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and glutathione metabolism as intervention
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Abstract

To elucidate the molecular mechanisms underlying non-alcoholic
fatty liver disease (NAFLD), we recruited 86 subjects with varying
degrees of hepatic steatosis (HS). We obtained experimental data
on lipoprotein fluxes and used these individual measurements as
personalized constraints of a hepatocyte genome-scale metabolic
model to investigate metabolic differences in liver, taking into
account its interactions with other tissues. Our systems level anal-
ysis predicted an altered demand for NAD+ and glutathione (GSH)
in subjects with high HS. Our analysis and metabolomic measure-
ments showed that plasma levels of glycine, serine, and associated
metabolites are negatively correlated with HS, suggesting that
these GSH metabolism precursors might be limiting. Quantification
of the hepatic expression levels of the associated enzymes further
pointed to altered de novo GSH synthesis. To assess the effect of
GSH and NAD+ repletion on the development of NAFLD, we added
precursors for GSH and NAD+ biosynthesis to the Western diet and
demonstrated that supplementation prevents HS in mice. In a
proof-of-concept human study, we found improved liver function
and decreased HS after supplementation with serine (a precursor
to glycine) and hereby propose a strategy for NAFLD treatment.
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Introduction

Hepatic steatosis (HS) is defined as the accumulation of fat in liver

with no evidence of hepatocellular injury, and it is the most

common chronic liver disease worldwide (Vetelainen et al, 2007).

HS is the characteristic feature of non-alcoholic fatty liver disease

(NAFLD) and it is strongly associated with obesity, insulin resis-

tance, type 2 diabetes (T2D), and cardiovascular diseases (Ratziu

et al, 2010). Up to 30% of subjects with NAFLD develop non-

alcoholic steatohepatitis (NASH) which is a serious illness in which

inflammation and scarring eventually can lead to cirrhosis and

hepatocellular carcinoma (HCC) (Dyson et al, 2014).

The underlying molecular mechanisms leading to the occurrence

of HS and its transition to severe liver disorders remain elusive,

which limits the identification of drug targets and discovery of

biomarkers that may be used to design effective treatment strategies.

There are currently few pharmaceutical treatments for HS and its

associated clinical conditions (Machado & Cortez-Pinto, 2012), and

an integrative systems biology-based approach may help to address

these significant unmet medical needs. In this context, genome-scale

metabolic models (GEMs) can be used to gain more insights about

the molecular mechanisms involved in the occurrence of HS and
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associated disorders, and in turn may enable future therapeutic

discoveries (Mardinoglu & Nielsen, 2012, 2015; Yizhak et al, 2013,

2014a,b; Zhang et al, 2015). GEMs are the collection of biochemical

reactions that are known to occur in particular cells/tissues, and

these models have been used in the integration of cellular, physiolog-

ical, and clinical data to reveal the underlying molecular mecha-

nisms of metabolism-related disorders (Folger et al, 2011; Frezza

et al, 2011; Mardinoglu et al, 2013a,b, 2014b, 2015a; Agren et al,

2014; Ghaffari et al, 2015; Varemo et al, 2015; Lee et al, 2016a,b).

We have previously reconstructed a GEM for hepatocytes (iHepato-

cytes2322) and used it to analyze transcriptomics data obtained from

NAFLD patients (Mardinoglu et al, 2014a). In addition, a GEM study

showed that the liver adaptively regulates metabolic responses to

maintain its basic functions and that NAFLD is associated with

increased glyceroneogenesis and a switch from lactate to glycerol as

a substrate for gluconeogenesis (Hyötyläinen et al, 2016).

To design effective treatment strategies for NAFLD, it is also

necessary to understand the pathophysiology of dyslipidemia. Tradi-

tional approaches that measure plasma concentrations of lipopro-

teins provide only static estimates with limited mechanistic

information. As an alternative, tracers labeled with stable isotopes

can be used as a powerful tool for probing lipid and lipoprotein

kinetics in vivo to provide an increased understanding about the

pathogenesis of dyslipidemia (Boren et al, 2012; Adiels et al, 2015).

The GEM iHepatocytes2322 contains extensive information about

lipid metabolism (Mardinoglu et al, 2014a), which is necessary for

studying the effect of excess amount of lipids on the underlying

molecular mechanism of NAFLD. This GEM can thus be used as a

platform for studying the kinetics of lipoproteins and their potential

effect on liver metabolism.

To clarify the underlying metabolic disturbances in NAFLD, we

investigated the metabolic differences in liver between subjects with

varying degrees of HS by studying the kinetics of lipid metabolism,

taking into account interactions between the liver, adipose, muscle,

and other peripheral tissues as well as red blood cells. Using person-

alized genome-scale metabolic modeling, we elucidated an under-

lying molecular mechanism of NAFLD which can be used in the

development of an effective treatment strategy.

Results

Characteristics of subjects with varying degrees of HS

We recruited 86 subjects (75 men and 11 women; Fig 1A) and deter-

mined the liver fat content of each subject using magnetic resonance
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Figure 1. Generation of VLDL kinetics and plasma metabolomics data.

A To identify the metabolic changes in response to increased hepatic steatosis (HS), secretion rate of the VLDLs from the liver of subjects was measured and the plasma
metabolite levels were detected in subjects with varying degrees of HS.

B BMI, insulin resistance (HOMA-IR), plasma TGs, and ALT levels are significantly correlated with the independently measured liver fat.
C The subjects were categorized into two groups as high (n = 43) and low HS (n = 43). Body mass index (BMI), fasting plasma insulin (FPI), plasma triglycerides (TGs), and

plasma alanine aminotransferase (ALT) levels are found to be significantly different between the two groups. Data are presented as means � SD. *P < 0.05; Student’s t-test.
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spectroscopy (Adiels et al, 2006; Lundbom et al, 2011). The clinical

characteristics of all the subjects involved in the study are presented

in Table 1. We calculated the Pearson correlation coefficient (r)

between HS and other clinical parameters and found that HS was

significantly (P < 0.05) positively correlated with weight, body mass

index (BMI), insulin resistance (HOMA-IR), plasma triglyceride

(TG), and the liver enzyme alanine aminotransferase (ALT) levels

(Fig 1B). The ratio of ALT to aspartate transaminase (AST) also

significantly (P < 0.05) correlated (r = 0.57) with HS. None of the

other liver-related clinical parameters (AST, alkaline phosphatase

(ALP), and c-glutamyl transferase (GT)), blood lipid-related parame-

ters (high-density lipoprotein (HDL) cholesterol, total cholesterol,

and apolipoprotein B (apoB)) nor the inflammation marker C-

reactive protein (CRP) correlated significantly with HS.

We classified the subjects with varying degrees of HS into two

groups of 43 subjects based on their liver fat percentage: high HS

(> 5.5%) and low HS (< 5.5%) (Table 1). We found that subjects

with high HS were significantly (P < 0.05) heavier with a greater

BMI. Fasting plasma glucose and fasting plasma insulin (FPI)

concentrations were significantly (P < 0.05) higher in subjects

with high HS compared to subjects with low HS (Fig 1C). The

average plasma TG concentration was 2.05 and 1.67 mmol/l for

subjects with high and low HS, respectively (Fig 1C). We did not

detect any significant plasma differences in other lipid parameters

including apoB, HDL cholesterol, and total cholesterol (Table 1).

The ALT level was significantly higher in subjects with high HS

(Fig 1C). In summary, the average subject with low HS involved

in our study was overweight, borderline hypertriglyceridemic but

insulin sensitive, whereas the average subject with high HS

was obese, hypertriglyceridemic and insulin resistant but did not

have T2D.

Personalized liver tissue GEMs

To elucidate the underlying molecular mechanisms of HS, we

adopted constraint-based modeling techniques to identify major

hepatic metabolic alterations between subjects with varying degrees

of HS. The secretion rates of non-esterified fatty acids (FAs) and

amino acids (AAs) from adipose and muscle tissues were calculated

based on the body composition of each subject and used as input to

the personalized liver GEMs together with the lactate secreted by

red blood cells (Fig 2A and Materials and Methods, and Dataset

EV1). Since the level of TG-rich very-low-density lipoproteins

(VLDLs) is the major determinant of plasma TG, we combined

kinetic studies with stable isotopes and multicompartment modeling

to infer the parameters of VLDL kinetics in 73 of the subjects (65

men and 8 women) involved in our study. We observed a significant

correlation between secreted VLDL and HS (r = 0.581, P < 0.001)

and used secretion rate of VLDL as an objective function for the

personalized liver GEMs (Dataset EV1).

We simulated the dynamics of the liver metabolism that would

ideally correspond to the increased HS using the inputs and outputs

to the liver as constraints of personalized GEMs. We predicted the

intracellular fluxes in the liver of each subject (Dataset EV2) and

calculated the Pearson correlation coefficient between the intracellu-

lar fluxes and HS of each subject (Dataset EV3). We found that reac-

tions involved in protein synthesis had the highest correlations with

HS (r = 0.57, P < 0.001). We also quantified the apoB content in the

total VLDL produced by the liver and found that it correlated signifi-

cantly with the measured HS (r = 0.581, P < 0.001) (Fig 2B). This

correlation was very similar to that observed between the TG

content in the total VLDL produced and the measured HS

(r = 0.576, P < 0.001) (Fig 2C). Hence, we observed that

Table 1. Clinical characteristics of the 86 study participants.

Characteristic

Low HS
HS (%) < 5.5
n = 43

High HS
HS (%) > 5.5
n = 43 P-value

Liver fat (%) 2.8 � 1.7 13.4 � 6.4 <0.05

Age (years) 52.1 � 8.4 52.6 � 8.0 0.76

Weight (kg) 92.4 � 11.2 102.2 � 14.0 <0.05

Body mass index (BMI) (kg/m²) 29.7 � 3.2 32.9 � 3.4 <0.05

Fasting plasma glucose (mmol/l) 5.5 � 0.5 5.85 � 0.6 <0.05

Fasting plasma insulin (FPI) (mU/l) 7.6 � 5.0 14.0 � 7.0 <0.05

HOMA-IR 1.9 � 1.3 3.7 � 2.0 <0.05

C-reactive protein (CRP) (mg/l) 2.4 � 2.8 3.3 � 3.3 0.31

Plasma triglycerides (TG) (mmol/l) 1.7 � 0.6 2.1 � 0.8 <0.05

Apolipoprotein B (apoB) (mg/dl) 90.2 � 29.0 97.4 � 30.7 0.30

Total cholesterol (mmol/l) 4.9 � 0.85 5.1 � 0.7 0.31

HDL cholesterol (mmol/l) 1.1 � 0.3 1.1 � 0.3 0.96

Alanine aminotransferase (ALT) (U/l) 23.5 � 9.3 38.9 � 28.3 <0.05

Aspartate aminotransferase (AST) (U/l) 21.9 � 5.1 23.2 � 5.8 0.41

Alkaline phosphatase (ALP) (U/l) 63.2 � 16.7 70.5 � 19.3 0.16

c-glutamyl transferase (GT) (U/l) 27.6 � 16.4 31.2 � 13.9 0.40

Data are presented as means � SD. P-value indicates significance level of difference between the subjects with low and high hepatic steatosis (HS). P-values
were calculated using Student’s t-test. Bold text indicate significantly different values.
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personalized GEMs were able to predict the response of liver to the

increased HS.

Reactions with the second and third highest correlations with

HS were those involved in the reduction of H2O2 (r = 0.482,

P < 0.001) and those associated with nicotinamide nucleotide trans-

hydrogenase (NNT) (r = 0.479, P < 0.001), respectively. NNT cata-

lyzes the interconversion of NADH and NADP+ to NAD+ and

NADPH in the mitochondria. NNT has an important role in provid-

ing NAD+ for fat oxidation as well as NADPH for redox detoxifi-

cation since NADPH is used for the regeneration of glutathione

(GSH) through reduction of glutathione disulfide (GSSG), which is

catalyzed by glutathione reductase (GSR) (Fig 2D). Notably, we

found that the flux carried by the reaction associated with GSR was

one of those with the highest correlations with HS (r = 0.478,
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Figure 2. Personalized modeling of liver in subjects with varying degrees of HS.

A Schematic illustration of how personalized genome-scale metabolic modeling can be performed accounting the interactions between other tissues and red blood
cells for the development of effective therapeutic approaches for non-alcoholic fatty liver disease (NAFLD). Solid and dashed arrows show the outputs and inputs to
the tissues, respectively.

B, C The correlation between the predicted intracellular fluxes of the liver and hepatic steatosis (HS) is assessed and compared with the (B) apolipoprotein B (apoB) and
(C) triglycerides (TG) content in the total VLDL production.

D The fluxes carried by the reactions catalyzed by NNT, GSR, and GPXs are found to be the most correlated reactions with the HS (Dataset EV3). Green arrow
indicates the significant correlation of the flux carried by the reactions and HS.

E The net fat influx (NFI) is calculated as the differences in the uptake and secretion rates of FAs and its correlation with the intracellular fluxes are assessed.
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P < 0.001). Moreover, we found that reactions involved in fat

oxidation significantly correlated with HS (r = 0.477, P < 0.001)

(Dataset EV3). Increases in the flux carried by the reactions cata-

lyzed by NNT and GSR would generate additional NAD+, which is

necessary for the increased fat oxidation and GSH, which is neces-

sary to scavenge excessively produced reactive oxygen species

resulting from increased fat oxidation. It has previously been

reported that NNT is essential for normal cellular metabolism and

for mitochondrial defense against oxidative stress (Huang et al,

2006). In addition, we observed a significant correlation between

HS and secreted ketone bodies, which are one of the major outputs

of the liver GEM (r = 0.475, P < 0.001) (Dataset EV3).

Hepatic steatosis results from an imbalance between the

de novo synthesis, oxidation, uptake, and export of FAs (Tamura &

Shimomura, 2005). Hence, we calculated the differences in the

uptake and secretion rates of FAs, defined as net fat influx (NFI)

(Fig 2E), in the liver of each subject, and calculated the correlations

between the intracellular fluxes and NFI (Dataset EV4). Notably, we

found that the reactions catalyzed by GSR (r = 0.812, P < 0.001)

and NNT (r = 0.811, P < 0.001) had the highest correlations with

NFI. We also found that the reaction catalyzed by glutathione

peroxidases (GPXs) and peroxiredoxins (PRDXs) (Fig 2D), which

detoxify peroxides and hydroperoxides, was significantly correlated

with NFI (r = 0.812, P < 0.001) (Dataset EV4). In addition, we

observed a significant correlation between NFI and secreted ketone

bodies (r = 0.782, P < 0.001).

Increased GSH and NAD+ formation as well as the increased fat

oxidation in our in silico analysis are model-predicted demands

which would ideally be met for dealing with high HS. If these

demands cannot easily be met in vivo due to reduced concentrations

of the substrates, then cellular health might be compromised.

Considering that our simulations demonstrated the ideal response of

the liver to the increased HS, the upregulation of the fat oxidation as

well as the increased availability of the GSH and NAD+ may provide

potential treatment strategy for NAFLD subjects.

Glycine is the limiting substrate for de novo synthesis of GSH
in NAFLD

Depletion of GSH can lead to mitochondrial dysfunction and cell

death (Fernandez-Checa & Kaplowitz, 2005; Garcia-Canaveras et al,

2011). Based on our in silico analysis, we proposed that an

increased expression of NNT would be needed to boost the level of

NAD+ to respond to the increased fat oxidation whereas NNT and

GSR may boost the level of GSH required for resisting oxidative

stress and maintaining the reducing environment of the liver.

However, if the expression of NNT and GSR cannot meet this

demand or even decrease in the pathological state, it may result in

depletion of NAD+ and GSH and eventually to accumulation of fat

in the liver. Indeed, hepatic depletion of NAD+ in mice model of

NAFLD has been reported (Gariani et al, 2016; Zhou et al, 2016).

Moreover, lower concentrations of both GSH and GSSG and a reduc-

tion in the GSH/GSSG ratio have been reported in the liver (Garcia-

Canaveras et al, 2011) and serum (Kalhan et al, 2011) of NAFLD

patients compared to healthy subjects.

Depleted GSH can also be replaced by de novo synthesis of GSH

from glutamine, glycine, and cysteine which can be taken up from

the plasma. To detect the plasma level of these AAs, we performed

non-targeted metabolomics profiling in plasma from 86 subjects and

analyzed levels of ~520 metabolites. We assessed the correlations

between the plasma metabolite levels and HS (Dataset EV5). Fasting

plasma levels of glycine and N-acetylglycine as well as betaine and

serine (which can be converted to glycine) showed significantly

negative correlations with HS (Fig 3A). We also assessed the corre-

lation coefficients between the plasma metabolites that correlated

significantly with HS (Fig 3B) and found that plasma glycine levels

showed the highest correlation with the plasma serine levels among

all other measured metabolites (r = 0.77, P < 0.05) (Dataset EV5). It

should be noted that we did not detect any significant correlation

between HS and the plasma levels of cysteine and glutamine (which

are also required for the de novo synthesis of GSH).

We also investigated whether any of the plasma metabolites

showed significant differences between the two groups of subjects

divided according to their level of HS (Dataset EV6). We found that

the levels of glycine, serine, betaine, and N-acetylglycine were

significantly (Welsh’s t-test, P < 0.05) lower in subjects with high

HS compared to those with low HS (Fig 4). In addition to the

metabolites associated with glycine, we also found that the levels of

butyrylcarnitine, glycylphenylalanine, gamma-tocopherol (vitamin

E), kynurenate, N-delta-acetylornithine, N-methyl proline, and a

number of lipid structures, which have been shown to correlate

with HS in Fig 3 were significantly changed (Welsh’s t-test,

P < 0.05) between the subjects with high and low HS (Fig 4).

Changes in the plasma levels of butyrylcarnitine, glycine as well as

some of other metabolites identified in our study have previously

been observed in studies that compared NAFLD subjects to healthy

subjects (Kalhan et al, 2011; Dumas et al, 2014).

Decreased expression of the enzymes involved in GSH formation

We revealed that a disturbed redox balance (i.e., NAD+ and GSH

deficiency) was linked to metabolic dysfunction and development of

NAFLD. In this context, we measured the expression of NNT, GSR,

and the enzymes involved in the de novo GSH synthesis in human

liver samples obtained from a separate cohort of 12 obese subjects

with high HS who underwent bariatric surgery (Table 2) and

compared with the expression of the genes in liver samples obtained

from seven healthy individuals (previously described in Uhlen et al,

2015) (Fig 5A). We found that mRNA expression of NNT, GSR, and

the rate-limiting enzymes in de novo GSH synthesis, namely gluta-

mate–cysteine ligase, catalytic subunit (GCLC) and glutamate–

cysteine ligase, modifier subunit (GCLM), were significantly lower in

liver from obese subjects than from healthy subjects (Fig 5B–E). This

indicated that the decreased expression of the NNT and GSR may

lead to increased HS which is in agreement with the results of

personalized modeling of subjects with varying degree of HS.

Supplementation of GSH and NAD+ precursors decreases HS
in mice

Our analysis indicated depletion of the NAD+ and GSH in subjects

with high HS. It has been shown that supplementation of natural

NAD+ precursors, such as tryptophan, nicotinamide riboside (NR),

niacin, and nicotinamide, elevates NAD+ levels in vivo (Houtkooper

et al, 2010; Canto et al, 2012). The plasma and liver level of GSH is

depleted in NAFLD patients and cannot be increased by
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supplementation with GSH; instead, GSH must be synthesized

within the liver either de novo or by the salvation pathway. Our

analysis suggested that the level of GSH is not sufficient to maintain

and regulate the thiol-redox status of the liver in subjects with high

HS in the fasting state due to the depletion of glycine. Glycine can

be synthesized via the interconversion of serine through serine

hydroxymethyltransferases with concomitant conversion of tetra-

hydrofolate (THF) into 5,10-methylene-THF (Fig 5A). During the
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Figure 3. Correlation of the HS and plasma metabolomics data.

A, B Hepatic steatosis (HS) is measured by the magnetic resonance imaging, and the plasma level of ~520 metabolites was detected by untargeted metabolomics
profiling. (A) The correlation between the HS and the plasma metabolites and (B) the Pearson correlation between the significantly (P < 0.05) correlated
metabolites are presented. Red and blue colors represent the positive and negative correlation of the HS and plasma metabolite levels, respectively. Metabolites
that can be converted to glycine marked bold.
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conversion of serine to glycine, an additional carbon unit is

provided for one-carbon metabolism. Previously, we have shown

that serine synthesis is downregulated in NASH patients (Mardi-

noglu et al, 2014a). Taken together, we therefore hypothesized that

dietary supplementation with NR may increase the level of NAD+

required for the increased fat oxidation and serine may increase the

level of glycine and the level of GSH (by intracellular GSH synthesis

from glycine). Supplementation of the substrates for NAD+ and

GSH may increase the amount of the fat oxidized in the liver, lower

oxidative stress resulting from high fat oxidation, lower the level of

HS, and eventually improve liver function.

To assess the effect of GSH and NAD+ repletion on the develop-

ment of HS in mice, we supplemented a cocktail consisting of

serine, NAC (N-acetyl-L-cysteine), and NR to mice fed with Western

diet, including high levels of fat and sucrose. Serine was included

into the cocktail since it can be easily converted to glycine whereas

NAC was included since cysteine may be the limiting metabolite

after the repletion of the glycine in the synthesis of GSH. NR was
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Metabolites that can be converted to glycine marked bold.
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included in the cocktail to increase the amount of NAD+ in the

liver. We treated Western diet-fed male C57BL/6J mice with serine

(300 mg/kg/day) and NR (400 mg/kg/day) la gavage as well as

NAC (1g/l) in the drinking water for 14 days and sacrificed the mice

4 h after the last treatment. We obtained liver tissue samples from

the mice, performed liver lipidomics analysis and observed 50%

reduction in hepatic TGs (Fig 6A), tendency to decrease in the level

of cholesterol esters (Fig 6B) and ceramides (Fig 6C), and tendency

to increase in the level sphingomyelin (Fig 6D) and no significant

changes in the level of phosphatidylethanolamine (Fig 6E). We also

measured the level of glycine and serine and found that their plasma

level was significantly increased after supplementation of the cock-

tail (Fig 6F). We finally measured the liver level of TGs with dif-

ferent chain lengths and found that shorter chain lengths of TGs

that are preferentially oxidized in the mitochondria were signifi-

cantly decreased after supplementation (Fig 6G). Hence, we demon-

strated that supplementation of the metabolites that are predicted by

personalized modeling promotes the oxidation of fat in the liver,

prevents HS, and hereby proposed a therapeutic strategy for protect-

ing against NAFLD progression.

Fat oxidation and fatty acid synthesis are reciprocal metabolic

pathways (Foster, 2012). In order to check whether the de novo lipo-

genesis is inhibited by the supplementation of the cocktail, we

measured the expression of the fatty acid synthase (Fasn), a key

enzyme involved in the de novo lipogenesis in the liver tissue of the

mice but did not find any significant differences in its expression

before and after the supplementation of the cocktail (Fig 6H).

Supplementation of serine decreases HS in humans

To identify the unique contribution of serine supplementation in

decreasing HS, we assessed the effect of short-term dietary supple-

mentation with serine on HS and fasting levels of plasma markers of

liver functions in six subjects with high HS. Characteristics of the

six subjects before and after the supplementation are presented in

Table 3. Each patient received one oral dose of ~20 g of L-serine

(200 mg/kg/day) for 14 days. The supplementation was well

tolerated by all the subjects. We found that plasma ALT, AST, and

ALP levels were significantly decreased after supplementation

(Table 3). Notably, we found that the plasma levels of ALT (Fig 6I)

and AST (Fig 6J) were consistently decreased in all six subjects and

ALP was decreased in five of the participating subjects (Fig 6K).

Moreover, we found that the plasma TGs were decreased in five of

the studied subjects and did not change in the remaining one subject

(Fig 6L). We finally measured the HS using magnetic resonance

spectroscopy before and after serine supplementation and demon-

strated that HS is significantly decreased after serine supplementa-

tion (Table 3). HS is decreased in all six patients, and the relative

decrease in NAFLD patients ranged between 1.0 and 23%.

Discussion

Personalized genome-scale metabolic modeling provides deeper

insight into clinical data, enabling increased understanding of the

genotype–phenotype relationship. We characterized subjects with

varying degrees of HS and measured VLDL kinetics. Subsequently,

we integrated the VLDL kinetic data with additional experimentally

derived flux data to simulate the desired dynamics of liver metabo-

lism of each subject using a liver GEM. We then assessed the correla-

tions between the predicted intracellular fluxes of the liver and HS to

investigate whether any metabolic derangements could be detected

in NAFLD. Our systems level analysis indicated that altered NAD+

and GSH metabolism (with increased demand for NAD+ and GSH in

NAFLD) was a prevailing feature in NAFLD. Hence, we postulated

that subjects with NAFLD have reduced de novo synthesis of GSH,

possibly due to limited availability of glycine in the fasting state. We

analyzed plasma metabolomics and showed that plasma levels of

glycine as well as serine, betaine, and N-acetylglycine (which can be

converted to glycine) were lower in subjects with high HS compared

to those with low HS. Moreover, analysis of the metabolomics data

revealed significant negative correlations between the plasma levels

of glycine, serine, betaine, and N-acetylglycine with HS. In a mice

study, we showed that supplementation of the precursors for NAD+

and GSH significantly decreased HS. Finally, in a proof-of-concept

human study, we found that HS is significantly decreased whereas

markers of liver function are significantly improved in NAFLD

patients after supplementation with serine (a precursor to glycine).

Our finding highlighting the importance of glycine is consistent

with an earlier pilot study which showed that supplementation with

betaine (which is degraded to sarcosine and glycine) resulted in

significant biochemical and histological improvements in patients

with NASH (Abdelmalek et al, 2001). Furthermore, mice deficient

in glycine N-methyltransferase (Gnmt), which is involved in the

degradation of betaine to glycine, have hyperlipidemia and steato-

hepatitis (Liao et al, 2012). In addition, glycine supplementation to

rats with alcohol-induced liver injury has been shown to protect

against free radical-mediated oxidative stress in hepatocytes

(Senthilkumar et al, 2004).

Serine derived from a branch of glycolysis can be converted to

glycine, which in turn provides carbon units for one-carbon metabo-

lism using THF. It has been shown that NAFLD patients and

controls have similar folate levels (de Carvalho et al, 2013), and

THF is therefore not likely to be limiting for glycine biosynthesis. In

this context, serine supplementation to mice and rats has been

Table 2. Clinical characteristics of the twelve obese subjects who
underwent bariatric surgery with high HS.

Clinical variable
Obese subjects with
high HS (n = 12)

Age (years) 39.3 � 10.9

Weight (kg) 122.9 � 12.8

Body mass index (BMI) (kg/m²) 43.6 � 3.6

Fasting plasma glucose (mmol/l) 5.6 � 0.6

Fasting plasma insulin (FPI) (pmol/l) 128.7 � 49.9

HOMA-IR 4.7 � 1.9

Plasma triglycerides (TG) (mmol/l) 1.5 � 0.5

Total cholesterol (mmol/l) 5.1 � 0.7

LDL cholesterol (mmol/l) 3.1 � 0.7

HDL cholesterol (mmol/l) 1.3 � 0.3

Alanine aminotransferase (ALT) (U/l) 25.3 � 16.3

c-glutamyl transferase (GT) (U/l) 30.7 � 23.2

Data are presented as means � SD.
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shown to attenuate alcoholic fatty liver by enhancing homocysteine

metabolism (Sim et al, 2015).

Increased release of free FAs in the fasting state is a known char-

acteristic of obesity and associated disorders such as NAFLD

(Nestel & Whyte, 1968; Karpe et al, 2011). We showed that the

influx of FAs into the liver with simultaneous low secretion of

VLDL (i.e., high NFI) profoundly affected the fluxes. GSH turnover

as well as increased fat oxidation, increased oxidative phosphoryla-

tion with subsequent increased demand for oxygen, and increased

ketogenesis were strongly correlated with high NFI. However, it

should be noted that although the flux of the reactions involved in

these pathways were able to increase in response to increased

demand according to our in silico model, this might not be the case

in vivo. Hence, the increases in GSH, NAD+, fat oxidation, oxygen

consumption, and ketone production are thus all model-predicted

demands which would ideally be met for dealing with high HS. For

example, if the predicted demand for GSH in high HS is not met by

an increased supply of GSH, then the redox balance could be at risk
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Figure 5. Glycine is the limiting substrate in the synthesis of GSH in NAFLD.

A Glycine is found to be the limiting substrate for the synthesis of glutathione (GSH) in subjects with NAFLD. Decreased de novo synthesis of serine has also been
reported in subjects with NASH. The decreased plasma level of glycine, serine as well as other associated metabolites betaine and N-acetylglycine in subjects with
high HS is confirmed with the metabolomics study. In order to confirm model-based predictions, serine was supplemented to the subjects with high HS since serine-
derived carbon can be converted to GSH to satisfy the increased demand for GSH in NAFLD. Blue arrows indicated downregulation whereas the red arrow indicates
upregulation of the reactions. Green arrows indicate the significant correlation of the flux carried by the reactions and HS. [c], cytoplasm; [m], mitochondria.

B–E The mRNA expressions of the (B) nicotinamide nucleotide transhydrogenase (NNT), (C) glutathione reductase (GSR), (D) glutamate–cysteine ligase, catalytic subunit
(GCLC), and (E) glutamate–cysteine ligase, modifier subunit (GCLM) are measured in the livers obtained from 12 morbidly obese subjects who had undergone
bariatric surgery and seven healthy individuals (mean � SD). *P < 0.05; Student’s t-test.
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of being insufficient for normal cellular health in high HS. Indeed,

we showed the mRNA expression of the enzymes involved in the

formation of GSH is significantly lower in obese subjects.

The subjects at highest risk of possible metabolic stress in this

analysis were subjects with high FA influx and HS. Importantly, HS

alone was not the single characteristic that explained higher demand

for GSH, meaning a person with high HS is not necessarily at risk.

Since metabolic distress was predicted to correlate well with high

NFI and FA influx alone, it can therefore be argued that a subject

with high HS but low FA influx is not necessarily at risk of disease.

In fact, the expansion of intracellular stored lipids in the liver is one

way of disposing of excess FAs. Thus, the HS process itself could

theoretically serve to decrease metabolic stress in the liver. Simi-

larly, increased VLDL secretion, increased ketone secretion, and

increased oxidative phosphorylation are all means through which

the liver can dispose of excess FAs.

Through systems level analysis in mice, we also observed that

glycine is the limiting substrate for the de novo synthesis of GSH

(Mardinoglu et al, 2015b). In a recent study comparing germ-free

and conventionally raised mice, we showed that the gut microbiota

alters the distribution of AAs along the gastrointestinal tract,

affecting the bioavailability of free AAs to the host (Mardinoglu

et al, 2015b). We also showed that microbiota-induced imbalances

in the utilization of AAs, particularly serine and glycine, may affect

the biological function of the host. Moreover, the presence of a gut

microbiota resulted in increased expression of Nnt in the liver,

adipose, and gastrointestinal tract tissues and a parallel decrease in

plasma and liver levels of glycine.

There is increasing interest in identifying patients at high risk of

developing NASH and, if possible, offering early treatment to

prevent the development of the disease. Our data indicate that

increased FA release from adipose tissue and decreased VLDL secre-

tion from the liver elevate the metabolic stress on the liver. There-

fore, it would potentially be of clinical value to take into account FA

release from adipose tissue together with the degree of HS in

subjects with HS.

Through personalized modeling of the subjects with varying

degree of HS, we observed that liver has capacity to clear the

◀ Figure 6. Supplementation of NAD+ and GSH precursors prevent NAFLD.
Tenmice were given theWestern diet supplemented with NR (400 mg/kg/day) and serine (300 mg/kg/day) la gavage and NAC (1 g/l) in the drinking water, and tenmice were
only given the Western diet for 14 days.

A–E Hepatic lipids including (A) triglycerides (TG), (B) cholesterol esters (CE), (C) ceramides (CER), (D) sphingomyelin (SM), (E) phosphatidylethanolamine (PE) (normalized
to phosphatidylcholine (PC)) are shown in treated (cocktail supplemented) (n = 10), and control (n = 10) mice (mean � SEM).

F Quantification of amino acids from the liver of the same mice before and after supplementation (mean � SEM).
G Analysis of the molecular species of TGs extracted from the livers of the mice. Results from the control group are expressed as 100%, and results from the treated

group are expressed as % of the control group (mean � SEM).
H mRNA expression of the fatty acid synthase (Fasn) in the liver tissue of mice before and after the supplementation. Six subjects received one oral dose of L-serine

(200 mg/kg/day) for 14 days (mean � SEM).
I–L The human plasma (I) alanine aminotransferase (ALT), (J) aspartate aminotransferase (AST), (K) alkaline phosphatase (ALP), and (L) TGs levels are presented in each

human subject involved in the study before and after the supplementation with serine.

Data information: (A–G) *P < 0.05, **P < 0.01, ***P <0.001; Student’s t-test.
Source data are available online for this figure.

Table 3. Clinical characteristics of the six subjects involved in serine supplementation study.

Clinical variable Baseline (n = 6) After serine (n = 6) P-value

Liver fat (%) 26.8 � 6.0 20.4 � 7.0 <0.05

Age (years) 56.7 � 5.2 56.7 � 5.2 –

Weight (kg) 103.0 � 14.3 103.0 � 13.9 –

Body mass index (BMI) (kg/m²) 32.5 � 2.70 32.5 � 2.60 –

Alanine aminotransferase (ALT) (U/l) 50.8 � 15.2 37.6 � 5.3 <0.05

Aspartate aminotransferase (AST) (U/l) 34.5 � 8.10 27.4 � 8.4 <0.05

Alkaline phosphatase (ALP) (U/l) 76.3 � 17.2 71.3 � 17.9 <0.05

c-glutamyl transferase (GT) (U/l) 63.8 � 12.9 62.3 � 16.3 0.30

Fasting plasma glucose (mmol/l) 6.57 � 1.41 6.33 � 1.41 0.25

Fasting plasma insulin (FPI) (pmol/l) 46.3 � 33.8 34.7 � 25.2 0.23

HOMA-IR 2.15 � 1.85 1.54 � 1.49 0.18

LDL cholesterol (mmol/l) 3.68 � 0.80 3.85 � 0.94 0.50

HDL cholesterol (mmol/l) 1.00 � 0.21 1.02 � 0.18 0.30

Plasma triglycerides (TG) (mmol/l) 6.90 � 6.65 3.63 � 1.81 0.13

Total cholesterol (mmol/l) 6.23 � 1.49 5.85 � 1.15 0.18

Bilirubin (lmol/l) 7.33 � 4.11 6.48 � 3.94 0.13

Data are presented as means � SD. P-value (calculated using Student’s t-test) indicates the significance level of difference before and after the oral
supplementation of serine. Bold text indicate significantly different values.
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accumulated fatty acids by oxidizing them in the liver. Based on

our analysis, a three-step strategy including (i) increasing fatty

acid uptake into mitochondria, (ii) increasing the oxidation of the

fatty acids in the mitochondria, and (iii) increasing the availability

of GSH can be employed to treat the subjects with high HS (Fig 7).

A cocktail can be supplemented to boost these metabolic processes

to decrease the amount of hepatic lipids. L-carnitine and NR would

stimulate the transfer of fatty acids from cytosol to mitochondria

and boost the level of NAD+ which is required for mitochondrial

fatty acid oxidation. Impaired function of the electron transport

chain combined with increased rates of fatty acid oxidation may

lead to the accumulation of incomplete products of fatty acid

oxidation, which combined with increased levels of reactive

oxygen species, may contribute to insulin resistance (Loh et al,

2009). To avoid this, the level of GSH can be increased by

including serine and NAC into the content of the cocktail. This

three-step strategy may be useful to increase the level of fatty

acids oxidized in the liver, deal with the excess amount of oxygen

radicals resulted from increased fat oxidation, protect against free

radical-mediated oxidative stress, and eventually decrease HS in

NAFLD patients. Such cocktail can also be used for the treatment

of alcoholic fatty liver disease (AFLD) patients since HS is the

earliest abnormality in the pathogenesis of both AFLD and NAFLD

due to metabolic risk factors associated with insulin resistance

and/or metabolic syndrome in the presence or absence of alcohol

consumption (Lakshman et al, 2015). Considering that NAFLD and

T2D are common conditions that regularly coexist and can act

synergistically to drive adverse outcomes (Hazlehurst et al, 2016),

such cocktail can also be used in the treatment of the subjects

with T2D.
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Figure 7. Three-step strategy for the treatment of NAFLD and associated disorders.
Based on our results, we postulate a potential treatment strategy for NAFLD patients based on increased oxidation of fat and increased synthesis of GSH. A cocktail can
be supplemented to NAFLD patients to boost these metabolic processes and to decrease the hepatic lipid accumulation. NR can be supplemented to boost the oxidation
of the fat in the mitochondria by generating NAD+. Serine and NAC can be included in the cocktail to boost the level of GSH which is required for preventing the accumulation
of incomplete products of fatty acids oxidation. L-carnitine can also be added to the cocktail to boost the fatty acid uptake into mitochondria.
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In conclusion, we used personalized genome-scale metabolic

modeling to elucidate molecular mechanisms involved in the

progression of NAFLD and validated our predictions by generating

additional transcriptomics and metabolomics data. In addition, we

performed proof-of-concept studies in mice and human and showed

that supplementation of the precursors for NAD+ and GSH may be

useful in preventing and treatment of HS. Thus, personalized GEMs

provide a useful new tool for elucidating the underlying mecha-

nisms of disturbed liver metabolism in subjects with high HS and

proposed a strategy for treatment of NAFLD.

Materials and Methods

Subjects

We recruited 86 subjects with varying degrees of HS for studying

the response of liver to the HS. The clinical characteristics of the

subjects are presented in Table 1. We also collected liver tissue

samples from 12 morbidly obese subjects underwent bariatric

surgery and presented the subjects characteristics in Table 2. We

measured the mRNA expression of the identified target genes in

liver of obese and healthy subjects.

In order to show the effect of the serine on the treatment of

NAFLD, we recruited another six subjects and presented the

subjects characteristics in Table 3 before and after serine supple-

mentation. Each patient received one oral dose of ~20 g of L-serine

(200 mg/kg/day) for 14 days. Subjects included in our studies

met all the criteria for NAFLD including exclusion of other chronic

liver diseases such as viral hepatitis, risky alcohol consumption,

and metabolic disorders (e.g., hemochromatosis). The supplementa-

tion study has been submitted to https://ClinicalTrials.gov with the

identifier: NCT02599038.

Determination of liver, subcutaneous, and intra-abdominal fat

Magnetic resonance experiments were performed using three 1.5 T

clinical imagers (1× Sonata and 2× Avanto, Siemens, Erlangen,

Germany). Liver fat content was determined using proton magnetic

resonance spectroscopy, and subcutaneous abdominal and visceral

fat was measured by magnetic resonance imaging (Adiels et al,

2006; Lundbom et al, 2011).

Measurement of flux data

Lipoprotein fluxes were measured in fasted 73 subjects using stable

isotope infusion. After a bolus infusion of d3-leucine and d5-

glycerol, large (VLDL1) and small (VLDL2) VLDL subfractions were

isolated by ultracentrifugation and the enrichment of free leucine in

plasma, leucine in apoB, and glycerol in TG was measured using

gas chromatography–mass spectrometry (Adiels et al, 2005). Meta-

bolic fluxes were calculated using mathematical modeling as previ-

ously described (Adiels et al, 2005).

Muscle mass and fat mass calculations

The muscle mass of each subject was calculated from lean mass

using the previously described relationship (Clark et al, 2014) based

on their fat mass. A linear equation was fitted between BMI and fat

mass of the 44 subjects to predict the missing fat mass in the

remaining 29 subjects. The linear equation was defined as: fat mass

(kg) = 1.763 × BMI � 26.75 (R2 = 0.69). Using this equation, fat

mass was calculated for the 29 subjects and the lean mass was then

calculated by subtracting the fat mass from the body weight of the

subjects. Finally, the muscle mass for each subject was calculated

based on the previously derived equation (Clark et al, 2014): muscle

mass = 0.63 × lean mass � 4.1.

Inputs and outputs for the liver GEM in the fasting state

During fasting conditions, the liver takes up gluconeogenic

substrates and non-esterified FAs and AAs and produces blood

glucose (as an energy substrate for the brain), VLDL (as an energy

substrate for the rest of the body), ketone bodies, and plasma

proteins. The proteins secreted by the liver (mainly albumin) are

not necessarily a net loss for the liver since protein can be recycled.

However, in this study, the urea loss from urine was used as a proxy

for the net loss of protein from the liver.

The input variables in our model are thus: (i) AAs, (ii) lactate,

and (iii) FAs and glycerol. The output variables are as follows: (iv)

glucose derived from gluconeogenesis and glycogenolysis and (v)

ketone bodies as well as the measured VLDL secretion.

(i) AAs

In the fasting state, some AAs are released by muscle tissue.

Pozefsky et al (1976) experimentally quantified the AA release from

muscle tissue in the fasting state. They found that around 60% of all

the AAs released from muscle are glutamine and alanine, which are

the main substrates used for gluconeogenesis in the liver. These

experimentally measured values were incorporated into the model

based on the muscle mass of each subject.

Adipose tissue also releases AAs into the blood. Since the

subjects in the present study had varying degrees of adiposity, it is

important to know whether the release of AA differs between lean

and obese subjects. Patterson et al (2002) found that although AA

release is proportional to the amount of fat tissue a person has, it

also depends on blood flow, which decreases as the amount of fat

tissue increases. Thus, the release of AAs from adipose tissue is

independent of obesity. Therefore, we included in the model an

additional input of AAs based on adipose tissue mass. This contribu-

tion was calculated based on the study of Frayn and Karpe (Frayn &

Karpe, 2014) where they measured how much blood flows in and

out of adipose tissue (3–4 ml/min, 100 g fat tissue).

Another method (Ardilouze et al, 2004) provided information

on a person’s fat mass based on their BMI, gender, and age accord-

ing to the formula: body fat percent = (1.2 × BMI) + (0.23 × age) �
(10.8 × gender) � 5.4, where gender is 0 for female and 1 for male

(Deurenberg et al, 1991). This resulted in an average body fat mass

of around 15 kg which gave an average blood flow of the whole

adipose tissue of around 31.5 l/h. Since Patterson et al (2002)

provided the values for the release of AAs based on body fat (in

lmol/l), the release of AAs by the adipose tissue (in mmol/h) was

calculated for each subject and used as an input to the personalized

models.

Muscle tissue and adipose tissue are not the only sources of AAs

for the liver during starvation. It has been shown that rat liver

ª 2017 The Authors Molecular Systems Biology 13: 916 | 2017

Adil Mardinoglu et al NAD+ and glutathione depletion in NAFLD Molecular Systems Biology

13

Published online: March 2, 2017 

https://ClinicalTrials.gov


catabolizes around 25% of all intracellular proteins during the first

24 h of starvation (Cuervo & Dice, 1996). In our present analysis,

the total AAs released from muscle and adipose tissues do not seem

to satisfy the liver demand for AAs. During 16 h of fasting, the urea

excretion rate measured in humans was 392 � 44 mmol urea/24 h

(Norrelund et al, 2001). Assuming an average nitrogen content of

1.45 nitrogen atoms per AA and an average AA molar mass of

136.5 g/mol, the consumption of AAs in the liver after a 16-h fast

thus averaged close to 80 g/day (392 mmol/24 h × 136.5 g/mol/

1,000/1.45 = 77.6 g AAs/day). This value was almost constant after

40 h of fasting (440 mmol/24 h), indicating maintained (or even

increased) AA consumption in the fasting liver. The total amount of

AAs released by muscle and adipose tissues was calculated to be

close to 35 g/day indicating that the liver, in the present study,

likely catabolizes itself in relatively large quantities—approximately

40–45 g/day. The AA composition of human liver has been

measured by Benga and Ferdinand (Benga & Ferdinand, 1995). The

molar ratios of the AAs in liver were incorporated into an additional

input reaction to the model in order to achieve realistic AA net

consumption values.

(ii) Lactate

Lactate is used as a gluconeogenic substrate in the liver. Wallace

and Barritt (2005) claimed that the total amount of lactate produced

by red blood cells, the kidney, the medulla, and the retina is around

40 g/day assuming resting conditions. In addition, an extra 40 g is

produced by the rest of the body thus totaling around 80 g. This

corresponds to around 3.3 g/h = 37 mmol/h and was used as an

input to the model.

(iii) FAs and glycerol

Fatty acids are used by the liver for production of TG in VLDL. Glyc-

erol is a by-product of TG breakdown and subsequent FA release by

adipose tissue and can be used as a gluconeogenic substrate. The

FA and glycerol release from adipose tissue was estimated based on

a study by McQuaid et al (2011), and values of FA and glycerol

release from adipose tissue were retrieved for each subject in the

fasting state. This average value was around 30 lmol/min/kg fat

mass which is equal to 1.8 mmol/h/kg fat mass. Since the molar

ratio of glycerol release to FA release is 1:3, the glycerol release was

set as 0.6 mmol/h/kg fat mass. Both of these values were consid-

ered as upper bounds. However, Bickerton et al (2007) measured

the total FA influx into muscle in fasting subjects and found that

only around 4% of the FA released by adipose tissue was taken up

by muscle. Thus, the released FA of 1.8 mmol/h was used as an

input to the model.

(iv) Gluconeogenesis and glycogenolysis

Lactate, glutamine, alanine, and glycerol are the main gluco-

neogenic substrates. Another source of glucose is glycogen break-

down. McQuaid et al (2011) and Hellerstein et al (1997) reported

that under normal overnight fasting conditions, the contribution of

gluconeogenesis and glycogen breakdown to liver glucose output is

roughly equal. McQuaid et al (2011) also found that glycogen break-

down is approximately 5.5 lmol/kg/min in humans after an over-

night fast which corresponds to an average contribution from

glycogenolysis of around 5.7 g glucose/h for the subjects in our

study. The brain requires approximately 6 g glucose/h early in

fasting when ketone body production is still low (Bourre, 2006).

This suggests that during overnight fasting conditions, the total

glucose output from the liver is in the order of 10–15 g/h and it is

definitely higher than 6 g/h. In conclusion, an absolute minimum

contribution of gluconeogenesis to glucose output was set as

16.7 mmol/h (3 g/h).

(v) Ketone bodies

The total ketone body production in obese humans increases

dramatically up to around 60 mmol/h after 2–3 days of fasting and

up to around 75 mmol/h after 17–24 days of fasting (Reichard et al,

1974). However during an overnight fast, the glycogenolysis should

satisfy the majority of the brain’s energy demand and the ketone

body production rates for acetoacetate and beta-hydroxybutyrate

were therefore set at a lower bound of 0.1 mmol/h in the models.

Personalized genome-scale metabolic models for liver tissue

A functional GEM for hepatocytes in liver, iHepatocytes2322, was

reconstructed based on hepatocyte-specific proteomics data in

Human Protein Atlas (HPA, http://www.proteinatlas.org) (Uhlen

et al, 2015). Use of iHepatocytes2322 in conjunction with flux

balance analysis allowed for in silico metabolic simulation of liver

for each subject involved in our study. We incorporated the

measured/calculated uptake and secretion rate of the key metabo-

lites into each GEM and predicted the intracellular liver fluxes of

each patient. During the personalized simulation of liver tissue

GEMs, we allowed the uptake of oxygen, phosphate, minerals, etc.

(Dataset EV1) by the model and blocked the uptake of other

metabolites since we simulated the fasting state. After setting all the

bounds, we calculated the fluxes of all the subjects by minimizing

the sum of fluxes, based on the assumption that the cells will reduce

the pathway usage to a minimum for economic reasons (Dataset

EV2). To test the robustness of the result, we also calculated the

fluxes by random sampling without minimizing the flux sum and

observed the same key results (Datasets EV7–EV10).

To investigate the contribution of personalized inputs and

outputs (uptake of FAs and VLDL secretion) to our conclusions, we

performed a random control analysis (a random value with the

range of the maximum and minimum value of all the patients). We

found that when using random FA uptake or VLDL secretion alone

as an input or output to our personalized models, the correlation

between reactions carried by NNT and GSR and HS was significantly

decreased (Datasets EV11–EV14). Moreover, when both random FA

uptake and VLDL secretion were used, the correlation became non-

significant (Datasets EV15 and EV16). Thus, we concluded that both

personalized inputs and outputs are driving the conclusions reached

in our study.

Metabolomics data

Non-targeted metabolite detection and quantification was conducted

by the metabolomics provider Metabolon Inc. (Durham, USA) on

fasting plasma samples collected from the subjects with varying

degrees of HS. Samples were prepared using the automated

MicroLab STAR� system from Hamilton Company. A recovery stan-

dard was added before the first step in the extraction process for

quality control purposes. To remove protein and dissociated small
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molecules bound to protein or trapped in the precipitated protein

matrix, and to recover chemically diverse metabolites, proteins were

precipitated with methanol under vigorous shaking for 2 min (Glen

Mills GenoGrinder 2000) followed by centrifugation. The resulting

extract was divided into four fractions: one for analysis by UPLC-

MS/MS with positive-ion mode electrospray ionization, one for

analysis by UPLC-MS/MS with negative-ion mode electrospray

ionization, one for analysis by GC-MS, and one sample reserved for

backup.

Following log transformation, with the minimum observed value

for each compound, Welch’s two-sample t-test was used to identify

the metabolites that differed significantly between subjects with

high and low HS. During the identification of the significant metabo-

lites as well as the significantly correlated metabolites, no data were

imputed for the missing values. The correlation analysis between

the metabolites was performed if both metabolites were detected in

at least 30 subjects involving in our study.

Mouse experiments

Twenty male C57BL/6J mice were fed a standard mouse chow diet

(Purina 7012, Harlan Teklad) and housed in a 12-h light–dark cycle.

From the age of 8 weeks, mice were fed a Western diet (TD.88137,

Harlan Laboratories, WI, USA) by separating into two groups. The

mice were then divided into two groups of 10 mice. One group of

mice was given the Western diet supplemented with NR (400 mg/

kg/day) and serine (300 mg/kg/day) la gavage and NAC (1 g/l) in

the drinking water for 14 days. The other group was only given the

Western diet for the 14 days.

The mice were housed at the University of Gothenburg animal

facility (Lab of Exp Biomed) and supervised by university veterinari-

ans and professional staff. The health status of our mice is

constantly monitored according to the rules established by the

Federation of European Laboratory Animal Science Associations.

The experiments were approved by the Gothenburg Ethical Commit-

tee on Animal Experiments.

Lipid extraction and analysis

Lipids were extracted as described previously (Lofgren et al, 2012).

Internal standards were added during the extraction. Lipids were

analyzed using a combination of HPLC and mass spectrometry as

described (Stahlman et al, 2013). Briefly, straight-phase HPLC was

used to purify ceramides (CER). Cholesteryl ester (CE), triacyl-

glycerol (TAG), phosphatidylethanolamine (PE), phosphatidylcholine

(PC), and sphingomyelin (SM) were quantified using a QTRAP 5500

mass spectrometer (Sciex, Concord, Canada) equipped with a robotic

nanoflow ion source, TriVersa NanoMate (Advion BioSciences, Ithaca,

NJ). CER were analyzed using reversed-phase HPLC coupled to a

triple-quadrupole Quattro Premier mass spectrometer (Waters,

Milford, MA, USA).

Data availability

Supplemental information is provided in Datasets EV1–EV16. The

accession number for the raw and processed RNA-seq data for liver

tissue reported in this paper is available at Gene Expression

Omnibus (GEO): GSE83322.

Expanded View for this article is available online.
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