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Indispensable role of Mdm2/p53 
interaction during the embryonic 
and postnatal inner ear development
M. Laos, M. Sulg, A. Herranen, T. Anttonen & U. Pirvola

p53 is a key component of a signaling network that protects cells against various stresses. As excess p53 
is detrimental to cells, its levels are tightly controlled by several mechanisms. The E3 ubiquitin ligase 
Mdm2 is a major negative regulator of p53. The significance of balanced p53 levels in normal tissues, at 
different stages of lifetime, is poorly understood. We have studied in vivo how the disruption of Mdm2/
p53 interaction affects the early-embryonic otic progenitor cells and their descendants, the auditory 
supporting cells and hair cells. We found that p53 accumulation, as a consequence of Mdm2 abrogation, 
is lethal to both proliferative progenitors and non-proliferating, differentiating cells. The sensitivity of 
postmitotic supporting cells to excess p53 decreases along maturation, suggesting that maturation-
related mechanisms limit p53′s transcriptional activity towards pro-apoptotic factors. We have also 
investigated in vitro whether p53 restricts supporting cell’s regenerative capacity. Unlike in several other 
regenerative cellular models, p53 inactivation did not alter supporting cell’s proliferative quiescence nor 
transdifferentiation capacity. Altogether, the postmitotic status of developing hair cells and supporting 
cells does not confer protection against the detrimental effects of p53 upregulation. These findings 
might be linked to auditory disturbances observed in developmental syndromes with inappropriate p53 
upregulation.

p53 is well known for its role in guarding genomic integrity upon DNA damage and oncogene activation. Its 
tumor suppressor function is exerted through promotion of cell cycle arrest and apoptosis1. p53 null mice are 
born alive and several of their tissues show an unaltered phenotype. Whether other p53 family members play a 
compensatory role remains an open question2,3. p53 is a short-lived protein. The key regulator maintaining its low 
levels in normal tissues is Mdm2. Mdm2 is an E3 ubiquitin ligase that promotes p53 degradation by the proteas-
ome, but it also suppresses p53′​s transcriptional activity4. Genetic disruption of Mdm2/p53 interaction leads to 
widespread induction of apoptosis and spontaneous lethality of early embryos5,6. Studies employing mouse mod-
els with conditional Mdm2 ablation have shown that proper Mdm2/p53 interaction is needed for morphogenesis 
during mid- and late-embryogenesis as well7,8. Proper Mdm2/p53 interaction is also required in adult tissues, 
particularly in those containing high numbers of proliferating cells, shown both by inducible Mdm2 ablation and 
by inducible, direct p53 upregulation9–11.

Except for global examination of various tissues, only a few studies exist where the response of a given cell type 
to increased p53 stability has been comparatively studied in a continuum from development to adulthood, with 
the aim to dissect the importance of balanced p53 levels for cellular survival, differentiation and homeostasis. We 
have here addressed these questions in the proliferating progenitor cells of the embryonic inner ear and in one 
lineage of their descendants, the postmitotic epithelial supporting cells (SCs) of the auditory organ, at different 
stages of life. We have employed a conditional Mdm2 mutant mouse model12 to disrupt Mdm2/p53 interaction  
in vivo. We have also pharmacologically disrupted Mdm2/p53 interaction in vitro.

In regeneration research, auditory SCs serve as a potential platform for the replacement of lost auditory sensory 
cells, the hair cells, by new ones. Many attempts have been made to trigger mammalian SCs to re-enter the cell cycle, 
to stimulate their transdifferentiation into hair cells, and to increase their stemness13. These studies have shown 
that while some degree of regenerative plasticity is retained in neonatal SCs, plasticity becomes very limited after 
this young age. Understanding the p53 response of auditory SCs with potential regenerative capacity is relevant, 
as p53 is known to antagonize regenerative interventions in various cellular contexts, best-known in restricting 
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reprogramming of somatic cells into induced pluripotent stem cells14,15. Therefore, in addition to gain-of-function 
approaches, we have here studied whether p53 inactivation confers regenerative plasticity to auditory SCs.

Results
Disruption of Mdm2/p53 interaction is detrimental to embryonic otic progenitor cells.  By gen-
erating Mdm2FM/FM;Pax2-Cre mice, we first studied the response of otic placodal cells to the disruption of the p53 
binding domain of Mdm212. The ectodermal otic placode contains progenitor cells that give rise to the epithe-
lial and neuronal compartments of the inner ear. Pax2 is one of the earliest markers of the otic lineage and it is 
broadly expressed in the otic placode16. In the Pax2-Cre mouse line, Cre-mediated recombination occurs in the 
early otic placode. Thereafter Cre mRNA expression is quickly downregulated, already at the late placodal stage16.

At embryonic day 8.5 (E8.5), otic placodes had formed in Mdm2FM/FM;Pax2-Cre embryos, but they were 
abnormally small and filled with apoptotic cells, detected by cleaved caspase-3 immunostaining (Fig. 1A–F). 
The concomitant strong p53 upregulation suggested that the cell death was a consequence of p53 accumulation 
(Fig. 1G,H). However, a portion of placodal progenitors -apparently those spared from recombination and con-
sequent p53-mediated cell death- invaginated and formed a vesicle at E9.0. These mutant vesicles were clearly 
smaller than those of littermate controls (Fig. 2A,B). Consistent with our suggestion that the otic vesicles of 
mutant mice were formed by non-recombined cells, the extent of apoptosis in E9.5 vesicles was comparable to 

Figure 1.  Disruption of Mdm2/p53 interaction triggers massive apoptosis in the otic placode, revealed 
in Mdm2FM/FM;Pax2-Cre mice. (A–D) At E8.5, hematoxylin-stained sections show that the otic placodes 
of mutant embryos are markedly reduced in size compared to controls. (E,F) While normal developmental 
apoptosis is seen at the edge of the control placode, cleaved caspase-3-positive progenitors accumulate in the 
mutant placode. (G,H) p53 is upregulated in the mutant, but not control placode. Abbreviations: D, dorsal; HE, 
hematoxylin; H, hindbrain; M, medial; op, otic placode. Scale bar, shown in H: (A–H), 20 μ​m.
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that seen in controls (Fig. 2C,D). Comparable mitotic activity in E10.5 mutant and control otocysts, detected 
by phospho-histone 3 staining, pointed to our conclusion as well, as high levels of p53 would be expected to 
antagonize cell cycle activity (Fig. 2E,F). Importantly, mutant otocysts did not anymore show p53 upregulation 
(Fig. 2E,F; insets). Sox2 staining revealed that although neuroblasts delaminated from the otocyst epithelium at 
E10.5, the neuroblast population and otocyst size were reduced compared to controls (Fig. 2G,H). Also, even 
though Sox2 expression was regionalized in mutant otocysts, this domain was abnormally broad (Fig. 2G,H). 
Maintained Pax2 expression in the otocyst epithelium (Fig. 2I,J) and the lack of apoptosis of Pax2-positive cells 
(data not shown) further supported our conclusion that a part of placodal progenitors had escaped recombination 
in Mdm2FM/FM;Pax2-Cre embryos.

Mdm2FM/FM;Pax2-Cre mice did not survive beyond birth. At E17.5 and E18.5, these mice showed highly dys-
morphic cochleas, a phenotype seen in all individuals analyzed (data not shown, Fig. 3A–C). Despite the dramati-
cally altered global morphogenesis, cochleas contained restricted areas of sensory epithelium where a surprisingly 
normal organization of hair cells and SCs was seen (Fig. 3A–E; insets). In addition, a few specimens had devel-
oped tiny islands of the spiral ganglion (Fig. 3D,E). We confirmed that these limited sensory areas lacked detect-
able p53 immunoreactivity, similar to all other regions of the otic epithelium generated from non-recombined 
placodal progenitors (data not shown, Fig. 2E,F; insets). Thus, even though a large part of the earliest otic progen-
itors were lost in Mdm2FM/FM;Pax2-Cre mice, the remaining cells contributed to a nascent otocyst and, further, to 
a highly malformed cochlea.

Neonatal auditory supporting cells are highly sensitive to the disruption of Mdm2/p53 inter-
action.  We next focused on postnatal auditory SCs. Mdm2/p53 interaction was selectively abrogated in SCs 
by generating Mdm2FM/FM;Fgfr3-iCre-ERT2 mice. Prior studies have shown efficient Fgfr3-iCre-ERT2-mediated 
recombination in two types of auditory SCs, the pillar and Deiters’ cells, during the early postnatal life17. The 
first postnatal week is characterized by active differentiation of the cells of the organ of Corti. During the second 
postnatal week, signaling cascades regulating cell fates and differentiation are downregulated18. At these stages, 
SCs, located between the hair cell rows, mature and develop prominent actin and microtubule-based cytoskeletal 
structures. Concomitantly, fluid-filled spaces open within the organ of Corti, of which the tunnel of Corti is the 
most prominent19,20.

After tamoxifen treatment at postnatal day 0 (P0) and P1, cochleas from Mdm2FM/FM;Fgfr3-iCre-ERT2 mice 
were analyzed at P4 and P7. A part of mutant mice had to be killed during this analysis period due to their 
worsened general health. At P4 (data not shown) and more prominently at P7 (Fig. 4A,B”), mutant animals 
displayed an organ of Corti with reduced width (lateral-to-medial) and height (basal lamina-to-lumenal sur-
face), as assessed in whole mount surface specimens. SC loss was evident in these specimens. Quantitative 
analysis revealed that a significant part of SCs were rapidly lost following recombination and that this loss 
had progressed by P7 (P4: 38.0% ±​ 1.4 vs. P7: 47.4% ±​ 1.4). All hair cells, detected by myosin 6, were pre-
served in Mdm2FM/FM;Fgfr3-iCre-ERT2 mice (Fig. 4A’,B’). These data are consistent with prior data showing that 
Fgfr3-iCre-ERT2-mediated recombination does not target hair cells, with the exception of the most apical and 
basal parts of the cochlea that were not analyzed in the present study17.

As shown in paraffin sections at P7, global cochlear morphology was comparable between mutant and control 
mice (Fig. 4C,H). However, the morphology of the organ of Corti of mutant mice was abnormal due to the loss 
of Sox2-positive SCs (Fig. 4D,I). SC loss was seen throughout the cochlear duct (data not shown). The presence 
of ApopTag-positive profiles in the organ of Corti, detected in adjacent sections, pointed to apoptotic cell death 
(Fig. 4E,J). p53 accumulation in SC nuclei indicated that apoptosis was mediated by p53 (Fig. 4F,K). γ​H2AX was 
not upregulated in SCs of mutant cochleas, excluding the involvement of DNA damage in cellular death (data 
not shown). β​-tubulin immunostaining revealed impaired morphological differentiation of SCs, likely associated 
with ongoing degeneration of these cells (Fig. 4G,L). These sections also revealed that hair cells were unaffected 
in mutant mice, in line with the results obtained with whole mount specimens (Fig. 4A’,B’). Together, our data 
demonstrates that high p53 sensitivity is maintained in the early postnatal, postmitotic progeny of the embryonic 
otic progenitors.

Juvenile auditory supporting cells show increased resistance to the disruption of Mdm2/p53 
interaction.  To investigate whether p53 sensitivity is maintained in juvenile SCs undergoing morphological 
maturation, tamoxifen was administered to Mdm2FM/FM;Fgfr3-iCre-ERT2mice at P6 and P7, and their cochleas 
were analyzed at P12 and P20. Only a small part of SCs were lost at P12 (Fig. 5A,B), but longer-term p53 accumu-
lation resulted in the loss of the majority of SCs, as evidenced at P20 (Fig. 5C,D). When SC loss in juvenile (P6/P7)  
and neonatal (P0/P1) cochleas was quantitatively compared 6 days after recombination, juvenile SCs showed a 
highly significant increase in survival (juvenile: 6.3% ±​ 2.0 vs. neonatal: 47.4% ±​ 1.4). Thus, postmitotic SCs of 
Mdm2FM/FM;Fgfr3-iCre-ERT2 mice die in an age-dependent manner.

Analysis of paraffin sections at P12 showed that the β​-tubulin-positive apical processes of Deiters’ and pillar 
cells of mutant mice did not rise to an upright position, resulting in collapse of the tunnel of Corti (Fig. 5E,F). 
Adjacent sections revealed p53 upregulation in these cells (Fig. 5G,H). Most SCs were still present at P12, but 
a large part of them were lost by P20. At this stage, the organ of Corti had transformed into a flattened epithe-
lium, both in the medial-to-lateral and basal-to-apical axes (Fig. 5I,J). p53 was upregulated in the remaining 
SCs (Fig. 5K,L). In addition to the specific nuclear staining, the p53 antibody produced non-specific cytoplas-
mic staining, especially in the juvenile and adult pillar cells that possess prominent cytoskeletal structures. This 
non-specificity was concluded from the cytoplasmic, but not nuclear p53 staining in p53-depleted SCs (p53fl/fl;-
Pax2-Cre mice; Supplementary Fig. S1). Despite the fact that outer hair cells of Mdm2FM/FM;Fgfr3-iCre-ERT2 mice 
did not recombine and upregulate p53 (Fig. 5G,H,K,L), most of these cells were lost by P20 (Fig. 5A’,B’,C’,D’). 
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Figure 2.  Morphogenesis is impaired in the early-developing inner ear of Mdm2FM/FM;Pax2-Cre mice.  
(A,B) At E9.0, otic vesicles of mutant embryos are smaller than those of controls. (C,D) At E9.5, the amount 
of cleaved caspase-3-positive cells (arrow) is comparable in mutant and control vesicles. (E,F) At E10.5, 
phosphorylated histone-3 staining shows mitotic activity at the lumenal surface of both control and mutant 
otocysts. Insets show that p53 is not anymore upregulated at the otocyst stage in mutants. (G,H) The small-
sized E10.5 otocysts of mutants show expanded Sox2-positive domain and limited neuroblast delamination. 
A rudimentary cochleovestibular ganglion is seen. (I,J) Pax2-positive domain is prominently present in 
both mutant and control otocysts. (E,G,I and F,H,J) are from adjacent sections. Abbreviations: CVG, 
cochleovestibular ganglion; D, dorsal; HE, hematoxylin; M, medial; ov, otic vesicle; PH3, phosphorylated 
histone-3. Scale bar, shown in J: (A–D), 35 μ​m; (E–J), 85 μ​m, insets in (E,F), 165 μ​m.
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Taken together, p53 accumulation arrests maturation of juvenile SCs, ultimately leading to their death. It appears 
that outer hair cell death is a secondary event, caused by degeneration of adjacent, recombined SCs.

Adult auditory supporting cells are resistant to the disruption of Mdm2/p53 interaction.  
To study the p53 response of mature auditory SCs, tamoxifen-mediated recombination was induced in 
Mdm2FM/FM;Fgfr3-iCre-ERT2 mice at P49 and P50. The efficiency of recombination at adulthood was con-
firmed by generating Ai14 (tdTomato);Fgfr3-iCre-ERT2 mice. Based on red-fluorescent-protein (RFP) immu-
nohistochemistry on paraffin sections, the whole population of adult pillar and Deiters’ cells was recombined 
(Supplementary Fig. S2), consistent with previous studies using the same reporter mice at a younger age17.

In contrast to the early postnatal SCs, SCs of adult Mdm2FM/FM;Fgfr3-iCre-ERT2 mice survived and 
failed to show morphological defects, as assessed 6 days after the induction of recombination, at P55 
(Supplementary Fig. S3). Despite this unaltered morphology, p53 was strongly upregulated in the adult SCs 
(Supplementary Fig. S3C,D; insets). These findings point to increased p53 resistance of adult compared to early 
postnatal SCs. Due to the worsened general health of these mutant animals, the long-term fate of adult SCs with 
p53 accumulation could not be followed.

p53 upregulation is detrimental to hair cells and supporting cells of the late-embryonic cochlea.  
In order to study p53 sensitivity of the cells of the late-embryonic organ of Corti, Mdm2FM/FM;Fgfr3-iCre-ERT2 
mice received tamoxifen at E13.5 and E14.5, and their cochleas were analyzed at E18.5. This mid-embryonic 
recombination paradigm enabled us to study the consequences of Mdm2 ablation in both hair cells and SCs, 
as described previously21. As cell cycle exit of precursor cells occurs at the time of recombination, these experi-
ments focused on the response of postmitotic, early-differentiating cells to Mdm2 ablation. Consistent with the 
known sensitivity of developing auditory hair cells to pharmacological p53 accumulation in vitro22, hair cells 

Figure 3.  Strongly altered cochlear morphology of Mdm2FM/FM;Pax2-Cre mice at birth. (A–C) At E18.5, 
hematoxylin-stained sections show two examples of mutant cochleas with strong dysmorphogenesis. Boxed 
areas correspond to the higher magnification views shown in insets. Insets show varying degrees of cell 
organization in mutant organ of Corti. Arrowheads in insets denote Deiters’ cells. (D,E) Adjacent sections 
show organized pattern of hair cells, marked by myosin 6, and supporting cells (arrows). A rudimentary spiral 
ganglion is seen as well. Abbreviations: d, Deiters’ cell; HE, hematoxylin; hs, hair cells; ih, inner hair cell; ip, 
inner pillar cell; myo6, myosin 6; ohs, outer hair cells; op, outer pillar cell; SG, spiral ganglion. Scale bar, shown 
in E: (A–C), 200 μ​m; insets in (A–C), 25 μ​m; (D,E), 55 μ​m.
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Figure 4.  Disruption of Mdm2/p53 interaction triggers rapid death of neonatal auditory supporting 
cells, revealed in Mdm2FM/FM;Fgfr3-iCre-ERT2 mice. Tamoxifen-mediated recombination was induced at P0 
and P1, and analysis performed at P7. Images are from the medial part of control and mutant cochleas. The 
rows of the different supporting cell (A) and hair cell types (A’) are marked. (A,B”) The mutant whole mount 
specimen shows the loss of Sox2-positive supporting cells, but maintained population of myosin 6-positive 
hair cells. The width of the supporting cell region is decreased (compare the bars spanning the width of this 
region in A and B). (C–G) A hematoxylin-stained cross-section through the control cochlea (C). The boxed 
area corresponds to the higher magnification views of the organ of Corti seen in adjacent sections (D–G). Sox9 
marks supporting cells (D). ApopTag staining marks cell death that is seen in the greater epithelial ridge during 
the first postnatal week (arrowhead in E). Control specimen lacks nuclear p53 staining (F). β​-tubulin antibody 
marks the prominent microtubule bundles in supporting cells (arrowheads in G). (H–L) Hematoxylin-staining 
shows unaltered global morphology of the mutant cochlea (H). The boxed area corresponds to the higher 
magnification views of the organ of Corti seen in adjacent sections (I–L). Sox9 staining reveals partial loss of 
supporting cells (I). ApopTag staining shows fragments of dying cells in the supporting cell area as well as in 
the greater epithelial ridge (arrow and arrowhead, respectively, in J). p53 is strongly expressed in the supporting 
cell nuclei (K). β​-tubulin immunostaining shows the organ of Corti with perturbed cytoarchitecture (L). 
Asterisks mark hair cell nuclei. Abbreviations: Apop, ApopTag staining; β​-tub, β​-tubulin; d, Deiters’ cell; HE, 
hematoxylin; h, Hensen’s cell; ih, inner hair cell; ip, inner pillar cell; myo6, myosin 6; ohs, outer hair cells; op, 
outer pillar cell; t, tunnel of Corti. Scale bar shown in L: (A,B”), 50 μ​m; (C,H), 200 μ​m; (D–G, I–L), 15 μ​m.
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from Mdm2FM/FM;Fgfr3-iCre-ERT2 mice showed a strong death-prone phenotype (Fig. 6A’,B’,C,D). Also SCs were 
lost in these cochleas (Fig. 6A,B,E,F), similar as in neonatal cochleas (Fig. 4B). Cell death was confirmed by 
cleaved caspase-3 staining (Fig. 6G,H). p53 upregulation in adjacent sections suggests that SC death is caused by 
p53 induction (Fig. 6G,H; insets). Altogether, neither SCs nor hair cells tolerate p53 upregulation during their 
differentiation.

Figure 5.  Disruption of Mdm2/p53 interaction causes delayed death of juvenile auditory supporting cells, 
revealed in Mdm2FM/FM;Fgfr3-iCre-ERT2 mice. Tamoxifen-mediated recombination was induced at P6 and P7, 
and analysis performed at P12 and P20. Images are from the medial part of control and mutant cochleas. Rows 
of the different supporting cell and hair cell types are marked. Asterisks mark the tunnel of Corti. (A,B’) At 
P12, whole mount specimen from a mutant shows that the Sox2-positive supporting cell population is largely 
present, but rows of these cells are to some extent disorganized (B). The width of the supporting cell region 
is decreased (compare the bars spanning the width of this region in A and B). Phalloidin strongly labels the 
actin cytoskeleton of the four hair cell rows and the apical processes of pillar cells (arrow in A’). This labeling 
reveals scattered loss of outer hair cells in the mutant specimen (B’). (C–D’) At P20, a large part of Sox2-positive 
supporting cells and myosin 6-positive outer hair cells are lost (D,D’). The width of the supporting cell region 
is decreased (compare the bars spanning the width of this region in C and D). Note that the inner hair cell row 
is preserved. (E,F) At P12, β​-tubulin-stained sections show that Deiters’ (arrowheads) and especially pillar 
cells of the mutant cochlea lack a proper upright position and the tunnel of Corti (asterisk) between pillar cells 
is unopened. (G,H) At P12, p53 is upregulated exclusively in the supporting cell nuclei in the mutant organ 
of Corti. Control specimen lacks this nuclear staining. (I,J) At P20, β​-tubulin staining reveals that the organ 
of Corti is replaced by a flattened epithelium. (K,L) At P20, a few p53-positive supporting cells are seen in the 
flattened epithelium of the mutant cochlea. Abbreviations: β​-tub, β​-tubulin; d, Deiters’ cell; h, Hensen’s cell; ih, 
inner hair cell; ip, inner pillar cell; myo6, myosin 6; oh, outer hair cell; op, outer pillar cell; phall, phalloidin. 
Scale bar shown in L: (A–D’), 50 μ​m; (E–L), 25 μ​m.
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Pharmacological p53 upregulation abrogates supporting cell survival in an age-dependent 
manner.  The small molecule compound nutlin3 blocks Mdm2/p53 interaction, triggering p53 upregulation23. 
By preparing explants of the neonatal auditory sensory epithelium and maintaining them for 4 days in vitro (DIV) 
together with nutlin3, we first confirmed p53 upregulation in the explants (Fig. 7A’,B’). A large part of SCs were 
lost after 4 DIV and all of them had disappeared by 7 DIV (Fig. 7A,B, data not shown). There was a total absence 
of hair cells already at 4 DIV (Fig. 7A,B). The nutlin3 response of mature auditory cells could not be studied due 
to the difficulties in maintaining the adult organ of Corti in culture conditions. Therefore, we prepared explants 
of the adult utricle, one of the balance organs that tolerates culture conditions. The utricle contains hair cells and 
SCs that resemble those of the cochlea. P55 utricular explants from wildtype mice were maintained for 7 DIV 
with continuous nutlin3 exposure. Despite p53 induction, SCs in these adult cultures were viable (Fig. 7C,D’). 
Interestingly, also hair cells were present in amounts comparable to those seen in vehicle-treated, age-matched 
specimens (Fig. 7C,D). Altogether, these data are consistent with our in vivo data demonstrating age-related 
decrease in the sensitivity of SCs to the disruption of Mdm2/p53 interaction.

p53 inactivation is dispensable for cell cycle re-entry of auditory supporting cells.  To study 
the effects of p53 inactivation, we generated p53fl/fl;Pax2-Cre mice where p53 is conditionally inactivated in the 
Pax2-positive otic progenitor cells from the placodal stage onwards16,24. These mice were viable and lacked phe-
notypic changes during development and adulthood, as assessed at birth and at P35 (data not shown; Fig. 8A). 
Despite the lack of an altered phenotype, Western blotting assays showed that p53 is expressed in low levels in the 
control cochlear tissue at P6 and P55 (Fig. 8B).

Next, we studied whether the loss of p53 facilitates cell cycle re-entry of the normally quiescent SCs. Cochlear 
explants were prepared from p53fl/fl;Pax2-Cre mutant and control mice at P6, and maintained for 3 DIV. Neither mutant 
nor control explants supplemented with the replication marker EdU showed SC proliferation (Fig. 8C,C’, data not 
shown). To test whether p53 inactivation facilitates β​-catenin-mediated proliferative plasticity25,26, the glycogen syn-
thase kinase-3α​/β​ (GSK-3α​/β​) inhibitor BIO27 was added to P6 cultures to activate β​-catenin. However, BIO treatment 
did not abrogate SC quiescence, neither in control nor mutant explants, based on the lack of EdU labeling (data not 
shown). We conclude that the absence of p53 does not confer proliferative plasticity to immature SCs.

Figure 6.  Disruption of Mdm2/p53 interaction is lethal to late-embryonic auditory hair cells and 
supporting cells, revealed MdmFM/FM;Fgfr3-iCre-ERT2 mice. Tamoxifen-mediated recombination was induced 
at E13.5 and E14.5, and analysis performed at E18.5. (A,B’) Whole mount specimens show the loss of both 
myosin 6-positive hair cells and Sox2-positive supporting cells. Width of the organ of Corti is decreased in the 
mutant specimen (bracket in B). (C–F) Immunohistochemistry on paraffin sections shows degeneration of 
hair cells and supporting cells in the mutant organ of Corti. (G,H) The apoptotic marker cleaved caspase-3 is 
seen in the mutant, but not control organ of Corti. Insets show that p53 is upregulated only in the mutant organ 
of Corti. Abbreviations: casp, cleaved caspase-3; d, Deiters’ cell; ih, inner hair cell; ip, inner pillar cell; myo6, 
myosin 6; ohs, outer hair cells; op, outer pillar cell. Scale bar shown in H: (A–B’), 50 μ​m; (C–H), 20 μ​m; insets in 
(G,H), 55 μ​m.
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Hair cell loss has been shown to stimulate cell cycle re-entry of neonatal SCs28. To test whether p53 loss 
extends this proliferative response to the juvenile stage, P6 explants were prepared from p53fl/fl;Pax2-Cre mutant 
and control mice, and the explants were exposed to neomycin, an aminoglycoside antibiotic that kills hair cells. 
After neomycin challenge for 24 h, explants were maintained for additional 48 h in EdU-supplemented medium. 
Even though most hair cells were lost in these cultures, no EdU-positive SCs were detected, neither in control nor 
mutant explants (Fig. 8C,D’). Furthermore, although previous studies have reported that p53 inactivation confers 
hair cell protection against ototoxic agents29,30, we could not see a difference in the extent of hair cell loss between 
neomycin-exposed mutant and control explants (data not shown).

p53 inactivation does not boost supporting-cell-to-hair cell transdifferentiation.  Neonatal SCs 
can transdifferentiate into hair cells in response to Notch inhibition31. This transdifferentiation capacity is prom-
inent neonatally, but abruptly declines at around P618. As p53 is known to limit somatic cell reprogramming, we 
next studied whether p53 inactivation increases transdifferentiation efficiency and whether it extends the period 
of reprogramming plasticity beyond the neonatal stage. Transdifferentiation was triggered in P1 and P6 cochlear 
explants from p53fl/fl;Pax2-Cre mutant and control mice. The γ​-secretase inhibitor DAPT, an inhibitor of Notch 
signaling, was used to trigger transdifferentiation. DAPT-treated explants from both genotypes showed compa-
rable amounts of supernumerary hair cells (Fig. 9A–E, data not shown). In line with these findings, p53 was not 
upregulated in DAPT-treated control explants (Fig. 9F,F’). In these experiments, nutlin3-treated explants were 
used as positive controls for p53 upregulation (Fig. 9G,G’). Thus, the absence of p53 appears not to affect the 
molecular remodeling events that set the limits to the capacity of SCs to transdifferentiate into hair cells.

Discussion
Cells have a complex machinery that maintains low levels of p53 under normal conditions. p53 is most commonly 
upregulated following abnormal proliferation and ensuing DNA damage, when it orchestrates the DNA damage 

Figure 7.  Nutlin3-triggered abrogation of Mdm2/p53 interaction kills inner ear supporting cells in an age-
dependent manner in vitro. (A,B) Nutlin3, but not DMSO, triggers the loss of Sox2-positive supporting cells in 
P0 cochlear explants after 4 DIV. All parvalbumin-positive hair cells are also lost. Gray-boxed areas correspond to 
the views shown in A’ and B’. (A’,B’) p53 is upregulated only upon nutlin3 treatment. (C,D) Nutlin3- and DMSO-
treated P55 utricular explants show comparable amounts of Sox2-positive supporting cells and parvalbumin-
positive hair cells after 7 DIV. Gray-boxed areas correspond to the views shown in C’ and D’. (C’,D’) p53 is 
upregulated only in the nutlin3-treated utricular explant. Abbreviation: co, cochlea; parv, parvalbumin; utr, 
utricle. Scale bar shown in (D’), 50 μ​m.
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response and DNA repair. If DNA damage remains unrepaired, p53 mediates cellular senescence or death1. Also 
certain developmental syndromes lead to p53 stabilization and activation32. In addition, p53 is induced in adult 
tissues upon a wide spectrum of stressful conditions and, thus, can also affect non-proliferating cells1. The postmi-
totic status of a cell is considered to increase resistance to elevated p53 levels. An interesting question is whether 
the cells that have exited the cell cycle, but are still undergoing differentiation or maturation respond to elevated 
p53 levels more like proliferating progenitor cells or like mature cells. These immature cells often show plasticity 
towards regenerative manipulations, such as stimulated cell cycle re-entry or cell fate conversion. It has been 
suggested that p53 upregulation limits the extent of these regenerative events and sets barriers to the regenerative 
capacity of adult cells14,15. Based on these considerations and the fact that auditory SCs serve as an attractive cell 
model in regeneration studies aiming to restore hearing loss, we found it important to study the response of these 
cells to increased and, on the other hand, suppressed p53 expression.

As an E3 ubiquitin ligase, Mdm2 mediates ubiquitination and proteasome-dependent degradation of p534. 
We found that the inner ear cells respond to Mdm2 abrogation by p53 upregulation and by phenotypic changes. 
Therefore, it can be concluded that these cells express p53 under normal conditions and that p53 levels are actively 
suppressed by Mdm2. We detected endogenous p53 in the cochlea by Western blotting assays, but not by immu-
nohistochemistry. These results point to low levels of p53 in this tissue, consistent with the low abundance of p53 
found in other organs33. These data reflect the key role of Mdm2 in preventing p53 accumulation under normal 
conditions.

In Mdm2FM/FM;Pax2-Cre mice, Mdm2 was abrogated in the inner ear anlagen, the otic placode. Its progenitor 
cells upregulated p53, leading to rapid and extensive apoptosis. In the Pax2-Cre mouse line, Cre mRNA is induced 
in the early otic placode, but it is quickly downregulated16. Thereby, by using Mdm2FM/FM;Pax2-Cre mice, we were 
able to study what happens when the earliest otic progenitors are lost. It has been shown that a portion of placodal 
progenitors remain unrecombined in Pax2-Cre mice16. Most probably these unrecombined cells, that escaped 
Mdm2 inactivation, gave rise to the small otic vesicles in Mdm2FM/FM;Pax2-Cre mice. The ultimate outcome of the 
extensive loss of early progenitors was a highly dysplastic inner ear, as assessed at birth. From the perspective of 

Figure 8.  Supporting cells do not re-enter the cell cycle in cochlear explants from p53fl/fl;Pax2-Cre mice. 
(A) β​-tubulin-stained section shows unaltered morphology of the organ of Corti of a mutant mouse at P35 
(compare with Supplementary Fig. S3E). (B) Western blotting shows that p53 is weakly expressed in control 
cochleas both at P6 and P55. GAPDH was used as a loading control. (C,C’) DMSO-treated explant from a P6 
mutant mouse displays a normal complement of Sox2-positive supporting cells and myosin 6-positive hair cells 
after 3 DIV. Both cell types are EdU-negative. (D,D’) Neomycin-challenged explant from a P6 mutant mouse 
lacks EdU-positive cells in the organ of Corti after 3 DIV. Note the presence of a few EdU-labeled cells outside 
this organ (arrowheads). Abbreviations: β​-tub, β​-tubulin; d, Deiters’ cell; myo6, myosin 6; ih, inner hair cell; ip, 
inner pillar cell; oh, outer hair cell; op, outer pillar cell. Scale bar shown in D: (A), 15 μ​m; (C,D’), 50 μ​m.



www.nature.com/scientificreports/

1 1Scientific Reports | 7:42216 | DOI: 10.1038/srep42216

inner ear development it is interesting that an otic placode with strongly reduced numbers of progenitor cells can 
generate a vesicle. However, the vesicle was abnormally small, indicating that the early-occurring, extensive apop-
tosis cannot be later compensated by enhanced proliferation. These growth defects were linked with abnormali-
ties in the expression of patterning molecules in the otocyst and, further, with impaired cochlear morphogenesis. 
Our results are in line with previous results on other embryonic tissues, showing that Mdm2/p53 abrogation and 
consequent p53 upregulation trigger severe pathologies4. Importantly, prior studies have shown that cell death, 
defects in organogenesis and embryonic lethality can be rescued by concomitant p53 inactivation, indicating that 
p53 is a major target of Mdm25,6.

The present results on Mdm2FM/FM;Fgfr3-iCre-ERT2 mice show that Mdm2 continues to be critical in regulating 
p53 levels in postmitotic, differentiating SCs. Following birth, Mdm2/p53 abrogation was induced exclusively 
in SCs in the cochlea. We found that the effects of p53 upregulation were distinctly age-dependent. During the 
first postnatal week, differentiating SCs were hypersensitive to p53, evidenced by their acute death upon p53 
induction. During the second postnatal week, SCs undergoing structural maturation died only after a prolonged 
exposure to p53. Also adult SCs tolerated p53 accumulation surprisingly well. These age-dependent differences 
in p53 sensitivity were not due to differential recombination patterns, as both the early postnatal and adult SCs 
showed nearly 100% recombination efficiency, based on the analysis of Ai14(tdTomato);Fgfr3-iCre-ERT2 reporter 
mice17 (present study). Consistent with our findings, late-embryonic neurons of the central nervous system die 
rapidly and in large amounts upon conditional Mdm2 ablation7. In another study, the effects of inducible, global 
Mdm2 inactivation were studied in various adult tissues. In line with our results, that study showed that tissues 
comprising postmitotic cells (“radio-insensitive tissues”) are more sensitive to p53 upregulation during the young 
adult compared to older, more mature stage11.

What confers increased p53 resistance to juvenile (second postnatal week in our study) and adult SCs com-
pared to neonatal (first postnatal week) SCs? In Mdm2FM/FM;Fgfr3-iCre-ERT2 mice, cell death was not associ-
ated with activation of the DNA damage response, based on the absence of γ​H2AX induction. This result is not 
unexpected considering the postmitotic status of SCs. In adult cells in general, a large portion of chromatin is 
condensed and silenced. Accessibility of the p53 transcription factor to pro-apoptotic target genes, particularly to 
Puma, Bax, and Noxa, becomes limited along aging, resulting in weakening of its apoptosis-promoting function34. 
In the mouse kidney, binding of p53 to Puma is significantly decreased in mature compared to young cells11.  
In auditory SCs of the mouse, signaling cascades regulating differentiation are downregulated by the end of 

Figure 9.  Supporting cell transdifferentiation into hair cells is not enhanced in cochlear explants from 
p53fl/fl;Pax2-Cre mice. (A–D) DAPT-treated explants from P1 mutant and control cochleas show accumulation 
of myosin 6-positive outer hair cells, as opposed to the organized rows of hair cells in DMSO-treated explants, 
assessed after 3 DIV. (E) Quantification reveals no significant difference in the amount of extra hair cells 
between the genotypes. (F,G’) p53 is not upregulated in the DAPT-treated control explant, as opposed to the 
nutlin3-treated control explant, assessed after 4 DIV. Sox2 marks supporting cell nuclei and DAPI cell nuclei. 
Note that a part of cells is lost in the nutlin3-treated specimen. Abbreviations: ih, inner hair cell; myo6, myosin 
6; oh, outer hair cell. Scale bar shown in (G’), 20 μ​m.
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the first postnatal week, shown, for example, in the case of Notch signaling18. Epigenetic mechanisms might be 
involved in limiting transcriptional activation of differentiation promoting genes by Notch signaling. It has also 
been suggested that the proneural gene Atoh1 is epigenetically silenced in auditory SCs at the end of the first 
postnatal week35. In line with these data, epigenetic mechanisms that promote heterochromatinization at the loci 
of pro-apoptotic genes might slow down their transcriptional activation by p53 and thereby cause delayed rather 
than acute cell death. Juvenile SCs of Mdm2FM/FM;Fgfr3-iCre-ERT2 mice displayed halted differentiation before 
their death, indicating that it took longer time for the upregulated p53 to execute cell death. Also, p53 was acutely 
and strongly upregulated in SCs in response to Mdm2 abrogation, despite delayed death of these cells. This implies 
that the age-dependent decline in p53 responsiveness is due to mechanisms downstream of p53 expression.

Inner ears of p53-inactivated mice (p53fl/fl;Pax2-Cre) failed to show gross developmental abnormalities, con-
sistent with the unaltered phenotype of several p53-inactivated tissues thus far studied36. However, p53 sup-
pression has been shown to increase regeneration efficiency. For example, p53 silencing enhanced fibroblast 
conversion into neurons and it was suggested that p53 is a major gatekeeper in the maintenance of the existing 
transcription network of the cell37,38. The reprogramming intervention in the cochlea, transdifferentiation of SCs 
into outer hair cells, can be induced by Notch inhibition, mainly during the first postnatal week18,31. However, 
we did not see enhanced transdifferentation in DAPT-treated cochlear explants from p53fl/fl;Pax2-Cre mice. 
Correspondingly, DAPT-treated wildtype explants did not show p53 accumulation. This result was not actu-
ally surprising, since SC-to-hair cell transdifferentiation triggered by Notch inhibition is not associated with cell 
death or cell cycle re-entry39. If this would be the case, DNA damage signaling would be activated, leading to p53 
induction.

Could endogenous p53 restrict proliferative plasticity of quiescent auditory SCs? Critical regulators of cell 
cycle exit and the maintenance of the postmitotic state are the cyclin-dependent kinase inhibitors (CKIs) of the 
core cell cycle machinery. CKI inactivation has been shown to trigger ectopic replication of SCs during the early 
postnatal life40. As p53 is not directly involved in the maintenance of the postmitotic state1, it was not surpris-
ing that p53-depleted SCs failed to show unscheduled proliferation in vivo and in vitro. p53 inactivation has, 
nevertheless, been shown to potentiate cell cycle re-entry of quiescent cells when applied in combination with 
exogenous mitogens, shown in the case of Muller glia in retinal cultures41. We did not see this effect in the early 
postnatal cochlear explants supplemented with the GSK-3α​/β​ inhibitor BIO, neither in explants from p53fl/fl;-
Pax2-Cre nor control mice. BIO activates mitogenic Wnt/β​-catenin signaling, a pathway whose activation has 
been shown to stimulate cell cycle re-entry of neonatal SCs25–27. As also aminoglycoside-induced hair cell death 
failed to activate SC proliferation in explants from p53fl/fl;Pax2-Cre mice, we conclude that p53 loss does not 
facilitate the capacity of SCs to cell cycle re-entry or transdifferentiation. These findings do not contradict with 
our previous results showing that p53 is upregulated in the early postnatal SCs forced to re-enter the cell cycle42. 
It is known that unscheduled proliferation and consequent DNA damage trigger p53 upregulation, leading to 
cell cycle arrest that is often accompanied by apoptosis43. In our previous work, we showed that in response to 
oncogenic cyclin D1 overexpression, juvenile auditory SCs re-enter the cell cycle, but they have difficulties in 
progression into mitosis and in clonal expansion42.

Our results on nutlin3-treated explants support the data obtained with Mdm2FM/FM;Fgfr3-iCre-ERT2 mice, 
showing the death-prone phenotype of developing SCs following p53 upregulation. The Fgfr3-iCre-ERT2 mouse 
line enabled us to abrogate Mdm2 during late-embryogenesis in auditory hair cells as well. We found that dis-
ruption of Mdm2/p53 interaction in vivo is detrimental to differentiating hair cells, consistent with prior studies 
showing the sensitivity of developing auditory hair cells to nutlin3 in explant cultures22. Certain human devel-
opmental syndromes cause unrestrained p53 activity, yet with a less severe phenotype and with delayed lethal-
ity compared to Mdm2 ablation, apparently due to less dramatic increase in p53 levels32. Interestingly, some of 
these syndromes have been shown to include inner ear malformations or hearing loss, particularly the CHARGE  
syndrome32. This syndrome has been modeled in mice and the animals show defects in the morphogenesis of 
the vestibular labyrinth32,44–46. Based on our results, impaired survival of hair cells and SCs of the cochlea might 
be included in the spectrum of CHARGE phenotypes and perhaps also in some other developmental syndromes 
with unrestrained p53 activity. In conclusion, our results demonstrate an important role for the Mdm2/p53 inter-
action in ensuring survival of both proliferating progenitor cells and differentiating cells of the auditory organ.

Methods
Mice.  Mdm2FM/FM;Pax2-Cre mice were generated by crossing floxed Mdm2 mice (Mdm2FM/FM)12 with Pax2-Cre 
mice16. Mdm2FM/FM mice were used as littermate controls. At least 4 mutant and 4 control embryos were analyzed 
per age (E8.5, E9.0, E9.5, E10.5, E17.5, E18.5). Both ears of each animal were analyzed.

Mdm2FM/FM;Fgfr3-iCre-ERT2 mice were obtained by crossing Mdm2FM/FM mice with Fgfr3-iCre-ERT2 mice47. 
Mdm2FM/FM mice were used as littermate controls. Analysis was performed at E18.5 (tamoxifen at E13.5 and 
E14.5, n =​ 2 mutant and n =​ 2 control mice), at neonatal stages (P4, P7) (tamoxifen at P0 and P1, n =​ 4 mutant 
and n =​ 4 control mice), at juvenile stages (P12, P20) (tamoxifen at P6 and P7, n =​ 5 mutant and n =​ 8 control 
mice) and at adulthood (P55) (tamoxifen at P49 and P50, n =​ 3 mutant and n =​ 5 control mice). Both ears of each 
animal were analyzed.

p53fl/f l;Pax2-Cre mice were obtained by crossing floxed p53 mice (p53fl/f l)24 (Jackson Laboratory, 
B6.129P2-Trp53tm1Brn/J) with Pax2-Cre mice16. p53fl/fl mice were used as littermate controls. Both ears of 3 mutant 
and 3 control mice were analyzed per age (P0 and P35). The specificity of the p53 antibody was validated in coch-
leas from p53fl/fl;Pax2-Cre mice at P2 and P50.

To study the pattern of iCre-mediated recombination in the mature cochlea, Fgfr3-iCre-ERT2 mice were bred 
with the ROSA26tm14(CAG-tdTomato) Cre-conditional reporter mice (Jackson Laboratory). Ai14(tdTomato) 
transgene expression was detected by RFP immunohistochemistry. Both ears of 2 Ai14(tdTomato);Fgfr3-iCre-ERT2 

mice receiving tamoxifen at P49 and P50 were analyzed at P55.
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All mouse lines were maintained in a mixed background and both females and males were used in the analysis. 
Timed pregnancies were established by the detection of vaginal plug, taking the morning of plug observation as 
E0.5. The day of birth was considered as P0. Genotyping was performed as previously described12,16,24,47. All animal 
work has been conducted according to relevant national and international guidelines. Approval for animal experi-
ments has been obtained from the local Laboratory Animal Centre of University of Helsinki (permission number 
KEK14-001) and the National Animal Experiment Board (permission number ESAVI/4606/04.10.07/2016).

Induction of iCre-mediated recombination.  Mdm2FM/FM;Fgfr3-iCre-ERT2 and control littermate mice 
were intraperitoneally injected with tamoxifen17 (Sigma-Aldrich) at 2 consecutive days: at E13.5 and E14.5 (3 mg 
per pregnant mother), at P0 and P1 (50 μg/g body weight), at P6 and P7 (50 μg/g body weight) and at P49 and P50 
(200 μg/g body weight). This latter paradigm was also used for Ai14(tdTomato);Fgfr3-iCre-ERT2 mice.

Histological sections.  Between E8.5 and E10.5, Mdm2FM/FM;Pax2-Cre mutant and control mice were 
fixed with 4% paraformaldehyde (PFA) for 6 h. At E17.5 and E18.5, dissected inner ears were immersed in 
PFA overnight. Postnatal cochleas were perilymphatically fixed and immersed in PFA overnight, and decalci-
fied in 0.5 M EDTA, pH 7.5. Specimens were embedded in paraffin and cut to 5-μ​m-thick sections. Epitopes 
were unmasked by microwave boiling (900 W) in 10 mM citrate buffer, pH 6.0, for 10 min. Sections were incu-
bated with primary antibodies in PBS containing 0.25% Triton-X-100 (PBS-T) and 10% normal serum for 48 h 
at +​4 °C. The following primary antibodies were used: rabbit polyclonal Pax2 (1:1000, Zymed/Thermo Fisher 
Scientific), rabbit polyclonal p53 (1:400, Novocastra; NCL-p53-CM5p), rabbit monoclonal cleaved caspase-3 
(1:250, Cell Signaling Technology), rabbit polyclonal β​-tubulin (1:1000, Abcam), rabbit polyclonal RFP (1:500, 
Rockland Immunochemicals), rabbit polyclonal Sox9 (1:3000, Millipore), mouse monoclonal γ​H2AX (1:500, 
Millipore), rabbit polyclonal myosin 6 (1:3000, Proteus Biosciences), goat polyclonal Sox2 (1:3000, Santa Cruz 
Biotechnology) and mouse monoclonal PH3 (1:250, Cell Signaling Technology). Detection was done using the 
Vectastain Elite ABC and Mouse-on-Mouse Elite Peroxidase kits and the DAB Peroxidase Substrate kit (all from 
Vector Laboratories). Apoptag Peroxidase In Situ Apoptosis Detection Kit (Millipore) was used to detect DNA 
fragmentation. Sections were counterstained with methyl green and mounted in Permount (Fisher Scientific). 
A part of the consecutive sections was stained with hematoxylin (Shandon Instant Hematoxylin, Thermo Fisher 
Scientific).

Whole mount specimens.  Explants were fixed in 4% PFA for 10 min and permeabilized in PBS-T. Double- 
and triple-immunofluorescence was performed in PBS-T and 10% normal donkey serum for 48 h at +​4 °C, using 
the following antibodies: rabbit polyclonal myosin 6 (1:500), goat polyclonal Sox2 (1:1000), rabbit polyclonal p53 
(1:500) and mouse parvalbumin (1:2000, Swant). Secondary antibodies conjugated to Alexa Fluor 488, 568, 594 
and 647 were used for visualization. Following antibody incubations, filamentous actin filaments were visualized 
using Alexa Fluor 647-labeled phalloidin (1:400). ProLong Gold anti-fade reagent was used for mounting (all 
from Molecular Probes/Invitrogen).

Explant cultures.  Explant cultures were established and maintained as previously described42. Cochleas at 
P0 and utricles at P55 were prepared from wild-type ICR mice, and maintained for 4 or 7 DIV with Nutlin3 
(Cayman Chemicals) at the concentration of 10 μ​M. Explants treated with 0.1% DMSO were used as controls 
(n =​ 10 for each age and compound).

Cochlear explants were prepared from p53fl/fl;Pax2-Cre mutant and littermate control mice at P6 (n =​ 6 
explants of each genotype), and maintained for 3 DIV with BIO ((2ʹ​Z,3ʹ​E)-6-bromoindirubin-3′​-oxime; 
Calbiochem) at the concentration of 10 μ​M. Explants treated with 0.1% DMSO were used as controls (n =​ 6 for 
each genotype and compound). Cultures were pulsed every 24 h with 5 μ​M EdU (5-ethynyl-2′​-deoxyuridine; 
Molecular Probes/Invitrogen).

Cochlear explant cultures were established from p53fl/fl;Pax2-Cre mutant and littermate control mice at P6, 
and treated with neomycin (Sigma-Aldrich) at the concentration of 500 μ​M for 24 h. Neomycin was substituted 
by PBS in control explants (n =​ 6 for each genotype and compound). Cultures were maintained for 2 additional 
days, pulsing every 24 h with 5 μ​M EdU.

Explant cultures were established from p53fl/fl;Pax2-Cre mutant and littermate control mice at P1 and P6, and 
maintained for 3 DIV in a medium supplemented with DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-pheny
lglycine t-butyl ester, Sigma-Aldrich) at the concentration of 10 μ​M. This medium was changed every 24 h. 
Explants treated with 0.1% DMSO were used as controls (n =​ 6 for each genotype, age and compound). Specimens 
were stained for EdU, using the Click-iT EdU Alexa Fluor 555 Imaging Kit according to manufacturer’s instruc-
tions (Molecular Probes/Invitrogen). ProLong Gold was used for mounting.

Immunoblotting.  Six cochleas were dissected from control mice (p53fl/fl) at P6 and P55, and snap-frozen in 
liquid nitrogen. Cochleas comprised the otic capsule and the cochlear duct. Tissues were homogenized in lysis 
buffer (300 mM NaCl, 100 mM Tris-HCl, pH 7.5, 4 mM EDTA, 2% BSA, 0.2% Triton, 2 mM PMSF, 1 mM sodium 
orthovanadate, Protease Inhibitor Cocktail (Sigma)), incubated on ice for 1 h and centrifuged at 12000 rpm for 
15 min at +​4 °C. Protein samples (30 μ​g of each) were resolved by SDS-PAGE and proteins were transferred to a 
nitrocellulose membrane. Immunoblot analysis was performed using rabbit polyclonal p53 (1:1000, Novocastra; 
NCL-p53-CM5p) and mouse GAPDH (glyceraldehyde 3-phosphate dehydrogenase, 1:3000, Millipore) 
antibodies.

Imaging.  Paraffin sections were imaged with the BX61 microscope equipped with UPlanApo 4x, 10x, 20x 
and 60x objectives. Images were acquired through the DP73 CCD color camera and CellSens software (all from 
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Olympus). Whole mount specimens were imaged under epifluorescence illumination using the Axio Imager.M2 
microscope equipped with PlanApo 20x and 40x objectives and with Apotome 2 structured illumination slider 
(all from Zeiss). Images were acquired with the black and white CMOS camera (Hamamatsu ORCA Flash 4.0 V2) 
and ZEN 2 software (Zeiss). Images were processed using Adobe Photoshop CS6 (Adobe Systems).

Statistical analysis.  To determine the extent of cellular loss in the cochleas of Mdm2FM/FM;Fgfr3-iCre-ERT2 
mice, Sox2-positive SCs and myosin 6-positive outer hair cells were counted from three 20-inner-hair-cell-width 
areas from the medial cochlear coil. Data are shown as the average with s.e.m. of the percentage of lost SCs and 
outer hair cells. To determine the amount of supernumerary outer hair cells in DAPT-treated cochlear explants 
from p53fl/fl;Pax2-Cre and control mice, myosin 6-positive cells were counted from a 20-inner-hair-cell-width area 
in the medial coil. Data are shown as the average with s.e.m. of the percentage of extra outer hair cells. Three to 
five explants were used for each quantification. Two-tailed Student’s t test was used for statistical analysis. Values 
were regarded as highly significant at p <​ 0.005.
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