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1 Introduction

A public authority owns several housing units previously allocated to their current tenants.
However, changes in demographics, preferences, and other circumstances necessitate reallo-
cation. While existing tenants do not own their residences, their occupancy confers a limited
entitlement which may be relevant to reallocation. New York's experience with reallocation
is typical:1

Ms. Jones, 70, moved into her apartment, in the Amsterdam Houses on West
63rd Street, with her son when she was 30 years old and has lived there ever
since. But last month, she opened a letter that said it was time for her to go:
Ms. Jones lives alone in a public housing development, taking up a two-bedroom
apartment that she no longer requires... The (New York City) Housing Authority
is trying to get tenants like Ms. Jones to move into smaller apartments, but there
is no guarantee they will stay in their building, and many residents have been
reluctant to comply.

Although unable to provide a guarantee, the housing authority recognizes and wishes to
account for tenants' ties to their local communities. It lacks a systematic means for balancing
private and collective interests. Absent a clear articulation of principle, the resulting policy
increases tenants' anxiety and may appear to discount their residency entirely, contrary to
the intentions of the authority. Even while recognizing that the circumstances of reallocation
entail some disappoint, a desirable reallocation procedure will respect endowments, at least
partially, and limit the chance that reshu�ing leaves individuals worse o� than initially.
Our proposal codi�es partial ownership in this way as a probabilistic guarantee.2 Building
on the familiar technique of achieving equity with lotteries, our notion of partial ownership
can be readily explained to residents, assuaging some concerns and reassuring them that
their interests are valued. Our formulation further allows all possible strengths of partial

1Harris, Elizabeth. �Alone in Public Housing, With a Spare Bedroom.� New York Times March 11, 2012;
italics added.

2Although we adopt the language of probabilities, our model can also be interpreted as time-sharing when
applied to some of the examples we subsequently describe.
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ownership, providing �exible tools by which the Housing authority may account for tenure,
family conditions, occupation, and other relevant circumstances.

Beyond the public housing context that we emphasize, similar situations are common.
For example, a department chair reallocating teaching assignment to account for enrollment
or building availability or a manager who must reassign workers to branches, shifts, or tasks
to meet the �rm's needs. Like tenants' current residences, instructors' previous courses or
workers' existing shifts function as e�ective endowments. And just as tenants establish ties
to a community, instructors invest energy in planning and workers acclimate to routines
which make these endowments salient references for comparison. As with tenants of public
housing, instructors and workers do not own their endowments in the traditional sense, yet
their original assignments confer some rights and welfare expectations.

To study these problems formally, we adopt a probabilistic version of the reallocation
model of Shapley and Scarf (1974). In the standard model, each agent initially holds one
object, his endowment, and has preferences over all available objects. A rule elicits those
preferences and selects a new allocation. Because the setting is deterministic, respect for
ownership is binary: An agent either is at least as well o� as initially or he is not. For a more
nuanced measure, we broaden the scope of rules to include rules that select lotteries over
deterministic allocations.3 We continue to suppose that agents report rankings over object
and conservatively infer only those lottery comparisons induced by �rst-order stochastic
dominance.4

To what extent can a probabilistic rule be said to respect ownership? First, given an
allocation selected at a given report of preferences, we determine the probability for each
agent that he receives an object at least as desirable as his endowment. Computing the
minimum for each agent across all preference pro�les establishes a set of lower bounds. These
values measure the respect the rule accords to each agent's endowment, or the strength of his
ownership claim. Given a vector α of probabilities for each agent, the α-endowment lower
bound requires that these minimum values dominate α.5 The concept in fact parameterizes
a family of axioms with individualized measures, each ranging from no endowment (value of
zero) to full ownership (value of one).

In addition to respect for partial ownership, we seek rules with other desirable proper-
ties. Fundamentally, the goal of reallocation is to improve the welfare of the agents, albeit
limited by scarce resources and competing interests. To this end, we require e�ciency :
No lottery selected by the rule should be dominated by another lottery according to the
agents' (extended) preferences.6 Although stronger than its deterministic counterpart, it

3In the assignment problem without ownership, randomization is a common technique to introduce fairness
(see Bogomolnaia and Moulin (2001)).

4That is, a lottery is preferred to another if it assigns higher probability to each subset of higher-ranked
objects. The extension is conservative in the sense that one lottery is declared preferred to another if it is
preferred by all von-Neumann�Morgenstern utilities compatible with the ranking over objects (McLennan,
2002; Manea, 2011).

5The α-endowment lower bound can be viewed as examples of the fractional endowment lower bounds
introduced by Athanassoglou and Sethuraman (2011) and discussed subsequently. As special cases, our
family of axioms avoids the numerous incompatibilities they identify.

6This notion is due to Bogomolnaia and Moulin (2001). A milder implied condition is ex-post e�ciency

which requires that each selected lottery be a convex combination of deterministic allocations which are
themselves e�cient.
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is also conservative, declaring inadmissible only those lotteries which permit unambiguous
improvements.

Next, because the designer must rely on reported preferences, we ask that rules provide
incentives for agents to report their preferences truthfully. This is important both to prevent
gaming the system as well as to ensure that the designer possesses accurate information by
which to judge other properties. Formally, we require strategy-proofness : Each agent should
�nd the lottery he receives when truthfully reporting his preferences at least as desirable as
the lottery he could obtain with any other report. Since our extension of preferences to lotter-
ies is incomplete, the requirement that the truthful lottery be comparable to other obtainable
lotteries makes property demanding. Among deterministic rules, however, comparability is
trivial and strategy-proofness simply asks that truth telling be a dominant strategy for each
agent. Extending the logic beyond individuals, group strategy-proofness further requires that
no group bene�t by jointly misrepresenting their preferences.

We are also concerned with the practical implementation of lottery assignments. Notably,
each probabilistic rule can be written as a convex combination of deterministic rules, which
appear as components of the original rule.7 Thinking of randomization as taking place over
the component rules themselves, we wish to ensure that these also possess desirable prop-
erties, particularly incentives to report preferences truthfully. The designer is then free to
conduct the randomization either before or after agents report their preferences and can also
accommodate changes in preferences which occur after the randomization. This �exibility
further bene�ts planning, providing time for the designer to write appropriate computer code
and to communicate details of the �nal rule to participants with full transparency.8 Our �-
nal requirement, decomposability, asks that a rule be constructed via convex combination
of group strategy-proof rules. Decomposability therefore implies strategy-proofness, although
not group strategy-proofness, and we do not impose the stronger property on probabilistic
rules.9 Together with e�ciency, decomposability implies that all component rules are among
the �Trading Cycles� rules characterized by Pycia and Ünver (2016).

Our �rst result identi�es the greatest α-endowment lower bound satis�ed by all decom-
posable and ex-post e�cient rules, which are convex combinations of Trading Cycles rules
(Proposition 1). Consequently, we obtain a complete description of the α-endowment lower
bounds satis�ed by convex combinations of Trading Cycles rules in terms of their initial own-
ership structures. Our main result characterizes Gale's Top Trading Cycles: It is the unique
decomposable and e�cient rule satisfying a strictly positive α-endowment lower bound (The-
orem 1). Strikingly, even the most limited respect for partial ownership has the same force
as full respect for ownership in the presence of the other properties.

Altogether, our contribution is twofold. First, we introduce a parameterized notion of
partial ownership and study its implications among decomposable rules. Second, we provide
a new characterization of Top Trading Cycles which elucidates the role of ownership in the

7This is a consequence of the Birho��von-Neumann Theorem (Birkho�, 1946; von Neumann, 1953). In
general, the set of component rules is not unique.

8The simple decomposability of the random priority rule may explain part of its continued appeal in
practice despite its inferior e�ciency properties (Bogomolnaia and Moulin, 2001). See Pycia and Ünver
(2015) for further motivation of decomposability as a general principle.

9In particular, and in sharp contrast with the deterministic setting, group strategy-proofness is incompat-
ible with e�ciency and equal treatment of equals (Bade, 2016a).

3



reallocation model. This connects the characterizations by Ma (1994) with full ownership
and Pycia and Ünver (2016) with no ownership and further justi�es the centrality of Top
Trading Cycles.10 In the process, we develop new techniques for the study of e�ciency in
the probabilistic model and elucidate features of the Trading Cycles rules. We postpone
further discussion of related literature until we have formal concepts in hand.

In Section 2, we introduce the model and formalize our axioms in Section 3. We present
our results in Section 4 and return to related work and extensions in Section 5. All proofs
appear in the appendix.

2 Model

Let N be a set of agents, and O be a set of objects with |N | = |O| ≥ 4. Each agent
initially holds one object labeled so that agent i's endowment is ωi ∈ O. An allocation is
a bistochastic matrix p = (pik)i∈N, k∈O and the set of all probabilistic allocations is Z.11 For
each i ∈ N and a ∈ O, pia represents the probability that agent i receives object a.12 An
allocation is deterministic if each entry is either zero or one. By the Birkho��von-Neumann
Theorem, each allocation can be represented as the convex combination of deterministic
allocations although not uniquely (Birkho�, 1946; von Neumann, 1953).

Each agent i has a preference relation Ri over O that strictly ranks distinct objects
and R is the set of all such relations. For each a ∈ O, the upper contour set of a in
Ri is U(a,Ri) ≡ {b ∈ O : b Ri a}. Since allocations involve lotteries, we extend agents'
preferences by �rst-order stochastic dominance:13 For each Ri ∈ R and each pair p, q ∈ Z,
p Ri q if for each a ∈ O,

∑
b∈U(a,Ri)

pib ≥
∑

b∈U(a,Ri)
qib. An economy consists of a preference

pro�le R ∈ RN . For each S ⊆ N , RS denotes the preferences of S and R−S denotes the
preferences of N\S. A rule is a mapping ϕ : RN → Z. Among deterministic rules, we abuse
notation slightly and also write ϕi(R) = a for ϕia(R) = 1. Convex combinations of rules are
themselves rules. As with allocations, each rule can be written as the convex combination
of deterministic rules. Given a decomposition, the deterministic rules are the components
of the rule and non-trivial convex combinations are simply combinations.14

Rules

As the formal de�nitions are complicated, we limit our description and notation to that
required to formalize our results.15 Instead, we provide an intuitive description of the primary

10Top Trading Cycles also stands out in related deterministic environments where only some agents have
endowments Sönmez and Ünver (2010) as well as when priorities replace ownership Dur (2013).

11That is, p ∈ [0, 1]N×O and for each i ∈ N and each a ∈ O,
∑

b∈O pib = 1 and
∑

j∈N pja = 1.
12When comparing vectors, we use ≥, >, and � to include equality, indicate inequality in at least one

component, and indicate inequality in all components.
13With slight abuse of notation, we use Ri to represent both agent i preference relation over objects and

its extension to lotteries.
14A convex combination is non-trivial if each component is assigned positive weight: ϕ is a combination

of {ϕ1, . . . , ϕL} if there is λ ∈ (0, 1)L with
∑
λl = 1 such that ϕ =

∑
λlϕ

l.
15See Shapley and Scarf (1974), Pápai (2000), and Pycia and Ünver (2016) for formal de�nitions.
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rules appearing in our analysis. Our interest in these rules derives from their properties (See
Remark 1).

As in the seminal work of Shapley and Scarf (1974), Gale's Top Trading Cycles (TTC)
is central to our analysis. Given a pro�le of preferences, TTC simulates rounds of trading
described by pointing among objects and agents. Initially, each agent points at his most
preferred object and each agent's endowment points at him. This creates at least one cycle
and each agent in a cycle is assigned the object at which he points. These agents and objects
are removed and each remaining agent points at his most preferred among the remaining
objects, again forming at least one cycle. Agents and objects in a cycle are assigned and the
algorithm continues until each agent receives one object.

Extending this idea leads to the family of Trading Cycles rules. A subclass of this
family, �rst identi�ed by Pápai (2000), allows for ownership of multiple objects and prescribes
�xed rules for inheritance. Previewing the novelty required to describe the full family, we call
these Trading Cycles rules without brokers. Each such rule is described by an initial vector
of endowments, µ, which assigns initial ownership of each object to one agent.16 Each object
points at its owner, each agent points at his most preferred object, and assignments are made
along cycles as with TTC. As agents leave, some objects may become unowned. Remaining
agents inherit these objects as prescribed by the rule and remaining agents retain their
existing endowments. Inheritance patterns may depend on assignments made in previous
rounds, but may not otherwise condition on preferences. The algorithm continues until each
agent receives one object.

In addition to varying ownership and inheritance structures, Pycia and Ünver (2016)
generalize �control rights� to allow �brokers� as well as owners. A broker functions similarly
to an owner in that his object points at him. In contrast, however, a broker may not point at
the object he brokers and instead points to his most preferred among the other objects. Also
in contrast, a broker may not control additional objects. Like a Trading Cycles rule without
brokers, a Trading Cycles rule with brokers prescribes inheritance of control rights, now
both ownership and brokerage, which preserves control of objects between rounds. When
four or more agents remain, there may be at most one broker, and a broker may be present
only when at least two other agents are owners. To accommodate the second requirement,
inheritance rules for brokered objects are modi�ed when fewer than two owners remain. If
there is one owner, then he becomes the owner of the previously brokered object. If instead
the broker is the last remaining agent, then he becomes the owner of the object. Finally, if
exactly three agents remain, it is possible for all three agents to be brokers. In this case,
the pointing restrictions continue to apply whenever consistent with e�ciency and otherwise
each agent receives his brokered object. Generalizing the notation for ownership we write
a ∈ µi or a∗ ∈ µi to indicate respectively that agent i owns or brokers object a. We denote
the set of owners (not brokers) by µ(N) ≡ {i ∈ N : ∃a ∈ O, a ∈ µi}. To track conditional
inheritance, we write µ(i → a) and µ((i, j) → (a, b)) to indicate the updated control rights
when agent i receives a and when additionally agent j receives b.

16Therefore, for each pair i ∈ N , µi, µj ⊆ O, µi ∩ µj = ∅, and
⋃

i∈N µk = O.

5



3 Axioms

Given our interest in agents' welfare, we ask �rst that a rule not pass up opportunities
to make everyone better o�: The rule should not select a Pareto dominated allocation.17

Whereas this requirement applies to allocations, which are lotteries, a weaker condition
instead considers the deterministic allocations that may arise after the lottery is run and
asks that these be Pareto undominated.

E�ciency: For each R ∈ RN and each p ∈ Z, if for each i ∈ N , pi Ri ϕi(R), then p = ϕ(R).

Ex-post e�ciency: ϕ can be written as the convex combination of deterministic e�cient
rules.

Like e�ciency, our next axioms are standard. The �rst says that no agent should
bene�t by misreporting his preferences and the second extends the requirement to
groups. Importantly, these axioms require that the lotteries obtained by truth-telling
and lying be comparable, itself a signi�cant restriction due to the incompleteness of the
stochastic dominance extension. The �nal property also considers how a rule responds
to a change in one agent's preferences: If that agent's assignment does not change,
then neither should the assignments of the other agents.

Strategy-proofness: For each R ∈ RN , each i ∈ N , and each R′i ∈ R, ϕi(R) Ri ϕ(R′i, R−i).

Group-strategy-proofness: For each R ∈ RN , each S ⊆ N , each R′S ∈ RS, and each
i ∈ S, ϕi(R) Ri ϕ(R′i, R−i).

Non-bossiness: For each R ∈ RN , each i ∈ N , and each R′i ∈ R, if ϕi(R) = ϕi(R
′
i, R−i),

then ϕ(R) = ϕ(R′i, R−i).

A deterministic rule is group strategy-proof if and only if it is strategy-proof and non-bossy
(Pápai, 2000), although this equivalence does not apply to the probabilistic versions of the
axioms (Bade, 2016a). Among deterministic rules, the combination of ex-post e�ciency and
group strategy-proofness characterizes the family of Trading Cycles rules (Pycia and Ünver,
2016).18

Remark 1. [Pycia and Ünver (2016)] A deterministic rule is group strategy-proof and e�-
cient if and only if it is a Trading Cycles rule.

We now introduce our new family of axioms which measure the extent to which a rule
respects endowments. The standard requirement takes the strongest position, as is appro-
priate when agents own their objects: Each agent should be assigned an object he �nds
at least as desirable as his endowment. In our model, ownership rights are partial, so we
weaken the condition, instead requiring that it hold with some probability. More precisely,
given a vector of probabilities representing individual lower bounds, we ask that each agent
be assigned a lottery which includes objects he �nds as least as desirable as his endowment
with probability at least equal to his individual lower bound, independent of the preferences
of the agents. Let α ∈ [0, 1]N .

17Bogomolnaia and Moulin (2001) introduce this axiom with the name �ordinal e�ciency.�
18While Pycia and Ünver (2016) characterize these rules in a deterministic setting where the axioms are

generally weaker, it is immediate that each deterministic rule satis�es the same axioms applied to lotteries.
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α-endowment lower bound: For each R ∈ RN and each i ∈ N ,
∑

a∈U(ωi,Ri)
ϕia(R) ≥ αi.

Consistent with our interpretation of partial ownership, each α-endowment lower bound con-
siders all possible preference pro�les and therefore represents a probabilistic guarantee. The
axioms in the family provide nuanced and individualized measures of the strength of owner-
ship rights that a rule provides. As the components of α increase, the set of rules satisfying
the α-endowment lower bound shrinks, and distinct sets of rules satisfy the property for dis-
tinct values of α. The maximal α = (1)i∈N corresponds to the endowment lower bound
whereas the minimal α = (0)i∈N models an environment without endowments. Of course,
our parametrization has force only in the probabilistic setting. As summarized by Remark 2,
the force of the axioms di�er only according to which components of α are positive or zero,
and the family collapses to individualized versions of the endowment lower bound.

Remark 2. A deterministic rule satis�es the α-endowment lower bound for i with αi > 0 if
and only if it satis�es the α-endowment lower bound for i with αi = 1.

Taking the view that probabilistic allocations will be implemented by randomization
over rules, we are also interested in the properties of a rule's components. Allowing that
this randomization may in fact occur before agents report preferences, we require that the
components themselves be group strategy-proof.

Decomposability: ϕ can be expressed as a combination of group strategy-proof determin-
istic rules.

Imposing decomposability implies other desirable properties. Among deterministic rules,
group strategy-proofness implies both strategy-proofness and non-bossiness (Pápai, 2000).
Since strategy-proofness and non-bossiness are jointly preserved by combinations (Bade,
2016a), decomposability implies both strategy-proofness and non-bossiness. In contrast, group
strategy-proofness is not preserved by combinations (Bade, 2016a), and decomposability says
nothing about whether a probabilistic rule is group strategy-proof. Additionally, leveraging
the recent characterization of group strategy-proof and e�cient rules mentioned in Remark 1,
we are able to describe components of rules which are both decomposable and e�cient.
Because e�ciency implies ex-post e�ciency, jointly imposing decomposability and e�ciency
guarantees that each component rule be a member of this family. Remark 3 summarizes.

Remark 3. Decomposability implies strategy-proofness and non-bossiness. It implies group
strategy-proofness of the components but not of the rule itself. Decomposability and e�ciency
together imply that each component is a Trading Cycles rule.

4 Results

As we are interested in combinations of deterministic rules, we �rst review which of our prop-
erties this operation preserves. Most importantly, combinations preserve strategy-proofness
and the α-endowment lower bound. Remark 4 summarizes these facts and well-known results.

Remark 4. Combinations preserve strategy-proofness, ex-post e�ciency, each α-endowment
lower bound, and the combination of strategy-proofness and non-bossiness. Combinations do
not preserve e�ciency, group strategy-proofness, or non-bossiness.
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4.1 Properties of the α-endowment lower bound

We now develop properties of our new axiom, the α-endowment lower bound, among de-
composable rules. Although a constant rule which asigns each agent his endowment satis�es
the endowment lower bound and therefore each α-endowment lower bound, such a rule is
inconsistent with the goals of reallocation. Toward understanding the α-endowment lower
bound, we therefore begin with ex-post e�ciency as a minimal further requirement. The
combination of decomposability and ex-post e�ciency restrict us to combinations of Trading
Cycles rules, so we describe our results in the language of control rights. First, we �nd that
ownership is required in order to achieve a positive α-endowment lower bound.

Lemma 1. Let ϕ be a combination of Trading Cycles rules. If i ∈ N does not own an object
in any component of ϕ, then ϕ satis�es no α-endowment lower bound with αi > 0.

The simplest way for a rule to satisfy a positive α-endowment lower bound for a given
agent is for that agent to own his endowment in one of the components. Indeed, this is the
only possibility among deterministic rules and even combinations of Trading Cycles rules
without brokers. Yet surprisingly, this is not required generally as brokerage introduces new
possibilities.

Example 1. Achieving a positive α-endowment lower bound without ownership
of own endowment. Let N = {1, 2, 3, 4}, O = {a, b, c, d}, and ω = (a, b, c, d). Let ϕ1,
ϕ2, and ϕ3 be Trading Cycles rules with initial control rights µ1 =

(
{a}, {b}, {d∗}, {c}

)
,

µ2 =
(
{c}, ∅, {d∗}, {a, b}

)
, and µ3 =

(
{a}, {b}, {c, d}, ∅

)
and let ϕ = 1

4
ϕ1 + 1

2
ϕ2 + 1

4
ϕ3. Then

ϕ satis�es the α-endowment lower bound with α =
(
1
2
, 1
2
, 1
4
, 1
4

)
. For agents 1, 2, and 3, these

values represent the probabilities assigned to rules in which they own their endowments.
Although agent 4 never owns d, ϕ nevertheless satis�es the stated bound for agent 4, the
guarantee arising from the combination of ϕ1 and ϕ2. Even though agent 3 controls d in
these rules, he initially points at a di�erent object. When agent 3 points at c, agent 4
receives an object at least as desirable at d under ϕ1; when agent 3 instead points at a or b,
agent 4 receives an object at least as desirable at d under ϕ2. The smaller of the probabilities
assigned to these rules is 1

4
, which establishes the guarantee.

As a consequence, given a decomposable rule and the α-endowment lower bounds sat-
is�ed by each of its components, the rule may satisfy an α-endowment lower bound which
exceeds the convex combination of those α-endowment lower bounds with weights as in the
decomposition. Essential for agent 4's guarantee in Example 1 is that he own each remaining
object in rules across which d is brokered by a single agent. If even one object were omitted
or brokerage of d were divided between two agents, then the guarantee would not be met.
The two ideas illustrated in Example 1 � ownership of one's endowment and brokerage of
one's endowment by another agent � allow us to precisely identify the greatest α-endowment
lower bound satis�ed by a rule.

Proposition 1. Let ϕ be a combination of Trading Cycles rules {ϕ1, . . . , ϕL} with weights
{λ1, . . . , λL} and de�ne ᾱ ∈ [0, 1]N for each i ∈ N by

ᾱi =
∑{

λl : ωi ∈ µl
i

}
+

∑
j∈N\{i}

min
a∈O\{ωi}

∑{
λl : ω∗i ∈ µl

j and a ∈ µl
i

}
.
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Then ϕ satis�es the α-endowment lower bound if and only if α ≤ ᾱ.

Proposition 1 shows that whether a combination of Trading Cycles rules satis�es a given
α-endowment lower bound depends only on the structure of initial control rights among the
components. Beyond describing the α-endowment lower bound, Proposition 1 formalizes a
novel feature of brokerage. This nuance provides a new equity interpretation provide for
broker arrangements which complements the original equity motivation of Pycia and Ünver
(2016),19 reinforcing interest in the Trading Cycles rules outside previously identi�ed families.

4.2 Characterization of TTC

With an understanding of the α-endowment lower bound among decomposable and ex-post
e�cient rules in hand, we now impose the the stronger requirement of e�ciency. Adding a
minimal guarantee represented by a positive α-endowment lower bound, out of many possible
randomizations, we are ultimately left with a single deterministic rule: TTC.

Theorem 1. For each α ∈ [0, 1]N with α � 0, Top Trading Cycles is the unique rule
satisfying e�ciency, decomposability, and the α-endowment lower bound.

The implication of even a minimal guarantee in Theorem 1 is surprising and stark. For
example, as Trading Cycles rules are deterministic, all are themselves decomposable and
e�cient. Moreover, within many collections of Trading Cycles rules, all combinations are
e�cient, the pair of rules in Example 3 constituting one such collection.20

The proof takes Lemma 1 as a starting point and identi�es collections of Trading Cy-
cles rules consistent with its requirements. Much of the remaining work involves careful
analysis of combinations of Trading Cycles rules which preserve e�ciency. The techniques
and results we develop will therefore be of independent interest for researchers interested in
the implications of e�ciency in the probabilistic assignment model or properties of Trading
Cycles rules generally.

To give a �avor of the approach, we present here a preliminary result which we apply
extensively in subsequent arguments. Lemma 2 generalizes a typical case demonstrating in-
compatibility so that we may often identify ine�ciencies by considering only top preferences.

Lemma 2. Let ϕ and ϕ′ be group strategy-proof deterministic rules. If there are R ∈ RN ,
i, j, k, l ∈ N , and a, b ∈ O such that Ri and Rj rank a at the top, Rk and R` rank b at
the top, ϕi(R) = ϕ′j(R) = a, and ϕk(R) = ϕ′`(R) = b, then no combination of ϕ and ϕ′ is
e�cient.

Example 2 illustrates the intuition behind Lemma 2 whose formal proof appears in the
appendix.

19Whereas our example shows that brokerage by one agent allows us to many another agent better o�
according to our measure, Pycia and Ünver (2016) show that brokerage may improve the welfare of the
broker in a setting where restrictions frown on him consuming a particular object.

20Further developing these ideas, Harless and Phan (2016) identify several subfamilies among which com-
binations preserve e�ciency.
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Example 2. Illustrating a canonical case of incompatibility. Let N = {1, 2, 3, 4},
O = {a, b, c, d}. Let ϕ and ϕ′ be group strategy-proof deterministic rules. In the table below,
(partial) allocations under ϕ are boxed and those under ϕ′ are circled. Since e�ciency of
a combination implies ex-post e�ciency of each component, we may suppose that ϕ and ϕ′

are Trading Cycles rules. Let R ∈ RN be such that R1 and R2 rank a at the top, R3 and R4

rank b at the top as below. Suppose that ϕ1(R) = ϕ′2(R) = a and ϕ3(R) = ϕ′4(R) = b. Then
agents 2 and 4 receive c and d at ϕ(R) while agents 1 and 3 receive c and d at ϕ′(R). Now
consider R′ ∈ RN as in the table. A consequence of group strategy-proofness is that each
rule assigns a and b to the same agents at R′ as at R, so agents 2 and 4 receive c and d at
ϕ(R′) and agents 1 and 3 receive c and d at ϕ′(R′). After possibly relabeling the agents, we
may suppose that ϕ′1(R

′) = c and ϕ2(R
′) = d. Although both ϕ(R′) and ϕ′(R′) are e�cient,

no combination of these assignments is e�cient because ϕ4(R
′) = c P3 d = ϕ′3(R

′) while
ϕ′3(R

′) = d P4 c = ϕ4(R
′).

R

a a b b

R′

a a b b
c d c d

d c d c
b b a a

An immediate corollary of Lemma 2 illustrates its usefulness: If two Trading Cycles rules
assign ownership of two objects to two distinct pairs of agents, then they cannot be combined
without sacri�cing e�ciency.

Corollary 1. Let ϕ and ϕ′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b ∈ O
such that a ∈ µi ∩ µ′k and b ∈ µj ∩ µ′l, then no combination of ϕ and ϕ′ is e�cient.

4.3 Independence of assumptions

We have seen that many rules satisfy the axioms of Theorem 1 when e�ciency is weakened to
ex-post e�ciency, among these all combinations of Trading Cycles rules which include TTC
as a component. Without decomposability, strategy-proofness is no longer required. Many
rules now satisfy the axioms: If α ∈ [0, 1]N is such that for each i ∈ N , αi ∈ (0, 1

n
], then

the Serial rule su�ces (Bogomolnaia and Moulin, 2001).21 For arbitrary α, the Competitive
Equilibrium wherein each agent i is endowed with probability shares of objects with at least
αi share of ωi su�ces. Without the α-endowment lower bound, various combinations of
Trading Cycles rules satisfy the remaining axioms. In fact, Example 3 shows that this is
true when just one agent has a trivial guarantee, even when the guarantees for all other
agents are strengthened to the endowment lower bound.

Example 3. Relaxing the requirement that α� 0. Let ϕ and ϕ′ be Trading Cycles
rules each with initial control rights µ =

(
{a}, {b}, {c}, {d, f}, {e}, ∅

)
which also prescribe

the same inheritance with one di�erence: When each of the �rst three agents receives his

21In fact, all �envy-free� and e�cient rules satisfy the axioms for these α, as do various (though not all)
combinations of Trading Cycles rules in which TTC appears as a component.
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endowment and agent 4 receives d, then agent 5 inherits f under ϕ while agent 6 inherits f
under ϕ′. Combinations of ϕ and ϕ′ are decomposable and satisfy the α-endowment lower
bound with α = (1, 1, 1, 1, 1, 0). They are also e�cient because their allocations di�er by at
most reassigning e and f among agents 5 and 6 when both prefer f to e.

The intuition behind Example 3 also applies when there are extra agents or extra objects
or an outside option (null object) which need not be ranked uniformly last, so |N | = |O| is
also essential to the characterization. On the other hand, even in these cases, our conclusions
about the initial control structures continue to apply. The potential for combinations is
necessarily limited so that all components are �close� to TTC with respect to those agents
with positive guarantees and further handle control rights of all objects similarly until the
�nal stages of inheritance.

Finally, our modelling assumption that |N | ≥ 4 is essential. When |N | ≤ 3, e�ciency is
equivalent to ex-post e�ciency (Bogomolnaia and Moulin, 2001). Consequently, combina-
tions of priority rules, which order the agents and allow each agent in turn to choose his most
preferred among the remaining objects, are both decomposable and e�cient. With positive
weights assigned to orders in which each agent appears �rst, these combinations satisfy an
α-endowment lower bound with α� 0 and α =

(
1
3
, 1
3
, 1
3

)
when these weights are equal.

5 Conclusion

We brie�y relate our work to earlier literature and highlight remaining open questions.
Within the diverse and vibrant literature spawned by Shapley and Scarf (1974), the pre-
viously mentioned characterizations of Pápai (2000) and Pycia and Ünver (2016) play an
essential role in our analysis. Hylland and Zeckhauser (1979) introduce the probabilistic
assignment model, and study begins in earnest with Bogomolnaia and Moulin (2001) who
introduce the notion of e�ciency we adopt. Relating the models, Pycia and Ünver (2015)
study decomposability and ask for which properties of probabilistic rules those rules can be
decomposed as rules with similar properties.

The import of our main result is best understood by comparison to the original char-
acterization of TTC among deterministic rules by ex-post e�ciency, strategy-proofness, and
the endowment lower bound (Ma, 1994).22 Restricted to deterministic rules, our axioms
are the same with strategy-proofness strengthened to group strategy-proofness, the di�erence
being the redundant requirement of non-bossiness. Consequently, Theorem 1 e�ectively
generalizes this result to the probabilistic assignment model. More importantly, because
the probabilistic model allows us to parameterize and substantially weaken the endowment
lower bound, our results elucidate the role of this axiom in the original result: Introducing
even a modicum of respect for endowments, the requirement α � 0 in the α-endowment
lower bound, characterizes TTC. By contrast, even when strategy-proofness is strengthened
to group strategy-proofness, removing the endowment lower bound permits the full range of
Trading Cycles rules with combinations of these rules yielding an unfathomable diversity of

22Sönmez (1999) realizes the result as an implication of a more general theorem and recent work provides
simple and intuitive proofs of the original result (Anno, 2015; Sethuraman, 2016). Further work adapts TTC
to the school choice setting (Abdulkadiro§lu and Sönmez, 2003) and characterizes the rule by properties in
the same spirit as the endowment lower bound (Morrill, 2013; Abdulkadiro§lu and Che, 2010).
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probabilistic rules. While not all of these combinations are e�cient, many are, and all of
the Trading Cycles rules themselves satisfy e�ciency in the enriched model. Viewed in one
light, the starkness of our characterization has a negative �avor, as we might hope partial
ownership would provide additional �exibility. On the other hand, our results underscore the
desirability of TTC and strongly reinforce its centrality in both the literature and practice.

Our results also contrast with earlier incompatibilities. In the probabilistic setting, no
e�cient and strategy-proof rule treats agents symmetrically (Bogomolnaia and Moulin,
2001).23 A related result shows that the core from random endowments is equivalent to
randomizing over priority orders (Abdulkadiro§lu and Sönmez, 1998).24 Closest to our ap-
proach, Athanassoglou and Sethuraman (2011) extend endowment lower bounds to include
all fractional endowments, leading to a family of axioms which includes the α-endowment
lower bounds as a subclass. Whereas TTC satis�es all of our axioms, they show that no
rule satis�es e�ciency, strategy-proofness, and the fractional endowment lower bound. Other
axioms in their larger class di�er in spirit from our goal of modeling partial ownership with
respect to an initial allocation. Comparing results illustrate the di�erence between partial
ownership of endowments and partial ownership of arbitrary subsets of objects.

Turning to extensions, an important open question is whether decomposability can be
weakened by instead imposing strategy-proofness and non-bossiness directly. The chal-
lenge here is that strategy-proofness is not itself decomposable, meaning that there exist
strategy-proof rules for which all decompositions include components which are not them-
selves strategy-proof (Pycia and Ünver, 2015). Whether a more positive result obtains for
the combination of e�ciency and strategy-proofness is unknown. Thinking more broadly,
we believe that adaptations of our α-lower bound will provide a similarly nuanced under-
standing of partial satisfaction of axioms in other models where probabilistic assignments are
possible. For example, in the school choice model, an interesting exploration would identify
those rules satisfying α-stability together with other desirable properties.

A Appendix

A.1 Proof of Lemma 1

Proof. Let ϕ be a combination of Trading Cycles rules {ϕ1, . . . , ϕL}, α ∈ [0, 1]N , and i ∈ N .
Suppose that ϕ satis�es the α-endowment lower bound and i 6∈

⋃L
l=1 µ

l(N). Let R ∈ RN be
such that each agent ranks ωi at the top, and l ∈ {1, . . . , L}. If there is j ∈ N such that
ωi ∈ µl

j, then ϕl
j(R) = ωi. Since j ∈

⋃L
l=1 µ

l(N), j 6= i. Suppose instead there is j ∈ N
such that ω∗i ∈ µl

j and let b ∈ O be the object ranked second in Rj. Since there are at least
four agents present, there is at most one broker and so there is k ∈ N such that b ∈ µl

k.
Then ϕl

k(R) = ωi. Again k ∈
⋃L

l=1 µ
l(N), so k 6= i and ϕl

i(R) 6= ωi. This is true for each
component rule, so ϕia(R) = 0 which implies αi = 0.

23A similar incompatibility holds in a cardinal setting where agents report utility functions rather than
ordinal rankings and e�ciency is now judged with respect to these utilities (Zhou, 1990).

24This equivalence has since been extended to all Trading Cycles rules (Lee and Sethuraman, 2011; Carroll,
2014; Bade, 2016b).
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A.2 Proof of Proposition 1

Proof. Let ϕ be a combination of Trading Cycles rules {ϕ1, . . . , ϕL} with weights
{λ1, . . . , λL}. For each i ∈ N , each j ∈ N\{i} and each a ∈ O\{ωi}, let aj ∈
argmina∈O\{ωi}

∑
{λl : ω∗i ∈ µl

j and a ∈ µl
i}. Also let A(i) ≡ {l ∈ {1, . . . , L} : ωi ∈ µl

i}
and B(i, j, a) ≡ {l ∈ {1, . . . , L} : ω∗i ∈ µl

j and a ∈ µl
i}. Then ᾱi =

∑
l∈A(i) λ

l +∑
j∈N\{i}

∑
l∈B(i,j,aj)

λl.
To see that ᾱ is an upper bound, let i ∈ N and let R ∈ RN be such that all agents

rank ωi at the top and for each j 6= i, Rj ranks aj second. For each l ∈ A(i), ϕl
i(R) = ωi.

Also, for each j ∈ N\{i} and each l ∈ B(i, j, aj), ϕl
i(R) = ωi. On the other hand, for each

l ∈ {1, . . . , L}, if ωi ∈ µj, then ϕl
j(R) = ωi and if ω∗i ∈ µj, then there is k ∈ N\{i, j} such

that aj ∈ µl
k and ϕ

l
k(R) = ωi. Therefore, agent i receives ωi with probability ᾱi at R. Thus,

for each α ∈ [0, 1]N , if α 6≤ ᾱ, then ϕ violates the α-endowment lower bound.
To see that ϕ satis�es the α-endowment lower bound for α = ᾱ, let i ∈ N and R ∈ RN .

By de�nition the pointing algorithm, for each l ∈ A(i), ϕl
i(R) Ri ωi. Now let j ∈ N\{i} and

bj ∈ O\{ωi} be the object ranked highest in Rj. For each ϕl ∈ B(i, j, bj), agent j begins by
pointing at agent i, so ϕl

i(R) Ri ωi. Then by de�nition of aj,
∑

l∈B(i,j,bj)
λl ≥

∑
l∈B(i,j,aj)

λl.
Therefore, agent i receives an object at least as desirable as ωi with probability at least ᾱi

at ϕ(R).

A.3 Proof of Lemma 2 and Corollary 1

Proof. Without loss of generality, suppose that N = {1, 2, 3, 4}, and O = {a, b, c, d}. Let ϕ
and ϕ′ be group strategy-proof deterministic rules.

Lemma 2. Let R,R′ ∈ RN be as in Example 2 and sup-
pose that ϕ1(R) = ϕ′2(R) = a and ϕ3(R) = ϕ′4(R) = b. Then
{ϕ3(R), ϕ4(R)} = {ϕ′1(R), ϕ′2(R)} = {c, d}. By group strategy-proofness,
{ϕ1(R

′
1, R2, R

′
3, R4), ϕ3(R

′
1, R2, R

′
3, R4)} = {ϕ′2(R1, R

′
2, R3, R

′
4), ϕ

′
4(R1, R

′
2, R3, R

′
4)} = {a, b}

so {ϕ2(R
′
1, R2, R

′
3, R4), ϕ4(R

′
1, R2, R

′
3, R4)} = {ϕ′1(R1, R

′
2, R3, R

′
4), ϕ

′
3(R1, R

′
2, R3, R

′
4)} =

{c, d}. Then again by group strategy-proofness, {ϕ1(R
′), ϕ3(R

′)} = {ϕ′2(R′), ϕ′4(R′)} = {a, b}
so {ϕ2(R

′), ϕ4(R
′)} = {ϕ′1(R′), ϕ′3(R′)} = {c, d}. Relabeling the agents and objects if

necessary, suppose that ϕ(R′) = (a, d, b, c) and ϕ′(R′) = (c, a, d, b). Since c P3 d while d P4 c,
no combination of ϕ and ϕ′ is e�cient.
Corollary 1. Further suppose that ϕ and ϕ′ are Trading Cycles rules and let a, b ∈ O be

such that a ∈ µ1 ∩ µ′2 and b ∈ µ3 ∩ µ′4. Let R ∈ RN be such that R1 and R2 rank a at the
top and R3 and R4 rank b at the top. Then ϕ1(R) = ϕ′2(R) = a and ϕ3(R) = ϕ′4(R) = b.
This satis�es the conditions of Lemma 2, so no combination of ϕ′ and ϕ′′ is e�cient.

A.4 Proof of Theorem 1

We begin with additional notation to track inheritance of control among Trading Cycles rules.
We denote by µ, µ′, and µ′′ the initial control rights under rules ϕ, ϕ′, and ϕ′′ respectively.
Given ϕ with initial control rights µ, we write µ(1 → a) to indicated the updated control
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rights conditional on agent 1 receiving a. Similarly, we write µ(1 → a, 2 → b) to indicated
the updated control rights conditional on agent 1 receiving a and agent 2 receiving b.

Henceforth, we suppose that N = {1, 2, 3, 4}, O = {a, b, c, d}, and ω = (a, b, c, d). This is
without loss of generality because each of our examples can be embedded in problems with
additional agents and our results therefore apply directly to these settings as well. Each rule
satisfying decomposability and e�ciency is a combination of Trading Cycles rules. Moreover,
since α� 0, the α-endowment lower bound requires that each agent be an owner in at least
one rule (Lemma 1). We conclude that the components must include rules whose initial
ownership structures match one of a small number of patterns.

Remark 5. If agents {1, 2, 3, 4} are each owners in at least one rule in a collection, then the
collection includes a subset of rules whose ownership structures restricted to these agents
match one of the following nine patterns:

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
µ1(N) {1} {1, 2} {1, 2} {1, 2} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3, 4}
µ2(N) {2} {3} {1, 3} {1, 3} {3, 4} {4} {1, 4} {1, 2, 4}
µ3(N) {3} {4} {4} {1, 4}
µ4(N) {4}

The following series of results develop the tools to consider each of these patterns. We
show that combinations of rules matching the �rst eight patterns are incompatible with
e�ciency.

Lemma 3 postulates two rules, one with three owners and a second which reassigns
ownership of one object to a fourth agent.

Lemma 3. Let ϕ and ϕ′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b, c ∈ O
such that a ∈ µi, b ∈ µj, and c ∈ µk ∩ µ′l, then no combination of ϕ and ϕ′ is e�cient.

Proof. Let ϕ and ϕ′ be Trading Cycles rules and a, b, c ∈ O be such that a ∈ µ1, b ∈ µ2,
c ∈ µ3 ∩ µ′4. Let R1, R2, R3, R4, R5 ∈ RN be as partially speci�ed in the table:

R1

b c b c
d a a d
a d d a

R2

c a a c
b d b d
d b d b

R3

b b c c
d a a d
a d d a

R4

a c a c
d d b b
b b d d

R5

b a b c
c d a d
a b c b

Then ϕ(R1) = {(a, c, b, d), (d, c, b, a)}, ϕ(R2) = {(c, b, a, d), (c, d, a, b)}, ϕ(R3) ∈
{(d, b, c, a), (a, b, c, d)}, ϕ(R4) = (a, c, b, d), and ϕ(R5) = (b, a, c, d). Also, ϕ′4(R

1) = ϕ′4(R
2) =

ϕ′4(R
3) = ϕ′4(R

4) = ϕ′4(R
5) = c. We distinguish cases according to control of a after agent 4

receives c. This may be by initial control at µ′ or, if the object is initially owned by agent 4,
inheritance conditional on agent 4 receiving c. In the �rst three cases, a is owned and in
the �nal three cases a is brokered. When a is brokered, because three agents remain, each
agent controls one object and there are either three brokers or one broker and two owners.
In those cases with three brokers, we consider a pro�le with a unique e�cient allocation in
which no agent receives the object he brokers and this is the allocation under ϕ′.
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Case 1: a ∈ µ′1(4→ c). We distinguish subcases according to whether which agent
controls b. Since a ∈ µ′1(4→ b), b∗ 6∈ µ′1(4→ b).
Subcase 1.1: b ∈ µ′1(4 → c). Then ϕ2(R

1) = ϕ′4(R
1) = c and ϕ3(R

1) = ϕ′1(R
1) = b. This

satis�es the conditions of Lemma 2 applied at R1.
Subcase 1.2: b ∈ µ′2(4 → c) or b∗ ∈ µ′2(4 → c). Then ϕ1(R

2) = ϕ′4(R
2) = c and ϕ3(R

2) =

ϕ′2(R
2) = a. This satis�es the conditions of Lemma 2 applied at R2.

Subcase 1.3: b ∈ µ′3(4 → c) or b∗ ∈ µ′3(4 → c). Then ϕ3(R
3) = ϕ′4(R

3) = c and ϕ2(R
3) =

ϕ′1(R
3) = b. This satis�es the conditions of Lemma 2 applied at R3.

Case 2: a ∈ µ′2(4→ c). Then ϕ1(R
2) = ϕ′4(R

2) = c and ϕ3(R
2) = ϕ′2(R

2) = a. This

satis�es the conditions of Lemma 2 applied at R2.
Case 3: a ∈ µ′3(4→ c). Then ϕ2(R

4) = ϕ′4(R
4) = c and ϕ1(R

4) = ϕ′3(R
4) = a. This

satis�es the conditions of Lemma 2 applied at R4.
Case 4: a∗ ∈ µ′1(4→ c). The possibilities for µ′(4 → c) are: (i)

(
{a∗}, {b}, {d}

)
, (ii)(

{a∗}, {d}, {b}
)
, (iii)

(
{a∗}, {b∗}, {d∗}

)
, (iv)

(
{a∗}, {d∗}, {b∗}

)
. In cases (i) and (iv), ϕ′(R4) =

(d, b, a, c). In cases (ii) and (iii), ϕ′(R4) = (b, d, a, c). In each case, the assignments of a and
c satisfy the conditions of Lemma 2 applied at R4.
Case 5: a∗ ∈ µ′2(4→ c). The possibilities for µ′(4 → c) are: (i)

(
{b}, {a∗}, {d}

)
, (ii)(

{d}, {a∗}, {b}
)
, (iii)

(
{b∗}, {a∗}, {d∗}

)
, (iv)

(
{d∗}, {a∗}, {b∗}

)
. In cases (i) and (iv), ϕ′(R3) =

(b, d, a, c). The assignments of b and c satisfy the conditions of Lemma 2 at R3. In cases (ii)
and (iii), ϕ′(R5) = (a, d, b, c). Since c P1 a while a P3 c, no combination of ϕ and ϕ′ preserves
e�ciency.
Case 6: a∗ ∈ µ′3(4→ c). The possibilities for µ′(4 → c) are: (i)

(
{b}, {d}, {a∗}

)
, (ii)(

{d}, {b}, {a∗}
)
, (iii)

(
{b∗}, {d∗}, {a∗}

)
, (iv)

(
{d∗}, {b∗}, {a∗}

)
. In cases (i) and (iv), ϕ′(R3) =

(b, a, d, c). The assignments of b and c satisfy the conditions of Lemma 2 at R3. In cases (ii)
and (iii), ϕ′(R2) = (d, a, b, c). The assignments of a and c satisfy the conditions of Lemma 2
applied at R2.

Lemma 4 and Lemma 5 consider changes in initial control structures which replace own-
ership with brokerage rather than ownership. Lemma 4 considers cases in which an agent
who brokers an object in one rule loses control of that object in a second rule.25 Lemma 5
considers case in which an agent who owns an object in one rule has his control rights
weakened to brokerage in a second rule.

Lemma 4. Let ϕ and ϕ′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b, c, d ∈ O
such that a∗ ∈ µi, c ∈ µk ∩ µ′k, and d ∈ µl ∩ µ′l and either (i) a∗ ∈ µ′j and b ∈ µk ∩ µ′k or (ii)
a ∈ µ′j and b ∈ µj ∩ µ′j, then no combination of ϕ and ϕ′ is e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′, and ϕ′′′ be Trading Cycles rules such that µ =
(
{a∗}, ∅, {b, c}, {d}

)
,

µ′ =
(
∅, {a∗}, {b, c}, {d}

)
, µ′′ =

(
{a∗}, {b}, {c}, {d}

)
, and µ′′′ =

(
∅, {a, b}, {c}, {d}

)
. Then

ϕ and ϕ′ match the conditions with (i) and ϕ′′ and ϕ′′′ match the conditions with (ii). Let
R,R′ ∈ RN be as partially speci�ed in the table:

25Although the cases in Lemma 4 are not compatible with an α-endowment lower bound that is positive
for all agents, we include them for completeness and to permit a simple summary statement in Corollary 2.
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R
b d a a
c c d b

b d

R′

c a a c
d b d b
b d

Then ϕ(R) = (b, c, a, d), ϕ′(R) = (c, d, b, a), ϕ′′(R′) = (c, b, a, d), and ϕ′′′(R′) = (b, a, d, c).
Since d P3 b while b P4 d, no combination of ϕ and ϕ′ preserves e�ciency. Similarly, since
d P ′1 b while b P

′
4 d, no combination of ϕ′′ and ϕ′′′ preserves e�ciency.

Lemma 5. Let ϕ and ϕ′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b, c, d ∈ O
such that a ∈ µi, a

∗ ∈ µ′i, b ∈ µ′j, c ∈ µk ∩ µ′k, d ∈ µl ∩ µ′l, and either (i) b ∈ µj or (ii)
b∗ ∈ µj, then no combination of ϕ and ϕ′ is e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′, be such that µ =
(
{a}, {b}, {c}, {d}

)
, µ′ =

(
{a∗}, {b}, {c}, {d}

)
,

and µ′′ =
(
{a}, {b∗}, {c}, {d}

)
. Then ϕ and ϕ′ match the conditions with (i) and ϕ′′ and ϕ′

match the conditions with (ii). Let R,R′ ∈ RN be as partially speci�ed in the table:

R
a a b b
d c d c

c d

R′

a b a b
c d d c

c d

Then ϕ(R) = (a, c, b, d), ϕ′(R) = (d, a, c, b), ϕ′(R′) = (c, b, a, d), and ϕ′′(R′) = (a, d, c, b).
Since d P3 c while c P4 d, no combination of ϕ and ϕ′ preserves e�ciency. Similarly, since
d P ′3 c while c P

′
4 d, no combination of ϕ′ and ϕ′′ preserves e�ciency.

As a consequence of Lemma 3, if one component rule includes four or more owners, then
no additional owners may appear in other component rules, nor may other component rules
reallocate ownership of the objects among these agents. Lemmas 4 and 5 extend this logic
to brokers: No other component may reallocate control of an object to a di�erent agent,
nor even change one agent's control from ownership to brokerage. Because the presence
of the broker with four or more agents implies that there are simultaneously at least two
owners, the cases covered by these lemmas are exhaustive, yielding the formal statement in
Corollary 2.

Corollary 2. Let ϕ and ϕ′ be Trading Cycles rules. If |µ(N)| ≥ 4 and there is i ∈ N such
that µi 6= µ′i, then no combination of ϕ and ϕ′ is e�cient.

Lemma 6 considers combinations of three rules which collectively assign initial ownership
of two objects to four di�erent agents.

Lemma 6. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b ∈ O
such that a ∈ µi, b ∈ µj, and {a, b} ⊆ µ′k ∩ µ′′l , then no combination of ϕ, ϕ′, and ϕ′′ is
e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules and a, b ∈ O be such that a ∈ µ1, b ∈ µ2,
{a, b} ⊆ µ′3 ∩ µ′′4. Let R ∈ RN be as partially speci�ed in the table:
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R
a b a b
{c, d} {c, d}
b a

Then ϕ1(R) = ϕ′3(R) = a and ϕ2(R) = ϕ′′4(R) = b. By ex post-e�ciency of Trading Cycles
rules, ϕ′1(R) 6= b and ϕ′′2(R) 6= a. If ϕ′4(R) = b, then the conditions of Lemma 2 apply at R
with respect to ϕ and ϕ′. If ϕ′′3(R) = a, then the conditions of Lemma 2 apply at R with
respect to ϕ and ϕ′′. If ϕ′4(R) 6= b and ϕ′′3(R) 6= a, then ϕ′2(R) = b and ϕ′′1(R) = a. The
conditions of Lemma 2 now apply at R with respect to ϕ′ and ϕ′′. Instead, no combination
of ϕ, ϕ′, and ϕ′′ preserves e�ciency.

Lemma 6 postulates two agents who are simultaneously owners in one of the rules, but
this is not necessary. Rather than be an initial owner, it su�ces that this agent inherit one
of the objects, perhaps only in the narrow case where the initial owner receives the other
object. Corollary 3 formalizes this observation.

Corollary 3. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules. If there are i, j, k, l ∈ N and
a, b ∈ O such that {a, b} ⊆ µi ∩ µ′k ∩ µ′′l and b ∈ µj(i → a), then no combination of ϕ, ϕ′,
and ϕ′′ is e�cient.

Corollary 3 carries implications for combinations of rules which initially endow a single
agent with all of the objects. In particular, if four rules each initially endow a di�erent agent
with all of the objects, then combinations of these rules will not preserve e�ciency. The
reason is that the objects are inherited: In the �rst rule, after the �rst agent receives an
object, at some point one of the other special agents will inherit an object. This agent plays
the role of agent j and the remaining special agents play the the roles of agents k and l with
the inherited object and the object received by the �rst agent playing the roles of b and a.
Corollary 4 reiterates this conclusion.

Corollary 4. Let ϕ, ϕ′, ϕ′′, and ϕ′′′ be Trading Cycles rules. If µi = µ′j = µ′′k = µ′′′l = O,
then no combination of ϕ, ϕ′, ϕ′′, and ϕ′′′ is e�cient.

Lemma 7 considers additional permutations of initial ownerships which collectively assign
two objects to each of four distinct agents.

Lemma 7. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b ∈ O
such that {a, b} ⊆ (µi∪µj)∩(µ′i∪µ′k)∩µ′′l with µi∩{a, b}, µj∩{a, b}, µ′i∩{a, b}, µ′k∩{a, b} 6= ∅,
then no combination of ϕ, ϕ′, and ϕ′′ is e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules and a, b ∈ O be such that a ∈ µ1, b ∈ µ2,
{a, b} ⊆ ∩µ′′4, and either (i) a ∈ µ′1 and b ∈ µ′3 or (ii) b ∈ µ′1 and a ∈ µ′3. Let R ∈ RN be as
partially speci�ed in the table:

R
b b a a
{c, d} {c, d}
a b
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Then ϕ2(R) = ϕ′1(R) = b and ϕ′3(R) = ϕ′′4(R) = a. By ex post-e�ciency of Trading
Cycles rules, ϕ′1(R) 6= a and ϕ′′3(R) 6= b. If ϕ4(R) = a, then the conditions of Lemma 2 apply
at R with respect to ϕ and ϕ′. If ϕ′′2(R) = b, then the conditions of Lemma 2 apply at R
with respect to ϕ′ and ϕ′′. If ϕ4(R) 6= a and ϕ′′2(R) 6= b, then ϕ3(R) = a and ϕ′′1(R) = b. The
conditions of Lemma 2 now apply at R with respect to ϕ and ϕ′′. Instead, no combination
of ϕ, ϕ′, and ϕ′′ preserves e�ciency.

Lemma 7 carries implications for combinations which include a rule with a single initial
owner. In particular, if one rule initially endows an agent with all of the objects and two
additional rules together include three new agents as owners, then no combination of these
rules preserves e�ciency. Corollary 5 states this formally.

Corollary 5. Let ϕ, ϕ′, and ϕ′′, be Trading Cycles rules. If µi ∪ µj = µ′i ∪ µ′k = µ′′l = O
with µi, µj, µ

′
i, µ
′
k 6= ∅, then no combination of ϕ, ϕ′, and ϕ′′ is e�cient.

Lemma 8 considers a further possibility for shared ownership of two objects by four agents.
This time, one agent owns one of the objects in each of three rules and each remaining agent
owns the other object in one rule.

Lemma 8. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b ∈ O
such that {a, b} ⊆ (µi∪µj)∩ (µ′i∪µ′k)∩ (µ′′i ∪µ′′l ) with µi∩{a, b}, µj ∩{a, b}, µ′i∩{a, b}, µ′k ∩
{a, b}, µ′′i ∩ {a, b}, µ′′l ∩ {a, b} 6= ∅, then no combination of ϕ, ϕ′, and ϕ′′ is e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules and a, b ∈ O be such that a ∈ µ1 ∩ µ′1,
b ∈ µ2 ∩ µ′3, and either (i) a ∈ µ′′1 and b ∈ µ′′4 or (ii) b ∈ µ′′1 and a ∈ µ′′4.26 Let R ∈ RN be as
partially speci�ed in the table:

R
b b a a
{c, d}
a

Then ϕ2(R) = ϕ′1(R) = ϕ′′1(R) = b and ϕ′3(R) = ϕ′′4(R) = a. By ex post-e�ciency of Trading
Cycles rules, ϕ1(R) 6= a. If ϕ3(R) = a, then the conditions of Lemma 2 apply at R with
respect to ϕ and ϕ′′. If ϕ4(R) = a, then the conditions of Lemma 2 apply at R with respect
to ϕ and ϕ′. Instead, no combination of ϕ, ϕ′, and ϕ′′ preserves e�ciency.

Lemma 9 considers a �nal way for four agents to each be owners among three rules which
involves three objects. One agent owns two of the objects in each of three rules and each
remaining agent owns a di�erent one of the three objects in one rule.

Lemma 9. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules. If there are i, j, k, l ∈ N and a, b, c ∈ O
such that a ∈ µi ∩ µ′k ∩ µ′′i , b ∈ µj ∩ µ′i ∩ µ′′i , and c ∈ µi ∩ µ′i ∩ µ′′l , then no combination of ϕ,
ϕ′, and ϕ′′ is e�cient.

26The conditions of the lemma imply that agent 1 owns one of the objects in at least two of the rules.
After possibly relabeling the agents and objects, these cases are exhaustive.
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Proof. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules and a, b, c ∈ O be such that a ∈ µ1∩µ′3∩µ′′1,
b ∈ µ2 ∩ µ′1 ∩ µ′′1, and c ∈ µ1 ∩ µ′1 ∩ µ′′4. We trace implications of e�ciency for inheritance
structures for {a, b, c} (Step 1) and d (Step 2). Let R0, . . . , R6 ∈ RN be as partially speci�ed
in the table:

R0

c a a c
b b b
d

R1

b b d a
a d a d

c c

R2

b b d d
a c c a

a c

R3

a d a d
b b c c

c b

R4

c d d c
a b a b

a b a

R5

c d d c
b b a a

a b b

R6

a d a d
c

Step 1: a ∈ µ3(1→ c) ∩ µ′′3(1→ b), b ∈ µ′2(1→ c) ∩ µ′′2(1→ a), and
c ∈ µ4(1→ a) ∩ µ′4(1→ b). We argue that no other cases are compatible with e�ciency.
Consider �rst ownership of a in µ(1→ c).
At R0, ϕ1(R

0) = ϕ′1(R
0) = ϕ′′4(R0) = c and ϕ′3(R

0) = a. By ex post-e�ciency of Trading
Cycles rules, ϕ′′1(R0) 6= a. If ϕ′′2(R0) = a, then the conditions of Lemma 2 apply at R0 with
respect to ϕ′ and ϕ′′. Instead, ϕ′′3(R0) = a. If a ∈ µ2(1 → c) ∪ µ4(1 → c) or a∗ ∈ µ3(1 →
c)∪µ4(1→ c), then ϕ2(R

0) = a and the conditions of Lemma 2 apply at R0 with respect to
ϕ and ϕ′′. Also, b ∈ µ2, so a∗ 6∈ µ2(1→ c). Instead, a ∈ µ3(1→ c).

By relabeling the agents and objects, symmetric arguments show that a ∈ µ3(1→ c),b ∈
µ′2(1→ c) ∩ µ′′2(1→ a), and c ∈ µ4(1→ a) ∩ µ′4(1→ b).

Step 2: d ∈ µ2(1→ a) ∩ µ2(1→ c) ∩ µ′3(1→ b) ∩ µ′3(1→ c) ∩ µ′′4(1→ a) ∩ µ′′4(1→ b).
We argue that no other cases are compatible with e�ciency. Consider �rst µ′(1→ b).
Case 2.1: d ∈ µ′2(1 → b) ∪ µ′′2(1 → b) ∪ µ3(1 → a ∪ µ′′3(1 → a) ∪ µ4(1 → c) ∪ µ′4(1 → c).

Suppose that d ∈ µ′2(1→ b). Then ϕ′(R1) = (b, d, a, c) and ϕ′(R2) = (b, c, a, d).
Consider ϕ. If d ∈ µ4(1 → a), then ϕ(R1) = (a, b, c, d). Since d P 1

3 a while a P 1
4 d, no

combination of ϕ and ϕ′ preserves e�ciency. If d ∈ µ3(1 → a), then ϕ(R2) = (a, b, d, c).
Since c P 2

3 a while a P 2
4 c, no combination of ϕ and ϕ′ preserves e�ciency. Suppose

instead that d ∈ µ2(1 → a) and consider µ(1 → a, 2 → b). If d ∈ µ4(1 → a, 2 → b), then
ϕ(R1) = (a, b, c, d). If d ∈ µ3(1→ a, 2→ b), then ϕ(R2) = (a, b, d, c). Again, no combination
of ϕ and ϕ′ preserves e�ciency. Instead, d 6∈ µ′2(1→ b).

By relabeling the agents and objects, symmetric arguments show that d 6∈ µ′′2(1 →
b) ∪ µ3(1→ a) ∪ µ′′3(1→ a) ∪ µ4(1→ c) ∪ µ′4(1→ c).

Case 2.2: d ∈ µ′4(1→ b) ∪ µ′′3(1→ b) ∪ µ4(1→ a) ∪ µ′′2(1→ a) ∪ µ3(1→ c) ∪ µ′2(1→ c).
Suppose that d ∈ µ′4(1→ b). Then ϕ′(R3) = (b, c, a, d).
Consider ϕ′′. By Case 2.1, d 6∈ µ′′3(1→ a). If d ∈ µ′′2(1→ a), then ϕ′′(R3) = (a, d, b, c). Since
b P 3

2 c while c P
3
3 b, no combination of ϕ′ and ϕ′′ preserves e�ciency. Finally suppose that

d ∈ µ′′4(1→ a). By Case 2.1, d 6∈ µ′′2(1→ b). By the same arguments, d 6∈ µ′′3(1→ a, 4→ c)
and d 6∈ µ′′2(1 → b, 4 → c). Instead, d ∈ µ′′2(1 → a, 4 → c) and d ∈ µ′′3(1 → b, 4 → c). Then
ϕ′′(R4) = (a, d, b, c) and ϕ′′(R5) = (b, a, d, c).
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Now consider ϕ′. By Case 2.1, d 6∈ µ′4(1→ c). If d ∈ µ′2(1→ c), then ϕ′(R5) = (c, d, a, b).
Since b P 5

2 a while a P
5
4 b, no combination of ϕ and ϕ′ preserves e�ciency. If d ∈ µ′3(1→ c),

then ϕ′(R4) = (c, b, d, a). Since a P 5
3 b while b P

5
4 a, no combination of ϕ and ϕ′ preserves

e�ciency. Instead, d 6∈ µ′4(1→ b).
By relabeling the agents and objects, symmetric arguments show that d 6∈ µ′′3(1 →

b) ∪ µ4(1→ a) ∪ µ′′2(1→ a) ∪ µ3(1→ c) ∪ µ′2(1→ c).

Case 2.3: d is brokered in µ′(1 → b), µ′′(1 → b), µ(1 → a), µ′′(1 → a), µ(1 → c), or
µ′(1→ c). Suppose that d is brokered in µ′(1→ b). By Step 1, c ∈ µ′4(1→ b). Also, a ∈ µ′3,
so d∗ 6∈ µ′3(1 → b) ∪ µ′4(1 → b). If d∗ ∈ µ′2(1 → b), then ϕ′(R3) = (b, c, a, d) and subsequent
arguments from Case 2.2 apply. Instead, d is not brokered in µ′(1→ b).
By relabeling the agents and objects, symmetric arguments show that d is not brokered
in µ′′(1 → b), µ(1 → a), dµ′′(1 → a), µ(1 → c), or µ′(1 → c). Altogether, d ∈ µ2(1 →
a) ∩ µ2(1→ c) ∩ µ′3(1→ b) ∩ µ′3(1→ c) ∩ µ′′4(1→ a) ∩ µ′′4(1→ b).

Step 3: No combination preserves e�ciency . Consider ϕ′ and inheritance of d in
µ′2(1 → c, 3 → a). If d ∈ µ′2(1 → c, 3 → a), then ϕ′(R6) = (c, d, a, b). But ϕ′′1(R6) = a and
ϕ′′4(R6) = d, so the the conditions of Lemma 2 apply at R6 with respect to ϕ′ and ϕ′′. If
d ∈ µ′4(1→ c, 3→ a), then ϕ′(R6) = (c, b, a, d). But ϕ1(R

6) = a and ϕ2(R
6) = d, so the the

conditions of Lemma 2 apply at R6 with respect to ϕ′ and ϕ. Instead, no combination of ϕ,
ϕ′, and ϕ′′ preserves e�ciency.

The cases considered by Lemma 7, Lemma 6, Lemma 8, and 9 exhaust the possible
arrangements of initial ownership for collections of rules, each with two owners, across which
one special agent appears as one of the initial owners. Corollary 6 presents this implication.

Corollary 6. Let ϕ, ϕ′, and ϕ′′, be Trading Cycles rules. If µi∪µj = µ′i∪µ′k = µ′′i ∪µ′′l = O
with µi, µj, µ

′
i, µ
′
k, µ

′′
i , µ

′′
l 6= ∅, then no combination of ϕ, ϕ′, and ϕ′′ is e�cient.

Proof. Let ϕ, ϕ′, and ϕ′′ be Trading Cycles rules and a, b, c ∈ O be such that µ1 ∪ µ2 =
µ′1 ∪ µ′3 = µ′′1 ∪ µ′′4 = O with µ1, µ2, µ

′
1, µ

′
3, µ

′′
1, µ

′′
4 6= ∅. Label the objects so that a ∈ µ1,

b ∈ µ2, and {a, b, c} ∩ µ′3 ∩ µ′′4 6= ∅.27
Consider ownership of a and b in µ′ and µ′′. If µ′1 ∩ {a, b} = ∅ and µ′′1 ∩ {a, b} = ∅,

then the setting corresponds to Lemma 6. If exactly one of these conditions holds, then the
setting corresponds to Lemma 7. Instead, suppose that µ′1 ∩ {a, b} 6= ∅ and µ′′1 ∩ {a, b} 6= ∅.

If µ′3 ∩ {a, b} 6= ∅ and µ′′4 ∩ {a, b} 6= ∅, then the setting corresponds to Lemma 8 with
the conditions met by a and b. If µ′3 ∩ {a, b} = ∅ and µ′′4 ∩ {a, b} = ∅, then the setting
corresponds to Lemma 8: If c ∈ µ1, then the conditions met by b and c, and if c ∈ µ2, then
the conditions met by a and c. Instead, suppose that exactly one of these conditions holds.
Relabeling agent 3 and agent 4 if necessary, suppose that µ′3∩{a, b} 6= ∅ and µ′′4 ∩{a, b} = ∅.
Then {a, b} ⊆ µ′′1 and c ∈ µ′′4.

Consider ownership of b and c in µ and µ′. By labeling, b ∈ µ2. Suppose also that c ∈ µ2.
If µ′3∩{b, c} = {b, c}, then the setting corresponds to Lemma 6 with the conditions met by b

27To see that this labeling is always possible, begin with a labeling such that a ∈ µ1 and b ∈ µ2 and
µ′3 ∩ {a, b, c} 6= ∅. If µ′′4 ∩ {a, b, c} = ∅, then µ′′4 = {d}. If {a, b} ∩ µ′3 6= ∅, relabel c and d. If instead
{a, b}∩µ′3 = ∅, then µ′3 ∩{c, d} 6= ∅. In this case, relabel (b, c, d) as (c, a, b) and reverse the names of agent 2
and agent 4.
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and c. If µ′3∩{b, c} = {b} or µ′3∩{b, c} = {c}, then the setting corresponds to Lemma 7 with
the conditions met by b and c. If µ′3 ∩ {b, c} = ∅, then a ∈ µ′3 and the setting corresponds to
Lemma 8 with the conditions met by a and c.

Finally suppose that c 6∈ µ2 so that c ∈ µ1. If µ′3 ∩ {b, c} = {b, c}, then the setting
corresponds to Lemma 7 with the conditions are met by b and c. If µ′3 ∩ {b, c} = {b} or
µ′3 ∩ {b, c} = {c}, then the setting corresponds to Lemma 8 with the conditions are met by
b and c. If µ′3 ∩ {b, c} = ∅, then a ∈ µ′3 and the setting corresponds to Lemma 9 with the
conditions are met by a, b, and c.

Altogether, all combinations of initial ownership which meet the conditions of the
statement match the conditions of (at least) one of Lemma 7, Lemma 6, Lemma 8, or
Lemma 9.

With all preliminaries in hand, we conclude the proof of Theorem 1 by considering each
of the patterns described in Remark 5 in turn.

Proof. Let ϕ be decomposable, e�cient and satisfy the α-endowment lower bound for some
α � 0. First, decomposability implies that ϕ is a combination of group strategy-proof rules
and e�ciency implies that each component be ex-post e�cient. Therefore, ϕ is a combination
of Trading Cycles rules (Pycia and Ünver (2016)).

By Lemma 1, α � 0 implies that each agent is an owner in at least one component.
Therefore, it su�ces to consider collections of rules following one of the patterns of initial
ownership structures described in Remark 5. If a collection of rules includes a subset following
one of patterns (i) through (viii), then its combinations are incompatible with e�ciency :
Corollary 4 applies to pattern (i); Lemma 6 to pattern (ii); Corollary 5 to pattern (iii);
Corollary 6 to pattern (iv); Corollary 1 to pattern (v); and Lemma 3 to patterns (vi), (vii),
and (viii).

It remains to consider collections of rules based on pattern (ix). Each such collection
includes a rule with four owners, so by Corollary 2, e�ciency implies that the components
share a common initial control structure. The α-endowment lower bound now implies that
each agent in fact owns his endowment, so the common initial control structure is ω. This
initial control structure de�nes a unique rule: TTC. Therefore, all components are themselves
TTC and ϕ =TTC as well.
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