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Abstract14

Even though studies monitoring the phenology and seasonal dynamics of the wood for-

mation have accumulated for several conifer species across the Northern Hemisphere,

the environmental control of tracheid production and differentiation is still fragmentary.

With microcore and environmental data from six stands in Finland and France, we built

auto-calibrated data-driven black box models for analyzing the most important factors

controlling the tracheid production and maturation in Scots pine stem. In the best mod-

els, estimation was accurate to within a fraction of a tracheid per week. We compared

the relative results of models built using different predictors, and found that the rate

of tracheid production was partly regular but current and previous air temperature had

influence on the sites in the middle of the temperature range and photosynthetic produc-

tion in the coldest ones. The rate of mature cell production was more difficult to relate

to the predictors but recent photosynthetic production was included in all successful

models.
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1. Introduction17

In extra-tropical areas, trees seasonally produce new wood (i.e., xylem), which serves18

as mechanical support, water and nutrients conduction, and storage of carbohydrates,19

water and defensive compounds. In conifers, the xylem mainly consists of one type20

of cells called tracheids. New tracheids are produced by cell division in the cambium,21

after which they follow a differentiation program involving enlargement, secondary wall22

formation, lignification, and programmed cell death. The regulation of tracheid formation23

is dependent on both endogenous factors, such as genotype and hormonal signalling, and24

exogenous factors such as the environment (Fritts, 1976; Plomion et al., 2001; Rossi25

et al., 2006; Vaganov et al., 2006). The phenology and intra-annual dynamics of the26

xylem production and maturation has already been accurately quantified for several27

species (Rossi et al., 2013; Cuny et al., 2014), but our knowledge of the influence of28

environmental factors on these processes is fragmentary (Vaganov et al., 2006; Delpierre29

et al., 2016b).30

The importance of air temperature, especially in the onset of xylem growth, has been31

widely reported. Rossi et al. (2008) observed that the onset of xylogenesis occurred32

with daily average temperature of 8-9◦C. An earlier onset and later ending of cell di-33

vision cause a longer duration of xylem formation at higher temperatures (Rossi et al.,34

2011). Also a temperature sum approach has been used for modelling the onset of xylem35

formation (Seo et al., 2008; Swidrak et al., 2011; Jyske et al., 2014; de Lis et al., 2015).36

In addition to air temperature, photoperiod has been reported to affect growth in37

many species (Partanen et al., 2001; Seo et al., 2011; Cuny et al., 2015), and the cell38

division rate has been found to decline after summer solstice (Rossi et al., 2006; Cuny39

et al., 2015). Zhai et al. (2012) found positive correlations between the minimum and40

mean air and soil temperature and tracheid formation in Jack pine (Pinus banksiana41

L.) stem. Oberhuber et al. (2014) found a negative relationship between vapour pres-42

1Corresponding author, +358 2941 57981, liisa.kulmala@helsinki.fi
2Equal collaboration of the first two authors

2



sure deficit (VPD) and tree ring increment indicating that high VPD and the resulting43

high evaporative demand reduces turgor pressure in cells, as well as cell division and44

enlargement. Also in drought-prone areas, water deficits in late spring and summer play45

a critical role in the onset of xylogenesis and xylem cell production (Kalliokoski et al.,46

2012; Ren et al., 2015; Oberhuber et al., 2014; Lempereur et al., 2015). The role of dif-47

ferent environmental factors controlling intra-annual growth dynamics most likely vary48

depending on growing environment but this is still not clearly understood.49

Photosynthesis provides material for the growth and wood formation. A positive50

connection between annual ring width and net ecosystem productivity (NEP) or gross51

primary production (GPP) has been reported (Ohtsuka et al., 2009; Babst et al., 2014;52

Gea-Izquierdo et al., 2014; Schiestl-Aalto et al., 2015). On the other hand, Delpierre et al.53

(2016a) demonstrated that soil water and VPD are more important variables than carbon54

fluxes in determining weekly rates of wood formation in a temperate Oak. Zweifel et al.55

(2010) found a close relationship between stem radius changes and monthly and half-56

hourly NEP and monthly GPP but their study was based on stem radius measurements,57

which also include the swelling and shrinking of stems due to changes in water balance58

as well as the growth and regeneration of the phloem.59

A detailed view on the importance of different environmental factors and photosyn-60

thetic production may help us perceive the effects of changing climate on secondary61

growth and the acclimation capacity of trees. The aim of this study is to examine which62

climatic and ecophysiological factors explain best the intra-annual dynamics of cell pro-63

duction and maturation in Scots pines (Pinus sylvestris L.) in different environments.64

Thus, we selected six Scots pine stands (three in Finland along a latitudinal gradient and65

three in France along an altitudinal gradient) from which we have three to four years66

(depending on the stand) of wood formation monitoring and environmental data, includ-67

ing measured daily average of temperature, radiation, and precipitation, air humidity as68

VPD, and modelled soil moisture and GPP. The total number of tracheids at different69

stages of cell differentiation and the number of mature tracheids (i.e., tracheids that had70
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completed differentiation) were obtained from microcore samplings.71

We used machine-learning as a tool for modelling the intra-annual tracheid production72

and maturation dynamics from environmental data. As opposed to traditional statistical73

analysis, advanced machine learning methods learn quickly and automatically, poten-74

tially with very large numbers of variables and samples. Similar to traditional statistical75

analysis, results can help understanding biological mechanisms. In practice, we employed76

black box models, a tool that offers great flexibility with regard to modelling. Although77

black box models cannot always be interpreted at the coefficient level - there may in78

fact be no coefficients, e.g., decision tree and nearest-neighbour methods (Hastie et al.,79

2001) - the results obtained can be interpreted by way of relative performance evaluation:80

comparing the performance of the models using different input data. For example, if soil81

moisture as an input predictor leads to excellent prediction of growth at one site, but poor82

prediction at another site, it suggests that this particular environmental measurement is83

more relevant to the trees under the conditions of the first site.84

2. Materials and Methods85

2.1. Study Sites86

The studied Scots pines grew on six sites in Finland and France (Figure 1) where87

mean annual air temperature ranged from 0.8◦C to 10.0◦C (Table 1). Finnish sites lay88

in the boreal zone and French sites in the temperate zone. Sites 1 and 2 are Scots pine89

monocultures, site 3 a mixture of Scots pine and Norway spruce (Picea abies (L.) Karst.)90

and the French sites (4-6) are mixtures of Scots pine, Norway spruce and silver fir (Abies91

alba Mill.). The studied pines in boreal sites were middle-aged whereas the ones in the92

temperate sites were clearly more aged (Table 1). The sites 1 and 2 are introduced in93

detail by Hari et al. (1994) and Hari and Kulmala (2005), respectively, and sites 4-6 in94

Cuny et al. (2015).95

The air temperature (T), precipitation (P) and air relative humidity (RH) were mea-96

sured at each site except for Ruotsinkylä (site 3). Solar radiation (I) were measured at97
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Figure 1: Site map.

SMEARI and SMEARII whereas the solar radiation at the French sites was measured98

at a nearby meteorological station and used for all the sites. For Ruotsinkylä, T, RH, P99

and I were attained from the nearby (5 km) weather station maintained by the Finnish100

Meteorological Institute. Special weather events such as drought, heavy winds etc. were101

not recorded in the study sites during the measured years.102

Vapour Pressure Deficit (V PD, Pa) was computed as103

V = v − RH
v

100
, (1)

where RH (%) is relative humidity, and v (Pa) the saturated water pressure,104

v = e77.345−7235.42/T−8.2 log(T )+5.7113T/1000 (2)

where temperature (T ) is in Kelvins.105

2.2. GPP estimates106

We predicted daily gross primary production (GPP) and soil water content (S) using107

an empirical model PRELES (Peltoniemi et al., 2015). The GPP section of the model has108

been validated using measurements from seven pine and spruce stands located between109

latitudes 44◦27′ and 67◦22′ (Mäkelä et al., 2008). In the model, soil water content (S) is110
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Table 1: Sites, and their mean annual temperature (T, ◦C), with mean average temperatures from the
coldest and the warmest month in parenthesis, precipitation (P, mm/year), mean VPD (kPa) with mean
average VPD of the month with highest VPD in parenthesis, altitude (m), latitude (N), mean tree age
(years), height (H, m), diameter at 1.3 m (D, cm), number of stems (N, ha−1), and data range. The
first three sites are in Finland, and the other three sites are in France.

name T (min:max) P VPD alt. lat. age H D N data range

1 SMEARI 0.8 (-11:12) 580 0.16 (0.44) 390 67◦5 90 9 14 770 2007-2009
2 SMEARII 4.3 (-8:17) 590 0.31 (0.75) 181 61◦9 46 16 18 755 2007-2010
3 Ruotsinkylä 5.9 (-9:19) 703 0.28 (0.74) 60 60◦2 38 18 18 1002 2007-2010
4 Grandfontaine 8.6 (1:16) 1520 0.24 (0.45) 650 48◦6 119 27 53 431 2007-2009
5 Abreschviller 9.2 (1:17) 1190 0.22 (0.39) 430 48◦6 162 36 33 253 2007-2009
6 Walscheid 10 (1:19) 900 0.36 (0.68) 370 48◦5 95 31 52 189 2007-2010

calculated using a bucket model using precipitation as an inflow and evapotranspiration111

and runoff as outflows. We simplified the calculation of evapotranspiration (E) as follows:112

E = βEG
V

V κE
+ αE(1− fAPAR)PARfW,E , (3)

where G is GPP, V is V PD, PAR is the daily sum of photosynthetic photon flux density,113

βE , κE , αE , and fAPAR parameters and fW,E a soil water modifier as in Peltoniemi et al.114

(2015). The chosen soil water model is parametrized at site 2 leading there to similar115

results with the original model but with less complexity.116

Briefly, PRELES predicts the GPP as a product of 1) potential daily light use ef-117

ficiency (LUE), 2) fraction of absorbed photosynthetically active radiation (fAPAR) de-118

scribing the photosynthesising leaf area, 3) photosynthetically active radiation (PAR),119

and 4) modifying factors that in suitable conditions result in 1 and in unsuitable con-120

ditions to less than one decreasing the potential GPP. The modifying factors are four121

independent functions with PAR, temperature history, VPD and relative extractable soil122

water (REW) as determinants. We used the same model parameters for each site (Ta-123

ble A.7) using the values that Peltoniemi et al. (2015) have estimated and tested for124

SMEARII (site 2). The leaf area increases in early season and decreases in late season125

but we treated it as a constant since the changes in it are partly reflected in the factor of126

temperature history. The acceptable performance against empirical data (Mäkelä et al.,127
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2008) allows such simplification to decrease the complexity of the model. Since we are128

not interested in the overall level of GPP in the stand but the interannual variation in129

the studied Scots pines, we did not include the exact stand characteristics in the model130

(e.g. maximum LAI). Thus, we treated GPP as a relative value describing the daily131

photosynthesis of Scots pines during a growing season inside a stand.132

2.3. Sample Collection and Preprocessing133

Xylem formation in stems was monitored by repeatedly collecting microcores at a134

height of 1.3 m. They were collected from each site from four to five randomly selected135

dominant trees once or twice a week in spring and early summer, and once a week in late136

summer and autumn. The first samples were taken between early April and mid-May and137

the sampling continued to mid-September in Finland and to late November in France.138

From the images taken of the current-year ring samples, the number and diameters of139

tracheids in different tracheid formation phases were measured along one representative140

tracheid row. The details of the sampling and the laboratory analyses are described by141

Kalliokoski et al. (2012), Jyske et al. (2014) and Cuny et al. (2012, 2014). In order to142

study the rate of differentiating tracheid production (RDTP) and the rate of mature cell143

production (RMTP), we recorded both the total number of tracheids (i.e., the sum of144

tracheids in all formation phases) and the mature tracheids (i.e., tracheids which have145

completed the cell formation and entered the mature stage).146

Noise is unavoidable in this kind of data, and we took a number of steps to produce147

reasonable rates for RDTP and RMTP from the measurements. The procedure is exem-148

plified in Figure 2. As a first step, we considered a time scale of weeks, rather than days;149

averaging by week provides at least one measurement for most weeks during the growing150

season. We considered week t = 1 of the year as the first to seventh day inclusive, and151

so on. In the cases where measurements for more than one tree were available, we used152

the average number of cells of all trees for each week, since we were interested in the153

relative differences in the rates among particular sites rather than individual trees. We154

assume zero new tracheids on all weeks prior to the first measurement and posterior to155
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Table 2: Sites and the number of missing values which are smoothed over.All site-years not appearing
had complete data time series.

Site Year (Num. Missing)

1 SMEARI 2008(1), 2009(6)
2 SMEARII 2007(11)
4 Grandfontaine 2007(5), 2008(4), 2009(6)
5 Abreschviller 2007(9), 2008(1), 2009(1)
6 Walscheid 2007(9), 2008(1), 2009(5)

Table 3: Summary of notation. xt and yt can be considered general inputs and output, respectively.

variable range symbol

t ∈ {1, . . . , 52} time index (week number)
xt = [x1, . . . , xp] ∈ Rp data input for week t, of p variables
yt ∈ R growth at week t (number of cells)
ŷt ∈ R estimated growth given input, with black box model
T (t) ∈ R avg. air temperature week t

the last measurement of each year (i.e., outside of the growing season). For all other156

weeks (i.e., during the growing season), we plugged in a value from a linear fit between157

the surrounding values. For example, if ỹt is the average number of measured tracheids158

at week t, and we have ỹ23 = 12 and ỹ26 = 18 but weeks 24 and 25 are missing, then we159

plugged in values ỹ24 = 14 and ỹ25 = 16. The number of values affected by this operation160

is signaled in Table 2. We smoothed these measurements with a weighted average,161

ȳt ← 0.05ỹt−2 + 0.25ỹt−1 + 0.40ỹt + 0.25ỹt+1 + 0.05ỹt+2 (4)

and furthermore capped this value such that ȳt ← max(ȳt, ȳt−1). This ensured that162

RDTP and RMTP are never negative. Since we already smoothed (averaged) by week163

as an initial step, more advanced smoothing was not needed.164

In the final step, we converted the running cumulative sum of total number of cells165

and the number of mature cells into a rate (of new tracheids/week); as we were pri-166

marily interested in modelling the week-to-week rate of tracheid production, indicated167

henceforth as yt.168
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Figure 2: Example of preprocessing: for SMEARI in the year 2007. Raw tracheid-counts (total) have
been averaged by week, smoothed, capped to prevent negative growth, and then a differential is taken
to represent week-by-week growth (RDTP).

2.4. Black Box Models169

A black box refers to a data driven model where inputs and outputs are the focus, as170

opposed to the internal mechanism. Thus, the mechanism of mapping inputs to outputs171

is not designed by domain knowledge, but rather constructed automatically from data.172

The chosen algorithm is of a lesser importance than its predictive performance, and the173

focus is on interpreting relative results.174

Instances of explanatory variables (i.e., inputs), each associated with a target variable175

(i.e., output), are used as training data to build a model. In our case, input attributes176

were environmental data and the week number, and the target variable was the rate of177

tracheid production/maturation (RDTP/RMTP) for a given week; See Table 3. These178

instances were fed into an off-the-shelf learner along with the target variable , and a model179

was built. With this model, the target RDTP and RMTP (output) for any particular180

week can be estimated automatically from environmental records on and prior to this181

week (input).182
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After an empirical trial of some popular learning algorithms, we chose ridge regres-183

sion (Hastie et al., 2001) to use as a black box. This kind of model extends ordinary184

least squares regression with a penalty regularization term on the coefficients to avoid185

overfitting (i.e., avoid excessively large coefficients), such that the error function for MSE186

to be minimized is187

E(β) =

52∑
t=1

(β>xt − yt)2 +
1

λ
β>β (5)

=

52∑
t=1

(ŷt − yt)2 +
1

λ
β>β (6)

where β is the vector of coefficients, and λ is a parameter on the penalty, that is automat-188

ically tuned via internal cross validation. Essentially, it is MSE plus a penalty term. We189

used the Python programming language, and in particular the scikit learn package3 for190

the ridge regression implementation. Although we found that ridge regression provided191

good results on our data, any predictive regression model can be used (e.g., ordinary192

linear regression, decision tree regressors, k-nearest neighbours).193

2.5. Variables for the Black Box194

Given an algorithm, and a chosen output variable (RDTP and RMTP in our case)195

the remaining task is the configuration of input, i.e., choosing and/or creating transfor-196

mations of explanatory variables. From a knowledge-blind point of view, all predictive197

power will come from some time horizon of the input (environmental measurements) up198

to the current week t; as well as the week number t. In other words, the week number199

t, and a time horizon of environmental measurements is provided to the black box, to200

output an estimate at week t.201

Regarding the length of time horizon, we conducted a pilot study on the effect of202

different horizons on predictive accuracy based on models of multiple environmental203

3http://scikit-learn.org
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(a) Simple linear model
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(b) Model with middle layer

Figure 3: Figure 3a represents a simple linear model in graphical form, and Figure 3b shows the general
concept of an inner layer to provide non-linearity. This layer (z1, . . . , z4) can either be viewed as part of
a (non-linear) black box, or as a different configuration of the input to a (linear) black box.

measurements, and found that in general, accuracy improved for most sites up until204

including about 10 weeks of environmental history. For other sites (whose model did205

not benefit from such a long horizon) the longer time horizon still did no harm, since206

an appropriately regularized black box model (as ridge regression that we chose) learns207

coefficients close (or at) zero for the variables corresponding to the oldest weeks. There-208

fore we used a time horizon of 10 weeks for all models. In practice this means that the209

model makes an estimation of growth (in number of tracheids) at the current week, as210

a function of environmental measurements at the present week and all measurements of211

the prior 10 weeks.212

A linear model of input is often insufficient for most predictive variables. For example,213

the week number t correlates to low/zero RDTP/RMTP for both low values (beginning214

of the year) and high values (end of the year). Similarly, although basic temperature215

variables such as the sum and average can be modeled by a simple linear combination of216

variables, the relationship of temperature to tracheid formation is in practice non-linear.217

A well-known way to allow non-linearity in statistical models is via basis functions, for218

example a polynomial transformation Hastie et al. (2001).219

The basis functions can be viewed as an inner layer that provides non-linear predictive220

power (Figure 3). This strategy is used by a plethora of approaches including neural221

networks and latent variable models (Hastie et al., 2001).222
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As well as automatic/blind variable transforms, we looked at two expert functions.223

First, as a short term response to environmental drivers, we used224

D(T (t); c) = 1T (t)>c

[ 1

1 + exp (−0.1T (t))

]
(7)

as inspired by Schiestl-Aalto et al. (2015), except that we did not sum cumulatively. Es-225

sentially this function acts as switch which yields zero whenever the average temperature226

is at or below a threshold c◦C, and otherwise returns a value between 0 and 1 representing227

the weekly temperature (closer to 1 represents higher temperature, Figure 4). We set pa-228

rameters c = {0, 5, 10}, i.e., we include three variables, D(T (t); 0), D(T (t); 5), D(T (t); 10),229

in the same model. Unlike Schiestl-Aalto et al. (2015) we average by week (rather than230

by day) and consider the tracheid production/maturation rate rather than cumulative231

number. Note that D = 0 corresponds to zero change in a cumulative temperature sum.232

Including D over a time horizon in the model (as we did) offers approximate predictive233

power to a cumulative sum inside D itself (depending on the length of the time horizon).234

Secondly, we used a timing variable also inspired from (Schiestl-Aalto et al., 2015):235

O(t; to, o, T (. . . , t)) = max
(

0, 4

[
o
√
t′ − t′

]
o2

)
(8)

t′ = max(0, t− to, t−min
t

(T (t) > 0)) (9)

where t′ begins counting at week number to unless the temperature is still below zero,236

in which case it begins on the first week of average temperature above 0◦C. In other237

words: the signal of this function begins (raises above 0) at the first instance when the238

week number is at least to and temperature is above 0. It also yields a value O ∈239

[0, 1] increasing sharply at first and decreasing gradually after that (Figure 4). There is240

empirical evidence suggesting that trees in the cold northern Finland start to grow at241

lower temperatures (Jyske et al., 2014). Therefore, to attain a reasonable fit, we set o =242

{4.5, 5.0} for Finnish sites and o = {5.0, 6.0} for French sites; and to = {11, 12, 13, 14}.243
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Figure 4: Illustrations of the shapes of short-term response to temperature (D) and growth timing with
(O). The horizontal axis is time (in weeks). Note that for purposes of illustration we have chosen the
temperature data from Site 1 (SMEARI) during 2007.

In other words, we included a total of eight O variables per model.244

Therefore, rather than manual calibration of a single function, we used several differ-245

ent calibrations which the black box automatically calibrates with additional parameters246

(e.g., coefficients). Therefore in-depth domain knowledge is not required and the model247

is still heavily data driven, even though in this particular case, the functions we used248

were derived from experts. This could be called a ‘grey box’.249

Lupi et al. (2010) show that the timing of cell maturation (hence possibly the rate of250

mature tracheid production) is dependent on the number of tracheids produced earlier in251

the season. Including the measured number of tracheids early in the season in the model252

detracts from the applicability of a model, since it requires measurements in order to run253

the model. Instead, we also consider as a variable the predicted number of tracheids over254

the time horizon as an additional variable for predicting the number of mature tracheids255

(denoted P ).256

An overview of variables used in the model is given in Figure 5. In the results we257

experiment with different combinations of variables, for example (D.O.G)5 means that258

we used D and O and G variables, via polynomial transformation of degree 5.259
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Figure 5: Model variables. Shaded nodes represent environmental measurements (temperature T ,
relative humidity RH, and solar radiation I) and the week number (t). Nodes with a dashed outline
were used only indirectly. Second-level nodes represent higher-level variables (V=VPD, G=GPP, S=soil
moisture, the growth-timing variable O, and the short term response to environmental drivers D). The
direction of arrows represent flow of information, e.g., the week number and mean weekly temperature
were used in the calculation of growth timing factor O. For brevity, we excluded nodes and connections
used in the estimation of the soil moisture variable, the polynomial transformations, and the growth-
prediction variable used only for prediction of mature tracheids (P ).

2.6. Evaluation260

As we built models separately for each site, we also evaluated them on a per-site basis,261

in order to compare and contrast the predictive power of different inputs in different262

temperature environments. For a given site, and a given year, we scored a model with263

the mean squared error (MSE).264

We built the models on data from all available years (52 data points per year) except265

the final year, which we held aside for testing the model. We repeated this procedure266

but instead holding aside the penultimate year, and then again for the ante-penultimate267

year of measurements for evaluation. The results of the three years were then averaged268

together. This procedure is similar to hold-one-out cross validation (except that the269

number of years varies per site).270

2.7. Interpretation: Opening the Black Box271

The large number of variables created in the black box corresponds to an equally272

large number of coefficients in the regression model that we used, and makes it difficult273

to analyze the model. For the purpose of interpretation, we additionally run the models274

with decision-tree regressors. These are powerful non-linear models, that are relatively275

easy to interpret (Hastie et al., 2001). On account of the inherent non-linearity, there was276

no need for basis transformations, which reduces the number of variables. Furthermore,277
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in this case since the intention is for interpretation rather than accuracy evaluation, we278

trained the models on all available data for each site. In each case, we selected the best set279

of predictors (as determined by the standard black-box evaluation) for the model, with280

a minimum of 10 samples per leaf and a maximum depth of 5, to enforce a parsimonious281

(more easily interpretable) model.282

The decision-tree models can be interpreted as follows. First note that for clarity283

and simplicity we have simply denoted the six different parameterizations of the growth-284

timing function as a, . . . , f (refer to Eq. (8) for the full form). For example, O(a)[−3] in285

Figure A.8a is short-form for O(t−3; 5, 11, T (. . . , t−3)). If this function produces a value286

greater than 0.85, and (passing then to the right branch) the value of D(T (t−9); 0) is not287

more than 0.57 (branching to the left), then growth at the current week t is projected to288

be 2.46 cells. The value 2.46 was average growth of the 11 different weeks that met this289

criterion over all three years of data. When building the model, each criterion is chosen290

greedily based on the MSE. An MSE values in the diagrams refer to the error under each291

particular criteria. Exactly as in Table A.6, this MSE value may be generally higher for292

some sites, such as Site 3 Ruotsinkylä. Finally, note that we have de-standardized data293

for interpretation, thus T [−1] ≤ 10.06 (for example, Figure A.9a) actually refers to the294

temperature one week ago not being more than 10.06◦C (therefore, it makes sense that295

for this site, growth should be coming to a stop, and hence the left side showing lower296

values).297

3. Results298

3.1. The Rate of Differentiating Tracheid Production (RDTP)299

The timing of growth variable (O, Eq. (8)) showed in general the lowest MSE values300

and had the best average rank explaining the rate of new tracheid production (RDTP,301

Table 4a) when all available variables were tested as input separately. However, it was302

the best factor only at the two warmest sites while elsewhere mainly air temperature as303
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a polynomial function or as a growth-response variable (D, Eq. (7)) was the best single304

predictor for RDTP.305

When different variables were combined to predict RDTP, the combination of week306

number and temperature resulted in the best average rank (Table 5a). However, O307

alone resulted in lower MSE value (Table A.6a,c) than any of the combinations at the308

two warmest sites (5,6) where it mostly succeeded to predict the onset and cessation of309

RDTP but failed to predict the observed dynamics in-between with satisfactory manner310

(Figure 6e,f).311

At the sites 3 and 4, the lowest MSE values resulted from models including either312

temperature as the only variable or combined with the week number (t) (Table 5a,313

Table A.6a,c). However, the inclusion of t lowered MSE value only a little in site 3314

(Table A.6) and it was pruned from the most topmost variables in the decision-tree315

(Figure A.8c,Figure A.9a) indicating that at these sites (3,4), the observed changes in316

RDTP were mainly connected to the changes in air temperature. The models with lowest317

MSE values for these sites succeeded to predict some of the intra-annual dynamics of318

RDTP (Figure 6c,d). The decision tree analysis revealed that with high temperatures319

(i.e., in the middle of the growing season), current temperature was the most important320

variable but also temperatures from 9-10 weeks earlier were important for estimation321

(Figure A.8c,Figure A.9a).322

The best RDTP models at the coldest sites (1,2) included O and GPP (Table 5a).323

For site 2, the decision tree models revealed that with small O values current GPP324

mattered whereas GPP earlier in the season seemed to be important with higher O325

values (Figure A.8b). In addition to O and GPP, temperature in the form of D and326

VPD were included in the best model for the coldest site (1). The decision tree model327

showed that O was again the most important variable while the timing of most important328

temperatures (as D) occurred 8-9 weeks earlier the actual growth. GPP and VPD were329

pruned away, indicating their lesser importance (Figure A.8a).330
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3.2. The Rate of Mature Tracheid Production (RMTP)331

Overall, the expert timing of growth variable (O, Eq. (8)) was the best single variable332

to predict RMTP even it was not the best one at any of the sites (Table 4b). The week333

number was the best single variable at the two warmest sites (5,6). In the chilliest site334

(1), D was the best single variable. GPP was the best predictor for the chilliest French335

and warmest Finnish sites (sites 2-4).336

The combination of O and GPP resulted in the best average rank when predicting337

RMTP (Table 5b). However, week number (t) alone at the warmest site 6 and D at the338

chilliest site 1 showed the lowest MSE values for RMTP (Table A.6b,d) but the model339

fits were poor (Figure A.7a,f). At all other sites, GPP was included in the best models340

to predict RMTP. In addition, the inclusion of O and T at site 5, T at site 4, and O at341

site 2 improved the model performance (Table 5b, Table A.6d). In general, the model fits342

for RMTP (Figure A.7) were poorer as for RDTP (Figure 6). Inclusion of the predicted343

number of cells did not result to lower MSE values at any site even it resulted into a high344

rank at sites 3 and 4 (Table 5b).345

The detailed view on model behaviour at site 2 illustrated that with low O values,346

previous GPP mattered whereas with higher O values, the important GPP rised from347

four weeks earlier (Figure A.10b). At the site 4, GPP was most important but if it had348

been high, then also T was involved (Figure A.11a). At site 5, GPP was most important349

in small O values whereas in high O, temperature was more important than GPP. The350

decision tree analysis revealed that overall, the most important O values have occurred351

already 4-10 weeks earlier in the sites where it was included in the best models.352

4. Discussion353

We applied fundamental computational methods for gaining new insights into re-354

lationships between intra-annual dynamics of tree growth and environment. We built355

black box models on several years of environmental measurements associated with rates356

of tracheid production and maturation in Scots pine stems, for six sites spread along an357
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Table 4: Results with individual variables: week of the year (t), air temperature (T), soil moisture (S),
VPD (V), GPP (G) and the expert variables of environmental drivers D, and growth timing O. A super-
script indicates the degree of polynomial on the variable, e.g., (T )5 implies that variables T, T 2, . . . , T 5

were used. The per-site ranking of each of the seven black box models is shown with respect to the other
models (only the top 3 rankings are displayed for clarity). This ranking is based on an average error
over three years (Table A.6).

(a) Ranks – Rate of tracheid production (RDTP)

Dataset (t)5 (T )5 (S)5 (V )5 (G)5 D O

SMEARI 2 1 3
SMEARII 1 3 2
Ruotsinkylä 2 1 3
Grandfontaine 1 2 3
Abreschviller 2 3 1
Walscheid 2 3 1

avg rank 2.67 2.50 7.00 5.83 4.33 3.50 2.17

(b) Ranks – Rate of mature tracheid production (RMTP)

Dataset (t)5 (T )5 (S)5 (V )5 (G)5 D O

SMEARI 3 1 2
SMEARII 1 2 3
Ruotsinkylä 2 1 3
Grandfontaine 1 2 3
Abreschviller 1 3 2
Walscheid 1 3 2

avg rank 2.67 4.50 6.50 5.67 3.00 3.17 2.50
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Figure 6: Measured (y) and estimated (ŷt) total new tracheids formed per week (vertical axis) of the
black box model for all years tested. The variables of the model were those which obtained the top rank
in Table 5 (each site modeled separately).
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Table 5: Results with combinations of variables, calculated and displayed similarly to Table 4. Note that
predicted number of tracheids P is only used as a variable for number of mature tracheids (in (P.T.G)5,
5b); in 5a we instead include the (D.O.G.)5 variable set.

(a) Ranks – Rate of tracheid production (RDTP)

Dataset (T.t)5 (T.G)5 (D.O.G.V )5 (O.G)5 (O.T.G)5 (D.O.G)5

SMEARI 2 1 3
SMEARII 3 1 2
Ruotsinkylä 1 3 2
Grandfontaine 1 3 2
Abreschviller 3 2 1
Walscheid 1 3 2

avg rank 2.33 4.67 3.67 3.67 4.33 2.33

(b) Ranks – Rate of mature tracheid production (RMTP)

Dataset (T.t)5 (T.G)5 (D.O.G.V )5 (O.G)5 (O.T.G)5 (P.T.G)5

SMEARI 1 2 3
SMEARII 3 1 2
Ruotsinkylä 3 1 2
Grandfontaine 1 3 2
Abreschviller 2 3 1
Walscheid 2 1 3

avg rank 4.83 3.00 3.50 2.50 3.50 3.67

altitude gradient in France and along a latitude gradient in Finland. Given environmen-358

tal data over a time horizon of 10 weeks, the models were able to estimate the weekly359

rate of tracheid production to within a fraction of a tracheid on average.360

A prominent result related to models including the week number, either as such or361

embedded in the timing of growth variable O, indicate that tracheid production and362

maturation had a regular pattern in all environments, especially in warm sites. Day363

length follows the week number but the light hours are not totally responsible for the364

beginning and cessation of growth demonstrated by the applicability of variable O, which365

in general resulted to better performance than solely week number. In this variable, the366

timing was triggered by the week number but tracheid production activated earlier (or367

later) if the spring temperature increased early (or late) following thereafter a regular368

pattern. Regarding the connection between week number and daylight hours, it may369

be worth noting that day length varies most greatly in the northern sites, and that the370

northernmost site has constant daylight (24 hours) for several weeks around the summer371
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solstice.372

The high predictive power of the timing of growth (O) stresses the weather-independent373

part of new tracheid production even at the most temperature limited site of this study374

where mean annual temperature is barely over 0◦C. This supports the developmental375

control of xylogenesis (Cuny and Rathgeber, 2016) and the significance of photoperiod as376

a driver also there. Seo et al. (2011) studied Scots pine stands in northern Finland and377

found that 2/3 of radial growth took place within four weeks of midsummer regardless378

of the beginning of the growing season, probably because cambial activity needs to end379

early for the produced tracheids to maturate during favorable weather. Also at the warm380

environment, the maximum rate of tracheid production is reported occurring around the381

time of maximum day length and not during the warmest period (Rossi et al., 2006;382

Cuny et al., 2012).383

The extended period of tracheid formation in warm climates seen in this study is384

widely known and reported also by other studies. The earlier onset of new tracheid385

formation increases the number of tracheids and the maturation of tracheids ends later386

(Lupi et al., 2010; Rossi et al., 2011). The important role of temperature to determine the387

rate of tracheid production at several sites in this study (sites 1, 3 and 4) stress the role388

of air temperature as a regulator for the timing of wood formation and therefore support389

the earlier findings (Swidrak et al., 2011; Zhai et al., 2012; Jyske et al., 2014). The390

allocation of assimilated carbon during tracheid production and differentiation requires391

daily minimum temperatures above 5◦C (Rossi et al., 2008; Körner, 2015) and possibly392

explains the strong temperature dependency of the production of mature tracheids at393

the northernmost site.394

Carbohydrates are needed to supply energy for cell division, to generate turgor pres-395

sure during cell expansion and to produce polysaccharides during cell-wall formation396

(Muller et al., 2011). GPP was included in the best combinations predicting the rate of397

tracheid production at the two northernmost sites. In addition, it was the best predictor398

alone or it was included in a combination for the production of mature tracheids at all399
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sites where the model prediction was acceptable (sites 2-4, Table 4b). This is in line400

with Chan et al. (2015) who showed that recently photosynthesized carbon correlates401

even with daily growth in southern Finland. Also Schiestl-Aalto et al. (2015) found that402

GPP accelerates the sink activity, i.e., tracheid formation. Zweifel et al. (2010) found a403

close relationship between stem radius changes and monthly GPP but the relationship404

was even stronger with net ecosystem production (NEP). Simultaneous photosynthetic405

production seemed not to limit or accelerate the rate of mature tracheid production in406

very warm or cold areas of Scots pines but since the model performance was poor in407

these sites, the drivers for the maturation can not be stated. Nevertheless, GPP is not408

necessarily limiting growth at temperate sites (Delpierre et al., 2016a). In addition, the409

model for GPP was parameterized in Southern Finland and it might be less accurate410

in very cold or warm environments. It must be also taken into consideration that the411

GPP model was a simplification without e.g., a module for the interannual changes in412

leaf area, a factor that differs especially between the Northern and the Southern sites of413

this study. Also the simplified model for soil water dynamics is insufficiently evaluated414

for different sites but during the study years, the sites did notably not suffer from soil415

water deficit as suggested also by the model. Low soil moisture most probably influences416

the inter-annual dynamics of tracheid production and maturation but such conditions417

did not occur during these study years.418

Low tree water status causes reduction in the turgor, enlargement, and division of419

tracheids, and correspondingly a reduction in diameter increment (Eilmann et al., 2011;420

Oberhuber et al., 2014). Even if the sites of this study did not suffer from low soil mois-421

ture, the northernmost site surprisingly indicated sensitivity to air humidity as VPD was422

included in the best combination of variables to model the tracheid production (Table 1).423

It was also relatively competitive even as a single variable. The reason for this remains424

unknown but possibly the trees there have not prioritized the investments in water trans-425

port system that is weaker for evaporative demand than the trees in warmer boreal and426

temperate environments. This indicates that even if there is water available, the trees427
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fail to transport enough water from soil causing a decrease in tree water potential, tur-428

gor pressure and optimal rate of tracheid production as found also in temperate trees429

(Delpierre et al., 2016a). Nevertheless, the studied trees at the different sites varied a430

little in size and age and thus they have differences for example, in their water storage431

capacity that might influence further their environmental responses.432

It is perhaps worth remarking that the week number corresponds not only directly to433

day length, but also indirectly to all other variables. Mathematically, temperature can434

be viewed as a function of the week number: T (t) = f(t)+ε(t) where f(t) is the expected435

(average) temperature at week t and ε(t) is some quantity reflecting the variation from436

that expected value. Measuring temperature directly ‘adjusts’ the function by precision437

ε(t), but the underlying relationship between week number and temperature (f(t)) re-438

mains and can be inferred by our data-driven model even without current temperature439

measurements. All other environmental predictors are similarly related to t. This helps440

explain why appropriate functions of the week number (such as the polynomials and441

the growth timing function, Eq. (8)) were such powerful predictors. On the other hand,442

since the decision-tree model (Figure A.8c) ignored t, this indicates that temperature443

still plays a dominant role.444

We selected ridge regression as the underlying black box model because it performed445

best overall in terms of MSE in our initial empirical trials. However, to obtain this446

performance it was essential to include the polynomial basis functions to obtain a non-447

linear decision boundary. The relative benefits of using decision tree models are the448

inherent non-linearity, leading to fewer variables, and overall they offer some additional449

interpretation of the underlying process. Both methods have been a staple of the machine450

learning community for some years.451

The idea of trying more complex models is tempting. However, the target attribute452

(rates of tracheid production and maturation, measured by microcoring) is noisy. This453

is certainly the main limitation in obtaining any further explanatory power from the454

model. More frequent measurements over several years could help to improve the model’s455
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performance and thus give reliable view on the important variables. However, microcores456

are always taken from a slightly different spot, and the stem is not regular, and therefore457

it is not possible to eliminate noise completely. A general disadvantage of the black box458

model is that it requires significant investment in data gathering, and its performance459

is heavily dependent on both the quality and quantity of data, and the year-to-year460

variability of a particular site. On the other hand, decision trees models are unstable461

in the sense that quite different models can be created for relatively small variations in462

the training data. In particular, obtaining microcore data is labour intensive. With an463

increasing amount of data available, that disadvantage is being gradually mitigated.464

The actual response functions of the main variables, i.e., their exact effect on tracheid465

production and maturation, is difficult to isolate from the black box models, but the deci-466

sion tree analysis revealed some of the important periods at each study site. Nevertheless,467

the detailed understanding on the time horizons, significant periods and causal effect of468

the important variables to wood formation requires further ecophsysiological studies in469

the framework of the whole tree water and carbon balance but the current study assists470

to utilize the main environmental drivers.471

5. Conclusions472

Our novel application of machine learning tools to analyze tracheid production showed473

that the most important environmental factors affecting the intra-annual dynamics of474

differentiating and mature tracheid production in Scots pine stems vary under different475

climates. The formation of new tracheids was partly weather-independent, especially476

at the warm temperate environments, but GPP 0-10 week earlier played a role in the477

coolest boreal sites. In sites where mean temperatures were between these outer bound-478

aries, current and previous temperature was the most influential environmental factor.479

GPP and its history was on average the best single predictor for the rate of mature480

tracheid production and it was included as a predictor in the most accurate models. Our481

findings identifying the most important variables for growth can be used in building up482
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detailed physiological theories on the production and maturation of Scots pine tracheids483

in different climates.484

Acknowledgements485

This study was supported by the Academy of Finland (257641, 277623), the Academy486

of Finland Finnish Centre of Excellence Program (272041) and COST action FP1106.487

We also thank Annikki Mäkelä for the help in GPP modelling.488

References489

Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I.A., Nikinmaa, E., Ibrom, A., Wu, J.,490

Bernhofer, C., Koestner, B., Gruenwald, T., Seufert, G., Ciais, P., Frank, D., 2014. Above-ground491

woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at492

five eddy-covariance sites. New Phytologist 201, 1289–1303. PT: J; TC: 7; UT: WOS:000338510200024.493
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Delpierre, N., Berveiller, D., Granda, E., Dufrêne, E., 2016a. Wood phenology, not carbon input, controls512

the interannual variability of wood growth in a temperate oak forest. New Phytologist 210, 459–470.513

25



Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., Rutishauser, T., Rathgeber, C.B.K.,514

2016b. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem515

models. Annals of Forest Science 73, 5–25. PT: J; TC: 3; UT: WOS:000370753300002.516

Eilmann, B., Zweifel, R., Buchmann, N., Pannatier, E.G., Rigling, A., 2011. Drought alters timing,517

quantity, and quality of wood formation in scots pine. Journal of experimental botany 62, 2763–2771.518

PT: J; TC: 45; UT: WOS:000290813300024.519

Fritts, H.C., 1976. Tree Rings and Climate. Academic Press, New York.520

Gea-Izquierdo, G., Bergeron, Y., Huang, J.G., Lapointe-Garant, M.P., Grace, J., Berninger, F., 2014.521

The relationship between productivity and tree-ring growth in boreal coniferous forests. Boreal En-522

vironment Research 19, 363–378. PT: J; TC: 0; UT: WOS:000345732000003.523

Hari, P., Kulmala, M., 2005. Station for measuring ecosystem-atmosphere relations (smear ii). Boreal524

Environment Research 10, 315–322. PT: J; TC: 231; UT: WOS:000233128500001.525

Hari, P., Kulmala, M., Pohja, T., Lahti, T., Siivola, E., Palva, L., Aalto, P., Hämeri, K., Vesala, T.,526
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Table A.6: Total error accumulated over three years.

(a) MSE – Individual variables – Tracheid production (RDTP)

Dataset (t)5 (T )5 (S)5 (V )5 (G)5 D O

SMEARI 0.791 (5) 0.750 (4) 1.939 (7) 0.840 (6) 0.564 (2) 0.516 (1) 0.666 (3)
SMEARII 0.711 (1) 0.736 (3) 1.867 (7) 1.166 (6) 0.759 (4) 0.816 (5) 0.718 (2)
Ruotsinkylä 1.619 (2) 1.607 (1) 2.863 (7) 2.340 (6) 2.138 (5) 1.821 (4) 1.697 (3)
Grandfontaine 0.135 (4) 0.082 (1) 0.439 (7) 0.181 (6) 0.174 (5) 0.113 (2) 0.115 (3)
Abreschviller 0.227 (2) 0.261 (3) 0.935 (7) 0.372 (6) 0.278 (4) 0.290 (5) 0.207 (1)
Walscheid 1.089 (2) 1.325 (3) 2.883 (7) 1.490 (5) 1.561 (6) 1.476 (4) 1.087 (1)

avg rank 2.67 2.50 7.00 5.83 4.33 3.50 2.17

(b) MSE – Individual variables – Mature tracheid production (RMTP)

Dataset (t)5 (T )5 (S)5 (V )5 (G)5 D O

SMEARI 0.977 (4) 0.880 (3) 1.935 (7) 1.050 (5) 1.096 (6) 0.784 (1) 0.866 (2)
SMEARII 0.597 (4) 0.639 (5) 1.239 (7) 1.095 (6) 0.445 (1) 0.567 (2) 0.596 (3)
Ruotsinkylä 2.244 (2) 3.509 (6) 2.479 (4) 3.971 (7) 2.170 (1) 2.903 (5) 2.275 (3)
Grandfontaine 0.226 (4) 0.229 (5) 0.422 (7) 0.273 (6) 0.188 (1) 0.212 (2) 0.216 (3)
Abreschviller 0.265 (1) 0.285 (3) 0.675 (7) 0.285 (4) 0.298 (6) 0.286 (5) 0.284 (2)
Walscheid 1.954 (1) 2.556 (5) 2.886 (7) 2.857 (6) 2.325 (3) 2.429 (4) 1.978 (2)

avg rank 2.67 4.50 6.50 5.67 3.00 3.17 2.50

(c) MSE – Combinations of variables – RDTP

Dataset (T.t)5 (T.G)5 (D.O.G.V )5 (O.G)5 (O.T.G)5 (D.O.G)5

SMEARI 0.755 (5) 0.573 (2) 0.131 (1) 0.821 (6) 0.631 (4) 0.604 (3)
SMEARII 0.738 (3) 0.949 (6) 0.808 (5) 0.625 (1) 0.745 (4) 0.657 (2)
Ruotsinkylä 1.606 (1) 2.142 (6) 2.059 (5) 1.880 (3) 1.925 (4) 1.862 (2)
Grandfontaine 0.086 (1) 0.104 (3) 0.091 (2) 0.139 (6) 0.114 (5) 0.105 (4)
Abreschviller 0.264 (3) 0.281 (5) 0.299 (6) 0.256 (2) 0.272 (4) 0.238 (1)
Walscheid 1.325 (1) 1.424 (6) 1.329 (3) 1.332 (4) 1.339 (5) 1.328 (2)

avg val. 0.80 0.91 0.79 0.84 0.84 0.80
avg rank 2.33 4.67 3.67 3.67 4.33 2.33

(d) MSE – Combinations of variables – RMTP

Dataset (T.t)5 (T.G)5 (D.O.G.V )5 (O.G)5 (O.T.G)5 (P.T.G)5

SMEARI 0.874 (1) 0.882 (2) 1.047 (5) 0.936 (4) 1.175 (6) 0.897 (3)
SMEARII 0.638 (6) 0.530 (3) 0.630 (5) 0.396 (1) 0.470 (2) 0.536 (4)
Ruotsinkylä 3.489 (6) 2.973 (3) 3.370 (4) 2.779 (1) 3.449 (5) 2.932 (2)
Grandfontaine 0.225 (6) 0.177 (1) 0.185 (3) 0.188 (5) 0.185 (4) 0.178 (2)
Abreschviller 0.288 (6) 0.284 (4) 0.254 (2) 0.256 (3) 0.252 (1) 0.286 (5)
Walscheid 2.566 (4) 2.629 (5) 2.517 (2) 2.346 (1) 2.526 (3) 2.639 (6)

avg val. 1.35 1.25 1.33 1.15 1.34 1.24
avg rank 4.83 3.00 3.50 2.50 3.50 3.67
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Figure A.7: Measured (y) and estimated (ŷt) RMTP (vertical axis) of the black box model for all years
tested. The variables of the model were those which obtained the lowest MSE values (Table A.6) (each
site modeled separately). No measurements for Ruotsinkylä available for the first year.
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Table A.7: Parameters of the GPP model. In addition, we used soil depth (LS) of 470 mm for the
Boreal (Finnish) sites and of 1000 mm for the Temperate (French) ones. The temperature measured on
January 1st was used as the priori estimate for the state of temperature acclimation (X).The model,
modifiers and parameters are introduced in detail by Peltoniemi et al. (2015).

symbol value unit

Coefficient for temperature dependence of
snowmelt rate

m 2.5 ◦C–1d–1

Delay parameter for the response of temperature
acclimation state to the changes in ambient tem-
perature

τ 11.7 −

Delay parameter of drainage τF 1 −
Effective field capacity θFC 0.448 mm
Effective wilting point θWP 0.118 mm
Evaporation parameter χ 0.0551 mmmol–1

Light modifier parameter for saturation with ir-
radiance

γ 0.0351 mol–1m–2

Potential light use efficiency βP 0.777 gCmol–1m–2

Sensitivity parameter of fD to VPD κ −0.174 kPa–1

Threshold above which the state of acclimation
increases

X0 −2.6 ◦C

Threshold at which the acclimation modifier
reaches its maximum

Smax 17.5 ◦C

Threshold for W effect on P in modifier fW,P ρP 0.422 −
Threshold for W effect on evaporation in modifier
fW,E

ρE 0.717 −

Fraction of absorbed photosynthetically active
radiation

fAPAR 0.81 −

Transpiration parameter βE 0.4 (gCm–2)–1

Parameter adjusting transpiration with VPD αE 0.822 −
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(a) Site 1 (Smear I): D.O.G.V

(b) Site 2 (Smear II): O.G

(c) Site 3 (Ruotsinkylä): T.t

Figure A.8: Decision-tree models for the rate of tracheid production (RDTP) in the Finnish sites (Sites
1-3) trained on all years, pruned to a maximum depth of 5 and minimum of 10 samples per leaf. The
higher predictors are in the graph the better predictors the more important they are. The value indicates
the predicted value (in number of tracheids); (x) indicates one of the different parameterizations (x =◦C
in the case of D(x)); [-t] signifies that the measurement comes from t weeks in the past. The instructions
to interpret the figure is given in the section 2.7.

32



samples = 149

T ≤ 8.73
mse = 0.08

samples = 79

T ≤  17.27
mse = 0.32

samples = 70

T[-10] ≤ -0.14
mse = 0.00

samples = 65

mse = 0.29
samples = 14

value = [0.44]

mse = 0.00
samples = 10

value = [0.01]

mse = 0.00
samples = 55

value = [0.00]

T[-10] ≤ 12.17
mse = 0.24

samples = 57

mse = 0.11
samples = 13

value = [1.92]

T[-1] ≤ 14.66
mse = 0.17

samples = 27

T ≤  12.28
mse = 0.20

samples = 30

mse = 0.14
samples = 16

value = [1.16]

mse = 0.07
samples = 11

value = [1.66]

mse = 0.08
samples = 10

value = [0.45]

T[-9] ≤ 15.41
mse = 0.11

samples = 20

mse = 0.10
samples = 10

value = [1.24]

mse = 0.09
samples = 10

value = [0.98]

O(b)[-4] ≤ 0.34
mse = 0.50

samples = 149

O(f) ≤ 0.14
mse = 0.06

samples = 89

O(c)[-3] ≤ 0.61
mse = 0.39

samples = 60

mse = 0.00
samples = 50

value = [0.00]

O(f)[-1] ≤ 0.49
mse = 0.10

samples = 39

mse = 0.07
samples = 21

value = [0.16]

mse = 0.13
samples = 18

value = [0.30]

mse = 0.50
samples = 12

value = [0.89]

O(a)[-5] ≤ 0.97
mse = 0.32

samples = 48

O(b)[-5] ≤ 0.78
mse = 0.28

samples = 36

mse = 0.34
samples = 12

value = [1.06]

mse = 0.43
samples = 12

value = [1.17]

O(a)[-4] ≤ 0.90
mse = 0.17

samples = 24

mse = 0.10
samples = 12

value = [1.55]

mse = 0.23
samples = 12

value = [1.52]

O(f)[-2] ≤ 0.53
mse = 2.34

samples = 202

O(d)[-3] ≤ 0.14
mse = 0.82

samples = 102

O(e)[-4] ≤ 0.70
mse = 0.92

samples = 100

O(d) ≤ 0.28
mse = 0.01

samples = 70

O(e) ≤ 0.29
mse = 2.21

samples = 32

mse = 0.00
samples = 58

value = [0.00]

mse = 0.04
samples = 12

value = [0.13]

mse = 3.07
samples = 20

value = [0.57]

mse = 0.61
samples = 12

value = [1.11]

mse = 0.75
samples = 20

value = [1.81]

O(f)[-9] ≤ 0.99
mse = 0.72

samples = 80

O(c)[-7] ≤ 0.99
mse = 0.58

samples = 68

mse = 0.50
samples = 12

value = [3.81]

O(f)[-3] ≤ 0.96
mse = 0.59

samples = 56

mse = 0.32
samples = 12

value = [3.18]

mse = 0.65
samples = 40

value = [2.72]

mse = 0.38
samples = 16

value = [2.46]

(a) Site 4 (Grandfondtaine): T

(c) Site 6 (Walscheid): O

(b) Site 5 (Abreschviller): O

T[-1] ≤ 10.06
mse = 0.54

Figure A.9: Decision-tree models for the rate of tracheid production (RDTP) as in Figure A.8 but for
the French sites (4-6)).
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(a) Site 1 (Smear I): D

(b) Site 2 (Smear II): O.G

(c) Site 3 (Ruotsinkylä): G

Figure A.10: As in Figure A.8 but for the rate of mature tracheid production (RMTP) for the Finnish
sites (1-3).
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(a) Site 4 (Grandfondtaine): T.G

(c) Site 6 (Walscheid): t

(b) Site 5 (Abreschviller): O.T.G

Figure A.11: As in Figure A.8 but for the rate of mature tracheid production (RMTP) for the French
sites (4-6).
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