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Abstract. The topics of this thesis in mathematics belong to the area of operator the-
ory which, in general, studies linear transformations between complete normed vector
spaces. Here, all operators considered are bounded and act on complex separable infinite-
dimensional Hilbert space. A prototypical example of Hilbert spaces is formed by the
square summable sequences of complex numbers. Other common Hilbert spaces consist
of functions which are analytic on some open domain of the complex plane. The charac-
teristic property of analytic functions is that they are locally given by a convergent power
series and so the behaviour of such functions is rather rigid.

Thesis consists of the introductory part and three research articles, the first and the
third being co-authored with, respectively, E. A. Gallardo-Gutiérrez and H.-O. Tylli.
Our focus in the first two articles is in the spectral properties of composition operators
which are induced by linear fractional transformations (also known as Möbius maps). As
the name suggests, a composition operator composes a function with a fixed mapping
called the inducing map. In studying these operators we can take advantage of function
theoretic tools, and it is not surprising that the properties of composition operator depend
intricately on the inducing map. The spectrum of an operator acting on an infinite-
dimensional space generalizes the concept of eigenvalues of a finite matrix. In general,
determining the spectrum of a given operator is not an easy task.

In the first article we compute the spectra of composition operators induced by certain
linear fractional self-maps of the unit disc. Here the operators act on the whole range of
weighted Dirichlet spaces which are Hilbert spaces of analytic functions on the unit disc.
Earlier results in this context cover e.g. the classical Hardy space, the weighted Bergman
spaces and the classical Dirichlet space. Our results complete the spectral picture of linear
fractional composition operators on the weighted Dirichlet spaces. In particular, we found
a way to compute the spectra of parabolic and invertible hyperbolic composition operators
on the spaces that are contained in the classical Dirichlet space.

The second article continues the study of the spectral properties of linear fractional
composition operators in the corresponding setting on the upper half-plane. The analo-
gous spaces of the half-plane differ significantly from their counterparts in the unit disc;
for instance, not all linear fractional self-maps of the half-plane induce bounded compo-
sition operators. We were able to compute the spectra of all bounded linear fractional
composition operators acting on the Hardy, and the weighted Bergman spaces of the up-
per half-plane. Moreover, we show that the essential spectra coincide with the spectra on
all cases. One of the main tools is the Paley-Wiener theorem along with its generaliza-
tions which allow us to transfer the computations to certain Hilbert spaces defined on the
positive real line.

An operator is called universal if it has such a rich lattice of invariant subspaces that it
models any given operator (up to a constant multiple) when restricted to some of its in-
variant subspaces. The definition of universal operators can be generalized to commuting
n-tuples of operators. In the third article we consider general properties of universal oper-
ators on separable infinite-dimensional Hilbert spaces. The task of finding and analysing
concrete universal operators have gained a lot of attention since they could help in an-
swering the question whether every operator on a separable infinite-dimensional Hilbert
space has a non-trivial invariant subspace. We study the properties of the whole class
of universal operators and as one of our main results we prove that universal operators
have a big essential spectrum containing the origin. In addition, we give new examples of
universal operators and universal commuting pairs.
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1. Overview

The primary theme of this dissertation falls into the area known as function-theoretic
operator theory—a branch of mathematics that studies (bounded) linear transformations,
usually called operators, on analytic function spaces. The defining property of analytic
functions is that they are locally given as convergent power series. More precisely, any
analytic function f : Ω −→ C, where Ω is an open subset of the complex plane C, can be
written as f(z) =

∑∞
n=0 an(z − z0)

n for all z close enough to any given z0 ∈ Ω. Typically
some of the fundamental questions when studying operators are to determine if the operator
is bounded, or moreover compact, and to find its spectrum on a given space. The spectrum
of an operator acting on an infinite dimensional space generalizes the concept of eigenvalues
of a finite matrix. Nonetheless, determining the spectrum of an operator is a challenging
and complicated task in general.

Composition operators f �→ Cφf = f ◦ φ with analytic symbols φ : Ω −→ Ω offer an
intriguing example of a concrete operator class where the behaviour of the operator Cφ

depends critically on the properties of the inducing map φ. The research of composition
operators on analytic function spaces has its roots in the late 19th century. Namely, the
solutions to the famous Schröder’s equation [54],

f ◦ φ = λf,

for a fixed φ, can be interpreted as the eigenfunctions f of Cφ corresponding to the eigen-
value λ. Here, the domain of the functions is the unit disc D = {z ∈ C : |z| < 1}. In
1884, Königs [34] showed that Schröder’s equation has a non-trivial solution when φ is a
self-map of the unit disc, i.e. φ(D) ⊆ D, such that φ(a) = a for some (unique) a ∈ D and
0 < |ϕ′(a)| < 1. It took a few more decades of intense work by great mathematicians until
the actual research of (bounded) composition operators—first on Hardy spaces Hp(D) for
1 ≤ p < ∞—started around the 1960s. Even though the ongoing interest in composi-
tion operators has already led to a very rich theory (to get a glimpse, see [55, 16, 23], for
instance) there are still numerous questions waiting to be solved.

In this thesis we study composition operators induced by linear fractional self-maps of
D and the upper half-plane Π+ = {z ∈ C : Im z > 0}. In particular, we study the spectral
properties of these operators on certain Hilbert spaces of analytic functions. Composition
operators arising from the linear fractional transformations are one of the few operator
classes for which the spectra can be explicitly computed and, therefore, they have diverse
applications. This is valuable since the linear fractional composition operators also serve as
models for variety of operators. The behaviour of linear fractional composition operators
depends, however, strongly on the space which is seen already by considering the Hardy
spaces H2(D) and H2(Π+). The systematic analysis of spectral properties of composition
operators was initiated in the 1960s when Nordgren [46] computed the spectra for invertible
composition operators in H2(D). A natural continuation was to consider the same question
in Hp(D), for 1 ≤ p < ∞, and in the disc algebra, which was done by Kamowitz [32, 33].
The abovementioned Königs’ solution to Schröder’s equation also paved the way to the
spectral theory of compact composition operators studied by Caughran and Schwartz [5].
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To this date, the research on the spectra of composition operators on analytic function
spaces has remained very active and numerous authors have contributed to this subject,
see e.g. [10, 16, 29, 27, 50].

Another topic of this thesis is the universality of operators. The universal operators
(or universal models) on Hilbert spaces were introduced in 1959 by Rota [52]. Motivated
by the Invariant Subspace Problem, the aim was to find an operator having such a rich
lattice of invariant subspaces that it could represent any given (bounded) operator when
restricted to some of its invariant subspaces. Rather surprisingly, such operators do exist
as Rota showed by giving a concrete example. At the moment of writing we have a large
amount of concrete examples of universal operators from different operator classes including
weighted shift operators, composition operators and (adjoints of) Toeplitz operators, see
[47, 49, 51, 11, 14]. In this thesis we analyse the properties of the class of universal operators
and consider universal pairs defined recently in [44]. The universal operators on Hilbert
spaces are also linked to the invertible hyperbolic composition operators. Indeed, as one of
the main results of this thesis, we compute the spectra and the point spectra of invertible
hyperbolic composition operators on the weighted Dirichlet spaces contained in the disc
algebra. This allows us to give yet another concrete example of a universal operator.

The rest of this introductory part is organized as follows: In Section 2 we introduce the
central concepts of this thesis at a fairly general level. In Sections 3, 4 and 6 we will give
the explicit definitions needed in each context and present the main results of Articles [A],
[B] and [C], respectively. We will also provide additional information about the essential
spectra of parabolic and invertible hyperbolic composition operators supplementing the
results in [A]; see Propositions 3.1 and 3.2 for, respectively, the invertible hyperbolic and
parabolic composition operators and Section 5 for the non-invertible parabolic ones.

2. Preliminaries

2.1. Linear fractional composition operators. We will consider composition operators
Cφ,

f �−→ Cφf = f ◦ φ,
where φ : Ω −→ Ω and f : Ω −→ D are analytic in an open subset Ω ⊂ C. In what follows,
Ω is usually the unit disc D or the upper half-plane Π+. Our interest lies in the special case
where the symbol φ is a linear fractional transformation and so, unless otherwise stated, φ
is assumed to be such.

We first consider the linear fractional transformations (abbreviated henceforth as LFTs)
in general. For more information on this topic, see e.g. [55, Chapter 0] or [31, Chapter 2].
The LFTs, i.e. the Möbius maps or Möbius transformations, are mappings of the form

(2.1) φ(z) =
az + b

cz + d
, where a, b, c, d ∈ C, ad− bc �= 0.

With the convention

(2.2) φ(∞) = a/c and φ(−d/c) = ∞
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these mappings become meromorphic bijections from C := C∪{∞} onto itself. In addition,
the LFTs are conformal, i.e. angle-preserving. In the sequel, φ(z) �≡ z. We say that z0
is a fixed point of φ if φ(z0) = z0. The LFTs have exactly two fixed points in C counting
multiplicity.

Conjugation is an important tool in working with LFTs. We say that φ and φ̃ are
conjugate to each other, or that φ and φ̃ belong to the same conjugacy class, if there exists
a LFT g such that

(2.3) φ = g−1 ◦ φ̃ ◦ g.
Note that g necessarily maps the fixed points of φ into the fixed points of φ̃. Moreover, if
z0 and w0 are fixed points of φ and φ̃, respectively, satisfying g(z0) = w0 and z0, w0 �= ∞,
then it holds that

φ′(z0) = φ̃′(w0).

If φ has only one fixed point (of multiplicity two) we say that φ is parabolic. From (2.1)
and (2.2) it can be deduced that in this case we can conjugate φ to a LFT φ̃ having ∞ as
its only fixed point, that is,

φ̃(z) = z + b, where b �= 0.

For the fixed point p ∈ C of a parabolic LFT φ, we have that

(2.4) φn(z) := φ ◦ φ · · · ◦ φ(z) −→ p, as n −→ ∞,

for all z ∈ C. That is, p is an attractive fixed point.
If φ has two fixed points p and q, we can choose the conjugating map g in (2.3) such

that g({p, q}) = {0,∞}. It follows that φ̃ fixes 0 and ∞ and so

φ̃(z) = μφz,

where μφ ∈ C\{0, 1} is called the multiplier (or characteristic constant) of φ. The type of a
LFT having two fixed points depends on this multiplier which is unique up to its reciprocal
1/μφ. Hence, we can assume that |μφ| ≤ 1. The LFTs having the same multiplier belong
to the same conjugacy class and, moreover, μφ = φ̃′(0) = φ′(p).

If |μφ| = 1, then φ is called elliptic. If μφ ∈ (0, 1), then φ is hyperbolic, and if μφ ∈
D \ [0, 1), we call φ loxodromic. The fixed points of elliptic maps are neutral in the sense
that the formula in (2.4) is not satisfied for any z ∈ C that is not a fixed point. Hyperbolic
and loxodromic maps, however, have one attractive fixed point, say p, and the formula (2.4)
holds for all z ∈ C \ {q}. The other fixed point q is repulsive, that is, for all z ∈ C \ {p} ,

φ−n(z) := φ−1 ◦ φ−1 · · · ◦ φ−1(z) −→ q, as n −→ ∞.

2.2. Hilbert spaces of analytic functions. We first recall some very basic facts on
Hilbert spaces and operators acting on them in general, mainly to fix the notation. Denote
by H a complex separable infinite-dimensional Hilbert space. Recall that the norm in H
is induced by the inner product, that is ‖f‖2H = 〈f, f〉H for all f ∈ H. Also, when H is
a Hilbert space of functions f : Ω −→ C, the point evaluation f �−→ f(w) is a bounded
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linear functional H −→ C for all w ∈ Ω. Hence, for all w ∈ Ω, there exists a function
κw ∈ H such that

f(w) = 〈f, κw〉H.
The function κw is called the reproducing kernel of H at the point w.

The algebra of bounded linear operators T : H −→ H is denoted by L(H). We say that
an operator T is invertible if there exists an operator T−1 ∈ L(H), called the inverse of
T , such that T−1T = I = TT−1. The adjoint of T ∈ L(H), denoted by T ∗, is a bounded
operator H −→ H satisfying, for all f, g ∈ H,

〈Tf, g〉H = 〈f, T ∗g〉H.

The spaces under consideration in this thesis will be Hilbert spaces of analytic functions
containing some very well-known ones such as the Dirichlet, Hardy, and Bergman spaces
of D or Π+. In the most classical setting one considers operators in the Hardy space H2(D)
which consists of the analytic functions f : D −→ C, f(z) =

∑∞
n=0 anz

n, having Taylor
coefficients an = f (n)(0)/n! belonging to the sequence space �2(N),

�2(N) =
{
a = (an) : ‖a‖ =

( ∞∑
n=0

|an|2
)1/2

< ∞
}
.

Hence, for f(z) =
∑∞

n=0 anz
n,

‖f‖H2(D) =
( ∞∑

n=0

|an|2
)1/2

.

The norm in the Hardy space H2(D) also has an integral presentation,

‖f‖H2(D) = lim
r−→1−

(∫ 2π

0

|f(reiθ)|2 dθ
2π

)1/2

.

In the next subsection we define the weighted Dirichlet spaces of D and consider briefly
the boundedness of composition operators acting on them. The corresponding spaces of
the upper half-plane are defined in Section 4.

2.3. Weighted Dirichlet spaces of D. The weighted Dirichlet spaces Dβ, for β ∈ R,
consist of analytic functions f : D −→ C, f(z) =

∑∞
n=0 anz

n, such that

‖f‖β =
( ∞∑

n=0

|an|2(n+ 1)2β
)1/2

< ∞.

The spaces Dβ, for β ∈ R, are Hilbert spaces with orthonormal basis
(
zn/(n+ 1)β

)
.

In our parametrization, the classical Dirichlet space D2(D) = D1/2, the Hardy space
H2(D) = D0 and the Bergman space A2(D) = D−1/2. Moreover, from the definition we see
that the spaces are continuously embedded in each other, that is, Dβ � Dγ for all γ < β.
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The spaces Dβ, for β < 0, are also (and perhaps, better) known as the weighted Bergman
spaces A2

α(D), for α = −1− 2β > −1, with equivalent norm

‖f‖A2
α(D)

=
(∫

D

|f(z)|2(1− |z|2)α dA(z)
)1/2

, z = x+ iy,

where dA(z) = dx dy
π

(for more information on Bergman spaces, see e.g. [25]).
Denote by H∞(D) the algebra of bounded analytic functions D −→ C. It is well known

that, for β ≤ 0, H∞(D) ⊂ Dβ and, moreover, that fg ∈ Dβ for f ∈ H∞(D) and g ∈ Dβ.
This does not hold e.g. for the classical Dirichlet space, in fact, there are functions in
H∞(D) that do not belong to Dβ for β ≥ 1/4 (see [23, Prop. 3.10]).

Recall that the disc algebra A(D) consists of analytic functions f : D −→ C which are
continuous on D = D ∪ T. Here, and in the sequel, T := {z ∈ C : |z| = 1}. The space
A(D) is a Banach algebra endowed with the sup-norm, ‖f‖∞ = supz∈D |f(z)|. Using the
Cauchy-Schwartz inequality we see that the small spaces—by which we mean the spaces
Dβ for β > 1/2—are contained A(D). Indeed, for all z ∈ D, we have that

|f(z)| =
∣∣∣ ∞∑
n=0

anz
n
∣∣∣ ≤ ∞∑

n=0

|an| ≤
( ∞∑

n=0

|an|2(n+ 1)2β
)1/2( ∞∑

n=0

(n+ 1)−2β
)1/2

= mβ · ‖f‖β,

where mβ =
(∑∞

n=0(n+1)−2β
)1/2

< ∞ whenever β > 1/2. It follows that, for all β > 1/2,
Dβ ⊂ A(D).

On H2(D) = D0 the boundedness of composition operators is well understood. Actually,
due to Littlewood Subordination Theorem (which gives the boundedness for Cφ in a special
case φ(0) = 0) together with the automorphism-invariance of H2(D), we have that Cφ is
bounded when φ is any analytic self-map of D, in particular, any LFT. The same argument
holds also on the weighted Bergman spaces of D, i.e. on Dβ for β < 0, which all contain
the Hardy space.

On Dβ for β > 0—for instance, on the classical Dirichlet space—it is no longer true that
all composition operators are bounded. One reason is that since Cφz = φ and z ∈ Dβ

for all β ∈ R, a necessary condition for Cφ to be bounded is that φ itself belongs to Dβ

in question. However, the linear fractional composition operators are bounded on Dβ, for
β > 0 as well (see [37, Thm. D’] which extends [29, Thm. 5]).

2.4. Spectra of linear operators. In what follows, we will state the definitions, inter
alia, regarding the spectrum (of a bounded linear operator) only in Hilbert space even
though many of them make sense for any Banach space as well.

Let T ∈ L(H). The spectrum of T is defined by

σ(T ) = σ
(
T ;H)

= {λ ∈ C : T − λI is not invertible on H}.
By the Open Mapping Theorem, the operator T − λI : H −→ H fails to be invertible if it
is not bounded below or it is not onto. If T − λI is not bounded below on H, we say that
λ belongs to the approximate point spectrum, denoted by σa

(
T ;H)

. The set of eigenvalues
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of T , i.e. those λ ∈ C such that Tf = λf for some non-zero f ∈ H, is called the point
spectrum and denoted by σp

(
T ;H)

. Clearly σp(T ) ⊂ σa(T ). The spectrum of T ∈ L(H) is
always a non-empty, compact subset of C.

The spectral radius ρ
(
T ;H)

= max {|λ| : λ ∈ σ(T ;H)} satisfies the equation

(2.5) ρ
(
T ;H)

= lim
n−→∞

‖T n‖1/n.
An important subset of the spectrum is the essential spectrum where the Fredholm

operators come into play. In the sequel, we use the notation Ran
(
T ;H)

and Ker
(
T ;H)

(or RanT and KerT if there is no ambiguity on the space) for the range and kernel of
T ∈ L(H), respectively. The codimension of the range is defined by codim Ran

(
T ;H)

=

dim H/T (H). Recall that if codim Ran
(
T ;H)

is finite, then the range T (H) is closed (see
[43, Lemma III.16.2], for instance). An operator T ∈ L(H) is called Fredholm if dim KerT
and codim RanT are finite. The index of a Fredholm operator T is defined by

indT = dim KerT − codim RanT.

The essential spectrum is defined by

σess(T ;H) = {λ ∈ C : T − λI is not Fredholm on H}.
The essential spectrum of T ∈ L(H) is always a closed set (and non-empty if dim H = ∞).
From the definition of Fredholm operators it is easy to see that, for instance, the eigenvalues
of T that are of infinite multiplicity are contained in the essential spectrum. The essential
spectrum plays an important role also in recognizing universal operators; we will discuss
this in Section 6.

Atkinson’s Theorem (see [45, Thm. 1.4.16], for instance) states that the Fredholmness of
T ∈ L(H) is equivalent to the invertibility of the quotient element T +K(H) in the Calkin
algebra C(H) := L(H)/K(H), where K(H) is the closed ideal of the compact operators on
H. Hence, we have an alternative definition for the essential spectrum:

σess(T ;H) = {λ ∈ C : (T − λI) +K(H) is not invertible in C(H)}.
For the essential spectral radius ρess

(
T ;H)

= max {|λ| : λ ∈ σess

(
T ;H)} we have an

analogous formula to (2.5), namely,

ρess
(
T ;H)

= lim
n−→∞

‖T n‖1/ness ,

where the essential operator norm of T ∈ L(H) is defined by

‖T‖ess = inf {‖T −K‖ : K is a compact operator on H}.
Recall that the operators S ∈ L(H1) and T ∈ L(H2) are similar if there exists a linear

isomorphism J : H1 −→ H2 such that

S = J−1TJ.

We will constantly use the fact that the (approximative, point, essential) spectra of similar
operators coincide. Also, if T is invertible with the inverse T−1, then

σ(T−1) = {1/λ : λ ∈ σ(T )}.
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The above equation holds if we replace σ by the point spectrum σp. For the adjoint T ∗ it
holds that

σ(T ∗) = {λ̄ : λ ∈ σ(T )}.

A similar identity is true for the essential spectrum σess(T
∗) as well.

The LFTs possess some nice properties which are useful when determining the spectra
of linear fractional composition operators. Firstly, the LFTs in the same conjugacy class
induce similar composition operators whenever the composition operator induced by the
conjugating map is bounded and invertible: If φ = g−1 ◦ φ̃ ◦ g, then

Cφ = CgCφ̃Cg−1 = CgCφ̃C
−1
g

provided that the operators Cg and C−1
g are bounded. Consequently, to compute the spec-

tra of composition operators induced by LFTs of a certain conjugacy class, it is enough to
compute the spectrum for any representative of the conjugacy class. Usually, the represen-
tative is chosen to be a normalized one, that is, having fixed points in the set {−1, 0, 1,∞}.
Secondly, by considering the multiplier of φn (or in the parabolic case the iterates of
z �→ z + b), where

φn := φ ◦ φ ◦ · · · ◦ φ (n times),

we see that the nth iterate, for all n ∈ N, of any non-loxodromic LFT φ is of the same type
(elliptic/hyperbolic/parabolic, automorphism/non-automorphism) as φ. This property is
often beneficial in determining the (essential) spectral radius since Cn

φ = Cφn . Note how-
ever, that the conjugacy class is not invariant under iteration. Also, Cφ is invertible if and
only if φ is an automorphism of the domain of the space. As we will see, the derivative of φ
at one of its fixed point plays a major role in the spectrum of Cφ on the spaces considered.

3. Spectra in the unit disc setting

In this section we consider the composition operators Cϕ acting on the weighted Dirichlet
spaces Dβ, for all β ∈ R, where ϕ is a linear fractional self-map of D. There are altogether
8 essentially different kinds of linear fractional self-maps of D (3 automorphisms and 5
non-automorphisms) which can be distinguished by their type and fixed point configura-
tion. In Article [A] our aim was to find the spectra of parabolic and invertible hyperbolic
composition operators on certain weighted Dirichlet spaces, that is, to fill the empty boxes
in Table 1 below.
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ϕ β ≤ 0 β ∈ (0, 1/2) β = 1/2 β ∈ (1/2, 1) β ≥ 1

Parabolic autom. T, [16] T, [50] T, [27], [23] T, [50]

Parab. non-autom. S :=
{
e−αt : t ≥ 0

}
, [10] S, [50] S, [27] S, [50]

Hyperbolic autom.
{
ϕ′(p)γ ≤ |λ| ≤ ϕ′(p)−γ

}
, [16] T, [27]

Hyperb. non-autom. {|λ| ≤ ϕ′(p)−γ
} ∪ {

ϕ′(p)k : k = 0, 1, . . .
}
, [29]

p ∈ T

Hyperb. non-autom. {|λ| ≤ ϕ′(p)γ
} ∪ {

ϕ′(p)k : k = 0, 1, . . .
}
, [29]

p ∈ D

Cϕ compact
{
ϕ′(p)k : k = 0, 1, 2, . . .

} ∪ {0}
Elliptic autom.

{
ϕ′(p)k : k = 0, 1, 2, . . .

}
, [16]

Table 1. The previously known spectra of linear fractional composition
operators. Here, p denotes the attractive fixed point of ϕ, when it exists,
and otherwise (ϕ elliptic) p is the fixed point in D. Above γ = (1 − 2β)/2
and α = ϕ′′(p).

3.1. Background. To get an overview, let us briefly take a look at the earlier results
regarding the spectra of linear fractional composition operators in this setting (for a short
summary, see Table 1 above). Notice that the constant functions belong to Dβ, for all
β ∈ R, and Cϕ1 = 1. Therefore, any Cϕ : Dβ −→ Dβ has at least the (trivial) eigenvalue
1.

The simplest examples are LFTs (that can be conjugated to a mapping) of the form

ϕs(z) = sz, where s /∈ {0, 1}, |s| ≤ 1,

having 0 and ∞ as its fixed points. Depending on the constant s = ϕ′
s(0), the map ϕs is

an elliptic automorphism of D (if |s| = 1), a hyperbolic non-automorphism (if s ∈ (0, 1))
or a loxodromic mapping (if s /∈ (0, 1) and |s| < 1). Since Cϕsz

k = skzk, the operator
Cϕs : Dβ −→ Dβ, for all β ∈ R, is a diagonal operator with respect to the orthonormal
basis (zn/(n+ 1)β), i.e. we can write

Cϕs =

⎡
⎢⎢⎣

1 0 0 0 . . .
0 s 0 0 . . .
0 0 s2 0 . . .
...

... . . . . . . . . .

⎤
⎥⎥⎦ .

In the elliptic case the spectrum of Cϕs is either the unit circle T or a finite subgroup
{sk : k = 0, 1, 2, . . . } of T if s is a root of unity. When ϕs is a hyperbolic or loxodromic
LFT having 0 as the attractive fixed point, the diagonal entries of Cϕs converge to zero and
so, Cϕs is compact. It follows that σ

(
Cϕs ;Dβ

)
consists of 0 and the discrete eigenvalues
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of Cϕs , which in this case are {sk : k = 0, 1, 2, . . . }. The compactness of Cϕs , where ϕs is
a hyperbolic or a loxodromic mapping having the attractive fixed point in D, can also be
seen from the fact that ϕs(D) ⊂ D, see [16, Thm. 7.20]. Note that these hyperbolic and
loxodromic maps are special cases of Königs’ mappings for which Schröder’s equation has
non-trivial solutions!

Hurst [29] computed the spectra for Cϕ on Dβ, for all β ∈ R, when ϕ is a hyperbolic
non-automorphism having exactly one fixed point in T. If the attractive fixed point p ∈ T,
then σ

(
Cϕ;Dβ

)
is a closed, origin-centered disc with radius ϕ′(p)(2β−1)/2 together with

eigenvalues of the form
{
ϕ′(p)k : k = 0, 1, . . .

}
. Note that since ϕ′(p) ∈ (0, 1), the radius

decreases as the spaces get smaller and so, depending on β, the points ϕ′(p)k fall inside
or outside the closed disc. If p ∈ D, then σ

(
Cϕ;Dβ

)
is again a closed, origin-centered

disc together with eigenvalues
{
ϕ′(p)k : k = 0, 1, . . .

}
. In this case the radius of the disc

ϕ′(p)(1−2β)/2 increases as the spaces get smaller. The strategy in his proofs is to compute
the spectra first on Dβ, for β ≤ 0 or β < 0, and then use a certain duality argument [29,
Thm. 5] to obtain the spectra on small spaces. (In fact, the result in [29, Thm. 5] is of
great value for us as well and it will be re-encountered in the next subsection.)

Any hyperbolic automorphism of D can be conjugated to a mapping of the form

ϕr(z) =
z + r

1 + rz
, r ∈ (0, 1),

having −1 and 1 (the attractive one) as its fixed points. The multiplier of ϕr is λϕr =
1−r
1+r

∈
(0, 1). The spectra of Cϕr on Dβ, for β ≤ 0, (see [16]) are annuli centered at the origin
and radii depending on β and the multiplier of ϕr. Moreover, each interior point of the
spectrum is an eigenvalue of infinite multiplicity so that the essential spectrum coincides
with the spectrum on all spaces. In the classical Dirichlet space D2 = D1/2 the spectrum
of an invertible hyperbolic composition operator is the unit circle as Higdon [27] proved
by taking the computation via similarity to the Dirichlet space of the (upper) half-plane
D0(Π

+) and, further, to L2
(
[0,∞), t dt

2π

)
.

In the parabolic case it is enough to consider the composition operators induced by the
LFTs of the form

ϕα(z) =
(2− α)z + α

−αz + 2 + α
, Reα ≥ 0.

The fixed point of ϕα is 1. By considering τα : Π+ −→ Π+ satisfying τα = h◦ϕ◦h−1, where
h(z) = i 1+z

1−z
is a LFT mapping D onto Π+, it is easy to see that ϕα is an automorphism

of D if and only if Reα = 0. In the automorphism case, the spectrum σ
(
Cϕα ;Dβ

)
= T

for β < 1. When ϕα is a parabolic non-automorphism of D, the spectrum of Cϕα on Dβ,
for β < 1, is the spiral

{
e−αt : t ∈ [0,∞)

} ∪ {0}. The above spectra of Cϕα were first
computed in the Hardy space (for Reα = 0 by Nordgren [46] and for Reα > 0 by Cowen
[10]), and then extended to the weighted Bergman spaces by Cowen and MacCluer (see
[16]). In the automorphism case each point in the spectrum is an eigenvalue of infinite
multiplicity and so the spectrum coincides with the essential spectrum on Dβ for β ≤ 0.
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(In fact, this is true for all β ∈ R, see Proposition 3.2.) In the classical Dirichlet space
D2 = D1/2 the spectra for invertible and non-invertible parabolic composition operators
were computed by Higdon [27] (see also an alternative proof for the automorphism case
in [23]). Subsequently, Pons [50] was able to extended the results further for β < 1 by
interpolation.

In Article [A] we completed the spectral picture in this context, i.e. computed the spectra
in the hyperbolic automorphism case for β ∈ (0, 1/2) ∪ (1/2,∞) and in the parabolic
(automorphism and non-automorphism) case for β ≥ 1. In particular, we found a way to
compute the spectra of parabolic or invertible hyperbolic composition operators on small
spaces, where neither the techniques used in spaces that contain H∞(D) nor interpolation
are possible.

3.2. Main results of Article [A]. When considering the spectra of linear fractional
composition operators, the most interesting case seems to be when the operator is induced
by the hyperbolic automorphism of D. The surprise is in the small spaces as we will see
shortly. First, let us look upon the spectra on the scale β ∈ (0, 1/2). As one might expect,
the spectrum of an invertible hyperbolic composition operator on Dβ for β ∈ (0, 1/2) is an
annulus that shrinks towards the unit circle as β −→ 1/2:

Theorem ([A, Thm. 3.1]). Let ϕr(z) = z+r
1+rz

, where r ∈ (0, 1). For β ∈ (0, 1/2) the
spectrum of Cϕr : Dβ −→ Dβ is the annulus

σ
(
Cϕr ;Dβ

)
=

{
λ ∈ C :

(1− r

1 + r

)γ

≤ |λ| ≤
(1 + r

1− r

)γ}
,

where γ = (1− 2β)/2. Moreover, the point spectrum of Cϕr contains the open annulus{
λ ∈ C :

(1− r

1 + r

)γ

< |λ| <
(1 + r

1− r

)γ}
,

where all eigenvalues are of infinite multiplicity.

The vital part in the proof of [A, Thm. 3.1] is to show that, for −(1− 2β)/2 < Rew <
(1− 2β)/2, the functions

gw(z) =
(1 + z

1− z

)w

satisfying Schröder’s eigenvalue equation

Cϕrgw =
(1 + r

1− r

)w

gw,

belong to Dβ for β ∈ (0, 1/2) as they do for β ≤ 0. Also, since every interior point of the
spectrum is an eigenvalue of infinite multiplicity, we have that σ

(
Cϕr ;Dβ

)
= σess

(
Cϕr ;Dβ

)
for β ∈ (0, 1/2). It should be remarked that in Article [A] there is a minor misprint
appearing three times at the bottom of p. 730: the sequence in the exponent of the
eigenvalue and the corresponding eigenfunctions should be

i2πn

ln
(
1−r
1+r

)
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instead of i2πn. This does not have effect on the computations or results.

In order to find the spectra of the parabolic and invertible hyperbolic composition op-
erators Cϕ on Dβ for β > 1/2, the key observation is the following reflection principle (see
also [A, Cor. 3.6]):

Lemma ([A, Lemma 3.7]). Suppose ϕ, ϕ(z) = (az + b)(cz + d)−1, is a linear fractional
self-map of D and let ψ(z) = (āz − c̄)(−b̄z + d̄)−1. Then for all β > 1/2,

σ
(
C∗

ϕ;Dβ

)
= σ

(
Cψ;D−β+1

)
.

The proof of the lemma above uses the similarity of the operators C∗
ϕ|zDβ

: zDβ −→ zDβ

and C̃ψ : zD−β+1 −→ zD−β+1, where C̃ψf = Cψf − f(ψ(0)) (see [A, Cor. 3.6]). This
similarity is obtained by applying [29, Thm. 5] (the upper half of the commutative diagram
below) and by noting that differentiation is an isomorphism zD−β+1 −→ D−β.

zDβ

C∗ϕ ��

��

zDβ

��
D−β

Mψ′Cψ
��

��

D−β

��
zD−β+1

˜Cψ �� zD−β+1

When ϕ in the above lemma is of the form ϕr(z) = z+r
1+rz

, for r ∈ (0, 1), or ϕα(z) =
(2−α)z+α
−αz+2+α

, for Reα ≥ 0, then ψ is ϕ−r = ϕ−1
r or ϕᾱ, respectively. Note that ϕᾱ = ϕ−1

α when
Reα = 0.

In the hyperbolic case (by applying the reflection principle for ϕr and extending the
result by similarity to all hyperbolic automorphisms) we have the following theorem:

Theorem ([A, Thm. 3.9]). Let ϕ be a hyperbolic automorphism of D with characteristic
constant λϕ ∈ (0, 1). For β > 1/2 the spectrum of Cϕ : Dβ −→ Dβ is the annulus

σ
(
Cϕ;Dβ

)
=

{
λ ∈ C : λ(2β−1)/2

ϕ ≤ |λ| ≤ λ(1−2β)/2
ϕ

}
.

Moreover,
σp

(
Cϕ;Dβ

)
= {1}.

Recall above that the characteristic constant satisfies λϕ = ϕ′(p). The phenomenon that
the spectrum starts to grow again after the Dirichlet space as the spaces get smaller is
rather peculiar. Summarizing the results, we have obtained that, for all β ∈ R,

σ
(
Cϕr ;Dβ

)
=

{
λ ∈ C :

(1− r

1 + r

)|1−2β|/2
≤ |λ| ≤

(1− r

1 + r

)−|1−2β|/2}
.

The spaces Dβ, for β > 1/2, are too small to possess eigenfunctions for Cϕr , except the
trivial one. This can be shown by using the fact that Dβ ⊂ A(D) for β > 1/2. Instead,
in the small spaces it is the adjoint C∗

ϕr
that has big point spectrum. We can improve the



12 RIIKKA SCHRODERUS

results this far by showing that the essential spectrum coincides with the spectrum also on
Dβ, for β ≥ 1/2 (see Proposition 3.1 in the next subsection).

In the parabolic case, there are no surprises and the spectra in the small spaces are
the same as they are in the big spaces. By the same argument as for the hyperbolic, the
invertible parabolic composition operators on Dβ can not have any other eigenvalues than
the trivial one when β > 1/2:

Theorem ([A, Thm. 3.10]). Let ϕ be a parabolic automorphism of D. Then for any β ≥ 1
the spectrum of Cϕ : Dβ −→ Dβ is the unit circle. Moreover, for β > 1/2

σp

(
Cϕ;Dβ

)
= {1}.

We stress that the functions et ∈ H∞(D), for t ≥ 0, defined by

et(z) = exp
(
t
z + 1

z − 1

)
,

are potential eigenfunctions for Cϕα corresponding to the eigenvalue e−αt, independently
of whether ϕα is an automorphism (Reα = 0) or a non-automorphism (Reα > 0)1. While
t = 0 corresponds the trivial case, the functions et for t > 0 belong to Dβ if and only if
β < 1/4 (see [23, Prop. 3.10]). When ϕα is an automorphism, the eigenvalues of Cϕα are
of infinite multiplicity and so the spectra coincides with the essential spectra on Dβ, for
β < 1/4. We can extend this to hold on all other weighted Dirichlet spaces as well (see
Proposition 3.2 in the next subsection).

Let C+ denote the right half-plane {z ∈ C : Re z > 0}. The last piece in our spectral
puzzle is the parabolic non-automorphism case on small spaces for which we have the
following theorem:

Theorem ([A, Thm. 4.1]). Let ϕα : D −→ D, ϕα(D) � D, be a parabolic LFT of the form
ϕα(z) =

(2−α)z+α
−αz+2+α

, where α ∈ C+. Then, for all β ≥ 1,

σ
(
Cϕα ;Dβ

)
=

{
e−αt : t ∈ [0,∞)

} ∪ {0}.
Moreover, for all β < 1/4,

σp

(
Cϕα ;Dβ

)
=

{
e−αt : t ∈ [0,∞)

}
.

Also in this case we are now able to prove that the essential spectrum coincides with
the spectrum on all spaces Dβ. Since the essential spectra of non-invertible parabolic
composition operators is not known on any of the spaces Dβ, more work is required and
therefore, we will postpone the proof to Section 5.

3.3. Supplementary results regarding the essential spectra. We prove here that
the essential spectra of invertible hyperbolic and parabolic composition operators coincide
with the spectra on Dβ for, respectively, β ≥ 1/2 and β ≥ 1/4. We first consider the
hyperbolic case.

1The eigenfunctions et, for t ≥ 0, were first discovered in [46, Thm. 5], see also [16, Thm. 7.5].



SPECTRA OF COMPOSITION OPERATORS AND PROPERTIES OF UNIVERSAL OPERATORS 13

Proposition 3.1. Let ϕr be a hyperbolic automorphism of D of the form ϕr(z) = z+r
1+rz

,
where r ∈ (0, 1). Then, for all β ≥ 1/2,

(3.1) σess

(
Cϕr ;Dβ

)
=

{
λ ∈ C :

(1− r

1 + r

)(2β−1)/2

≤ |λ| ≤
(1− r

1 + r

)(1−2β)/2}
.

Proof. In the classical Dirichlet space (β = 1/2) this is true by [B, Thm. 5.3] since the
operators Cϕr : Dβ −→ Dβ and Cτ : D0(Π

+) −→ D0(Π
+) for τ : Π+ −→ Π+ satisfying

τ = h ◦ ϕr ◦ h−1 are unitarily equivalent. The crux of the matter here is to choose the
function sequence (Fc) in [27, Thm. 3.2] slightly more delicately as in the proof of [B,
Thm. 4.1].

Assume then that β > 1/2 and recall that Equation (3.1) holds for all β′ = −β+1 < 1/2
by [16, Thm. 7.4] and [A, Thm. 3.1]. Even though the reflection principle [A, Cor. 3.6 &
Lemma 3.7] does not give a similarity between the operators C∗

ϕr
on Dβ and C−1

ϕr
on D−β+1,

their essential spectra coincide, too. The reason is that the operators C∗
ϕr
−λI : Dβ −→ Dβ

and C−1
ϕr

−λI : D−β+1 −→ D−β+1 are compact perturbations of, respectively, the operators
C∗

ϕr
− λI : zDβ −→ zDβ and C̃−1

ϕr
− λI : zD−β+1 −→ zD−β+1 which are similar by [A,

Cor 3.6]. For the details, see Step 2 in the proof of Theorem 5.2 and notice that the
reasoning there can be adopted as such to this case as well. The final conclusion follows
by the fact that T ∈ L(H) is Fredholm if and only if T ∗ is and by noting that the annulus
in question is invariant under complex conjugation as well as taking reciprocals. We have
that σ

(
Cϕr ;Dβ

)
= σess

(
Cϕr ;Dβ

)
, for β > 1/2. �

As discussed earlier, the spectrum of Cϕ on Dβ coincides with the essential spectrum for
β < 1/4 when ϕ is a parabolic automorphism. This holds for β ≥ 1/4 as well:

Proposition 3.2. Let ϕα be a parabolic automorphism of D, of the form ϕα(z) =
(2−α)z+α
−αz+2+α

,
where Reα = 0. Then, for all β ≥ 1/4,

(3.2) σess

(
Cϕα ;Dβ

)
= T.

Proof. In a similar manner as in Proposition 3.1, we can use the reflection principle [A,
Cor. 3.6] to show that Equation (3.2) is true on Dβ for β > 3/4 since for β′ = −β+1 < 1/4
this is known (again, for details, see Step 2 in the proof of Theorem 5.2). Also, in the
classical Dirichlet space we have σess

(
Cϕα ;D1/2

)
= T by [B, Thm. 5.2].

Assume then that β ∈ (1/2, 3/4]. We want to show that Cϕα − λI is not Fredholm on
Dβ for any λ ∈ T. Assume on the contrary that there exists λ0 ∈ T such that Cϕα − λ0I
is Fredholm on Dβ. Since the set of Fredholm operators is open in L(H) (see [43, Thm.
III.16.17] or [45, Thm. 1.4.17], for instance) we actually have that Cϕα−μI is Fredholm for
all μ ∈ J ⊂ T, where J is some small arc containing λ0. Moreover, the Fredholm index of
Cϕα −μI would have to be 0 since Cϕα −λI is invertible for all λ ∈ C\T and the Fredholm
index is locally constant. By [A, Thm. 3.10], we have that Ker (Cϕα − λI) = 0 for any
λ �= 1. Hence Cϕα−μI would have to be invertible for all μ ∈ J\{1}. This is a contradiction
since μ ∈ σ

(
Cϕα ;Dβ

)
. It follows that Cϕα − λI : Dβ −→ Dβ, for β ∈ (1/2, 3/4], is not

Fredholm for any λ ∈ T.



14 RIIKKA SCHRODERUS

Again, using the reflection principle [A, Cor. 3.6], we can deduce that σess

(
Cϕα ;Dβ

)
=

σ
(
Cϕα ;Dβ

)
also when β ∈ [1/4, 1/2).

�

3.4. Related developments. The spectral results of linear fractional composition oper-
ators on analytic Hilbert spaces, especially on H2(D), has naturally been a stepping stone
for extending the results to more general cases. Nowadays, the research has lead to spectral
results on analytic Banach spaces such as Hp(D) for 1 ≤ p < ∞, Bloch or BMOA space,
on Hardy spaces of the ball H2(BN) for N > 1, or on weighted Hardy spaces H2(β) of the
unit disc (see e.g. [36, 15, 56]). Another direction is to relinquish the one-to-one property
of inducing functions by considering e.g. (non-automorphic) inner functions and try to
obtain the spectra for such composition operators (see [10] or [16]).

Recently, the interest regarding the spectra has turned into weighted composition op-
erators Wϕ,ψ, Wϕ,ψf = ψ(f ◦ ϕ), acting on spaces of analytic functions. This far, the
results are mainly for the invertible weighted composition operators, i.e. the ones having
ψ bounded away from zero and ϕ an automorphism of D, see [24, 30, 6].

4. Spectra in the half-plane setting

In Article [B] the spectra as well as the essential spectra are computed for bounded
linear fractional composition operators acting on the Hardy, the weighted Bergman, and
the weighted Dirichlet spaces of the upper half-plane. Besides the obvious case, i.e. the
(unweighted) Dirichlet space, only the spectra (and the essential spectra) of the invertible
or self-adjoint parabolic and invertible hyperbolic composition operators on the Hardy
space H2(Π+) have been computed earlier by Matache [41].

4.1. Hardy, weighted Bergman, and weighted Dirichlet spaces of Π+. We start by
giving the explicit definitions of the spaces in question and consider briefly the boundedness
of composition operators acting on them in general.

The Hardy space of Π+ is defined as follows

H2(Π+) =
{
F : Π+ −→ C analytic, ‖F‖H2(Π+) = sup

y>0

(∫ ∞

−∞
|F (x+ iy)|2 dx

)1/2

< ∞
}
.

The space H2(Π+) is isometrically embedded into L2(R) via the mapping F �−→ F ∗, where
F ∗(x) = limy−→0+ F (x + iy) (for more information on Hardy spaces of the half-plane, see
[17, Chapter 11], for instance).

For α > −1, the weighted Bergman spaces A2
α(Π

+) are

A2
α(Π

+) =
{
F : Π+ −→ C analytic, ‖F‖A2

α(Π
+) =

(∫
Π+

|F (x+ iy)|2 yα dx dy
)1/2

< ∞
}
.

The Hardy space H2(Π+) can, for our purposes, formally be interpreted as the “limit
case” of the weighted Bergman spaces as α −→ −1 and, for convenience, we will write
H2(Π+) = A2

−1(Π
+).
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Following [18], we define the weighted Dirichlet spaces D2
α(Π

+), for α > −1, by setting

D2
α(Π

+) = {F : Π+ −→ C analytic, F ′ ∈ A2
α(Π

+)}.
Note that the spaces D2

α(Π
+), for α > −1, actually consist of unique members of each

equivalence class of functions that differ by a constant. We set the norm to be

‖F‖D2
α(Π

+) =
(∫

Π+

|F ′(x+ iy)|2 yα dx dy
)1/2

.

In a sense (compare Theorems 1 and 3 in [18]), as the spectral results will also show, the
weighted Dirichlet space D2

α(Π
+), for any α > −1, could be understood as “the weighted

Bergman space Aα−2(Π
+)”. Note that the spaces A2

α(Π
+), for α ≥ −1, or D2

α(Π
+), for

α > −1, are not nested as in the case of the weighted Dirichlet spaces of D.
The boundedness of composition operators Cφ on the Hardy and the weighted Bergman

spaces defined on Π+ is more delicate than in the unit disc setting. Namely, for (any)
analytic φ : Π+ −→ Π+, the operator Cφ is bounded if and only if the symbol φ fixes
infinity and the angular derivative at infinity, defined by

φ′(∞) = lim
w−→∞

w

φ(w)
(non-tangentially),

is bounded and positive (for this, see [40] or [19] for the Hardy, and [20] for the weighted
Bergman spaces). The proofs in [19, 20] are based on showing that the abovementioned
condition is equivalent with certain kernel functions being positive from which it follows
that the adjoint C∗

φ is bounded on a dense linear span of reproducing kernels. Moreover, by
[19, 20], we have that for bounded composition operators Cφ on A2

α(Π
+), for all α ≥ −1,

the operator norm coincides with the essential operator norm, the spectral radius and the
essential spectral radius and is obtained from the quantity φ′(∞) in the following manner:

‖Cφ‖ = ‖Cφ‖ess = ρ
(
Cφ;A2

α(Π
+)
)
= ρess

(
Cφ;A2

α(Π
+)
)
=

(
φ′(∞)

)(α+2)/2
.

4.2. Parabolic and hyperbolic composition operators on Π+. Let τ be a LF self-
map of Π+. The condition that τ has to fix ∞ for Cτ to be bounded on A2

α(Π
+), for

α ≥ −1, restricts our consideration for LFTs to parabolic and hyperbolic composition
operators: It is a straightforward computation to show that the LF self-maps of Π+ that
fix ∞ are precisely of the form

(4.1) τ(w) = μw + w0, where μ > 0 and Imw0 ≥ 0.

In this case, τ ′(∞) = μ−1 ∈ (0,∞) so that Cτ is bounded on A2
α(Π

+), for all α ≥ −1.
On the weighted Dirichlet spaces, the boundedness of these particular Cτ (as well as the
spectral results) follows by [B, Lemma 5.1].

If μ = 1 (and necessarily w0 �= 0) in Equation (4.1), then τ has only one fixed point and
so it is parabolic. Otherwise τ is hyperbolic. Moreover, τ is an automorphism of Π+ if and
only if w0 ∈ R. In the hyperbolic case the similarity of composition operators (obtained
via conjugation of inducing maps) allows us to reduce the consideration into three different
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forms of τ : Any hyperbolic automorphism w �−→ μw + w0, where μ ∈ (0, 1) ∪ (1,∞) and
w0 ∈ R, can be conjugated to a LFT of the form

τ(w) = μw.

If τ is a non-automorphism having ∞ as the attractive fixed point, then it can be conjugated
to a mapping of the form

(4.2) τ1(w) = μ−1w + iμ−1(1− μ), where μ ∈ (0, 1).

If ∞ is the repulsive fixed point of a non-automorphism τ , then we choose a mapping of
the form

(4.3) τ2(w) = μw + i(1− μ), where μ ∈ (0, 1),

to be the representative of each conjugacy class.

It would be tempting to think that the spectral results for Cτ would follow by similarity
from those in the unit disc setting for Cϕ, where ϕ : D −→ D satisfies ϕ = h−1 ◦ τ ◦
h for some conformal map h : D −→ Π+. Indeed, this is the case in the unweighted
Dirichlet space, where all linear fractional self-maps of Π+ induce bounded composition
operators since Ch : D2

0(Π
+) −→ D1/2/C is unitary. However, the composition operator

Ch : A2
α(Π

+) −→ A2
α(D), although bounded, does not have a bounded inverse for any

α ≥ −1. The boundedness of Ch as well as unboundedness of C−1
h can be seen by computing

the norms: It is enough to consider the usual case, where h(z) = i1+z
1−z

having h−1(w) = w−i
w+i

as its inverse map. By the change of variable z �→ h−1(w), we have, for all α > −1 and
F ∈ A2

α(Π
+), that

‖ChF‖2A2
α(D)

=

∫
D

∣∣F ◦ h(z)∣∣2(1− |z|2)α dA(z) =
∫
Π+

∣∣F (w)
∣∣2(1− ∣∣∣w − i

w + i

∣∣∣)α 4 dA(w)

|w + i|4

=

∫
Π+

∣∣F (w)
∣∣2(Imw)α

4α+1

|w + i|2α+4
dA(w) ≤ 4α+1‖F‖2A2

α(Π
+),

since |w + i|2α+4 > 1 for all w ∈ Π+ and α > −1. On the other hand, for f ∈ A2
α(D), it

holds that

‖C−1
h f‖2A2

α(Π
+) =

∫
Π+

∣∣f ◦ h−1(w)
∣∣2(Imw)α dA(w) =

∫
D

|f(z)|2
(
Im

i(1 + z)

1− z

)α 4 dA(z)

|1− z|4

=

∫
D

|f(z)|2(1− |z|2)α 4

|1− z|2α+4
dA(z),

where the factor |1 − z|−2α−4 is not bounded and, therefore, neither is the operator C−1
h .

In the Hardy space this can be seen similarly.

Before describing the main tools and ideas that are used to compute the (essential)
spectra in the half-plane setting, let us unveil the results.
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4.3. Results of Article [B]. In what follows, τ is always of the form (4.1) so that Cτ is
bounded on all spaces in question. In the parabolic case the spectra are similar as in the
unit disc setting, namely, on the Hardy and weighted Bergman spaces of Π+ we have the
following theorem:

Theorem ([B, Thm. 1.1]). Let τ be a parabolic self-map of Π+, that is, τ(w) = w + w0,
where Imw0 ≥ 0 and w0 �= 0. Then the spectrum and the essential spectrum of Cτ acting
on the Hardy or the weighted Bergman spaces of the upper half-plane equals

σ(Cτ ) = σess(Cτ ) = {eiw0t : t ∈ [0,∞)} =

{
T, when w0 ∈ R,
{eiw0t : t ∈ [0,∞)} ∪ {0}, when w0 ∈ Π+.

The spectra of hyperbolic composition operators on Π+ are, however, very different than
in D:

Theorem ([B, Thm. 1.2]). Let τ be a hyperbolic self-map of Π+, that is, τ(w) = μw+w0,
where μ ∈ (0, 1) ∪ (1,∞) and Imw0 ≥ 0. Then, for all α ≥ −1, the spectrum and the
essential spectrum of Cτ acting on A2

α(Π
+) is

i) σ
(
Cτ ;A2

α(Π
+)
)
= σess

(
Cτ ;A2

α(Π
+)
)
=

{
λ ∈ C : |λ| = μ−(α+2)/2

}
, when w0 ∈ R,

ii) σ
(
Cτ ;A2

α(Π
+)
)
= σess

(
Cτ ;A2

α(Π
+)
)
=

{
λ ∈ C : |λ| ≤ μ−(α+2)/2

}
, when w0 ∈ Π+.

From these results we are also able to compute the spectra and the essential spectra of
the parabolic and the hyperbolic composition operators on the weighted Dirichlet spaces
D2

α(Π
+), for α > −1. This is due to the following lemma, where the similarity is obtained

via differentiation:

Lemma 4.1 ([B, Lemma 5.1]). Let τ : Π+ −→ Π+ be a hyperbolic or parabolic map of the
form τ(w) = μw+w0, where μ > 0 and Imw0 ≥ 0 (and if μ = 1, then w0 �= 0). Then, for
all α > −1, the operators Cτ : D2

α(Π
+) −→ D2

α(Π
+) and μCτ : A2

α(Π
+) −→ A2

α(Π
+) are

similar.

It follows that (see [B, Thms. 5.2 & 5.3]), for all α > −1,

σ
(
Cτ ;D2

α(Π
+)
)
= μσ

(
Cτ ;A2

α(Π
+)
)
.

4.4. Main tools for finding the spectra. In some sense the half-plane setting is more
straightforward since the mappings we are considering have rather simple forms. Indeed,
since we are dealing (mostly) with composition operators induced by translations (parabolic
maps) and dilations (hyperbolic automorphisms) of Π+ for which the behaviour of inverse
Fourier transforms F−1 are known, the Paley-Wiener theorem in H2(Π+) ([48], see also
[53]) and its generalization to the weighted Bergman spaces turn out to be very useful for
our purposes.

Denote by L2
β, for all β ≥ 0, the Hilbert space consisting of measurable functions f :

R+ −→ C satisfying ∫ ∞

0

|f(t)|2t−β dt < ∞.
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Theorem (Paley-Wiener Theorem(s)). Let α ≥ −1. Then F ∈ A2
α(Π

+) if and only if
there exists a function f ∈ L2

α+1 such that

F (w) = (Ff)(w) =

∫ ∞

0

f(t)eiwt, w ∈ Π+.

Moreover,

‖F‖2A2
α(Π

+) = ‖f‖2L2
α+1

= bα

∫ ∞

0

|f(t)|2t−(α+1) dt,

where bα is a constant depending only on α.

(For a detailed proof in the general case, see [18].) This is to say that the Fourier
transform provides a similarity between the operators Cτ : A2

α(Π
+) −→ A2

α(Π
+) and

Ĉτ : L2
α+1 −→ L2

α+1, where Ĉτ satisfies

Ĉτ (F−1F ) = F−1(F ◦ τ)
for all F ∈ A2

α(Π
+). Hence, we get the commuting diagram

A2
α(Π

+)
Cτ ��

F−1

��

A2
α(Π

+)

F−1

��
L2
α+1

̂Cτ �� L2
α+1.

Let us denote f = F−1F . It is well-known (see [53], for instance) that

F−1(F (w + w0))(t) = eiw0tf(t)

and that
F−1(F (μw))(t) =

1

μ
f(t/μ).

It follows that for a parabolic map τ , where τ(w) = w + w0, the operator Ĉτ on L2
α+1 is

multiplication by the function g(t) = eiw0t. If τ is a normalized hyperbolic automorphism
of Π+ of the form τ(w) = μw, then Ĉτf(t) =

1
μ
f(t/μ). In these particular cases of τ , the

essential spectra of Ĉτ , hence of Cτ , can be found by using the following result which is
specific for Hilbert space in this form:

Theorem ([9, Thm. XI.2.3]). Let T : H −→ H be a bounded linear operator on a Hilbert
space H. If there exists an orthonormal sequence (fn) ⊂ H such that

‖(T − λ)fn‖H −→ 0, as n −→ ∞,

then λ ∈ σess

(
T ;H)

.

Therefore, when τ is (or, rather, can be conjugated to) a translation or dilation, the
main work is to find, for each λ in the expected spectrum, an orthonormal sequence of
functions (gn) ∈ L2

α+1 such that

‖(Ĉτ − λ)gn‖L2
α+1

−→ 0, as n −→ ∞.
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When τ is a hyperbolic non-automorphism, we can not use the similarity given by the
Fourier transform or the above theorem since we do not know the explicit form of Ĉτ .
Fortunately, in the case of τ1 (as defined in (4.2)), we actually can take advantage of the
spectral results in the unit disc setting: Let J be the isometric isomorphism A2

α(D) −→
A2

α(Π
+), for α ≥ −1, defined by

(4.4) (Jf)(w) = f
(w − i

w + i

) cα
(w + i)α+2

,

where the constant cα depends only on α (for the proof, see e.g. [28] for the Hardy, and [18]
for the weighted Bergman spaces; here we also write A2

−1(D) = H2(D)). If ϕ = h−1 ◦ τ ◦ h,
where the conformal bijection h : D −→ Π+ is defined by h(z) = i 1+z

1−z
, then (4.4) gives

a similarity between the operator Cϕ : A2
α(D) −→ A2

α(D) and the weighted composition
operator (τ(w) + i

w + i

)α+2

Cτ : A2
α(Π

+) −→ A2
α(Π

+).

When τ = τ1, the weight
( τ(w)+i

w+i

)α+2 reduces to a constant μ−1.
In the remaining case, that is, when τ = τ2 (as defined in (4.3)), a crucial observation is

that on A2
α(Π

+), for all α ≥ −1,
Cτ1 = μα+2C∗

τ2
.

4.5. Further questions. In the (unweighted) Dirichlet space of the upper half-plane all
linear fractional mappings induce bounded composition operators. As we have seen, this
is not the case in the Hardy, or weighted Bergman spaces. Therefore, it would be inter-
esting to find out if the (unweighted) Dirichlet space is the only space where LF self-maps
of Π+ induce bounded composition operators also when ∞ is not a fixed point. Or, if
there are other such spaces, then where in the scale do the aforementioned operators lose
boundedness?

Another obvious question arising from the results of Article [B] is that are the parabolic
composition operators in D and Π+ similar? If yes, then what is the operator between
A2

α(D) and A2
α(Π

+), at least for some α ≥ −1, that would provide the similarity since the
composition Ch does not.

5. Essential spectra of the non-invertible parabolic composition
operators

We will provide here a Banach algebraic computation of the essential spectrum of non-
invertible parabolic composition operators acting on Dβ for β ∈ R (Theorem 5.2), which
supplements the results in [A]. In addition, this technique can be used in the half-plane
setting (Theorem 5.4) where it gives a different approach to proving [B, Thm. 1.1.ii)].
Suitable references for more information of the spectral theory of Banach algebras are e.g.
[45, Chapter 1] or [9, Chapter VII].

Let H be a separable infinite-dimensional Hilbert space. Recall the notation C(H) for
the Calkin algebra L(H)/K(H) and C+ for the right half-plane {z ∈ C : Re z > 0}. Also,
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we remind the reader that the family (Tc)c∈C+ ⊂ L(H) is a holomorphic semi-group of
operators if

i) TcTd = Tc+d for c, d ∈ C+,
ii) (f, c) �−→ Tcf is jointly continuous, and
iii) c �−→ Tcf is holomorphic C+ −→ L(H) for each f ∈ H.

For the rest of this section, we denote by Sc, for any c ∈ C+, the spiral

Sc := {0} ∪ {e−ct : t ≥ 0}.
Proposition 5.1. Let (Tc)c∈C+ ⊂ L(H) be a holomorphic semi-group of operators. Assume
that σ(Tc) = Sc for all c ∈ C+. If, in addition, Tc − Td is non-compact for all c, d ∈ C+

such that c �= d, then σess(Tc) = Sc.

Proof. Since σess(Tc) ⊂ σ(Tc) = Sc we have to show that each point in Sc belongs to the
essential spectrum of Tc.

Let q : L(H) −→ C(H) be the linear quotient map, that is, q(T ) = T + K(H). Since
(Tc)c∈C+ is a holomorphic semi-group of operators in L(H), it follows that

(
q(Tc)

)
c∈C+

is a holomorphic semi-group taking values in C(H). Let B be the commutative unital
subalgebra of C(H) generated by{

q(I)
} ∪ {

q(Tc) : c ∈ C+

}
.

Recall that, by Atkinson’s theorem, we have

σess

(
Tc;H

)
= σ

(
q(Tc); C(H)

)
.

Moreover, by classical Gelfand theory (see [45, Thm. 1.3.4], for instance), the spectrum
in the commutative subalgebra B is

σ
(
q(Tc);B

)
=

{
λ
(
q(Tc)

)
: λ is a non-zero multiplicative linear functional B −→ C

}
.

We claim next that
σ
(
q(Tc);B

)
= Sc.

The proof of the inclusion σ
(
q(Tc);B

) ⊂ {0}∪{e−ct : t ≥ 0} uses a standard idea (originat-
ing from [10, Thm. 6.6] and used later on in [27, Thm. 3.3] and [A, Thm. 4.1], for instance)
in proving that the spectrum of non-invertible parabolic composition operator acting on
H2(D) or Dβ, for β ≤ 1/2, is contained in the spiral Sc. The difference is that we must
consider λ

(
q(Tc)

)
, instead of λ(Tc). First of all, for any multiplicative linear functional

λ : B −→ C, the function c �−→ γ(c) := λ
(
q(Tc)

)
defines a holomorphic map C+ −→ C.

Moreover,
γ(c+ d) = λ

(
q(Tc+d)

)
= λ

(
q(Tc)

) · λ(q(Td)
)
= γ(c) · γ(d),

for any c, d ∈ C+, since
(
q(Tc)

)
c∈C+

is a holomorphic semi-group. Consequently, either
γ ≡ 0 or else there is t ∈ C such that γ(c) = e−ct for c ∈ C+. In addition,

|e−ct| = lim
n−→∞

|e−nct|1/n ≤ lim
n−→∞

|λ(q(Tnc)
)|1/n ≤ lim

n−→∞
‖(q(Tc)

)n‖1/n
= lim

n−→∞
‖T n

c ‖1/ness = ρess(Tc) ≤ ρ(Tc) = 1,
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where ρ and ρess denote, respectively, the spectral and the essential spectral radii. It follows
that t ∈ [0,∞) and so σ

(
q(Tc);B

) ⊂ {0} ∪ {e−ct : t ≥ 0}.
To prove the reverse inclusion {0} ∪ {e−ct : t ≥ 0} ⊂ σ

(
q(Tc);B

)
define, for any fixed

t ≥ 0, the map λ by setting

λ
(
q(Tc)

)
= e−ct, c ∈ C+,

and λ
(
q(I)

)
= 1. Since Tc − Td, where c �= d, is not compact on H by assumption, we

have that c ∈ C+ uniquely determines the quotient class q(Tc) = Tc +K(H). Therefore, λ
is well-defined. Moreover,

λ
(
q(Tc) · q(Td)

)
= λ

(
q(Tc+d)

)
= e−(c+d)t = λ

(
q(Tc)

) · λ(q(Td)
)
,

for all c, d ∈ C+, so that λ is a multiplicative linear functional on the generators of B and,
therefore, admits an extension to whole B. Altogether, we have that Sc = σ

(
q(Tc);B

)
.

Finally, by general spectral theory of Banach algebras (see, [9, Thm. VII.5.4.(a)], for
instance)

Sc = ∂σ
(
q(Tc);B

) ⊂ ∂σ
(
q(Tc); C(H)

)
= ∂σess

(
Tc;H

) ⊂ Sc,

since the spiral Sc is its own boundary. �
Using the above proposition we are able to determine the essential spectrum for non-

invertible parabolic composition operators acting on Dβ, for β ∈ R, as well as on H2(Π+),
A2

α(Π
+) and D2

α(Π
+), for α > −1.

Theorem 5.2. Let ϕ be a parabolic linear fractional transformation such that ϕ(D) � D
with the fixed point p ∈ T. Then, for all β ∈ R,

σ
(
Cϕ;Dβ

)
= σess

(
Cϕ;Dβ

)
= Sc,

where c = ϕ′′(p) ∈ C+.

Proof. Recall that it is enough to consider the parabolic LFTs of the form ϕc(z) =
(2−c)z+c
−cz+2+c

,
where c ∈ C+, fixing the point 1. The essential spectra for all non-invertible parabolic
composition operators are obtained via similarity.

Step 1. Denote Cϕc = Cc for simplicity. Recall that σ
(
Cc;Dβ

)
= Sc for all β ∈

R (see [10, 27, 50] and [A]). The operators (Cc)c∈C+ form a holomorphic semi-group on
L(Dβ) for all β ∈ R, since the inducing functions (ϕc)c∈C+ form a holomorphic semi-group
(the definition of holomorphic semi-group of functions is analogous to that of operators).
Moreover, by [1, Cor. 3.7] we know that Cc − Cd : Dβ −→ Dβ is not compact for any
β ≤ 1 when c �= d (see also Remark 5.3 for more detailed background of this result). By
Proposition 5.1, we get that

σ
(
Cc;Dβ

)
= σess

(
Cc;Dβ

)
= Sc,

for all β ≤ 1.
Step 2. To show that this is also true on Dβ for all β > 1, we use the reflection principle

[A, Cor. 3.6]. Let λ ∈ Sc and fix β > 1. We claim that Cc − λI is not Fredholm on Dβ,
i.e. that Sc ⊂ σess

(
Cc;Dβ

)
, which is enough since σess

(
Cc;Dβ

) ⊂ σ
(
Cc;Dβ

)
= Sc.
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Let β′ = −β + 1 < 0. As seen above, Cc − λI : Dβ′ −→ Dβ′ is not a Fredholm operator.
Let us write Cc − λI in terms of an operator matrix acting on zDβ′ ⊕ C. Now

Cc − λI =

[
C̃c − λI 0
PCCc|zDβ′ (1− λ)

]
,

where C̃c : zDβ′ −→ zDβ′ is defined by C̃cf = Ccf − (f ◦ ϕc)(0). Moreover, we can write[
C̃c − λI 0
PCCc|zDβ′ (1− λ)

]
=

[
C̃c − λI 0

0 0

]
+K1,

where K1 =

[
0 0

PCCc|zDβ′ (1− λ)

]
is a compact operator on zDβ′ ⊕ C. It follows that

C̃c − λI is not Fredholm on zDβ′ (see [43, Thm. III.16.9], for instance). By [A, Cor 3.6],
the operators C̃c : zDβ′ −→ zDβ′ and C∗

c̄ : zDβ −→ zDβ are similar and hence, C∗
c̄ − λI

is not Fredholm on zDβ. Similarly as above, the operator C∗
c̄ − λI : Dβ −→ Dβ can be

written as an operator matrix acting on zDβ ⊕ C, namely

C∗
c̄ − λI =

[
C∗

c̄ − λI (κϕc(0) − 1)
0 (1− λ)

]
,

where κw is the reproducing kernel of Dβ at a point w ∈ D. Now, the non-Fredholmness
of C∗

c̄ − λI on Dβ follows from that of C∗
c̄ − λI on zDβ since[

C∗
c̄ − λI (κϕc(0) − 1)
0 (1− λ)

]
=

[
C∗

c̄ − λI 0
0 0

]
+K2,

where K2 =

[
0 (κϕc(0) − 1)
0 (1− λ)

]
is a compact operator on zDβ ⊕ C. Since an operator is

Fredholm if and only its adjoint has this property (see [43, Thm. III.16.4], for instance),
we obtain that the operator Cc̄ − λ̄I : Dβ −→ Dβ is not Fredholm. Finally, to obtain the
desired result, note that c̄ ∈ C+ whenever c ∈ C+ and that λ̄ ∈ Sc̄ whenever λ ∈ Sc.

�

Remark 5.3. [1, Cor. 3.7] extends some earlier non-compactness results by using interpo-
lation. In fact, on the Hardy space H2(D) (β = 0) the non-compactness of Cc −Cd follows
from a result of Bourdon [3, Thm. 4.3]. Indeed, since ϕc(1) = ϕ′

c(1) = 1 for all c ∈ C+, but
ϕ′′
c (1) = c �= d = ϕ′′

d(1), we have that the difference Cc − Cd is non-compact on H2(D). In
the weighted Dirichlet spaces Dβ, for β < 1/2—which include e.g. the weighted Bergman
spaces A2

α(D) for α > −1—the non-compactness follows from a result of Moorhouse [42,
Thm. 4] (note that the parametrization in [42] differs from ours). Namely, the necessary
condition

(5.1) lim
|z|−→1−

∣∣∣ ϕc(z)− ϕd(z)

1− ϕc(z)ϕd(z)

∣∣∣( 1− |z|2
1− |ϕc(z)|2 +

1− |z|2
1− |ϕd(z)|2

)
= 0,
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for compactness of Cc−Cd : Dβ −→ Dβ, for β > 1/2, is not satisfied. To see this, consider
any sequence (za) of points in D such that

1− |za|2
|1− za|2 = A,

where A > 0 is a constant. The first factor, the pseudo-hyperbolic distance of ϕc(z) and
ϕd(z), in (5.1) is bounded below by a positive constant since, by inspection,∣∣∣∣∣ ϕc(za)− ϕd(za)

1− ϕc(za)ϕd(za)

∣∣∣∣∣ = |c− d||1− za|2∣∣2(1− |za|2) + (c̄+ d)|1− za|2
∣∣ = |c− d|

|2A+ c̄+ d| > 0.

To show that also the second factor converges to a positive constant, note first that 1−|za|2
|1−za|2 =

Re 1+za
1−za

, where 1+za
1−za

∈ C+. Since g(z) = 1+z
1−z

is a linear fractional transformation from D

onto C+, it is easy to see that (za) ⊂ D and za −→ 1 non-tangentially. Now we can use the
Julia-Carathéodory Theorem (see [16, Thm. 2.44], for instance) which guarantees that, for
any c ∈ C+,

1− |za|
1− |ϕc(za)| −→

1

ϕ′
c(1)

= 1, as za −→ 1 (n.t.).

Since 1
2

1−|za|
1−|ϕc(za)| ≤

1−|za|2
1−|ϕc(za)|2 ≤ 2 1−|za|

1−|ϕc(za)| for all za, it follows that the second factor in (5.1)
converges to a positive constant as za −→ 1.

Later, Kriete and Moorhouse [35] studied the non-compactness of linear combinations
on the Hardy, and the weighted Bergman spaces.

Indeed, these results would have been enough for our purposes since the reflection prin-
ciple takes care of the scale β > 1/2 and the non-compactness of Cc − Cd on the Dirichlet
space D1/2 can be seen by taking the consideration to the half-plane via unitary equiva-
lence and proceeding as in Theorem 5.4 by using a version of Paley-Wiener Theorem for
the Dirichlet space (see [18, Thm. 3]).

We can use Proposition 5.1 to give an alternative proof to [B, Thm. 1.1.ii)], i.e. the
essential spectrum of non-invertible parabolic composition operators in the upper half-plane
setting. Recall our convention H2(Π+) = A2

−1(Π
+).

Theorem 5.4. Let τ(w) = τc(w) = w + ic, where c ∈ C+, be a parabolic self-map of Π+

such that τ(Π+) � Π+. Then, for all α ≥ −1,

σess

(
Cτc ;A2

α(Π
+)
)
= Sc.

Moreover, equality holds on Dα(Π
+), for α > −1, as well.

Proof. It is easy to check that (Cτc)c∈C+ forms a holomorphic semi-group of operators.
Observe that Step 1 in the proof of [B, Thm. 1.1] alone gives actually a formula for
the spectrum of Cc (but not the essential spectrum!). This follows from the fact that
the spectrum of a multiplication operator is just the closure of the image of the symbol
and, as we already know very well, in this case Cc : A2

α(Π
+) −→ A2

α(Π
+) is similar to
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the multiplication by e−ct on L2
α+1 = L2

α+1(R+) by the Paley-Wiener theorem and its
generalization. So, σ

(
Cτc ;A2

α(Π
+)
)
= Sc.

We will also use the suitable versions of Paley-Wiener theorem to show that Cτc − Cτd

is non-compact on A2
α(Π

+), for all α ≥ −1 and c, d ∈ C+ such that c �= d. Indeed, the
operator Cτc − Cτd : A2

α(Π
+) −→ A2

α(Π
+), for α ≥ −1, is similar to Mg : L2

α+1 −→ L2
α+1,

where Mg is the multiplication by the function

g(t) = e−ct − e−dt, t > 0.

Note that g(t) = e−ct − e−dt �≡ 0 since c �= d. Moreover, since g is continuous, there exists
an open interval I ⊂ R+ such that 0 < A ≤ |g(t)| ≤ B < ∞ for all t ∈ I and suitable
constants A,B. It follows that

(5.2) A1

∫
I

|f(t)|2t−(α+1) dt ≤
∫
I

|(gf)(t)|2t−(α+1) dt ≤ B1

∫
I

|f(t)|2t−(α+1) dt,

for some constants A1, B1 > 0.
Denote by K ⊂ L2

α+1 the space of functions belonging to L2
α+1 and being supported on I.

By (5.2), the subspace Mg(K) is isomorphic to K which is isomorphic to L2
α+1. Therefore,

Mg is not compact on L2
α+1 and neither is Cτc − Cτd on A2

α(Π
+), for any α ≥ −1, by

similarity.

Since the assumptions of Proposition 5.1 are satisfied, we have that, for all α > −1,

σ
(
Cτc ;A2

α(Π
+)
)
= σess

(
Cτc ;A2

α(Π
+)
)
= Sc.

By similarity (see [B, Lemma 5.1] and note that μ = 1 in this case) the above holds also
on D2

α(Π
+), for α > −1. �

6. Universal operators

An operator U acting on a separable infinite-dimensional Hilbert space H is called uni-
versal if for any T ∈ L(H) there exists a constant c �= 0 and a closed U -invariant subspace
M ⊂ H, i.e. U(M) ⊂ M, such that the operators cT : H −→ H and U |M : M −→ M
are similar.

Rota’s model, a backward shift of infinite multiplicity B∞,

B∞ : (⊕n�
2)2 −→ (⊕n�

2)2, B∞(x1, x2, . . . ) = (x2, x3, · · · ),
is a generic example of universal operators. The main tool for finding new concrete exam-
ples of universal operators is a very elegant sufficient condition—that also Rota’s model
satisfy—given by Caradus in 1969:

Theorem (Caradus’ Theorem [4]). An operator U ∈ L(H) is universal if U(H) = H and
dim KerU = ∞.

Note that the condition dim KerU = ∞ is necessary for U to model the zero-operator;
sometimes the zero-operator is excluded from the consideration but a universal operator
has to model an operator with infinite-dimensional kernel in any case. For an overview of
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universal operators, see Chapter 8 in the recent monograph [7] by Chalendar and Partington
and the survey [12] by Cowen and Gallardo-Gutiérrez.

The idea of universal operators was motivated by the Invariant Subspace Problem (ISP)
on Hilbert space which continues to be one of the major open problems in operator theory.
The question is whether every operator T ∈ L(H) has a closed invariant subspace that
is non-trivial, i.e. different from the trivial subspaces {0} and H. The ISP was stated
explicitly in the 1950s after Beurling’s work on invariant subspaces of shifts and the proof
by Aronszajn and Smith [2] that all compact operators on Hilbert spaces with dimension at
least 2 have a non-trivial invariant subspace (a result that also von Neumann had discovered
without publishing it). Since then it has attracted the attention of many mathematicians
in the field. For the numerous different approaches to this (in)famous problem, we refer to
[7].

Universal operators provide one point of view for trying to find an answer to ISP. Namely,
the answer is positive if and only if all minimal invariant subspaces of some (and hence
any) universal operator are 1-dimensional. Here, invariant subspace is called minimal if it
does not contain any other invariant subspaces except for {0}. Indeed, if every operator
T ∈ L(H) has a non-trivial invariant subspace and U ∈ L(H) is a universal operator
having an invariant subspace M such that, for some non-zero c ∈ C, μT : H −→ H and
U |M : M −→ M are similar, then M is a non-minimal infinite-dimensional subspace since
it is isomorphic to H. On the other hand, a finite-dimensional U -invariant subspace always
contains an eigenspace which is 1-dimensional and U -invariant. The other direction follows
likewise since T : H −→ H is similar, for some choices of μ and M, to μ−1U |M : M −→ M,
where H and M are isomorphic.

An old tale took a new twist in 1987, when Nordgren, Rosenthal and Wintrobe [47]
showed that Cϕ−λI : H2(D) −→ H2(D) is universal when ϕ is a hyperbolic automorphism
of D and λ is an interior point of the spectrum σ

(
Cϕ;H

2(D)
)
. In fact, they showed that

Cϕ − λI on H2(D) satisfies Caradus’ condition. Recently, Cowen and Gallardo-Gutiérrez
[13] gave another, more straightforward proof for the ontoness of Cϕ − λI. Since the
invariant subspaces of Cϕ−λI are exactly the invariant subspaces of Cϕ, this result reduces
the ISP to be a question of the lattice of invariant subspaces of Cϕ on H2(D). The
potential benefit of this is that the (non-universal) operator Cϕ on H2(D) is very concrete
and this brings the function-theoretic tools to one’s hand. Therefore, the problem of
whether every invariant subspace of Cϕ contains an eigenspace, has aroused interest; see
e.g. [38, 8, 39, 21, 22].

6.1. Main results of Article [C]. Article [C] is a smorgasbord of universality. We con-
sider the class of universal operators, their properties and provide new concrete examples
of universal operators. Moreover, we construct examples of commuting universal pairs,
which is a concept introduced by Müller [44].

The class of universal operators. In Article [C] one of our aims was to find some conditions
which would help to recognize universal (or non-universal) operators. Caradus’ sufficient
condition—or even its generalization by Pozzi [51, Thm. 3.8] to operators whose range
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has finite codimension—are far from being necessary. Indeed, we construct some simple
examples of universal operators which have infinite codimensional or non-closed range.
Nevertheless, it was observed in [12, p. 44] that an operator U ∈ L(H) is universal if
and only if it has an invariant subspace M such that U |M : M −→ M satisfies Caradus’
condition.

Denote by Φ+(H) the class of upper semi-Fredholm operators on H, that is,

Φ+(H) =
{
T ∈ L(H) : RanT is closed and dim KerT = n < ∞}

.

In the theorem below, σ+
e (T ) denotes the essential approximative point spectrum,

σ+
e (T ) = {λ ∈ C : T − λI is not upper semi-Fredholm}.

The main observation in [C] concerning the full class of universal operators is that an
universal operator must have big essential spectrum.

Theorem ([C, Thm. 2.2]). Suppose that U ∈ L(H) is an arbitrary universal operator.
Then the following hold:

(i) There is r > 0 such that the open disk

B(0, r) ⊂ σp(U) ∩ σ+
e (U) ⊂ σe(U) ⊂ σ(U),

and, moreover, any λ ∈ B(0, r) is an eigenvalue of U having infinite multiplicity.
In particular, if U ∈ L(H) then 0 is an interior point of σ+

e (U), σe(U), σp(U) as
well as σ(U).

(ii) There is r > 0 and a vector-valued holomorphic map z �→ yz : B(0, r) −→ H
consisting of eigenvectors for U , for which

Uyz = zyz, z ∈ B(0, r).

The proof relies on the properties of Rota’s model. The results above are useful in
excluding many concrete operators from being universal. For instance, an operator of the
form T − λI, where λ ∈ σ(T ), can not be universal if λ ∈ ∂σ(T ).

Denote by Φ−(H) the class of lower semi-Fredholm operators on H, that is,

Φ−(H) =
{
T ∈ L(H) : codim RanT < ∞}

.

The subclass of universal operators satisfying the Caradus-Pozzi condition is exactly

Φ−(H) \ Φ(H).

It follows from the theory of semi-Fredholm operators that the Caradus-Pozzi class is
preserved by small and compact perturbations. On the contrary, the class of all universal
operators is neither open nor preserved by compact perturbations as our next example
shows (see [C, Example 2.2]): Consider the operator

V =

(
U IH
0 0

)
,
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where U ∈ L(H) is universal and IH is the identity map of H. Then V is universal on
H ⊕H. Define a sequence (Vn) of injective, hence non-universal, operators on H ⊕H by
setting

Vn =

(
U IH
1
n
IH 0

)
.

Since ‖Vn − V ‖ = 1
n

we have that V ∈ U(H⊕H) is not an interior point of the full class
of universal operators on H⊕H.

Furthermore, let K : H −→ H be the compact diagonal map defined by Ken = 1
n
en for

n ∈ N, where (en) is some fixed orthonormal basis basis of H. We consider the operator

W =

(
U IH
K 0

)
= V +

(
0 0
K 0

)
,

on H ⊕ H, that is, W (x, y) = (Ux + y,Kx) for (x, y) ∈ H ⊕ H. Thus W is a compact
perturbation of V ∈ U(H⊕H), but W is not a universal operator, since Ker(W ) = {(0, 0)}.

Universality of Cϕ − λI. In what follows, ϕ is always a hyperbolic automorphism of D.
Recall that the spectrum of Cϕ on Dβ, for all β ∈ R, is

σ
(
Cϕ;Dβ

)
=

{
λ ∈ C : λ|1−2β|/2

ϕ ≤ |λ| ≤ λ−|1−2β|/2
ϕ

}
,

where λϕ ∈ (0, 1) is the multiplier of ϕ (see Section 3 for the spectral results). More-
over, when β < 1/2, all interior points of the spectrum are eigenvalues of Cϕ of infinite
multiplicity and when β > 1/2, we have that σp

(
Cϕ;Dβ

)
= {1}.

The main result of [C] points to an interesting phenomenon regarding the universality
of Cϕ − λI on Dβ. Firstly, the operator Cϕ − λI : Dβ −→ Dβ is not universal for any
λ ∈ C or β ≥ 1/2. In the classical Dirichlet space D1/2 the answer follows from [C,
Thm. 2.2] (see also [C, Cor. 2.4]) since σ

(
Cϕ;D1/2

)
= T. For β > 1/2, just notice that

dim Ker
(
Cϕ − λI;Dβ

)
is 0 (when λ �= 1) or 1 (when λ = 1).

Recall that H2(D) = D0 and that

σ
(
Cϕ;D0

)
= σ

(
Cϕ;D1

)
.

Since Cϕ − λI : D0 −→ D0, where λ is an interior point of σ
(
Cϕ;D0

)
, satisfies Caradus’

condition by [47], we are able to show that the adjoint C∗
ϕ− λ̄I is universal on D1 (denoted

by S2(D) in [C]).

Theorem ([C, Thm. 3.1]). Let ϕ be a hyperbolic automorphism of D. The operator C∗
ϕ−λI

is universal on D1 when λ is an interior point of σ
(
Cϕ;D1

)
.

The proof starts from the NRW-result and it uses the similarity given by the reflection
principle [A, Cor. 3.6]. Indeed, the operator C∗

ϕ − λI : D1 −→ D1 satisfies Caradus’
condition for λ �= 1 and for C∗

ϕ − I : D1 −→ D1 it holds that codim Ran (C∗
ϕ − I) = 1.

Moreover, by using Heller’s formula for the adjoint C∗
ϕ (see [26, Thm. 6.5]) and the fact

that Caradus-Pozzi class is preserved by compact perturbations, we can conclude that the
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operator
1 + r2

1− r2
Cϕr −

r

1− r2
(
M∗

z +Mz

)
Cϕr − λI : D1 −→ D1

is universal as well. Above, Mz on D1 denotes the multiplication by the function f(z) = z
and its adjoint M∗

z is defined by

M∗
z

( ∞∑
n=0

anz
n
)
= a1 +

∞∑
n=1

an+1

(n+ 1

n

)n

zn.

Universal pairs. Müller [44] generalized the concept of universality for commuting n-tuples
(T1, T2, . . . , Tn) ∈ L(H)n, where n ∈ N. The commuting n-tuple (U1, U2, . . . , Un) is uni-
versal, if for each (T1, T2, . . . , Tn) ∈ L(H)n there exists a constant c �= 0 and a subspace
M ⊂ H invariant for all Ui, i = 1, . . . , n, such that Ui|M and cTi are similar for all
i = 1, . . . , n. From the definition it is clear that each operator Ui, for all i = 1, . . . , n,
has to be universal itself but much more is required and even constructing universal pairs
(n = 2) is rather difficult. The observation below shows that the operators can not depend
on each other in algebraic sense to form a universal pair:

Proposition ([C, Prop. 4.1]). Let T ∈ L(H).
(i) If S ∈ L(H) commutes with T , then (T, ST ) is not a universal commuting pair. In

particular, (T, p(T )T ) is not a universal commuting pair for any complex polynomial
p(z) = a1z + . . .+ anz

n satisfying p(0) = 0, where p(T ) = a1T + . . .+ anT
n.

(ii) (Tm, T n) is not a universal commuting pair for any m,n ∈ N.

There is a sufficient condition—analogous to that of Caradus—for a commuting n-tuple
to be universal which can be formulated for pairs as follows:

Proposition ([44, Cor. 8]). Let T1, T2 ∈ L(H) be commuting surjective operators satisfying
(i) dim Ker(T1) ∩ Ker(T2) = ∞,
(ii) Ker(T1T2) = Ker(T1) + Ker(T1).

Then the pair (T1, T2) is universal for all commuting pairs.

Using the above condition we were able to find new examples of universal pairs: Denote
by C2(H) the space of Hilbert-Schmidt operators on H. Equipped with the Hilbert-Schmidt
norm

‖T‖C2 =
( ∞∑

n=1

‖Ten‖2
)1/2

,

which is independent of the choice of the orthonormal basis (en) ⊂ H, the space C2(H) is
a separable Hilbert space. Moreover, for all T ∈ C2(H) and S, U ∈ L(H) it holds that

‖STU‖C2 ≤ ‖S‖‖U‖‖T‖C2 .
This implies that the left multiplication LU : C2(H) −→ C2(H), defined by LUT = UT
for any U ∈ L(H), is a bounded linear operator. Similarly, the right multiplication RU :

T �−→ TU , for any U ∈ L(H), is bounded on C2(H). Moreover, (LU , RU) ∈ L(C2(H)
)2 is

a commuting pair.
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Let B∞ : (⊕n�
2)2 −→ (⊕n�

2)2 be Rota’s universal model and denote by B∗
∞ its adjoint,

which is the forward shift of infinite multiplicity,
B∗

∞ : (⊕n�
2)2 −→ (⊕n�

2)2, B∗
∞(x1, x2, . . . ) = (0, x1, x2, · · · ).

It is shown in [C, Example 4.2.(iii)] that the commuting pair(
LB∞ , RB∗∞

) ∈ L(C2((⊕n�
2)2

))2
is universal.

It appears to be an intriguing question whether it is possible to find a universal pair
constructed from the NRW-operators Cϕ − λI on H2(D). While our search for such a pair
was eventually unsuccessful, we managed to exclude many candidates (see [C, Example
4.3]). For instance,

(i) (Cϕr − λI, Cϕr − μI) is not a universal pair for any λ �= μ.
(ii) (Cϕr − λI, Cϕu − λ2I) ∈ (L(H2(D))

)2 is not a universal pair for any 0 < r < 1,
u = 2r

1+r2
and any interior point λ of the spectrum σ(Cϕr). More generally, replacing

Cϕu − λ2 above by Cn
ϕr

− λn, for n ≥ 3, we have yet other non-universal pairs.

6.2. Further questions. The characterization of universal operators in terms of its re-
striction to some of its invariant subspace satisfying Caradus’ condition is perhaps not
very useful since universal operators have a lot of invariant subspaces. Therefore, find-
ing another sufficient and necessary condition for an operator to be universal would be
valuable.

The obvious question regarding the operator Cϕ − λI is that is it universal on some
other space than on H2(D) on the scale of Dβ, β < 1/2, for instance, on A2(D)? There
are good reasons to believe that the answer is yes. Namely, the spectra of Cϕ − λI on
all Dβ for β < 1/2 is an annulus (radii depending on the space) with all its interior
points belonging to the essential spectrum. Also, using the reflection principle and the
fact that dim Ker

(
Cϕ − λI;Dβ

)
= 0 for all λ �= 1 and β > 1/2, it can be showed that

Ran
(
Cϕ − λI;Dβ′

)
= Dβ′ , for all β′ = −β + 1 < 1/2. However, proving the ontoness of

Cϕ − λI on Dβ, for β < 1/2, has turned out to be very challenging.

Closing words

The question whether Cϕ − λI is universal on A2(D) was, in fact, a starting point of
this thesis. Although this particular problem remains unsolved, it has still provided a
continuous inspiration for the work presented here. Despite its long history, it seems clear
that the story of composition operators is nowhere near to its end.
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