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Key Points

• Ex vivo drug profiling captures
disease-relevant features
and relevant sensitivity to
therapeutic agents in ALL.

• A subset of drug-resistant
T-ALL without mutations in
ABL1 is highly responsive
to dasatinib, which provides
a rationale for drug
repurposing.

Drug sensitivity and resistance testing on diagnostic leukemia samples should provide

important functional information to guide actionable target and biomarker discovery. We

provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia

(ALL) samplesmostly from resistant disease in cocultures of bonemarrow stromal cells.

Patient-derived xenografts retained the original pattern of mutations found in the

matched patient material. Stromal coculture did not prevent leukemia cell cycle activity,

but a specific sensitivity profile to cell cycle–related drugs identified sampleswith higher

cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with

refractory relapses, individual patterns of marked drug resistance and exceptional

responses to new agents of immediate clinical relevance were detected. The BCL2-

inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL)

subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs),

predicting in vivo activity as a single agent and in combination with dexamethasone and

vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentra-

tion values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC

inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of

drugprofiling informationandachieveda5-month remission. Thus,drugprofilingcapturesdisease-relevant featuresandunexpected

sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop

drug repurposing strategies for patients with urgent medical needs. (Blood. 2017;129(11):e26-e37)

Submitted 3 September 2016; accepted 10 January 2017. Prepublished online

as Blood First Edition paper, 25 January 2017; DOI 10.1182/blood-2016-09-

738070.

*V.F., M.P.D., A.R., B.C.B., and J.-P.B. contributed equally to this work.

The online version of the article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2017 by The American Society of Hematology

e26 BLOOD, 16 MARCH 2017 x VOLUME 129, NUMBER 11

For personal use only.on April 18, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


Introduction

The treatment of relapsed and refractory acute lymphoblastic leukemia
(ALL) remains challenging.1 Progress in ALL genomics2 provides
unprecedented insight into potentially actionable targets, such as
activating mutations in tyrosine kinases,3 RAS,4 or interleukin-7R.5

Recurrent features such as MLL-AF4 rearrangements, the TCF3-HLF
fusion,6 andhypodiploidkaryotypes4 define rare subgroupswith highly
drug-resistant disease.However, amajority of patientswhomaybenefit
from innovative therapies are still identified on the basis of the
persistence of minimal residual disease (MRD)1,7,8 or failure of
remission induction therapy.9

Large integrative studies on cell line panels illustrate the difficulty of
extrapolating drug responses on the basis of genomic data,10,11 even
when indicative lesions in druggable pathways occur. Moreover, such
alterations may be over- or underrepresented in cell lines, whereas
patient-derived xenografts (PDXs) seem to reproduce the genetic driver
mutation landscape in leukemia more closely.12-14 To obtain insight
into interpatient drug response heterogeneity, we developed an in vitro
platform directly using patient-derived leukemia cells. We hypothe-
sized that drug response profiling of ALL, even without a priori
information on genetic lesions or activated pathways, will detect
sensitivity that may otherwise be overlooked. This approach will
complement in vivo PDX models, which have obvious limitations in
compound coverage and flexibility.15 Drug sensitivity testing revealed
individual drug response phenotypes in acute myeloid leukemia
(AML)16 and identified new strategies to bypass resistance to tyrosine
kinase inhibitors (TKIs) in patients with deleterious BCR-ABL
mutations.17Conversely, characteristic tyrosine kinasemutations could
be predicted on the basis of drug activity.18 Drug activity patterns can
also identify an ALL subtype with tonic pre-BCR signaling.19

To establish a drug profiling platform, we took advantage of PDXs
from clinically relevant ALL subgroups20-24 and, on the basis of
previous reports,16,18,21-23,25,26 adapted a serum-free ALL coculture
system on hTERT immortalized human bone marrow–derived
mesenchymal stromal cells (MSCs)27,28 to an automated microscopic
image readout for drug testing. This population-based approach
reveals relevant activity clusters of therapeutic agents, thus identifying
actionable targets that have not yet been exploited in conventional
ALL treatment.

Patients and methods

Human samples

Primary human ALL cells were recovered from cryopreserved bone marrow
aspirates of patients enrolled in theALL-BFM2000,ALL-BFM2009, andALL-
REZ-BFM 2002 studies. Informed consent was given in accordance with the
Declaration of Helsinki and the ethics commission of the Kanton Zurich
(approval number 2014-0383). Sampleswere classified as standard risk,medium
risk, high risk, or very high risk according to theALL-BFM2000 stratification,22

or as relapse (R) or refractory relapse (RR). Patients from a second cohort
consented to protocols reviewed by the institutional review boards at Oregon
Health & Science University and University of Texas Southwestern Medical
Center.

Xenograft model

PDXs were generated as described23 by intrafemoral injection of 1 3 105 to
5 3 106 viable primary ALL cells in NSG mice. Leukemia progression was
monitored in the peripheral blood by flow cytometry using anti-mouse-CD45
(anti-mCD45), anti-human-CD45 (anti-hCD45), anti-hCD19, or anti-hCD7

antibodies. Xenograft identity was verified by DNA fingerprinting using
the commercial AmpFLSTR NGM SElect polymerase chain reaction
amplification kit.

Genomic characterization of leukemia samples

Primary patient material and matched xenografts were analyzed by targeted
sequencing and multiplex ligation-dependent probe amplification. In 19 BCP-
ALL patients without an established abnormality (B-other)29 or targetable
kinase-activating lesions,3 fluorescence in situ hybridization was performed
(probes from Cytocell, Cambridge, United Kingdom). Detailed protocols are
provided in the supplemental Data (available on the BloodWeb site).

In vitro drug profiling platform

Drug responses were assessed in ALL cell cocultures on hTERT-immortalized
primary bone marrow MSCs20 as described22 in 384-well plates (Greiner,
REF781090).MSCs at 2.53103 perwell were plated in 30mLAIM-Vmedium
24 hours before adding 2 3 104 to 3 3 104 ALL cells in 27.5 mL of medium
recovered from cryopreserved samples. Compounds were reconstituted in
dimethyl sulfoxide (10 mM stock concentrations) and stored at280°C. Serially
diluteddrugswere preparedbyusing epMotion5070 andTecanD300 robots.An
independent T-cell ALL (T-ALL) cohortwas tested as described inTyner et al.18

Drug response quantification and statistical analysis

We used a fitting routine based on the 4-parameter log-logistic function
(R package drc, version 2.3-96) on data normalized against samples treated with
dimethyl sulfoxide. Outliers were detected and removed before curve fitting
by detecting local slope changes with a linear fit. Nonconvergent cases were
identified on the basis of linear fit parameters. R codes are available at https://
github.com/pampernickel/drTools. Hierarchical clustering was performed to
group patients according to their drug responses (R package gplots). Differential
drug responses of patient groups of interest were evaluated by using the
nonparametric Mann-Whitney U test.

In vivo drug treatment

For venetoclax and combinations, 5 to 8 mice were transplanted intravenously
with 13106ALLcells per treatment arm.Randomizedcohortswere treatedwith
vehicle, 100 mg/kg/day venetoclax (Activebiochem30) orally, 10.5 mg/kg
dexamethasone (Mepha) intraperitoneally daily35 days per week for 2 weeks,
and0.5mg/kg vincristine (Teva) intraperitoneally once perweek. For cytarabine,
docetaxel, and dasatinib, animals (1 per condition) were intravenously
transplanted with 7 3 106 ALL cells. After 5 days, animals were treated with
50 mg/kg cytarabine (Sandoz) daily intraperitoneally for 5 days, 5 mg/kg
docetaxel (Taxotere) intravenously on day 1 and day 5, or 50 mg/kg dasatinib
(Selleck; dissolved as described31) orally for 5 days. Leukemic burden was
determined posttreatment by flow cytometry.

Cell assays

Viability of 2.53104ALLcells in suspensionor coculturewith 2.53103MSCs
in AIM-V medium was measured by flow cytometry at 1, 4, and 7 days
(7-aminoactinomycin D; reported as day 4 mean 6 standard deviation [SD]).
Regarding proliferation and apoptosis, 1 3 105 ALL cells were seeded with
1 3 104 MSCs. Proliferating and apoptotic cells were labeled by using the
Click-iT EdU Imaging Kit and Cell Event Caspase-3/7 Green, respectively.
Proliferating and nonproliferating groups were identified with an expectation-
maximization mixture model (R package mixtools).

Intracellular flow cytometry and western blot

ALL cells (103 106) were fixed in 2% paraformaldehyde, permeabilized with
ice-coldmethanol, and indirectly taggedwithfluorescein isothiocyanate–labeled
antibodies. Whole-cell extracts from 3 3 106 to 5 3 106 cells were used for
western blots (Bio-Rad Criterion). Detailed protocols are provided in the
supplemental Data.

BLOOD, 16 MARCH 2017 x VOLUME 129, NUMBER 11 NEW INSIGHTS BY DRUG-RESPONSE PROFILING IN ALL e27

For personal use only.on April 18, 2017. by guest  www.bloodjournal.orgFrom 

https://github.com/pampernickel/drTools
https://github.com/pampernickel/drTools
http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


Results

Drug response profiling reveals distinct clusters of activity

in ALL

Cocultures on hTERT-immortalizedMSCs28 facilitate survival ofmost
BCP-ALL and T-ALL cells.21 This protective effectmay even increase
the stringency of drug testing.32 We tested 60 preclinical and clinical
compounds (supplemental Table 1) by using an imaging-based cell
viability readout21 (Figure 1) on ALL xenografts derived from patients
with standard-risk or high-risk ALL based on MRD persistence
and relapsed and refractory ALL. Patient and PDX samples were
characterized by using established diagnostic workflows, including
tests for most recurrent translocations that activate tyrosine kinase
pathways (supplemental Table 2A-B) and by targeted sequencing of
52 frequentlymutatedgenes inALL.Weretrieved the expectedpattern
of mutations (supplemental Figure 1; supplemental Table 3) with
frequent events in KRAS (13 of 25) and TP53 (10 of 25), consistent
with previous reports.33,34 On average, 74% of single nucleotide
variants and insertions/deletions were conserved between the primary

diagnostic samples and PDXs (Figure 1B; supplemental Figure 1).
Oncogenic translocations were always maintained. We also included
samples from TCF3-HLF– and TCF3-PBX1–positive ALL subtypes
for which we recently reported a strong conservation of the genomic
landscape in PDXs.35

To evaluate the potential of this ex vivo platform, we profiled 24
T-ALL and 44 BCP-ALL PDXs derived from pretreatment diagnostic
samples (ALL-BFM 2000 study36; Figure 2). For each drug, we used
8doses optimized froman initial 5-point screen (supplementalTable 4).
None of the tested compounds affectedMSCviability at concentrations
lethal to ALL cells, indicating selective drug activity (Figure 2).
Unsupervised clustering of drug responses (half maximal inhibitory
concentration [IC50] values) identified various patterns of response.
Compounds including anthracyclines, the BH3 mimetic navitoclax
(ABT-263), and the proteasome inhibitor bortezomib were effective at
low (IC50,10 nM) and narrow IC50 range inmost cases (cluster A). A
second group of agents, including the BCL2-specific BH3 mimetic
venetoclax,30 TKIs, and conventional cytotoxic agents such as
glucocorticoids, topoisomerase inhibitors, and nucleotide analogs
(gemcitabine, cytarabine), showed responses distributed over a wider
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Figure 1. Setup of the drug response profiling platform.

(A, top panel) Patient material, notably from high-risk patients,

including relapse patients and patients with translocations

linked to poor survival, were prioritized for PDX and drug

response profiling; PDX stability was evaluated against

primary material by comparing targeted deep-sequenced

leukemogenesis markers. (A, bottom panel) Drug profiling

was performed on primary ALL cells in coculture with bone

marrow–derived MSCs. Automated microscopy-based image

analysis was used to quantify living ALL cells and generate

dose-response curves. Imaging results were analyzed with a

toolkit that performed dose-response normalization, outlier

removal, rapid curve fitting, and extraction of response

parameters (IC50, area under the curve, Emax, which corre-

sponds to the percentage of viable cells at the maximum dose

of the drug). Selected single compounds and combinations

were validated in the xenograft model. This platform

enabled the identification of drug-response phenotypes

in individual ALL patients, providing an additional layer of

information to facilitate individual treatment approaches. (B)

Our PDX model preserves an average of 74% of the

mutations and insertions/deletions initially detected

in patients, making it an ideal source of material for drug-

response testing in multicenter, co-clinical settings. MLPA,

multiplex ligation-dependent probe amplification; FISH,

fluorescent in situ hybridization.
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concentration range, with high activity in the nanomolar range in some
cases and low activity in others (clusters B, C, and E). Venetoclax
(cluster C) was generally more active in BCP-ALL but showed similar
activity in aT-ALL subset. In cluster E,we identified 2groups of agents
whose separation was driven by differences in response to antime-
tabolites (cytarabine, gemcitabine), antimitotic drugs (vincristine,
docetaxel), the Aurora kinase inhibitors AT9283 and barasertib,
and the Polo-like kinase inhibitor BI-2536. Finally, very strong
sensitivity was detected in a few ALL patients for drugs that were
otherwise generally not active in ALL on this platform (cluster G).
These included second mitochondrial activator of caspases
(SMAC) mimetics (eg, LCL161), an observation that led us to
show that a BCP-ALL subset was extremely responsive to SMAC
mimetics through RIP1 kinase–dependent necroptosis and apo-
ptosis.37 The ABL/SRC inhibitor dasatinib is also highly active in
a T-ALL subset discussed later in this article. High peak plasma
concentrations (Cmax) were reported for most clinical compounds
in our panel (supplemental Figure 2), suggesting that effective
concentrations may be achieved in vivo. Our platform provides
reproducible drug activity profiles that identify functional
phenotypes and give new insights for therapeutic targeting. No
correlations between drug responses and genetic lesions were
found (supplemental Table 5).

Drug profiling captures leukemia-intrinsic differences in cell

proliferation and survival

Although most ALL samples tested in coculture survive onMSCs, we
noticed relative cell survival heterogeneity, suggesting differences in
cell proliferation and spontaneous cell death rates across samples
(Figure 3A). We did not detect ALL migration beneath stromal cells
(pseudoemperipolesis) or cobblestone structure-like formation26 that
could interfere with microscopy readouts. Median cell viability on
MSCs was 69% of seeded cells for BCP-ALL and 94% for T-ALL
compared with 1.2% and 45.5% in monoculture after 96 hours. A high
rate of survival on this platform (viability of.70% at day 3 compared
with day 0) correlated with a higher ratio (r.1) of cells in S phase vs
apoptotic cells (Figure 3A). To determinewhether these differences are
the result of stromal coculture effects or intrinsic features of ALL cells,
we compared leukemia proliferation and drug sensitivity patterns
ex vivo and in vivo in leukemia xenografts. Marked differences in
sensitivity were detected in both BCP-ALL and T-ALL for drugs
whosemechanisms of action require active cycling (Figure 2, cluster E;
supplemental Figure 3), including mitotic spindle formation inhibitors,
DNA synthesis, cell cycle, and mitosis regulatory kinases. We used a
mixture model fit to distinguish high-proliferating (.40% of cells in
S phase) from low-proliferating (,40% of cells in S phase) ALL pa-
tients. ALL samples with high proliferative activity in vitro engrafted
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significantly faster (P , .001) than samples with low proliferative
activity (Figure 3B). As expected, drugs with the highest differential
activity in high- and low-proliferating samples inhibit targets involved
in cell cycle control (supplemental Figure 4). Most importantly,
samples with rapid engraftment kinetics (Figure 3B) were more
sensitive to cytarabine and docetaxel ex vivo (Figure 3C), which
correlates with stronger antileukemic effects in vivo (Figure 3D). Thus,
the ex vivo coculture model captures leukemia-specific characteristics

with respect to cell cycle activity, which are preserved in vivo in the
leukemia xenograft model and are not caused by the coculture
conditions.

Because other groups opted for systems based onmonocultures, we
compared our coculture data to a readout in serum-supplemented liquid
leukemia cultures.18 By selecting 8 BCP-ALL and 19 T-ALL samples,
we confirmed improved survival of most of these samples on MSCs
compared with cell suspension cultures (supplemental Figure 5A-B).
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Although IC50 values from coculture and monoculture were
significantly correlated for 22 drugs tested under both conditions
(Spearman r 5 0.64; P , .001), there were several discrepancies in
drugs of interest.We observed a significant correlation of drug activity
in cocultures with in vivo drug responses (supplemental Figure 5D-F),
most evident for venetoclax (supplemental Figure 5D), docetaxel
and dasatinib, and to a lesser extent for cytarabine (supplemen-
tal Figure 5E). In contrast, drug activity data obtained from liquid
monocultures showed a predictive trend only for cytarabine but not for
the other agents tested (supplemental Figure 5F). These observations

support the potential of our system for identifying relevant
vulnerabilities in a clinical setting.

Drug profiling reveals individual patterns of drug sensitivity

and resistance in relapsed and refractory ALL

Drug profiling may convey relevant information for selecting new
agents for salvage therapy in patientswith highly drug-resistant disease.
To compare the activity of different substances in different patients, it is
important to evaluate drug activity in a single patient against the full
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response range obtained on the sameplatform for other leukemia cases,
including clinically relevant subsets.WeprofiledPDXsamples from12
patients with relapsed ALL refractory to salvage therapy (RR) who did
not achieve the second or third remission required for inclusion in early
clinical trials (Figure 4A) and primary leukemia cells from 5 patients
with refractory disease in real time prospectively (Figure 4B; Table 1).
Figure 4 shows IC50 values for a selection of therapeutic agents in
samples of interest against those obtained for all other samples on our
platform (gray). RR ALL samples were generally more resistant
to agents used for induction in ALL such as dexamethasone (10 of
12 patients), cytarabine (9 of 12 patients), and doxorubicin (9 of
12 patients) compared with other diagnostic and relapse ALL patients
(Figure 4A). In contrast, individual samples were highly sensitive to
dexamethasone, idarubicin, and mitoxantrone, which are included in
the standard of care for relapsed ALL,38 and to new agents from
different classes, such as venetoclax, dasatinib, bortezomib, nutlin,
JQ1, and panobinostat. Again, we noticed unexpected responses to
venetoclax anddasatinib in a fewpatients,whichwediscuss later in this
article. In addition, sensitivity patterns could be associated with
cytogenetic groups. For example, patients with MLL-AF4 ALL were
sensitive to PI3K/mTOR/AKT or HSP90 inhibitors, consistent with
previous reports39 (supplemental Figure 6).

To assess the feasibility of our approach in the clinical setting, we
tested 5 patients with highly refractory ALL at the time of relapse
(Figure 4B).Results couldbeobtainedwithin 5days. Thesepatients did
not respond to standard-of-care drugs on the platform (dexamethasone,
vincristine, doxorubicin, or mitoxantrone) but were individually sen-
sitive to venetoclax (patients 1, 2, and 3) and panobinostat (patient 5).
Thus, drug profiling may provide important information when ex-
ploring options for patients with drug-resistant disease.

Response to venetoclax ex vivo correlates with strong in vivo

antileukemic activity as a single agent and in combination

Given the strong in vitro activity of venetoclax across various ALL
subtypes, including a subset of T-ALL, BCP-ALL, TCF3-HLF ALL,
and allMLL-AF4ALL patients, we tested venetoclax (n5 7) in vivo in
the xenograft model (Figure 5A). Several patients with T-ALL
responded to venetoclax in vitro with IC50 values in the nanomolar
range (Figure 5A), consistent with reports describing activity in early
thymic precursor ALL and T-ALL.40-42 These results were verified by
flow cytometry using 7-aminoactinomycin D staining to quantify cell
death (supplemental Figure 7). As expected, the response to oral
administration of venetoclax in vivo correlated with in vitro activity
for 3 T-ALL patients with strong, intermediate, and low venetoclax
sensitivity. Single-agent venetoclax treatment delayed leukemia pro-
gression significantly in the patient with strong in vitro sensitivity
(hazard ratio, 20; IC50,1 nM; lowEmax; treated vs untreatedP, .005)

comparedwith patientswith low IC50 (,100 nM) but higher Emax (HR,
0.07; treated vs untreatedP, .005) or high IC50 (.1mM). In addition,
complete response was detected when treating the T-VHR-03 case in
mice with high leukemia burden (75% engraftment; supplemental
Figure 8). We recently reported similar venetoclax efficacy in 3 TCF3-
HLF ALL patients in vivo35; comparable correlations were obtained
in 2 patients with TCF3-HLF– or MLL-rearranged ALL (Figure 5A).
For all tested cases, venetoclax-induced delays in in vivo leukemia
progression correlated with in vitro responses (Spearman r 5 –0.86;
P, .05; Figure 5B).

As with most chemotherapeutic agents, single-agent venetoclax
therapy is unlikely to be effective. Currently, most investigational
agents will be tested in combination with a standard-of-care anti-
leukemic regimen that includes 2 to 4 drugs such as vincristine,
dexamethasone, asparaginase, and an anthracycline typically used for
reinduction chemotherapy at relapse.38We detected synergy in vitro by
using co-titration experiments, but this assay is challenging when
assessing a drug with such strong in vitro activity as venetoclax43

(supplemental Figure 9; supplemental Table 4). Because it is
impossible to provide supportive care to mice after myelotoxic che-
motherapy in vivo, we next tested the combination of venetoclax,
dexamethasone, and vincristine without anthracyclines (Figure 5A).
Venetoclax or chemotherapy alone delayed leukemia progression for
TCF3-HLF– and MLL-AF4–rearranged patients (P , .005). The
3-drug combination prevented leukemia progression for more than
300 days in 2 TCF3-HLF samples and in 3 of 5 MLL-AF4 ALL
samples. Leukemia progression was significantly delayed in
remaining samples.

The identification of response-predictive biomarkers, in addition to
drug profiling, is important for the clinical development of BH3
mimetics. The BCL2:BCL-XL and BCL2:MCL1 ratios were sug-
gested as biomarkers for venetoclax sensitivity in ALL44 and in multi-
ple myeloma,45 respectively. We determined levels of BCL2 family
members by intracellular flow cytometry and western blotting
(Figure 5C; supplemental Figure 10). In vitro response to venetoclax
neither correlated with BCL2 family protein expression levels nor
BCL2:MCL1 or BCL2:BCL-XL ratios in 36 BCP-ALL and T-ALL
samples testedbyflowcytometry (Figure5C; supplementalFigure11).
It will be important to perform further BH3 profiling in parallel
with drug response profiling in clinical trials to establish predictive
biomarkers.

Drug profiling identifies a subset within T-ALL highly

responsive to dasatinib

We detected unexpected responses to the ABL1/SRC inhibitor
dasatinib (IC50 ,100 nM) in 12 T-ALL patients (30%) without the
typical ABL1 kinase translocation (Figure 6A). Importantly, these

Table 1. Characteristics of the 5 patients with refractory disease included in this study

Patient Sex Age (y) Clinical status at time of drug profiling Salvage treatment Current status

1 F 2 Relapsed after SCT, early relapse MLL:MLLT10-positive; blinatumomab Alive, follow-up at 15 mo

2 M 7 Relapsed after SCT, second relapse, resistant to

anti-CD19 therapy

Blinatumomab, second transplant Alive, follow-up at 9 mo

3 F 8 Relapsed after SCT, second relapse Chemotherapy, second transplant Died

4 F 5 Very early BM relapse Resistant to blinatumomab, no response to

bortezomib combined with 4 drugs

Died

5 F 11 Relapsed after SCT, second (late) relapse Second transplant, resistant to blinatumomab,

partial response to bortezomib combined with

4 drugs

Died

BM, bone marrow; F, female; M, male; SCT, stem cell transplant.
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responses were detected in both diagnostic and relapse samples from
high-risk patients by MRD. Moreover, the IC50 for dasatinib in these
patients was at least tenfold lower than in any of the best BCP-ALL
responders tested, including 5 ALL patients with rearranged TCF3-

PBX1 (recently linked to activeBCRsignaling19,46)whowere sensitive
to dasatinib but not imatinib (Figure 6A). No known recurrent genetic
abnormality could be linked to this phenotype (supplemental Table 3).
We found neither recurrent mutations nor gene fusions by exome and
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transcriptome sequencing that associated with dasatinib sensitivity in
T-ALL (supplemental Table 6). RNA sequencing also indicated that
1 dasatinib-sensitive patient had low FYN, but high SRC expression

(supplemental Figure 12). Given that the dasatinib response did not
correlate with the response to other BCR-ABL inhibitors, we hy-
pothesized that dasatinib acts via SRC inhibition. By phospho-flow
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cytometry, we detected higher levels of activated, phosphorylated
SRC in dasatinib-sensitive samples (Figure 6B); SRC phosphor-
ylation was abrogated after exposure to dasatinib. The SRC
inhibitor KX2-391, which inhibits SRC at nanomolar concentra-
tions,47 induced cell death in dasatinib-sensitive T-ALL patients at
concentrations below 100 nM (Figure 6C), supporting the
relevance of the SRC pathway in this T-ALL subset. Apart from
KX2-391, dasatinib response also correlated with responses to
other receptor tyrosine kinase inhibitors (eg, midostaurin, crenolinib;
adjusted P , .005; supplemental Figure 13), consistent with the
central role of SRC in receptor tyrosine kinase signaling.48 Im-
portantly, in vitro response to dasatinib correlated with antileukemic
activity in vivo in T-ALL xenografts (Figure 6D).

To validate our observations, we checked the drug sensitivity of
33 adult and pediatric T-ALL patients obtained on a liquid
monoculture platform.18 Remarkably, 4 of 33 responded to
dasatinib with IC50 ,10 nM (Figure 6E), and 9 of 33 with IC50

between 10 nM and,100 nM. One of these samples was from an
adult male patient with refractory T-ALL with mediastinal and
abdominal lymph node involvement after 8 cycles of hyper-
CVAD (cyclophosphamide, vincristine, doxorubicin, dexameth-
asone, methotrexate, and cytarabine) chemotherapy, allogeneic
stem cell transplantation, and relapse treatment with nelarabine,
mitoxantrone, and cytarabine. On the basis of these results,
dasatinib (140 mg/day) was initiated, first in combination with
pegylated asparaginase, which was interrupted after 1 dose
because of intolerance. Dasatinib monotherapy was continued,
and interval resolution of all lesions was evidenced on a re-
peat positron emission tomography/computed tomography scan
2 months after initiation of dasatinib (Figure 6F). In total, the
disease could be controlled over 5 months. Although the short
exposure to asparaginase may have contributed to this response,
disease control with dasatinib monotherapy over several months is
indicative of clinical activity. These results confirm that a subset of
drug-resistant and relapsed T-ALL can be identified by drug
profiling to be particularly sensitive to dasatinib; thus, further
exploration of underlying molecular mechanisms is warranted.
Given the experience with established combinations of dasatinib
with chemotherapy for the treatment of BCR-ABL–positive
ALL,49 our data provide a strong rationale for drug repurposing
on the basis of drug profiling results for selected patients with
drug-resistant T-ALL in pediatric and adult patient populations.

Discussion

Here we provide compelling evidence that informative and
reproducible differences in drug response profiles can be detected
in patient groups of interest while simultaneously revealing patient-
to-patient response variations. Heterogeneous and strong activity
was found for different classes of agents in patients with refractory
ALL. We did not observe any correlations between drug response
phenotypes and somatic mutations, which may be partly a result of
the limited size of our cohort; multivariable analyses based onwhole
genome or exome sequencing results on a larger cohort would be of
interest in the future to definitively establish correlations. However,
our results, which indicate that it will be challenging to infer drug
activity based solely on genomic data, are consistent with reports in
adult hematologic malignancies.16,18

As a basis for standardization, we opted for coculture on human
MSCs,27,28 which efficiently supported most of the primary ALL

samples that we tested in serum-free conditions. Our assay provides
better ALL cell survival and stronger correlation with in vivo drug
activity in PDX models compared with monocultures (supplemental
Figure 5). This model also increases the possibilities for mult-
idimensional expansion. Effects can be analyzed not only on the
target leukemia cells but also on nonhematopoietic microenviron-
mental cells, and use of additional markers that indicate meta-
bolic states, distinct differentiation processes, or signaling activity
could be envisaged. The fact that we detected subsets with more
proliferative activity both in vitro and in vivo, based on drug
profiling, indicates that important leukemia-intrinsic features are
maintained and captured under the in vitro cell culture conditions.
We and others16,18 have demonstrated the use of drug profiling for
identifying phenotypes that are responsive to new therapeutic
agents. We have identified recurrent ALL patients who are highly
sensitive to triggering RIP1-dependent cell death with SMAC
mimetics37 or to BCL2 inhibition in BCP-ALL subsets, including
TCF3-HLFALL35 and T-ALL subsets. Moreover, we discovered a
subgroup in T-ALL that is highly sensitive to dasatinib, which
should be further evaluated first in patients with highly drug-
resistant and refractory disease.

Drug response profiling may contribute to defining cohorts that
could benefit from new agents. The profiles that we detected for
venetoclax,30 which was recently approved for treatment of
chronic lymphocytic leukemia, illustrate the type of information
that could be used to improve patient selection in early clinical
trials. We show that a relatively large proportion of BCP-ALL
patients may respond to venetoclax, including very high-risk
subtypes such as TCF3-HLF–35 and MLL-AF4–positive ALL.
Our findings are confirmed independently by others who showed
strong venetoclax activity in MLL-rearranged ALL.50 Support-
ive information using other biomarkers would be desirable
for monitoring response in clinical trials. The BCL2:BCL-
XL expression ratio was proposed as a predictive biomarker
for venetoclax response,44 but our results and other data50

suggest that this approach may not detect all cases. BH3
profiling using synthetic peptides instead of targeted small-
molecule drugs44,51,52 may provide complementary informa-
tion, as evaluated in a phase 2 study that assessed venetoclax
monotherapy in patients with refractory and relapsed AML.53

We propose that in vitro drug profiling be incorporated into
upcoming clinical trials for venetoclax to determine its pre-
dictive potential.

New treatment options are urgently needed for relapsed T-ALL.1

We discovered a T-ALL subset highly sensitive to dasatinib. We
also show good response to this TKI in a patient with previously
refractory T-ALL whose treatment was designed on the basis of
drug profiling data. A patient with NUP1-ABL1–positive T-ALL
was also reported to respond to dasatinib-based therapy,54 but none
of the patients with high sensitivity to dasatinib were NUP1-
ABL1–positive in our series. We did not identify activating
mutations that may directly explain dasatinib sensitivity, indicating
that the underlying mechanisms may occur at a different level,
which will motivate follow-up studies. Given that dasatinib
combinations with ALL standard-of-care chemotherapy49 and a
pediatric dose55 are established, its inclusion in chemotherapy for
patients with drug-resistant T-ALL that displays a dasatinib-
responsive phenotype should be evaluated. Here, we demonstrated
that in vitro drug profiling captures functional information of
clinical importance and reveals new biological entities in ALL.
Given the growing interest of clinicians in this approach,
prospective evaluation is warranted to establish its value for more
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precise selection of therapeutic agents for patients with drug-
resistant disease.
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