage and of asymmetric beam shape. In particular, they correct
the leakage from temperature to polarization through beam shape
mismatch. The required inputs are the time-ordered data, pointing
information and known beam shapes.

The first method (DQML) was derived formally as the quadratic
estimator that fulfils two requirements: it yields a non-biased esti-
mate of the CMB spectrum and, at the same time, minimizes the
residual error in the estimate. The residual error is a combination
of instrument noise and the error that arises from the statistical
variation of the individual as�m sky coefficients.

We developed the optimal solution into a practical algorithm. The
procedure consists of beam-deconvolving the data with a first-guess
CMB spectrum as prior, and correcting the spectrum with a kernel
that takes into account the exact pointing distribution and beam
shapes. The computational burden grows steeply with increasing
�max. We successfully applied it to the multipoles in range � = 0–
200.

For the high-multipole regime, we derived another solution,
which is suboptimal in the sense that it does not minimize the
residual error, but still yields an unbiased spectrum estimate. For-
mally, it is derived as the weak-signal limit of the optimal DQML
method. The high-ell method is computationally light and we ap-
ply it to multipoles up to � = 1500. The core of the method is a
kernel matrix (equation 54), which simultaneously corrects for the
sky coverage and for beam effects. The kernel resembles the one
implemented in the Master method, but includes additional terms
that take into account the beam.

We validated the methods with simulated data. Our fiducial data
set mimics that of the Planck LFI 70 GHz channel. We used realistic
Planck beams and scanning strategy. We applied a Galactic mask
with fsky = 0.8967 sky coverage. We found the DQML method to
be superior when estimating the TT spectrum in the low-multipole
range (� < 40).

The high-ell method appears superior to the DQML method in
the polarization components, when we deal with pure CMB sim-
ulations. When we add white noise at Planck level, however, we
observe that DQML produces a lower residual noise level.

The best estimate for the CMB spectrum is obtained by a com-
bination of the two deconvolution methods. For low multipoles, it
makes sense to use the DQML method; for high multipoles, the
high-ell method. The two estimates overlap cleanly at intermediate
multipoles with no apparent discontinuity.

We compared the new methods with selected pixel-based PSE
methods. The most accurate of those was one that combines Pol-
Spice mask correction with a matrix beam window function. The
new methods were found to be still more accurate in the studied
simulation case. Apart from accuracy, the new methods offer the
benefit that they avoid the need for heavy CMB Monte Carlo simu-
lations that are usually needed in the evaluation of a beam window
function.

The new methods operate at TOI level, which is the natural
domain for handling effects that depend on time or on detector
orientation. While this work focuses on asymmetric beams, we can
consider the possibility of extending the general idea to other time-
dependent effects. For instance, a long detector time constant can be
included in the beam model. Further, in the current implementation,
it is assumed that residual noise at TOI level is at least approximately
white. The formulation is more general, however, and could in
principle be extended to incorporate correlated noise residuals. This

is achieved by replacing the diagonal covarianceN by an appropriate
noise filtre.

Beam effects are usually thought to be unimportant at low mul-
tipoles. One may therefore ask if the DQML method provides any
benefit over the beamless QML method. This is a valid question and
a definite answer would require running DQML and BolPol or
equivalent side by side. There is, however, an important difference
between the methods, unrelated to beam shapes. The QML method,
as implemented in BolPol, takes as input low-resolution CMB
maps. The process of downgrading a high-resolution map is not a
trivial one, and it can be done in different ways (the problem in the
context of Planck is discussed in Planck Collaboration V (2016)).
The DQML method avoids all these issues, as it always operates at
the full resolution of the input 3D map. The transition to low reso-
lution occurs in a natural way in harmonic space, where we simply
cut the raw spectrum at the desired �max before applying the kernel.
The DQML method is thus not equivalent to the QML method, even
if we assume perfect delta beams.

Finally, we studied the possibility of extending the DQML
method to higher multipoles. We showed that the kernel matrix
can be evaluated statistically through white noise Monte Carlo sim-
ulations, but found that 800 noise realizations do not give sufficient
accuracy yet. Still, this is a promising idea to study further, since the
error variance goes down as inversely proportional to the number of
MC realizations. This is to be contrasted with the analytical method,
where the computational burden grows as proportional to �6

max with
increasing �max.
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