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Abstract

We study and compare spectral properties of various volume-integral-equation formulations. The equations are written for the

electric flux, current, field, and potentials, and discretized with basis functions spanning the appropriate function spaces. Each

formulation leads to eigenvalue distributions of different kind due to the effects of discretization procedure, namely, the choice

of basis and testing functions. The discrete spectrum of the potential formulation reproduces the theoretically predicted spectrum

almost exactly while the spectra of other formulations deviate from the ideal one. It is shown that the potential formulation has the

spectral properties desired from the preconditioning perspective.
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1. Introduction

Electromagnetic scattering problems involving inhomoge-

neous objects are often solved by the volume-integral-equation

methods (VIE). The VIE method is suitable for complicated

scattering problems due to its simplicity; only the Green’s func-

tion of the background is required. Moreover, the radiation con-

dition is automatically satisfied. The drawback in the VIEs is

that the discretization procedure leads to a full matrix equation

in contrast to, for example, the finite-element method where

the system is sparse. This implies that to obtain a solution for

the matrix equation is of order O(N3) complexity for time and

O(N2) for memory, where N is the number of unknowns. For

the lowest order basis, typically 10 unknowns per wavelength

are needed.

High computational complexity prevents the usage of the

direct VIE solvers for large structures. Using an iterative method

such as the conjugate-gradient (CG) or generalized minimal

residual (GMRES) method, the solution time is reduced toO(MN2)

where M is the number of iterations needed to solve the sys-

tem. By accelerating the matrix-vector multiplication required

in each iteration step with, e.g., a fast multilevel multipole al-

gorithm (MLFMA) or fast Fourier transform (FFT) based tech-

niques [1, 2, 3, 4, 5], the computational complexity is reduced

to O(MNlogN) for time and O(N) − O(NlogN) for memory.

Hence, solution time becomes manageable if M << N.

For an efficient algorithm it is necessary that the number of

iterations M is much smaller than N. M depends on the condi-

tioning of the matrix which, in turn, depends on materials, size,

and shape of the scatterer. Unfortunately, the number of itera-

tions increases rapidly with respect to the permittivity and size

[6, 7, 8, 9]. To understand reasons for this, we need to study the
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spectrum of the integral operator. Theoretically, the spectrum

of the volume integral operator has been studied in [10, 11, 12].

These studies show that the spectrum and the spectral radius de-

pend on the permittivity function. The spectral radius, in turn,

defines the conditioning of the matrix, and consequently, the

convergence of the iterative solution.

The spectral properties of the discrete system (the eigenval-

ues of the matrix) depend on the discretization technique em-

ployed, hence, it is important to study the effects of discretiza-

tion numerically. Numerical studies, however, have been re-

stricted to a couple of the most popular volume-integral-equation

formulations and discretizations. The discrete-dipole-approximation

(DDA) type formulations with cubic elements were analyzed in

[10, 13, 14], and with rectangular elements in [15]. Moreover,

the spectral properties of the electric current J-VIE with the L2

Galerkin dicretization for tetrahedral mesh have been studied

[16]. It is worth noting that the integration of Green’s tensor

(IGT) formulation of the DDA is almost equivalent to the J-

VIE discretized with cubic elements and point matching. The

only difference is that the DDA maps the polarization current to

the electric field and the J-VIE maps the current to itself, hence,

the matrix elements differ by a factor of (ǫr − 1).

In this paper, we compare the eigenvalue distributions com-

puted by four VIE formulations and their standard discretiza-

tions. We consider the electric flux density formulation (D-

VIE) discretized with the SWG (Schaubert-Wilton-Glisson) ba-

sis and testing functions [17], field formulation (E-VIE) with

the curl conforming basis and testing functions [18, 19], cur-

rent formulation (J-VIE) [20] with L2 basis and testing func-

tions, and potential formulation (P-VIE) with scalar and vector

H1 basis function and point matching [21]. We apply linear

linear tetrahedral elements for discretizations and the results

presented here cannot be directly generalized to other element

shapes such as rectangular or curvilinear elements.
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2. Formulations

Consider time-harmonic electromagnetic wave scattering by

an inhomogeneous dielectric object bounded by volume V in

free space. The time factor of exp(−iωt) is assumed and sup-

pressed. The relative permittivity ǫr(r) may be a function of

position in V . The background is homogeneous with constant

ǫ0 and µ0. Let us define the volume potential operator as

V(F)(r) =

∫

V

G(r, r′) F(r′) dV ′, (1)

where G is the Green’s function of the background. By using

the volume-equivalence principle, the following representations

are obtained for the total electric E, and magnetic H fields [22]

E = Einc +
−1

iωǫ0
(∇∇ + k2 ¯̄I) ·V(J) − ∇ ×V(M)

H = Hinc +
−1

iωµ0

(∇∇ + k2 ¯̄I) ·V(M) + ∇ ×V(J)
(2)

in which Einc and Hinc denote the incident fields with sources

outside the object. The source functions in (2) are the equivalent

electric and magnetic current densities

J(r) = −iωǫ0(ǫr(r) − 1)E(r)

M(r) = −iωµ0(µr(r) − 1)H(r).
(3)

From now on we assume that the permeability µr = 1, hence

the magnetic current M is identically zero. Based on the rep-

resentations in (2), we can derive three VIE formulations. The

most widely used formulation is the D-formulation or D-VIE

in which the unknown function is the flux density D [17, 23].

By representing the equivalent current J in terms of the flux

density and inserting it into (2), the D-VIE is obtained:

ǫ0Einc = ¯̄ǫ−1
r · D − (∇∇ + k2 ¯̄I) ·V( ¯̄χ · D). (4)

Here the material parameter ¯̄χ = ¯̄I − ¯̄ǫ−1
r .

The integral-equation can be written for the equivalent po-

larization current J which is the actual source for the scattered

fields [20]. We call this formulation as the J-formulation or J-

VIE, and it reads as

J inc = J − ¯̄τ · (∇∇ + k2 ¯̄I) ·V(J), (5)

where ¯̄τ = ¯̄ǫr −
¯̄I.

To derive the electric field E-formulation (E-VIE), we use

the identity

(∇∇ + k2 ¯̄I) ·V(F) = ∇ × (∇ ×V(F)) − F, (6)

since it is more natural to apply the curl rather than div-operator

to the electric field. Representing the unknown in terms of the

electric field, the E-VIE can be written as follows: [19, 18]:

Einc = ¯̄ǫr · E − ∇ × ∇ ×V( ¯̄τ · E). (7)

Finally, the integral-equation for the vector A and scalar φ

potentials, defined as

E = iωA − ∇φ, H = µ−1
0 ∇ × A, (8)

can be derived by applying the Lorentz gauge

iω∇ · A = −k2φ (9)

in which case both potentials satisfy the Helmholtz equation.

Using the volume-equivalence principle, the potential formula-

tion P-VIE can be written as [24]















iωAinc = iωA − k2V[ ¯̄τ · (iωA − ∇φ)]

φinc = φ −S[ ¯̄τ · (iωA − ∇φ)]
(10)

in which

S(F)(r) =

∫

S

n(r′) · F(r′)G(r, r′) dS ′, (11)

and n′ is the outer unit normal vector of the surfaces S on which

the permittivity is discontinuous.

3. Discretizations

In this section, we consider discretizations of the D-, J-, E-,

and P-formulations. Let us divide the object with linear tetrahe-

dral elements, and define the basis b and the testing t functions

on the tetrahedral mesh. The residual error is forced to be or-

thogonal to test functions with the symmetric L2 product.

〈F,G〉 =

∫

V

F · G dV, (12)

where V is the volume of the object.

As pointed out in [25] and [26] to guarantee the conver-

gence in the norm of the solution, testing functions should span

the L2 dual space of the range of the integral operator. The

mapping properties of the formulations read as

D-formulation: Hdiv(Ω)3 → Hcurl(Ω)3

E-formulation: Hcurl(Ω)3 → Hdiv(Ω)3

J-formulation: L2(Ω)3 → L2(Ω)3

P-formulation: H1(Ω)3 × H1(Ω)1 → H1(Ω)3 × H1(Ω)1,

where L2 is a function space of square integrable functions, and

Hdiv(Ω)3 = { f
∣

∣

∣ f ∈ L2(Ω)3 ∧ ∇ · f ∈ L2(Ω)1}

Hcurl(Ω)3 = { f
∣

∣

∣ f ∈ L2(Ω)3 ∧ ∇ × f ∈ L2(Ω)3}

H1(Ω)1 = { f
∣

∣

∣ f ∈ L2(Ω)1 ∧ ∇ f ∈ L2(Ω)3}

(13)

and H1(Ω)3 is a function space of 3D-vectors whose compo-

nents are in H1(Ω)1.

We apply Galerkin’s method with identical basis and test-

ing functions to discretize the J-, D-, and E-formulations. Since

Hdiv and Hcurl are L2 dual to each other and L2 is dual to it-

self, we can see that the J-, D-, and E-equations are tested in
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the dual space of the range when Galerkin’s testing is applied.

Galerkin’s testing may not work for the P-formulations since

the L2 dual space of H1 is H−1. We use the point-matching

scheme since it has been used earlier in [21]. It should be noted,

however, that Knonecker’s delta functions, i.e., test functions in

the point-matching procedure, do not span the proper dual space

of H1 which may lead to accuracy problems.

3.1. Discretization of D-formulation

The D-formulation is discretized with Galerkin’s method

using the lowest mixed order divergence conforming SWG ba-

sis bdiv and testing functions tdiv [17] which span the finite-

dimensional Hdiv space. The SWG function associated to the

face having nodes i jk is defined in terms of the nodal function

Ni as

bdiv
i jk = 2Ai jk[Ni(∇N j ×∇Nk)+N j(∇Nk ×∇Ni)+Nk(∇Ni ×∇N j)]

(14)

where Ai jk is the area of face i jk. The hyper-singularity of the

kernel is reduced by moving one derivative into the testing func-

tion and another into the basis function by integrating by parts.

Since basis and testing functions are divergence conforming,

some of the surface integrals cancel out on element boundaries.

The elements of the system matrix can be written as

AD
mn =

〈

tdiv
m , ¯̄ǫ−1

m · b
div
n −

(

∇∇ · +k2
)

S( ¯̄χn · b
div
n )
〉

Vm

=

∫

Vm

tdiv
m · ( ¯̄ǫ−1

m · b
div
n ) dV

+

∫

∂Vm

n · tdiv
m

∫

∂Vn

G n′ · ( ¯̄χn · b
div
n ) dS ′ dS

+

∫

Vm

(∇ · tdiv
m )

∫

Vn

G∇′ · ( ¯̄χn · b
div
n ) dV ′ dV

−

∫

Vm

(∇ · tdiv
m )

∫

∂Vn

G n′ · ( ¯̄χn · b
div
n ) dS ′ dV

−

∫

∂Vm

n · tdiv
m

∫

Vn

G∇′ · ( ¯̄χn · b
div
n ) dV ′ dS

−

∫

Vm

tdiv
m · k

2 ¯̄I ·

∫

Vn

G( ¯̄χn · b
div
n ) dV ′dV.

(15)

3.2. Discretization of E-formulation

The unknown electric E field has continuous tangential com-

ponents on element boundaries, hence the field should be ex-

panded with curl conforming basis functions (Hcurl). In terms

of the nodal functions, the curl conforming function associated

to the edge ei j is expressed as

bcurl
i j = li j(Ni∇N j − N j∇Ni), (16)

in which li j is the length of the edge ei j. Analogously to the

case of the D-formulation, we can discretize the operator of the

E-formulation with the curl conforming basis bcurl and testing

tcurl functions as

AE
mn =

〈

tcurl
m , ¯̄ǫm · b

curl
n − ∇ × ∇ ×S( ¯̄τn · b

curl
n )
〉

V

=

∫

Vm

tcurl
m · ( ¯̄ǫm · b

curl
n ) dV

+

∫

∂Vm

n× tcurl
m ·

∫

∂Vn

G n′ × ( ¯̄τn · b
curl
n ) dS ′ dS

+

∫

Vm

(∇ × tcurl
m )

∫

Vn

G∇′ × ( ¯̄τn · b
curl
n ) dV ′ dV

−

∫

Vm

(∇ × tcurl
m )

∫

∂Vn

G n′ × ( ¯̄τn · b
curl
n ) dS ′ dV

−

∫

∂Vm

n× tcurl
m

∫

Vn

G∇′ × ( ¯̄τn · b
curl
n ) dV ′ dS .

(17)

3.3. Discretization of J-formulation

The equivalent volume currents have no continuities across

interfaces of discontinuous permittivity. Hence, it is essential

that basis functions bL do not enforce any continuity across the

element interfaces. We use piecewise constant basis and test-

ing functions to expand the unknowns (three functions in each

tetrahedra). These functions can be written as

bL
i jkl =

1
√

Vik jl

(Ni + N j + Nk + Nl)êxyz =
1
√

Vik jl

êxyz, (18)

in which êxyz corresponds unit vector êx or êy or êz, and Vi jkl is

the volume of element i jkl. By moving one derivative into the

testing function and the other into the basis function, we obtain

AJ
mn =

〈

tL
m, bL

n − ¯̄τm · (∇∇ + k2 ¯̄I) · S(bL
n )
〉

Vm

=

∫

Vm

tL
m · b

L
n dV

+

∫

∂Vm

n · ( ¯̄τT
m · t

L
m) ·

∫

∂Vn

G n′ · bL
n dS ′ dS

−

∫

Vm

tL
m · ¯̄τm · k

2 ¯̄I ·

∫

Vn

GbL
n dV ′dV,

(19)

where ¯̄τT denotes the transpose of ¯̄τ.

3.4. Discretization of P-formulation

In the potential formulation, we have two different unknowns

and two equations for the vector and scalar potentials. The

scalar potential is expanded by the standard nodal basis func-

tions NH1
n , and each component of the vector potential is repre-

sented by the nodal basis function giving a vector H1-function

NH1
n .

The point-matching scheme is applied to discretize the equa-

tions, i.e., test functions are Knonecker’s delta functions δm at

nodes. Hence, we can write the system matrix as a block matrix

AP =





























AxAx AxAy AxAz AxV

AyAx AyAy AyAz AyV

AzAx AzAy AzAz AzV

VAx VAy VAz VV





























(20)
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where

(AiA j)mn = êi · ê jδmNm − êi · k
2

∫

Vn

( ¯̄τn · ê j)NnG dV ′

(AiV)mn = êi · k
2

∫

Vn

( ¯̄τn · ∇
′Nn)G dV ′

(VA j)mn = −

∫

∂Vn

n′ · ( ¯̄τn · ê jNn)G dS ′

(VV)mn = δmNm +

∫

∂Vn

n′ · ( ¯̄τn · ∇
′Nn)G dS ′.

(21)

4. Numerical experiments

In this section, we study numerical properties of the formu-

lations and discretizations developed in the previous section.

We consider numerical spectra and accuracy of the discretized

systems and briefly discuss preconditioning strategies based on

the spectral properties.

4.1. Numerical spectra

First, we consider a small spherical object discretized with

676 tetrahedral elements. The size parameter of the sphere

kr = 0.01 and the relative permittivity ǫr = 5. The object is

small compared to the wavelength since we are interested in the

essential spectrum. At higher frequencies, discrete eigenvalues

associated with resonance solutions appear [10]. Fig. 1 shows

the eigenvalues of the discretized matrices arising from the J-,

D-, E-, and P-formulations (blue stars), and the red circles de-

note theoretically predicted accumulation points of eigenvalues

when the scatterer is a smooth sphere [12]. Three accumula-

tion points are predicted for an object with smooth surface and

the essential spectrum σe = {1,
ǫr+1

2
, ǫr}. For objects with non-

smooth surfaces, the spectrum is bounded between 1 and ǫr.

From Fig. 1 it is evident that some eigenvalues of the D-

and E-formulations locate outside the bounds 1 and ǫr whereas

the eigenvalues of the J- and P- formulations lie between the

bounds. The reason that the D-, and E-formulations behave

such a way is that the basis and test functions do not form an

orthogonal dual pair, i.e., the Gram matrices < tdiv
m , b

div
n > and

< tcurl
m , b

curl
n > are not the identity matrices. It is possible to

cancel this effect by multiplying the operator by the inverse of

the Gram matrix. This is demonstrated in Fig. 2. Now all the

spectra lie in a line segment between points 1 and ǫr. It should

be noted here that multiplying the J- or P-formulations with the

inverse of the Gram matrix does not affect the spectrum since

in these formulations the Gram matrix is the identity matrix.

4.2. Dimensions of subspaces

Let us recall the (incomplete) Helmholtz decomposition of

involved function spaces:

L2(Ω) = ∇H1
0
(Ω) + ∇ × Hcurl,0(Ω) +W(Ω)

Hdiv(Ω) = ∇ × Hcurl,0(Ω) + Xnsol(Ω)

Hcurl(Ω) = ∇H1
0
(Ω) + Xnirr(Ω),

(22)
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Figure 1: Eigenvalues of the J-VIE, D-VIE, E-VIE, and P-VIE matrices (blue

stars). Theoretically expected accumulation points of eigenvalues in case of a

smooth surface (red circles). The scatterer is a dielectric (ǫr = 5) sphere of size

kr = 0.01 discretized by 676 tetrahedral elements.

in which W denotes the gradients of harmonic H1 fields, Xnsol

is the space of non-solenoidal Hdiv functions, and Xnirr is the

space of non-irrotational Hcurl functions. The subscript 0 in

H0 denotes vanishing boundary value, and vanishing tangential

trace in Hcurl,0.

Now, we can investigate dimensions of the above-mentioned

subspaces. Fig. 3 shows the real part of the eigenvalue with re-

spect to the spectral index. Here, we note that each formulation

leads to a different number of unknowns, hence the number of

eigenvalues is not the same for all formulations. The J-VIE

gives 3Nt, D-VIE N f , E-VIE Ne, and P-VIE 4Nn unknowns

and eigenvalues, where Nt, N f , Ne, and Nn are the number of

tetrahedra, faces, edges, and nodes, respectively. In Table 1,

the number of tetrahedra, nodes, edges, and faces in the ap-

plied tetrahedral mesh are presented. In addition, the number
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Figure 2: Same as in Fig. 1 except the system matrices are multiplied by the

inverses of associated Gram matrices.

of boundary and interior nodes, edges, and faces are shown.

For the J-VIE formulation, we find that there are 577 eigen-

values at 1. As discussed in [16], the solenoidal (∇×Hcurl,0) sub-

space of L2 is responsible of eigenvalues at 1. The solenoidal

subspace of the space spanned by the piecewise constant func-

tions is associated with the interior edges (∇ × bcurl) and the

degrees of freedom is do f = Ni
e − Ni

n = 577 where Ni
e, Ni

n are

the number of interior edges and nodes, respectively. The same

solenoidal subspace is part of the space spanned by the SWG-

functions used in the D-formulation [23], and therefore, we can

find 577 eigenvalues at 1.

The other accumulation point at ǫr = 5 is due to the ir-

rotational (∇H1
0
) subspace [16]. Irrotational subspace can be

spanned by the ∇Ni functions associated to the interior nodes

of the mesh. Hence, we can detect 70 eigenvalues at 5 in case

of the J-, and E-formulations.

In the J-VIE, the remaining eigenvalues are due to the gra-

Table 1: Details of the mesh.

total interior boundary

tetrahedra 676 - -

nodes 172 70 102

edges 947 647 300

faces 1452 1252 200

dients of the harmonic H1-functions with N f − Ni
n degrees of

freedom. This space corresponds equivalent surface charges on

element boundaries. The remaining eigenvalues of the D-VIE

are related to the non-solenoidal part (Xnsol) of the flux density

with Nt + Nb
e − Nb

n degrees of freedom. The non-irrotational

part (Xnirr) of the field in the E-VIE has N f − Nt + Nb
n degrees

of freedom.

In the P-VIE, we can directly observe that the equation for

the vector potential is of the form identity+ compact in H1(Ω)3,

hence all the eigenvalues (3Nn) accumulate to 1. Let us take a

look at the scalar potential equation

φinc = φ −

∫

S

n′ · (ǫr − 1)(iωA − ∇′φ)G dS ′

= φ −

∫

S

n′ · (ǫr − 1)(iωA)G dS ′

+ p.v.

∫

S

(ǫr − 1)∂n′Gφ dS ′

+
Ωr

4π
(ǫr − 1)φ,

(23)

where, ∂n′G denotes the normal derivative of the Green’s func-

tions with respect to r′, and Ωr is the solid angle the test point

r sees the domain enclosed by surface S . If r is inside the ob-

ject Ωr = 4π, and if r lies on the smooth surface Ωr = 2π,

and Ωr = 0 when r is outside the object. The spectrum of the

operator can be easily found because the first integral in (23)

is a compact operator, and the second integral is compact on

smooth surfaces (bounded on non-smooth surfaces).

Since we have Ni
n test points inside the object, Ni

n eigen-

values are accumulated at 5, and on the surface we have Nb
n

test points, giving Nb
n eigenvalues around (ǫr + 1)/2 = 3. The

eigenvalues are slightly shifted towards 1 because the solid an-

gle seen by the boundary nodes is slightly less than 2π due to

the geometrical discretization error.

4.3. Solution accuracy

Next, we will study the convergence of the solution in the

far field region. Fig. 4 plots the L2-error of the radar cross

section (RCS) as a function of the number of elements. The

scatterer is a dielectric sphere of size kr = 1 and ǫr = 5. We

observe that the J- and D-VIE converge monotonically. In the

case of the P-VIE, the convergence is not monotonic. The rea-

son for this is not completely clear for us. The point-matching

scheme may not be the best possible discretization procedure

for this equation. Another problem may be the fact that the

vector and scalar potentials are not properly coupled, i.e., the

discrete basis function do not automatically satisfy the Lorentz

gauge condition.
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Figure 3: Real parts of eigenvalues with respect to spectral indices.

4.4. Discussion

Numerical results show that the discrete spectra of the an-

alyzed volume-integral-equations depend on the permittivity.

Particularly, the spectral radius increases with the permittivity

which slows down the convergence of the iterative solver. It

would be possible to implement a simple preconditioner for the

potential formulation by scaling the scalar basis functions in-

side the object by ǫr and on the boundary by (ǫr + 1)/2. This

would result in eigenvalues clustering around a single point on

the complex plane, and thus, would improve the convergence

of the iterative solution. Similar preconditioner was proposed

for the J-VIE in [16] but instead of scaling basis functions,

finite-dimensional irrotational and harmonic subspaces needed

to be scaled leading to a much more complicated precondi-

tioner. Especially, building the discrete decomposition opera-

tors, required to separate the discrete subspaces, is a demanding

task computationally. For the D- and E-VIE, similar decompo-

sition operators are needed albeit for different function spaces.
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Figure 4: Relative error of the RCS a homogeneous sphere with kr = 1 and

ǫr = 5 as a function of the number of elements.

In addition, due to non-orthogonality of basis and testing func-

tions, multiplication with the inverse of the Gram matrix may

be required.

The drawback in the P-VIE is the poor accuracy of the so-

lution when the equations are discretized with the nodal basis

functions and the point matching on tetrahedral mesh. Using

other discretization technique may improve the accuracy, but it

may also affect the spectrum. For example, in [24] good ac-

curacy was reported when the P-VIE was discretized with lin-

ear Lagrange interpolation nodal functions on curvilinear cubes

and the point matching scheme. Hence, the P-VIE deserves to

be studied in detail in the future.

5. Conclusions

We have studied spectral properties of the discretized coun-

terparts of different volume-integral-equation formulations writ-

ten for the current, flux density, field, and potentials as un-

knowns. The equations were discretized by standard techniques.

The J-VIE formulations was discretized with piecewise con-

stant, the D-VIE with the divergence conforming SWG, and

the E-VIE with the curl conforming edge-elements as basis and

testing functions. Continuous nodal scalar and vector func-

tions were used as basis in the P-VIE together with the point-

matching scheme. In the J-, D-, and E-formulations, the dis-

crete spectrum (eigenvalue distribution) do not strictly follow

the spectral theory of continuous operators. Thus, the discretized

system may give rise to a spurious solution when an eigenvalue

goes to zero. Particularly, this may happen when ǫr ≤ 0 [27]. In

the D-VIE and E-VIE, the Gram matrix is not the identity ma-

trix, hence, the discrete spectrum do not resemble the spectrum

of the original operator. This effect, however can be removed

by multiplying the discrete operator by the inverse of the Gram

matrix.

The P-formulation is found to the be only formulation where

the discrete spectrum follows the spectrum of the continuous

operator. In the P-VIE, it is also straighforward to identify

6



the various parts of the spectrum on the complex plane. This

property can be very useful from the preconditioning point of

view. Particularly, by scaling the scalar potential basis func-

tions associated to the interior and boundary nodes accordingly,

the permittivity dependence can be removed from the discrete

spectrum. This would accelerate the convergence of the itera-

tive solution in case of high-contrast material which is a severe

problem in the existing VIE and DDA implementations. On the

other hand, the solution accuracy of the P-VIE is not as good as

in the other considered formulations. This might be due to the

fact that the applied point-matching technique does not satisfy

the requirement of converging solutions, i.e., the integral opera-

tors are not tested in the dual of their range spaces. All of these

properties, however, makes the P-formulation a very interesting

topic of the future research.
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[20] J. Markkanen, P. Ylä-Oijala, A. Sihvola, Discretization of vol-

ume integral equation formulations for extremely anisotropic mate-

rials, IEEE Trans. Ant. and Propag. 60 (11) (2012) 5195–5202.

doi:10.1109/TAP.2012.2207675.

[21] P. De Doncker, A volume/surface potential formulation of the method

of moments applied to electromagnetic scattering, Engineering analysis

with boundary elements 27 (4) (2003) 325–331. doi:10.1016/S0955-

7997(02)00120-0.

[22] W. Chew, E. Michielssen, J. M. Song, J. M. Jin (Eds.), Fast and Efficient

Algorithms in Computational Electromagnetics, Artech House, Inc., Nor-

wood, MA, USA, 2001.

[23] M. Li, W. C. Chew, Applying divergence-free condition in solving the

volume integral equation, Progress In Electromagnetics Research 57

(2006) 311–333. doi:10.2528/PIER05061303.

[24] P. De Doncker, A potential integral equations method for electromagnetic

scattering by penetrable bodies, IEEE Trans. Ant. and Propag., 49 (7)

(2001) 1037–1042. doi:10.1109/8.933483.

[25] M. C. van Beurden, S. J. L. van Eijndhoven, Gaps in present discretiza-

tion schemes for domain integral equations, International Conference on

Electromagnetics in Advanced Applications, ICEAA 2007, Torino.

[26] M. C. van Beurden, S. J. L. van Eijndhoven, Well-posedness of domain

integral equations for a dielectric object in homogeneous background, J.

Eng. Math(2008) 62 (2008) 289–302. doi:10.1007/s10665-008-9218-2.
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