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Latent autoimmune diabetes in adults (LADA) usually
refers to GAD65 autoantibodies (GADAb)–positive dia-
betes with onset after 35 years of age and no insulin
treatment within the first 6 months after diagnosis. How-
ever, it is not always easy to distinguish LADA from type 1
or type 2 diabetes. In this study, we examined whether
metabolite profiling could help to distinguish LADA (n =
50) from type 1 diabetes (n = 50) and type 2 diabetes (n =
50). Of 123 identified metabolites, 99 differed between the
diabetes types. However, no unique metabolite profile
could be identified for any of the types. Instead, the
metabolome varied along a C-peptide–driven continuum
from type 1 diabetes via LADA to type 2 diabetes. LADA
was more similar to type 2 diabetes than to type 1 diabe-
tes. In a principal component analysis, LADA patients
overlapping with type 1 diabetes progressed faster to in-
sulin therapy than those overlapping with type 2 diabetes.
In conclusion, we could not find any unique metabolite
profile distinguishing LADA from type 1 and type 2 diabe-
tes. Rather, LADA was metabolically an intermediate of
type 1 and type 2 diabetes, with those patients closer to
the former showing a faster progression to insulin therapy
than those closer to the latter.

Diabetes is currently divided into two main types. Type 2
diabetes (T2D) is characterized by insulin resistance and
features of the metabolic syndrome but usually includes

preserved b-cell function. Type 1 diabetes (T1D), with
onset at an early age, develops as a consequence of auto-
immune destruction of the insulin-producing b-cells.
There is, however, also an intermediate form, called latent
autoimmune diabetes in adults (LADA), which, despite
similarities with T1D, shows a slower progression toward
insulin requirement (1,2). The frequency of LADA is
;10% of patients with diabetes (3–5). LADA is usually
diagnosed at an older age compared with T1D, and af-
fected individuals therefore often present with features
of the metabolic syndrome, making it difficult to distin-
guish LADA from T2D (3). Studies aimed at dissecting the
genetic causes of diabetes have shown that LADA shares
genetic features with both T1D and T2D (6). LADA is
usually defined as non–insulin-requiring diabetes for
6 months after diagnosis, with onset in adult life (.35
years of age) with autoantibodies to GAD65 (GADAb).
However, because the decision to initiate insulin therapy
is very subjective, it has been suggested that the criteria of
lack of insulin treatment for the first 6 months after di-
agnosis should be excluded from the definition (6). In-
stead, we propose to add the criterion of C-peptide level
of .0.3 nmol/L because absolute insulin deficiency is not
a characteristic of LADA.

In the current study, we examined whether LADA would
be characterized by a unique metabolic profile distinct from
T1D and T2D.

1Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö, Lund
University, Malmö, Sweden
2H.E.J. Research Institute of Chemistry, International Center for Chemical and
Biological Sciences, University of Karachi, Karachi, Pakistan
3Diabetes and Endocrinology, Department of Clinical Sciences in Malmö, Lund
University, Malmö, Sweden
4Translational Diabetes Research, Department of Clinical Sciences in Malmö,
Lund University, Malmö, Sweden
5Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki,
Finland
6Centre for Analysis and Synthesis, Department of Chemistry, Lund University,
Lund, Sweden

Corresponding author: Peter Spégel, peter.spegel@chem.lu.se.

Received 27 June 2016 and accepted 24 November 2016.

This article contains Supplementary Data online at http://diabetes
.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0779/-/DC1.

M.A.-M. and A.A. contributed equally to this work.

© 2017 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit, and the
work is not altered. More information is available at http://www.diabetesjournals
.org/content/license.

See accompanying article, p. 801.

806 Diabetes Volume 66, April 2017

M
E
T
A
B
O
L
IS
M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/84363356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.2337/db16-0779&domain=pdf&date_stamp=2017-02-28
mailto:peter.spegel@chem.lu.se
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0779/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0779/-/DC1
http://www.diabetesjournals.org/content/license
http://www.diabetesjournals.org/content/license


RESEARCH DESIGN AND METHODS

Study Population
The ANDIS (All New Diabetics In Scania) project (http://
andis.ludc.med.lu.se/) was launched in 2008 aiming at
recruiting all incidence cases of diabetes regardless of
age at diagnosis within Scania County in southern Swe-
den. As of January 2014, when samples were collected for
this study, 8,722 subjects, all .18 years of age, were in-
cluded in ANDIS. Of these subjects, 7,701 received a di-
agnosis of T2D, 193 received a diagnosis of T1D, and
454 received a diagnosis of LADA. Another 581 sub-
jects ,18 years of age, the majority of whom had received
a diagnosis of T1D, were collected as part of the Better
Diabetes Diagnosis (BBD) study. The ANDIS register is
linked to the national drug prescription registry. Fasted
blood samples were collected shortly after diagnosis (on
average, 76 days) for analysis of GADAb (GADAb ELISA
Kit; RSR Ltd, Cardiff, U.K.), C-peptide (Immulite; Siemens
Healthcare, Deerfield, IL), HbA1c (VARIANT TURBO; Bio-
Rad, Hercules, CA), and blood glucose. Blood plasma was
stored at 280°C. One hundred fifty subjects were ran-
domly selected, with equal numbers of subjects having
LADA, T1D, and T2D. T1D at ,18 years of age was
excluded because of expected large differences in
the metabolite profile between these young individ-
uals and the older individuals in whom LADA or
T2D was diagnosed. Additionally, patients with sec-
ondary diabetes due to pancreatic disease were also ex-
cluded from the study. LADA was defined here as subject
age .35 years, GADAb positivity, and C-peptide
concentration .0.3 nmol/L. Patients were considered to
have T1D if they were GADAb positive and had a
C-peptide concentration ,0.3 nmol/L. The remaining pa-
tients were considered to have T2D. Patients with T1D
were younger and had lower BMI values (P , 0.01), lower
C-peptide concentrations (P , 0.01), and higher HbA1c

levels (P, 0.01) than patients with T2D and LADA (Table
1). LADA patients had lower body weight (P , 0.05), age
at onset (P , 0.01), BMI (P , 0.01), and C-peptide levels
(P , 0.001) but higher GADAb levels (P , 0.01) than
patients with T2D. The study was approved by the local
ethics committee. All study subjects gave their written
informed consent.

Sample Preparation
Metabolites were extracted from 40 mL of plasma in meth-
anol/water (80:20, volume for volume), as previously de-
scribed in detail (7,8), but with the inclusion of Val-Tyr-Val,
leucine-enkephalin, and reserpine at 0.81 ng/mL as internal
standards. After centrifugation, the supernatant was divided
into two aliquots for analysis by gas chromatography/
time-of-flight mass spectrometry (GC/TOF-MS) and ultra–
high-performance liquid chromatography/quadrupole-
TOF-MS (UHPLC/QTOF-MS).

Metabolite Profiling by GC/TOF-MS
Samples for GC/TOF-MS analysis were dried by vacuum
centrifugation, methoximated, and trimethylsilylated, as
previously described in detail (8,9). Metabolite derivatives
were analyzed on a 30-m DB-5MS Ultra Inert column
(Agilent J&W, Folsom, CA) using a 6890N Gas Chromato-
graph (Agilent Technologies, Atlanta, GA) connected to a
Pegasus III TOF electron impact MS (LECO, St. Joseph,
MI), as previously described in detail (8,9). Samples were
analyzed in randomized order. In addition to the samples
and sample blanks, which were prepared in parallel with
the samples, a homologous series of n-alkanes was also
analyzed to calculate retention indexes. Data were ac-
quired using ChromaTOF Software (LECO), exported as
NetCDF files, and processed by hierarchical multivariate
curve resolution in MATLAB 7.0 (MathWorks, Natick,
MA) (10). The identification of metabolites was per-
formed using in-house–developed databases.

Table 1—Subject characteristics by diabetes type

T2D T1D LADA
T2D

vs. T1D
T2D

vs. LADA
T1D

vs. LADA

Ketoacidosis† 1/31 28/16 5/29 *** NS ***

Blood glucose, mmol/L 10.78 6 0.75 25.19 6 1.28 14.29 6 1.36 *** NS ***

HbA1c, % (mmol/mol) 7.02 (53) 6 0.32 (3.5) 11.34 (100) 6 0.44 (4.8) 7.98 (64) 6 0.40 (4.4) *** NS ***

Sex§ 27/23 40/10 23/26 * NS **

Gestational diabetes mellitus† 2/15 0/8 2/20 NS NS NS

Length, cm 169.06 6 1.61 179.52 6 1.03 170.17 6 1.58 *** NS ***

Weight, kg 90.17 6 2.36 67.62 6 1.69 82.23 6 2.81 *** * ***

Family history† 28/19 27/21 28/17 NS NS NS

Debut age, years 63.74 6 1.89 24.04 6 0.62 55.94 6 1.82 *** ** ***

BMI, kg/m2 31.52 6 0.71 20.98 6 0.50 28.30 6 0.86 *** ** ***

GADAb, log nmol/L 0.076 6 0.043 2.28 6 0.090 2.24 6 0.080 *** *** NS

C-peptide, nmol/L 1.33 6 0.068 0.14 6 0.009 0.78 6 0.063 *** *** ***

Data are expressed as n or the mean 6 SEM. Differences between groups were assessed by ANOVA followed by post hoc Tukey test.
NS, not significant. *P , 0.05, **P , 0.01, ***P , 0.001; †Yes/no; §Male/female.
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Metabolite Profiling by UHPLC/QTOF-MS
Samples for UHPLC/QTOF-MS were dried by vacuum
centrifugation and dissolved in 40 mL of methanol/water
(1:1, volume for volume). Metabolites were analyzed
on a 10-cm ACQUITY UPLC CSH C18 column (Waters,
Milford, MA) using a VanGuard precolumn (Waters) on
an 1290 Infinity UPLC (Agilent Technologies, Santa Clara,
CA) connected to a 6550 iFunnel Q-TOF (Agilent) in pos-
itive and negative electrospray ionization (ESI) mode
(ESI+ and ESI2, respectively). A 2-mL sample was injected
and chromatographed as previously described in detail
(11). The mass spectrometer was operated in full scan
mode with a mass/charge ratio from 50 to 1,800, a cap-
illary voltage of 3.5 kV, and a fragmentor voltage of
175 V. The drying gas flow rate was set to 14 L/min at
200°C, with a nebulizer pressure of 35 psi. Samples were
analyzed in randomized order. A quality control sample
created from a mixture of all samples was analyzed eight
times prior to the first sample injection and then after
every 10th injection. Extraction blanks were analyzed af-
ter the final sample injection. Data were acquired using
MassHunter B.06.00 Build 6.0.633.0 (Agilent). Metabolites
were identified by tandem MS using MassHunter METLIN
Metabolite PCDL (Agilent) and the injection of pure stan-
dards, when available. Batch-recursive feature extraction
was performed using MassHunter Profinder B.06.00 Build
6.0625.0 (Agilent). Data were further filtered using Mass
Profiler Professional 12.6.1-Build 196252 (Agilent) and
exported as csv files for statistical analysis.

Data Treatment and Statistical Analysis
Peak areas were normalized to internal standards, as
previously described in detail (8,9,12). Metabolites with a
percentage relative SD of .40% in the quality control sam-
ples were excluded, and the remaining data were log2 trans-
formed. Metabolites with .20% missing values were
excluded, and missing values for unidentified metabolites in
,20% of samples were imputed by a nearest neighbor (KNN)
procedure (pamr package, R). All identified metabolites were
manually reintegrated. Principal component analysis (PCA)
and orthogonal projections to latent structures-discriminant
analysis (OPLS-DA) were performed on mean centered and
unit variance scaled data in Simca P+ 12.0 (Umetrics, Umeå,
Sweden). Differences between groups were assessed by
ANOVA followed by adjustment for multiple comparisons
using the false discovery rate method and post hoc Tukey
test in R. Linear models were calculated by lmFit (Limma, R).
One LADA sample was removed from both the GC/TOF-MS
and the UHPLC/QTOF-MS data sets, and two T1D samples
were excluded from the UHPLC/QTOF-MS data because of
extraction and analysis faults, respectively.

RESULTS

Targeted Analysis of the Low–Molecular Weight
Metabolome
First, we examined whether any unique low–molecular
weight metabolite could distinguish LADA from T1D

and T2D. In total, 64 metabolites were measured. Two
OPLS-DA models were calculated to compare the metab-
olome of T2D and LADA to the metabolome of T1D.
Thereby, the analysis was focused on variation in the
metabolome that can be explained by the diabetes type,
followed by a rotation of the model to achieve class sep-
aration along the predictive component, and by this
means the interpretation of the results was facilitated
(13). Both models yielded a good classification of the
samples based on the diabetes type (R2 = 0.804, Q2 =
0.689, cross validated [CV] ANOVA, P , 10220; and
R2 = 0.777, Q2 = 0.521, CV ANOVA, P , 1029, respec-
tively) (Fig. 1A and B). However, OPLS-DA failed to clas-
sify LADA and T2D (R2 = 0.182, Q2 , 0.1). The loadings
from these models, scaled as correlations, were combined in
a shared and unique structures plot (SUS-plot) (Fig. 1C)
(14). The SUS-plot enables a comparison of the outcomes
of multiple classification models using a common reference,
in this case T1D. In this plot, differences that are shared
between classes (found close to the diagonal) or are unique
to a specific class (outside the diagonal) can be identified.
The vast majority of metabolites ended up along the diag-
onal (R2 = 0.79, P, 10225), suggesting a shared metabolite
profile between LADA and T2D. Of the 64 low–molecular
weight metabolites, 51 differed between the subgroups of
diabetes (ANOVA, q , 0.05) (Table 2). The highest levels
were generally seen in patients with T2D, followed by those
with LADA and T1D. Only erythritol levels were higher in
patients with T1D than in those with LADA (P, 0.01) and
T2D (P , 0.001). With respect to succinate, fumarate, and
glycerol 3-phosphate, the levels in patients with LADA were
more similar to those with T1D than to those with T2D.
These metabolites are implicated in mitochondrial metabo-
lism and shuttling (MetaboAnalyst 3.0, Kyoto Encyclopedia
of Genes and Genomes, Krebs cycle pathway; Fisher exact
test, P, 0.05). None of the metabolites was uniquely altered
in patients with LADA compared with those with T2D.

Untargeted Analysis of the Lipophilic Metabolome
Since no low–molecular weight metabolite was found to
uniquely distinguish LADA from the other two diabetes
types, we continued to examine the lipophilic and high–
molecular weight metabolome by UHPLC/QTOF-MS.
Data derived from both ESI+ and ESI2 were combined
to provide a total of 1,204 putative metabolites. Again,
OPLS-DA revealed a clear difference between patients
with T2D and T1D (R2 = 0.829 Q2 = 0.755, CV ANOVA,
P , 10224), and between those with LADA and T1D (R2 =
0.887, Q2 = 0.583, CV ANOVA, P , 10212), but failed to
distinguish between patients with T2D and LADA (R2 =
0.491, Q2 , 0.1) (Fig. 2A and B). A SUS-plot showed that
the majority of metabolites followed a diagonal from the
lower left to the upper right quadrant (R2 = 0.81, P ,
10225), supporting a shared metabolic milieu among the
subgroups of diabetes (Fig. 2C). Of the 1,204 molecular
features, 106 could be identified by tandem MS. After the
removal of duplicates, 59 unique metabolites remained.

808 The Metabolite Profile of Diabetes Diabetes Volume 66, April 2017



Of these, 46 differed among the groups (ANOVA, q ,
0.05) (Table 3).

Next, we combined metabolites identified by UHPLC/
QTOF-MS with those identified by GC/MS, yielding a data
set of 123 metabolites, and examined the relation be-
tween the metabolic continuum and C-peptide, blood
glucose, and GADAb levels using linear models. As for the
SUS-plots, two diabetes class models were calculated,
using dummy-coded variables and with T1D as a common
reference. The strongest association was obtained for
C-peptide levels (b = 0.90, P = 2.8 3 10264 and b = 0.79,
P = 2.0 3 10252, for models of LADA and T2D, respec-
tively, vs. T1D).

Prediction of Time to Insulin
A PCA calculated on the 123 identified metabolites
showed that T1D and T2D were well separated along
the first principal component, with LADA in between
(Fig. 3A). The scores for LADA along the first principal
component differed from the scores for both T1D (P ,
0.001) and T2D (P , 0.01), being more similar to the
latter (DscoreLADA-T1D = 5.5 and DscoreLADA-T2D = 3.1).
As expected, the scores associated strongly with blood
glucose, HbA1c, BMI, and C-peptide levels (P , 0.001).
A PCA calculated on C-peptide, HbA1c, and GADAb lev-
els reveals a similar pattern (Fig. 3B). The scores for
LADA differed from the scores for both of the other
two types (P , 0.001), but were more similar to the score
for T1D (DscoreLADA-T1D = 1.1 and DscoreLADA-T2D = 2.0).

There was, however, a significant overlap among the
three types of diabetes. We further examined LADA patients

who deviated .1 SD from the center of the LADA
cluster. Six LADA patients were found outside 21 SD,
suggesting that they had a metabolome more similar to
that of T1D. Of these, five patients required insulin treat-
ment within 2 years after diagnosis. Five LADA patients
were found outside +1 SD, suggesting a more T2D-like
metabolome. Of these, four patients could be treated with-
out insulin for .2 years. Hence, insulin treatment within
2 years tended to be more prevalent among LADA patients
showing a more T1D-like metabolome (Fisher exact test, P =
0.081). Whereas the PCA-derived scores differed strongly
between these two groups (P = 1028), neither fasting glu-
cose (P = 0.068) and C-peptide (P = 0.19) nor GADAb (P =
0.77) levels differed. However, patients requiring insulin
treatment within 2 years had a lower age at diagnosis
(49 6 4 vs. 61 6 3 years, P , 0.05). Levels of 69 metab-
olites differed between the two groups of LADA patients
(Supplementary Table 1), and among these patients the
levels of aromatic amino acids phenylalanine, tyrosine,
and tryptophane (q , 0.01) and the branched-chain amino
acids valine (q , 0.01), isoleucine (q , 0.01), and leucine
(q , 0.05) were higher in those who could be managed
without insulin for .2 years. Insulin treatment was re-
quired in 54% of LADA patients, but in only 8% of T2D
patients, at 3 years after diagnosis.

DISCUSSION

The identification of biomarkers distinguishing diabetes
subtypes from each other could have great clinical value.
LADA, which is associated with a faster progression to
insulin replacement therapy compared with T2D, may be

Figure 1—Analysis of low–molecular weight metabolites suggests a metabolic continuum extending from T1D via LADA to T2D. OPLS-DA
accurately classifies T2D and T1D (A) and LADA and T1D (B) based on the low–molecular weight metabolome. C: Loadings, scaled as correlations,
from the OPLS-DA models combined in a SUS-plot reveals differences between LADA and T1D and differences between T2D and T1D to be
shared. Hence, none of the low–molecular weight metabolites uniquely distinguish between the diabetes types. p(corr)[1], loadings for the predictive
component scaled as correlations; t[1], predictive component; to[1], the first orthogonal component. T1D, n = 50; T2D, n = 50; and LADA, n = 49.
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Table 2—Low–molecular weight metabolites differing in levels between LADA, T1D, and T2D

Metabolite q P
LADA
vs. T1D

LADA
vs. T2D

T1D
vs. T2D T1D LADA T2D

Alanine 5.86E-18 8.02E-20 **** * **** 1 6 0.040 1.41 6 0.042 1.60 6 0.036

Uric acid 5.03E-15 1.38E-16 **** ** **** 1 6 0.077 1.66 6 0.079 2.13 6 0.082

Tyrosine 8.06E-12 3.31E-13 **** ** **** 1 6 0.047 1.33 6 0.047 1.64 6 0.065

Isocitrate 7.55E-11 4.13E-12 **** * **** 1 6 0.067 1.30 6 0.050 1.57 6 0.052

C16:0 1.10E-10 7.53E-12 **** NS **** 1 6 0.065 1.45 6 0.077 1.76 6 0.087

Myo-inositol 1.48E-10 1.42E-11 **** ** **** 1 6 0.038 1.26 6 0.043 1.45 6 0.045

Phenylalanine 1.48E-10 1.42E-11 **** ** **** 1 6 0.040 1.35 6 0.067 1.56 6 0.058

C18:0 2.51E-10 2.76E-11 **** NS **** 1 6 0.033 1.18 6 0.029 1.26 6 0.030

Lysine 7.09E-10 8.74E-11 **** * **** 1 6 0.045 1.25 6 0.036 1.45 6 0.044

Ornithine2 1.94E-09 2.66E-10 **** NS **** 1 6 0.068 1.37 6 0.057 1.55 6 0.056

Anthranilic acid 2.16E-09 3.26E-10 **** NS **** 1 6 0.059 1.80 6 0.133 1.96 6 0.154

C22:6 1.09E-08 1.79E-09 **** NS **** 1 6 0.090 1.69 6 0.147 1.96 6 0.124

C17/0 1.57E-08 2.80E-09 **** NS **** 1 6 0.068 1.38 6 0.071 1.58 6 0.076

Quinic acid 4.12E-08 7.91E-09 **** NS **** 1 6 0.201 2.69 6 0.328 2.62 6 0.376

Citric acid 1.02E-07 2.10E-08 *** * **** 1 6 0.042 1.29 6 0.067 1.47 6 0.058

2-hydroxyglutarate 1.99E-07 4.35E-08 **** NS **** 1 6 0.027 1.24 6 0.049 1.32 6 0.044

Pyroglutamic acid 2.42E-07 5.64E-08 *** NS **** 1 6 0.024 1.15 6 0.025 1.22 6 0.030

C18:1 3.88E-07 9.56E-08 *** NS **** 1 6 0.092 1.29 6 0.066 1.51 6 0.071

Cholesterol 6.97E-07 1.81E-07 *** NS **** 1 6 0.039 1.14 6 0.043 1.36 6 0.048

Hypoxanthine 1.30E-06 3.56E-07 *** NS **** 1 6 0.148 1.89 6 0.249 2.28 6 0.218

Proline 1.66E-06 4.78E-07 *** NS **** 1 6 0.059 1.34 6 0.069 1.44 6 0.052

C14:0 5.66E-06 1.71E-06 ** NS **** 1 6 0.151 1.28 6 0.114 1.53 6 0.094

Glycerol 2-phosphate 6.68E-06 2.10E-06 * * **** 1 6 0.049 1.13 6 0.041 1.34 6 0.040

Malic acid 7.27E-06 2.39E-06 * * **** 1 6 0.051 1.28 6 0.090 1.57 6 0.088

C20:4 9.67E-06 3.31E-06 * * **** 1 6 0.053 1.15 6 0.045 1.39 6 0.062

Homocysteine 1.05E-05 3.75E-06 ** NS **** 1 6 0.056 1.23 6 0.057 1.44 6 0.072

Cysteine 1.14E-05 4.23E-06 *** NS **** 1 6 0.095 1.44 6 0.133 1.56 6 0.112

Fumaric acid 1.64E-05 6.29E-06 NS * **** 1 6 0.039 1.15 6 0.053 1.36 6 0.059

C18:2 1.68E-05 6.69E-06 ** NS **** 1 6 0.074 1.21 6 0.062 1.37 6 0.058

Aspartic acid 2.18E-05 8.96E-06 * NS **** 1 6 0.070 1.28 6 0.075 1.55 6 0.084

Histidine 3.19E-05 1.37E-05 *** NS **** 1 6 0.046 1.19 6 0.033 1.27 6 0.047

Succinic acid 3.19E-05 1.40E-05 NS * **** 1 6 0.034 1.11 6 0.038 1.32 6 0.057

Erythritol 4.99E-05 2.26E-05 ** NS **** 1 6 0.039 0.81 6 0.043 0.73 6 0.037

Taurine 9.78E-05 4.56E-05 ** NS **** 1 6 0.049 1.33 6 0.073 1.35 6 0.058

Glycerol 1.75E-04 8.38E-05 * NS **** 1 6 0.083 1.19 6 0.080 1.43 6 0.077

Tryptophane 1.97E-04 9.73E-05 ** NS **** 1 6 0.048 1.18 6 0.042 1.29 6 0.048

Arginine product 2.18E-04 1.11E-04 ** NS *** 1 6 0.045 1.20 6 0.042 1.24 6 0.047

Ornithine 1 3.96E-04 2.06E-04 ** NS *** 1 6 0.045 1.19 6 0.038 1.21 6 0.044

Methyl malate 6.65E-04 3.55E-04 NS NS *** 1 6 0.173 1.27 6 0.170 1.83 6 0.255

Glutamic acid 6.86E-04 3.76E-04 NS NS *** 1 6 0.099 1.29 6 0.111 1.62 6 0.135

Threonine 9.42E-04 5.29E-04 * NS *** 1 6 0.039 1.13 6 0.035 1.23 6 0.044

Creatinine 1.38E-03 7.94E-04 ** NS ** 1 6 0.050 1.20 6 0.048 1.25 6 0.057

Beta-alanine 1.65E-03 9.97E-04 NS NS *** 1 6 0.060 1.16 6 0.061 1.35 6 0.073

Valine 1.65E-03 9.90E-04 * NS ** 1 6 0.058 1.14 6 0.043 1.18 6 0.036

Glyceric acid 1.80E-03 1.11E-03 NS NS *** 1 6 0.054 1.18 6 0.064 1.28 6 0.050

Xylose 2.66E-03 1.68E-03 NS NS ** 1 6 0.072 1.64 6 0.223 2.17 6 0.327

Continued on p. 811
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difficult to distinguish from T2D at diagnosis (3). This is
largely due to the heterogeneity of LADA, combining dif-
ferent metabolic (3) and genetic (6) features of T1D and
T2D. In this study, we examined whether metabolite pro-
filing could identify metabolites with improved capability
of distinguishing LADA from T1D and T2D.

LADA was found to be a metabolic intermediate of
T1D and T2D, overlapping significantly with both of these
types. Hence, the metabolome mirrors the clinical het-
erogeneity. Consequently, no unique metabolic marker
could be identified that had the capacity of distinguishing
between LADA and the other diabetes types. Instead, all three

diabetes types were found along a metabolic continuum,
extending from T1D via LADA to T2D. Plasma C-peptide
levels was found to be the strongest determinant of the
metabolite profile. This is in line with insulin regulating
the metabolism of all macronutrients. All metabolites
except for three showed lower levels in patients with T1D
than in those with LADA and T2D.

The two strongest discriminants between diabetes
types were alanine and uric acid. Alanine is a central com-
ponent of the Cahill cycle, connecting tissue proteolysis
to hepatic gluconeogenesis and the urea cycle. Uric acid
has been suggested to reflect tissue ATP depletion (15).

Table 2—Continued

Metabolite q P
LADA
vs. T1D

LADA
vs. T2D

T1D
vs. T2D T1D LADA T2D

Leucine 3.56E-03 2.29E-03 * NS ** 1 6 0.048 1.11 6 0.038 1.17 6 0.036

Asparagine 3.94E-03 2.59E-03 * NS ** 1 6 0.076 1.25 6 0.066 1.32 6 0.079

Isoleucine 6.39E-03 4.29E-03 NS NS * 1 6 0.064 1.12 6 0.051 1.13 6 0.039

Indole 3-acetic acid 9.31E-03 6.38E-03 * NS ** 1 6 0.083 1.48 6 0.221 1.53 6 0.154

Hippuric acid 1 2.14E-02 1.49E-02 * NS * 1 6 0.137 1.29 6 0.133 1.34 6 0.159

Glycine 3.39E-02 2.42E-02 NS NS * 1 6 0.031 1.09 6 0.025 1.09 6 0.026

Hippuric acid 2 3.74E-02 2.71E-02 NS NS * 1 6 0.153 1.40 6 0.143 1.51 6 0.191

Glycerol 3-phosphate 4.20E-02 3.16E-02 NS * NS 1 6 0.042 0.96 6 0.037 1.10 6 0.040

Xylitol 6.03E-02 4.62E-02 NS NS NS 1 6 0.082 1.08 6 0.070 1.13 6 0.064

Data are expressed as the mean fold to T1D 6 SEM. Differences were assessed by ANOVA followed by post hoc Tukey test on
log2-transformed data. P values were corrected for multiple comparisons using the false discovery rate method. When more than
one derivative of the same metabolite are detected, this is indicated by a number after the name. NS, not significant. *P/q , 0.05; **P/q ,
0.01; ***P/q , 0.001; ****P/q , 0.0001.

Figure 2—Analysis of lipophilic and high–molecular weight metabolites suggests a metabolic continuum extending from T1D via LADA to
T2D: a similar analysis, as depicted for the low–molecular weight metabolome in Fig. 1, was conducted for the lipophilic and high–molecular
weight metabolome. This analysis revealed a perfect classification of T2D and T1D (A) and LADA and T1D (B). C: The SUS-plot derived from
these models revealed that LADA and T2D share differences with T1D, with no unique metabolites associated with either LADA or T2D.
Abbreviations are as explained in Fig. 1. T1D, n = 48; T2D, n = 50; and LADA, n = 49.
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Table 3—Lipophilic and high–molecular weight metabolites differing in levels between LADA, T1D, and T2D

Metabolite q P
LADA
vs. T1D

LADA
vs. T2D

T1D
vs. T2D T1D LADA T2D

LPC(20:3) 1.44E-12 2.44E-14 **** NS **** 1 6 0.093 1.82 6 0.105 2.13 6 0.104

LPC(16:1) 3.07E-12 1.04E-13 **** NS **** 1 6 0.073 1.98 6 0.170 2.59 6 0.211

Phe/Phe 7.83E-12 3.98E-13 **** * **** 1 6 0.072 1.71 6 0.105 2.22 6 0.154

LPC(20:5) 1.11E-10 7.52E-12 **** NS **** 1 6 0.129 2.67 6 0.346 2.89 6 0.282

LPC(14:0) 2.63E-10 2.23E-11 **** NS **** 1 6 0.083 1.96 6 0.181 2.43 6 0.231

PC(36:5) 3.07E-10 3.13E-11 **** NS **** 1 6 0.092 1.83 6 0.129 2.07 6 0.113

PC(40:6) 4.18E-08 5.48E-09 **** NS **** 1 6 0.091 1.77 6 0.168 1.88 6 0.123

Uric acid 1.39E-07 2.13E-08 *** NS **** 1 6 0.103 1.67 6 0.144 2.20 6 0.159

LPC(20:2) 1.40E-07 2.38E-08 **** NS **** 1 6 0.073 1.49 6 0.085 1.58 6 0.076

LPC(17:1) 3.47E-07 6.47E-08 **** NS **** 1 6 0.061 1.67 6 0.157 1.71 6 0.126

LPC(20:4) 5.78E-07 1.18E-07 *** NS **** 1 6 0.065 1.35 6 0.073 1.49 6 0.058

C14:1 carnitine 8.25E-07 1.82E-07 **** NS **** 1 6 0.176 1.97 6 0.239 2.92 6 0.421

Tyrosine 9.54E-07 2.26E-07 ** NS **** 1 6 0.064 1.26 6 0.054 1.51 6 0.067

C16 carnitine 1.79E-06 4.55E-07 *** NS **** 1 6 0.123 1.75 6 0.181 2.36 6 0.245

Hypoxanthine 2.26E-06 6.14E-07 *** NS **** 1 6 0.313 3.26 6 0.775 4.80 6 0.924

PC(34:3) 2.44E-06 7.02E-07 **** NS **** 1 6 0.057 1.37 6 0.064 1.45 6 0.065

LPC(16:0) 2.82E-06 8.62E-07 *** NS **** 1 6 0.033 1.14 6 0.026 1.20 6 0.021

C14 carnitine 5.72E-06 1.84E-06 *** NS **** 1 6 0.149 2.17 6 0.275 3.19 6 0.439

C18:1 carnitine 1.58E-05 5.36E-06 ** NS **** 1 6 0.136 1.62 6 0.171 2.12 6 0.218

PC(38:6) 3.30E-05 1.18E-05 *** NS **** 1 6 0.070 1.35 6 0.067 1.36 6 0.050

C8 carnitine 4.97E-05 1.85E-05 *** NS **** 1 6 0.171 2.05 6 0.270 2.75 6 0.432

C12 carnitine 8.76E-05 3.45E-05 *** NS **** 1 6 0.137 1.90 6 0.240 2.52 6 0.336

Prothionamide 8.76E-05 3.56E-05 ** NS **** 1 6 0.201 3.47 6 0.549 4.48 6 0.618

LPC(15:0) 8.93E-05 3.78E-05 ** NS **** 1 6 0.072 1.40 6 0.114 1.52 6 0.097

Cinnamic acid 1.10E-04 4.86E-05 * NS **** 1 6 0.065 1.25 6 0.054 1.53 6 0.077

C18 carnitine 2.05E-04 9.37E-05 ** NS **** 1 6 0.100 1.37 6 0.136 1.57 6 0.126

LPC(18:0) 2.82E-04 1.34E-04 ** NS *** 1 6 0.040 1.15 6 0.034 1.20 6 0.029

C10 carnitine 4.27E-04 2.10E-04 ** NS *** 1 6 0.218 2.28 6 0.460 3.06 6 0.512

Inosine 6.32E-04 3.21E-04 NS NS *** 1 6 0.321 2.65 6 0.582 3.77 6 0.665

PC(36:1) 7.00E-04 3.68E-04 NS NS *** 1 6 0.069 0.78 6 0.053 0.64 6 0.042

C5 carnitine 1.00E-03 5.45E-04 * NS *** 1 6 0.103 1.55 6 0.148 1.79 6 0.215

LPC(18:1) 1.32E-03 7.37E-04 * NS *** 1 6 0.039 1.12 6 0.030 1.15 6 0.023

C18:2 carnitine 1.89E-03 1.09E-03 * NS *** 1 6 0.132 1.39 6 0.156 1.87 6 0.220

C8:1 carnitine 2.19E-03 1.30E-03 ** NS **** 1 6 0.136 1.62 6 0.171 2.12 6 0.218

Leu/Ile 3.62E-03 2.21E-03 NS NS NS 1 6 0.121 1.22 6 0.183 1.87 6 0.248

3-amino 2-naphtoic acid 5.74E-03 3.60E-03 NS NS ** 1 6 0.047 1.11 6 0.039 1.23 6 0.048

PC(32:1) 1.01E-02 6.48E-03 NS NS ** 1 6 0.097 1.46 6 0.169 1.80 6 0.192

Tyr/Val 1.02E-02 6.73E-03 NS NS ** 1 6 0.083 1.86 6 0.157 2.10 6 0.149

LPC(17:0) 1.13E-02 7.68E-03 * NS * 1 6 0.067 1.24 6 0.082 1.24 6 0.062

C10:2 carnitine 1.42E-02 9.88E-03 NS NS ** 1 6 0.076 1.13 6 0.071 1.42 6 0.162

C6 carnitine 2.22E-02 1.58E-02 NS * NS 1 6 0.040 0.88 6 0.031 1.04 6 0.046

Pipecolic acid 3.68E-02 2.68E-02 * NS NS 1 6 0.059 0.68 6 0.042 0.60 6 0.035

Glu/Phe 4.00E-02 2.98E-02 NS NS NS 1 6 0.096 1.04 6 0.090 1.25 6 0.092

4-Acetamidobutanoate 4.03E-02 3.07E-02 NS NS * 1 6 0.199 1.91 6 0.484 2.52 6 0.503

Betaine 4.47E-02 3.56E-02 NS NS *** 1 6 0.052 1.14 6 0.046 1.27 6 0.056

Data are expressed as the mean fold to T1D 6 SEM. Differences were assessed by ANOVA followed by post hoc Tukey test on
log2-transformed data. P values were corrected for multiple comparison using the false discovery rate method. NS, not significant.
*P/q , 0.05; **P/q , 0.01; ***P/q , 0.001; ****P/q , 0.0001.
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However, ATP depletion is expected to be highest in T1D,
which suggests that this association may not apply to all
diseases. Other metabolites discriminating between dia-
betes types included branched-chain and aromatic amino
acids, which previously were associated with insulin re-
sistance (16) and increased future risk of cardiovascular
disease (CVD) (17) and T2D (18). Notably, these metab-
olites were also elevated in LADA patients with a slower
progression to insulin replacement therapy. Levels of cys-
teine were higher in patients with T2D and LADA than
in those with T1D. Cysteine levels have been associated
with elevated BMI (19) and increased CVD risk (20). Acyl-
carnitines, long and intermediate chains in particular, also
showed large differences between diabetes types. These in-
termediates, suggested to be formed as a result of an im-
balance between lipolysis and Krebs cycle activity (21), are
associated with increased insulin resistance and T2D (22)
and have previously been associated with future CVD (17).

In conclusion, we could not find any unique metabolite
signature capable of distinguishing between LADA and
T2D. Rather, the metabolome showed a strong association
with C-peptide levels. Hence, the metabolome of LADA
was an intermediate of that observed in T1D and T2D,
with significant overlap with both of these diabetes types,
but more similar to the latter. Hence, our data support
that T1D and T2D represent extremes on a continuum (23).
LADA patients showing a higher metabolic resemblance to

T2D patients had a slower progression to insulin therapy
than those showing a higher metabolic resemblance to
T1D, despite having similar C-peptide levels. Overall, our
data challenge the view of metabolically distinct diabetes
subtypes.
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Figure 3—LADA is a metabolic intermediate of T1D and T2D: A: The score scatter plot from a PCA calculated on the 123 identified
metabolites reveals LADA to cluster in between T1D and T2D, with a significant overlap with the T1D and T2D clusters. B: Score scatter plot
from a PCA calculated on C-peptide, HbA1c, and GADAb levels. L, average LADA score; t[1] and t[2], first and second principal component,
respectively. 1, average T1D score; 2, average T2D score. Average scores 6 SEM are shown to the right of the score plots. Differences
were examined by ANOVA followed by post hoc Tukey test. **P < 0.01, ***P < 0.001. T1D, n = 48; T2D, n = 50; and LADA, n = 49.
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