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ORIGINAL ARTICLE

HOX gene expression predicts response to BCL-2 inhibition in
acute myeloid leukemia
M Kontro1, A Kumar2, MM Majumder2, S Eldfors2, A Parsons2, T Pemovska2,8, J Saarela2, B Yadav2, D Malani2, Y Fløisand3, M Höglund4,
K Remes5, BT Gjertsen6,7, O Kallioniemi2, K Wennerberg2, CA Heckman2,9 and K Porkka1,9

Inhibitors of B-cell lymphoma-2 (BCL-2) such as venetoclax (ABT-199) and navitoclax (ABT-263) are clinically explored in several
cancer types, including acute myeloid leukemia (AML), to selectively induce apoptosis in cancer cells. To identify robust biomarkers
for BCL-2 inhibitor sensitivity, we evaluated the ex vivo sensitivity of fresh leukemic cells from 73 diagnosed and relapsed/refractory
AML patients, and then comprehensively assessed whether the responses correlated to specific mutations or gene expression
signatures. Compared with samples from healthy donor controls (nonsensitive) and chronic lymphocytic leukemia (CLL) patients
(highly sensitive), AML samples exhibited variable responses to BCL-2 inhibition. Strongest CLL-like responses were observed in
15% of the AML patient samples, whereas 32% were resistant, and the remaining exhibited intermediate responses to venetoclax.
BCL-2 inhibitor sensitivity was associated with genetic aberrations in chromatin modifiers, WT1 and IDH1/IDH2. A striking selective
overexpression of specific HOXA and HOXB gene transcripts were detected in highly BCL-2 inhibitor sensitive samples. Ex vivo
responses to venetoclax showed significant inverse correlation to β2-microglobulin expression and to a lesser degree to BCL-XL and
BAX expression. As new therapy options for AML are urgently needed, the specific HOX gene expression pattern can potentially be
used as a biomarker to identify venetoclax-sensitive AML patients for clinical trials.

Leukemia advance online publication, 2 September 2016; doi:10.1038/leu.2016.222

INTRODUCTION
Although the prognosis of acute myeloid leukemia (AML) has
improved over the past decades, chemotherapy is curative only in
35 to 40% of adult patients who are ⩽ 60 years of age and in 5 to
15% of patients who are 460 years of age.1 Although new therapy
options hold promise to improve treatment outcomes, a major
challenge will be to identify predictive biomarkers for response,
allowing use of targeted agents in patients most likely to benefit,
and also enabling the design of new combinatorial therapies.2

In lymphatic diseases the inhibition of anti-apoptotic B-cell
lymphoma-2 (BCL-2) proteins has been widely explored with
promising results.3–5 BCL-2 family proteins play a critical role in the
regulation of apoptosis by regulating both cell survival and
apoptosis. BCL-2 and BCL-XL promote survival by blocking BH3-
selective activators (BIM, BID, BAD and PUMA) and their multi-
domain targets (BAX and BAK), thus preventing mitochondrial
outer membrane apoptotic pore formation.6,7 BH3 mimetic drugs
resemble the shared BH3 domains of sensitizer proteins and
prevent their binding to anti-apoptotic proteins.8,9 In clinical trials,
inhibition of BCL-XL by navitoclax (ABT-263) has resulted in severe
on-target thrombocytopenia, hampering clinical development.10

This has led to the development of the second-generation BH3
mimetic venetoclax (ABT-199), a compound that has 5-fold higher
binding affinity for BCL-2 and 4800-fold lower affinity for BCL-XL,
and thus exhibits minimal effects on thrombopoiesis.9

In AML, previous studies have shown that the expression and
protein levels of anti-apoptotic proteins BCL-2, BCL-XL and MCL-1
(myeloid cell leukemia 1) are highly variable, reflecting to some
extent disease prognosis.11–13 Previously, BCL-2 inhibitors have
been explored in AML cell lines and primary patient cells and
protein levels of BCL-2, BCL-XL and MCL-1 have been correlated to
venetoclax sensitivity.14 Recently, mutations in IDH1 or IDH2 were
shown to induce venetoclax sensitivity by (R)-2-hydroxyglutarate-
mediated inhibition of cytochrome c oxidase (COX) activity in the
mitochondrial electron transport chain.15 COX inhibition led to
a lower mitochondrial threshold, thus sensitizing blasts to
venetoclax. Comprehensive data predicting sensitivity to BCL-2
inhibition in AML are limited and robust biomarkers are needed to
select patients most likely to benefit from therapy.
In this study, we explored BCL-2 inhibitor sensitivity ex vivo in a

cohort of 28 newly diagnosed and 45 relapsed/refractory fresh
AML patient samples with extensive molecular and functional
profiling data to discover putative biomarkers for predicting
sensitivity. As venetoclax resistance is associated with elevated
BCL-XL expression levels, we also wanted to explore whether dual
inhibition of BCL-2 and BCL-XL by navitoclax generates deeper
responses than the more selective BCL-2-only inhibitor venetoclax.
Ex vivo cancer-selective responses were identified by computing
selective drug sensitivity scores (sDSS)16 using fresh leukemic
blasts from AML patients. Whole-exome and transcriptome
sequencing and targeted real-time quantitative reverse transcriptase

1Department of Hematology, Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; 2Institute
for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; 3Oslo University Hospital, Rikshospitalet, Oslo, Norway; 4Department of Hematology, Uppsala
University Hospital, Uppsala, Sweden; 5Department of Clinical Hematology, Turku University Central Hospital, University of Turku, Turku, Finland; 6Department of Clinical Science,
Hematology Section, University of Bergen, Bergen, Norway and 7Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.
Correspondence: Professor K Porkka, Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, PO Box 372, 00029 HUCH, Helsinki, Finland.
E-mail: kimmo.porkka@helsinki.fi
8Current address: Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
9These two authors contributed equally to this work.
Received 2 March 2016; revised 1 July 2016; accepted 15 July 2016; accepted article preview online 8 August 2016

Leukemia (2016), 1–9
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0887-6924/16

www.nature.com/leu

http://dx.doi.org/10.1038/leu.2016.222
mailto:kimmo.porkka@helsinki.fi
http://www.nature.com/leu
https://www.researchgate.net/profile/Kari_Remes?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Krister_Wennerberg?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Kimmo_Porkka?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Tea_Pemovska?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Bjorn_Gjertsen?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Mika_Kontro?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Alun_Parsons?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Bhagwan_Yadav?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Disha_Malani?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Olli_Kallioniemi?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Ashwini_Kumar37?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Janna_Saarela?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==
https://www.researchgate.net/profile/Caroline_Heckman?el=1_x_100&enrichId=rgreq-4330afd57bdf232c29ff01497da898af-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxMDA0MDtBUzo0MTc4MjU0ODg0MjQ5NjNAMTQ3NjYyODc2NzYwMQ==


PCR (RQ-PCR) were used for biomarker discovery. We detected
responses in both diagnostic and relapsed/refractory samples and
found mutations in chromatin modifier genes, WT1 and IDH1 and
IDH2 to predict sensitivity. Importantly, we observed that a specific
HOX gene expression profile predicted venetoclax sensitivity, and
absent or low HOX gene expression predicted resistance.

MATERIALS AND METHODS
Patient material
A total of 73 bone marrow (BM) aspirates and peripheral blood samples
(leukemic cells) and skin biopsies (nonmalignant cells for germline
genomic information) from 57 AML patients were collected after signed
informed consent from each patient (permit numbers 239/13/03/00/2010,
303/13/03/01/2011, Helsinki University Hospital Ethics Committee) in
accordance with the Declaration of Helsinki. In addition, BM aspirates
from different healthy donors (12 for navitoclax testing and 7 for
venetoclax), and 3 CLL patients were obtained. Patient characteristics are
summarized in Supplementary Table 1. Mononuclear cells (MNCs) were
isolated by Ficoll density gradient separation (GE Healthcare, Little
Chalfont, UK), washed, counted and suspended in Mononuclear Cell
Medium (PromoCell, Heidelberg, Germany) supplemented with 0.5 μg/ml
gentamicin. One sample from patient 393, a secondary AML after
myelodysplastic syndrome (MDS) with 20% myeloblasts, was enriched
for the CD34+ cell population (sample 393_3, corresponding to the blast
cell population) using paramagnetic beads according to the manufac-
turer’s instructions (Miltenyi Biotech, Bergisch Gladbach, Germany).

Drug sensitivity and resistance testing
The ex vivo drug sensitivity of AML BM or peripheral blood blast cells was
assessed against venetoclax (n= 47) and navitoclax (n=72) as previously
described.17 In short, the drugs were preplated in 384-well plates over a
10 000-fold-concentration range (1–10 000 nM for both venetoclax and
navitoclax in 5 concentrations) with 10 000 cells added to each well.
After a 3-day incubation at 37 °C, cell viability was measured using the
CellTiter-Glo reagent (Promega, Madison, WI, USA). Dose response curves
for each drug were generated for the patient cells, whereas BM MNC
fractions from healthy donors served as controls. DSS and sDSS were
calculated as previously described.16,17 Briefly, DSS is a measure of drug
response based on the area under the dose response curve that captures
both the potency and the efficacy of the drug effect. It integrates
complementary information extracted by half-maximal inhibitory concen-
tration (IC50), slope and minimal and maximum asymptotes. sDSS reflects
the difference in leukemia cell response compared with the median
response in healthy donor BM MNCs (leukemia-selective response).

Exome sequencing and somatic mutation analysis
Genomic DNA was isolated using the DNeasy Blood and Tissue kit (Qiagen,
Hilden, Germany). Exome capture was performed using the Nimblegen
SeqCap EZ v2 (Roche NimbleGen, Madison, WI, USA), Agilent SureSelect v5
Exome or Agilent SureSelect XT Clinical Research Exome (Agilent, Santa
Clara, CA, USA) capture kits and the HiSeq 1500 or 2500 instruments
(Illumina, San Diego, CA, USA).
Exome sequence reads were processed and aligned to the GRCh37

human reference-genome primary assembly as previously described.18

Somatic-mutation calling was done for the exome-capture target regions
and the flanking 500 bp. High confidence somatic mutations were called
for each tumor sample using the VarScan2 somatic algorithm19 with the
following parameters: strand filter 1, min coverage normal 8, min coverage
tumor 6, somatic P-value 1, normal purity 1 and min var freq 0.05.
Mutations were annotated with SnpEff 4.0 (Cingolani et al.20) using the
Ensembl v68 annotation database (European Bioinformatics Institute,
Hinxton, UK). To filter out misclassified germline variants, common
population variants included in dbSNP database version 130 (National
Center for Biotechnology Information, Bethesda, MD, USA) were removed.
The remaining mutations were visually validated using the Integrative
Genomics Viewer (Broad Institute, Cambridge, MA, USA).

Library preparation, sequencing and data analysis of
transcriptomes
For gene expression analysis, total RNA (2.5 to 5 μg) isolated from the AML
patient MNCs was depleted of ribosomal RNA (Ribo-Zero rRNA Removal Kit,
Epicentre, Madison, WI, USA) and remaining RNA reverse transcribed to
complementary DNA (cDNA; SuperScript Double-Stranded cDNA Synthesis
Kit, Life Technologies, Carlsbad, CA, USA). RNA-sequencing libraries were
prepared by Illumina-compatible Nextera Technology (Epicentre, Madison,
WI, USA) and sequenced on the Illumina HiSeq 1500 or 2500 instruments.
Sequenced reads were filtered and aligned to the GRCh37 human
reference-genome using TopHat. Mapped reads were counted for each
genomic feature (gene) with the FeatureCount read-summarization
program from the Subread package (WEHI, Melbourne, Australia).21 The
trimmed mean of M-value method from the edgeR package was applied to
normalize the raw read count and to determine differential gene
expression signatures between sensitive and resistant samples from
53 893 (Ensembl 67) genes.22

RQ-PCR
Total RNA was prepared from BM or peripheral blood MNCs using the
miRNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions.
cDNA was prepared from total RNA using SuperScript III reverse
transcriptase and random primers (Life Technologies) in a 20 μl reaction,
including 40 U RiboLock RNase inhibitor (Thermo Scientific, Waltham, MA,
USA). Reference genes, GAPDH and PGK1, were chosen based on uniform
expression in all samples. RQ-PCR was performed for B2M, BCL-2, BCL-XL,
MCL-1, BIK, BAX, BAK1, BID, BCL2L12, BCL2L11 (BIM), BCL2A1, BBC3 (PUMA)
and BAD as well as HOXA1-A7, HOXA9, HOXA10–A13, HOXB1-B9 and HOXB13
mRNAs. Primer sequences are listed in Supplementary Table 2. RQ-PCR
reactions were performed using iQ SYBR Green Supermix (Bio-Rad,
Hercules, CA, USA), and the specificities of the amplification products
verified by melting curve analysis. Gene expression was quantified using
the Pfaffl method based on calculated primer efficiencies on BCL2 family
genes and the ΔΔCq method for the analysis of HOX genes.23

Statistical analysis
Statistical analyses were performed with Prism software version 6.0
(GraphPad Software, San Diego, CA, USA). Data sets were subjected to
normality testing using the Shapiro–Wilk normality test. Differences
between responses modeled by Gaussian distribution were analyzed by
t-test; otherwise, Mann–Whitney U or Wilcoxon matched-pairs signed rank
test was used. Correspondingly, statistical dependence between two
variables was assessed by Pearson’s correlation or Spearman’s rank
correlation coefficient modeling. All tests were two tailed and P-values
of o0.05 were considered statistically significant.

RESULTS
BCL-2 inhibitors are more effective against AML compared with
healthy controls cells
We first explored the effect of BCL-2 inhibition in fresh, healthy BM
MNCs and detected low sensitivity. The median half-maximal
effective concentration (EC50) for venetoclax was 355 nM (7 healthy
controls) and for navitoclax 97 nM (12 healthy controls). We used
DSS to compare responses between healthy donors and AML cells
to venetoclax and navitoclax. DSS is a measure of drug response, a
modified area under the curve calculation that integrates all four
curve fitting parameters, thereby capturing both the potency and
efficacy of the drug. sDSS reflects the difference in observed
response compared with healthy donors (leukemia-selective
response).16,17 Higher values represent greater sensitivity.
A complete list of EC50, DSS and sDSS values for all samples are
presented in Supplementary Table 3. Both venetoclax and
navitoclax showed AML-selective responses, with the BCL-2-
selective venetoclax having a slightly weaker effect in control
MNCs than the dual BCL-2/BCL-XL inhibitor navitoclax (median
DSS 7.3 vs 10.2, paired t-test P= 0.03; Figures 1a and b).
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AML responses to venetoclax can be divided into three subgroups
The median EC50 value for venetoclax across our cohort in 47 AML
patient samples was 31 nM, whereas for navitoclax the median
EC50 in 72 AML patient samples was 55 nM (Supplementary Table 3).
The responses from three fresh primary CLL patient samples were
used as a positive control.9 The median EC50 values for the CLL
samples were in the low nM range (venetoclax: EC50 1.3, 1.0 and
10.1 nM, respective sDSS values 31.0, 30.4 and 32.1; navitoclax:

EC50: 5.7, 7.1 and 16.6 nM and respective sDSS 23.8, 21.0 and 29.1)
(Figure 1c).
Compared with the healthy donor and CLL cohorts, primary,

fresh AML samples exhibited wide-ranging responses to BCL-2
inhibition, and could be divided into three subgroups based on
sensitivity to venetoclax. Resistant AML samples exhibited lower or
comparable responses with those observed in healthy donors and
thus lacked a leukemia-selective response. The resistant group
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Figure 1. The responses of venetoclax and navitoclax in healthy controls, CLL and AML. Both (a) venetoclax and (b) navitoclax exhibit AML-
selective responses. Mean, s.d. and results of unpaired t-test are shown. (c) Responses of AML and CLL primary cells to venetoclax and
navitoclax. Strongest CLL-like responses were observed in 15% of venetoclax-tested samples (red bars). (d) Distribution of venetoclax and
navitoclax responses in healthy controls and AML samples. Resistant groups were distinguished by the upper confidence level (95%) of
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was distinguished by the upper confidence level (95%) of median
DSS for venetoclax (DSS 13.5 translating to sDSS 5.8) in healthy
controls (Figure 1d). The highly sensitive subgroup was defined by
BCL-2 inhibitor sensitivity similar to that observed in CLL patient
samples (Figure 1c). This grouping determined distinct response
profiles in 7/47 (15%) highly sensitive and 15/47 (32%) resistant
samples (Figure 1e). The intermediate sensitive group exhibited
sensitivity in between the resistant and highly sensitive samples
(sDSS 5.8–25.5). The grouping was used to help determine
whether specific biomarkers correlated with the responses based
on molecular profiling analyses.
No correlation was seen between any response group and

clinical parameters associated with high proliferation rate
(peripheral blood leukocyte count, lactate dehydrogenase) or
BM blast count (Supplementary Figure 1). Moreover, we did not
observe elevated expression of aberrant lymphoid antigens on
blast cells in sensitive samples. Instead, the samples expressing
aberrant lymphatic antigens tended to exhibit lower responsive-
ness to venetoclax (Figure 1f).

AML blasts exhibit similar responses to both venetoclax and
navitoclax
We next evaluated whether dual inhibition of BCL-2 and BCL-XL by
navitoclax would generate different responses than the more
selective BCL-2-only inhibitor venetoclax. The responses between
navitoclax and venetoclax were highly correlated (Pearson’s r 0.88,
Po0.0001), and there were no differences in responses observed
in all AML patient samples between the two drugs (Figures 2a and b).
Diagnostic samples showed marginally higher responsiveness to
venetoclax, whereas refractory samples were slightly more
responsive to navitoclax (Figure 2c).
The majority of diagnostic (13/19, 68%) as well as relapsed/

refractory (19/28, 67%) samples exhibited intermediate or high
sensitivity to venetoclax (Figure 2d). To examine the effect of
preceding hematological disease, we evaluated responses in both
de novo and secondary leukemias with antecedent hematological
disease. Although not statistically significant, the diagnostic
samples showed higher venetoclax sensitivity compared with
samples with secondary etiology (median for venetoclax sDSS in
de novo AML samples 17.5 and secondary 6.1; Figure 2e). Including
only those samples with antecedent MDS or chronic myelomo-
nosytic leukemia (CMML) to the analysis, the result remained
similar, presenting a trend toward lower responsiveness in post-
MDS/CMML AML samples (median for venetoclax sDSS in de novo
AML samples 13.7 and secondary AML from MDS/CMML 3.2,
P=nonsignificant). In navitoclax-tested samples the difference
was statistically significant (median for navitoclax sDSS in de novo
AML samples 15.9 and secondary AML from MDS/CMML 5.3,
P= 0.04).

Specific HOX gene expression profile predicts venetoclax
sensitivity
RNA-sequencing data from three highly sensitive (‘CLL-like’
responses) and four resistant samples were analyzed to identify
possible biomarkers for venetoclax sensitivity in an unbiased
manner. Multidimensional scaling plots were generated to
visualize the differences between the expression profiles of
different samples in two dimensions. The distances between
samples corresponding to leading biological coefficient of
variation are shown in Supplementary Figure 2A. The sensitive
samples showed more homogenous expression profiles than the
resistant samples. Normalized read counts were used to determine
differential gene expression between venetoclax highly sensitive
and resistant groups. The analysis resulted in 322 differentially
expressed genes between sensitive and resistant samples with a
false discovery rate of o0.05 (Supplementary Figure 2B). Next, 41
and 281 overexpressed genes in the sensitive and resistant

groups, respectively, were further analyzed for their biological
function and class. This analysis showed that several HOX
family genes had significantly higher expression in venetoclax-
sensitive samples as compared with venetoclax-resistant samples
(Supplementary Figure 2C). Interestingly, gene expression analysis
of 16 samples with RNA-sequencing data revealed a general
overexpression of HOXA and HOXB genes in highly sensitive
samples and lack or low expression in resistant samples. The
samples exhibiting intermediate responses to venetoclax mainly
clustered between these two groups (Figure 3a).
To further explore the genes with positive or negative

correlation with the drug responses and to validate results from
RNA-sequencing, we performed RQ-PCR on 35 samples with
available cDNA. As a control, we used sample 1064_3 that showed
resistance to venetoclax. Corresponding to the RNA-sequencing
results, by RQ-PCR we detected positive correlation of veneto-
clax response and HOX expression in several HOX family
genes: HOXA3, HOXA5, HOXA6, HOXA7, HOXA9, HOXA11, HOXB2,
HOXB4, HOXB4, HOXB5 and HOXB6 (Supplementary Table 4).
To differentiate biological variances better, we further compared
resistant with highly sensitive samples. We observed significant
correlation of seven HOX genes (HOXA2, HOXA3, HOXA5,
HOXA6, HOXA7, HOXA9 and HOXB2) with venetoclax sensitivity
(Figure 3b).

Responses to BCL-2 inhibition correlate to mutations in chromatin
modifiers, IDH1/2 and WT1
To investigate the possible association of BCL-2 inhibitor response
to somatic, nonsynonymous mutations in individual genes or sets
of genes characterized by functional similarities as presented
previously by The Cancer Genome Atlas Research Network,24 we
explored exome sequencing data from 48 samples (Figure 4). All six
samples with IDH1 or IDH2 mutations displayed sensitivity to BCL-2
inhibitors. Five of the responsive samples clustered among the
intermediate responsive group, whereas one sample clustered in
the highly sensitive group, indeed being the most sensitive sample
of all (other somatic mutations in this sample were FLT3-ITD
and NPM1). Interestingly, 7/8 samples with an aberration in a
chromatin modifier (3/3 samples with MLL fusions, 3/3 samples with
NUP98–NSD1 translocation and 1 sample with ASXL1 mutation)
exhibited sensitivity to BCL-2 inhibitors. The only sample non-
responsive to BCL2 inhibition (1064_5) had a KAT6B mutation.
Responses to navitoclax and venetoclax were detected across

all mutational risk groups (that is, low, intermediate and high), and
the magnitude of response did not correlate to any specific risk
group. Out of 73 samples, 15 (21%) had complex karyotype either
at the time of sampling (8 samples) or in previous G-stain
examination (7 samples) (Supplementary Table 1). We further
evaluated possible differences in venetoclax responses in complex
and noncomplex karyotypes. The median sDSS for complex
karyotype samples was 8.9 and for non-complex karyotype it
was 13.7. The difference was not statistically significant (P= 0.23)
(Supplementary Figure 3). The responses were also observed in
complex karyotype samples with monosomal karyotype. In fact,
4/6 samples with loss of function of TP53 and/or 17p deletion
showed sensitivity to BCL-2 inhibition. One patient (3443; samples
3443_3 and 3443_6) with observed heterozygous 17p deletion
was refractory to BCL-2 inhibition.

Expression of β2-microglobulin inversely correlates to venetoclax
sensitivity
As BCL-2, BCL-XL and MCL-1 protein levels have previously been
correlated to venetoclax sensitivity in AML and MDS cells,14,25 and
BCL-2 family gene expression did not show strong correlation to
venetoclax sensitivity, we validated the expression of 12 BCL-2
family genes, both pro- and anti-apoptotic (BCL-2, BCL-XL, MCL-1,
BIK, BAX, BAK1, BID, BCL2L12, BCL2L11 (BIM), BCL2A1, BBC3 (PUMA)
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and BAD) along with β2-microglobulin (B2M) and controls (GAPDH
and PGK1), using RNA from 40 samples. In our experiments, BCL-XL
RNA levels inversely correlated with venetoclax sensitivity as

expected and low expression was observed in highly sensitive
samples (Figures 5a and b). However, BCL-2 or MCL-1 RNA levels
did not correlate to sensitivity (Supplementary Table 4). A positive
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Figure 2. The correlation of BCL2 inhibitor responses in AML and response to venetoclax in different disease stages. (a) The correlation of
navitoclax and venetoclax responses in AML samples. Pearson’s r 0.88, Po0.0001. (b) Paired responses observed in all samples were highly
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correlation occurred between expression of the pro-apoptotic
gene BAX and venetoclax sensitivity (Figures 5c and d). Inverse
correlation of pro-apoptotic PUMA (Figures 5e and f) and BIM
(Supplementary Table 4) expression to venetoclax sensitivity was
also observed. Among other tested genes, the strongest correla-
tion was seen between venetoclax response and B2M expression
where resistant samples exhibited significantly higher B2M
expression than the highly responsive group (Figures 5g and h).

DISCUSSION
In this study we performed comprehensive genomic and
transcriptomic analyses to evaluate factors predicting BCL-2
inhibitor sensitivity in AML. AML patient sample sensitivity was
assessed against venetoclax in 47 samples and navitoclax in 72
samples. Only fresh samples were used as extensive processing
(for example, cryopreserving and thawing) may cause mitochon-
drial loading of pro-apoptotic proteins, thus possibly amplifying
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the BCL-2 inhibitor response. Based on our ex vivo data, responses
were observed across all cytogenetic groups including complex
and monosomal karyotype as well as normal karyotype, and in a
similar proportion of samples from diagnosed and relapsed/
refractory patients. Responses to venetoclax and navitoclax were
similar, but the BCL-2-selective venetoclax exhibited milder

responses in control MNCs than the dual BCL-2/BCL-XL inhibitor
navitoclax, in line with the clinical experience from these drugs.
Venetoclax responses could be divided in three groups: resistant,
intermediate and highly sensitive (‘CLL-like’) samples. Out of 47
samples, 7 (15%) clustered in the highly sensitive group, whereas
15 (32%) were resistant. In concord, in a phase II trial

Figure 4. BCL-2 inhibitor responses according to mutational subgroup and disease characteristics. The responses are clustered to highly
sensitive, intermediate and resistant. European LeukemiaNet (ELN) risk class1 is evaluated at the time of diagnosis. The karyotype is presented
if examined at the same timepoint with the sampling, a complete list of karyotypes in Supplementary Table 1. All monosomal karyotypes
presented as a part of complex karyotype. Adv, adverse risk; CN, normal karyotype; Comp, complex karyotype; Dg, diagnosis; High, high-risk
karyotype; Int, intermediate risk; Low, low risk; Mono, monosomal karyotype; Ref, refractory; Rel, relapse; Sec, secondary AML.
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(NCT01994837) venetoclax monotherapy resulted in complete
remissions or complete remission with incomplete blood recovery
in 6/32 (19%) of relapsed/refractory AML patients.26

BCL-2, BCL-XL and MCL-1 protein levels have previously been
correlated to venetoclax sensitivity in AML cells.14 We observed no
correlation with anti-apoptotic BCL-2 or MCL1 mRNA expression
and venetoclax response. On the other hand, low expression of
anti-apoptotic BCL-XL and elevated expression of pro-apoptotic
BAX were associated with sensitivity. Unexpectedly, we also
observed inverse correlation of two pro-apoptotic mRNAs, BIM
and PUMA. However, as several BCL-2 family members are
regulated by both post-transcriptional and post-translational
modifications, it is expected that the mRNA expression level of
BCL-2 family genes—without data on protein levels, especially for
known mediators of resistance as MCL-1—insufficiently reflects
the vulnerability to venetoclax inhibition.
The observation of high mRNA expression of B2M in venetoclax-

resistant samples is noteworthy, in particular because B2M protein
is a well-established biomarker in lymphatic malignancies.27

A generally accepted hypothesis has been that serum B2M level
correlates to tumor burden, as free soluble B2M is released from
the cytoplasm or cell membrane, thus relating to turnover rate of
malignant cells.27 In our cohort, no correlation between veneto-
clax sensitivity and factors associated with high proliferation in
AML, lactate dehydrogenase or leukocyte count was observed.
The accumulating data from solid tumors suggest that high
expression of B2M is independently linked to poor prognosis and
that B2M is also involved in proliferation, cell survival and
metastasis in various types of cancer.28–30 In AML and MDS the
high serum levels have been shown to correlate to inferior
outcome but no further studies on B2M expression or its role in
pathogenesis have been carried out.31,32 Previously, cell line
studies have shown B2M to inactivate BAD33 and to have an effect
on apoptosis regulation through increased reactive oxygen,34

both having links to BCL-2 proteins. The precise effects of B2M on
the apoptotic equilibrium and mechanistic explanation for the link
to BCL-2 resistance require further investigation.
Our study showed aberrations in chromatin modifiers, WT1

and IDH1/2, to associate with sensitivity to BCL-2 inhibition.
WT1 and IDH1/2 mutations have been described to result in
similar biological effects; WT1-mutant AML patients have
decreased 5-hydroxymethylcytosine levels consistent with
reduced TET2 function similar to TET2/IDH1/IDH2 mutant AML.35

However, IDH1 and IDH2mutations induce venetoclax sensitivity
by 2-hydroxyglutarate-mediated inhibition of the activity of
COX in the mitochondrial electron transport chain.15 Suppres-
sion of COX activity consequently lowers the mitochon-
drial threshold and sensitizes blasts to BCL-2 inhibition, thus
possibly presenting a different mechanism of sensitivity than in
WT1-mutated AML.
Previously, AML cell lines harboring MLL fusion genes have

been shown to be sensitive to venetoclax, suggesting MLL fusion
genes to have a common role in BCL-2-mediated survival.36 In this
study, samples with aberrations in chromatin modifiers, that is,
MLL-fusions, NUP98-NSD1 translocations and ASXL1 mutation, all
exhibited sensitivity to BCL-2 inhibition. These genetic aberrations
are associated with elevated HOX gene expression; ASXL1 loss
results in a genome-wide reduction in H3K27 trimethylation and
MLL-AF9, -AF6 or NUP98-NSD1 fusion results in DOT1L-mediated
hypermethylation of H3K79, with both these events leading to
concomitant HOX gene expression.37,38 The potential association
to venetoclax sensitivity has been recently explored in acute
lymphatic leukemia with MLL-AF4 fusion. The DOT1L-mediated
H3K79 methylation results in BCL-2 overexpression, but not other
BCL-2 family members, thus sensitizing cells to venetoclax.39

Similarly, in HOXA9-dependent leukemia, maintenance of BCL-2
expression has been described to be critical for immortalization
and proliferation of leukemic cells.40

We detected a distinct HOX gene expression signature in
sensitive samples. Correspondingly, we observed lack of or low
HOX gene expression in the resistant samples. Remarkably, a
broad-spectrum overexpression of both HOXA and HOXB genes
was detected in samples exhibiting the highest sensitivity,
whereas in samples exhibiting intermediate sensitivity, the
expression profile was more limited. In human hematopoiesis,
HOX gene expression is largely restricted to hematopoietic stem
cells and progenitor cells.41,42 Correspondingly, in AML, HOX
expression is highly regulated.43 Intriguingly, BCL-2 inhibition has
been shown to efficiently induce apoptosis in progenitor cells of
high-risk myelodysplastic syndromes and secondary AML
patients.25 Thus, high HOX gene expression may characterize a
stem/progenitor cell-like AML subgroup that is sensitive to
targeted BCL-2 inhibition with venetoclax.
TP53-mutated AML is typical for secondary AML and is

associated with chemoresistance.44 Notably, responses were
observed in 4/6 TP53-mutated/deleted samples, in concordance
with recent CLL studies also showing responses in 17p-deleted
patients.5 As AML patients with TP53 mutation currently lack
treatment options, BCL-2 inhibitors should be considered for
clinical trials in this subgroup. It is also important to recognize that
all mutations predicting response to BCL-2 inhibition are among
AML-initiating mutations. Targeting post-onset driver mutations
(like FLT3-ITD and RAS) has led to only short-lived responses,
perhaps because of the inability to target disease-initiating
mutations.45

To conclude, we observed venetoclax responses in all disease
states of AML, also in relapsed and refractory patient samples. We
found several new factors predicting sensitivity to BCL-2 inhibi-
tion. Mutations of IDH1, IDH2, WT1 and chromatin modifiers
predicted selective response to BCL-2 inhibition, whereas B2M
was the best mRNA-level indicator for anti-BCL-2 drug efficacy.
Importantly, we observed that a specific HOX gene expression
signature was a robust biomarker for venetoclax sensitivity ex vivo.
Our results can be utilized for identifying BCL2 inhibitor-sensitive
AML subgroups for validation in ongoing and upcoming clinical
trials.
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