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ABSTRACT

High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal
microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the
analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome
landscape, i.e. the compositional and functional ‘core’, the presence of community types and the existence of alternative
stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the
ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The
contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect
of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics.
Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and
without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate
ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing
microbiome modulation strategies to improve host health.
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INTRODUCTION

Microbial cells may outnumber our own cells in the body, pre-
senting an example of nature’s intricate evolutionary scheme of
host–microbe symbiosis (Frank and Pace 2008; Ley et al. 2008;
Sender, Fuchs and Milo 2016). This unique setup of human–
microbe interactions and its resilience is of paramount impor-
tance for health. Starting from birth, various factors shape the
composition and function of the human intestinal tract micro-
biome, defined as the entire habitat including all microbes, their
genomes and surrounding environment (see Table 1) (Sekirov
et al. 2010; Ottman et al. 2012).

The human intestinal tract microbiota consists mainly
of Bacteria, but also includes Archaea, microeukaryotes and
many viruses, mainly bacteriophages. The dominant bacte-
rial phyla are Bacteroidetes and Firmicutes, while Actinobacte-
ria, Proteobacteria and Verrucomicrobia constitute minor phyla
(Li et al. 2014; Falony et al. 2016). Archaeal representatives con-
sist largely of methanogens, among which Methanobrevibacter
and Methanosphaera are the most prevalent genera (Dridi et al.
2009). The microeukaryotes commonly observed in the human
intestinal tract include Blastocystis spp. and fungal genera, such
as Candida spp., Gloetenia/Paecilomyces and Galactomyces. Finally,
various reports have detailed the presence of bacteriophages in
the human intestinal tract (Minot et al. 2013; Waller et al. 2014).
A recent deep genomic analysis of virus-like particles present
in human fecal samples revealed that most bacteriophages be-
long to the Caudovirales order (Podovridae, Siphiridae and Myoviri-
dae), some to the Microviridae and no eukaryotic viral sequences
were detected (Manrique et al. 2016). The latter study revealed
64 healthy subjects to harbor a total of 44 bacteriophage groups
that included a set of core bacteriophages shared among over
half of the subjects, a common set that was present in 20%–
50% of the subjects, and a set of bacteriophages that are ei-
ther rarely shared or unique to an individual. While there are
indications that bacteriophages may be involved in controlling
the intestinal microbiota in health and disease, additional deep
studies are needed to assess how these phages are involved in
the host–microbe interactions (Reyes et al. 2010, 2015; Manrique
et al. 2016).

Interactions between the host, the prokaryotic and eukary-
otic microbes and their viruses take place at various levels.
While there are marked differences in microbial composition
and function along the entire length of the intestinal tract, most
research has focused on the fecal microbiota as fecal sampling
is a cost-efficient and non-invasive method. However, the com-
positional and functional attributes of themicrobiota vary along
the intestinal tract—most notably, the small intestine harbors a
unique microbial ecosystem that has been characterized exten-
sively (Zoetendal et al. 2012; Zoetendal and de Vos 2014). More-
over, the fecal microbiota may differ from that in the colonic
mucosa but systematic studies are lacking because of the inva-
siveness of the sampling (Zoetendal et al. 2002; Donaldson, Lee
and Mazmanian 2016). As bacteria are the dominant group in
this ecosystem, they have received most attention in the recent
studies (Lozupone et al. 2012; Li et al. 2014; Falony et al. 2016).
After birth, the infant intestinal tract becomes colonized by bac-
teria largely gained from the mother (Favier, de Vos and Akker-
mans 2003; Koren et al. 2012). The programmed outgrowth,man-
ifested as succession, and the composition of the adult intesti-
nal microbiota depend on a variety of deterministic host factors,
including age, diet, genetic-make-up, immune and health sta-
tus, and gender and geographical location (Biagi et al. 2010; De
Filippo et al. 2010; Claesson et al. 2012; Yatsunenko et al. 2012).

Furthermore, stochastic factors such as colonization order or an-
tibiotic exposure can also affect microbial colonization (Leder-
berg and McCray 2001; Harris et al. 2015; Korpela et al. 2016).
Overall, this process leads to the development of a dynamic and
complex web of interactions between microorganisms, the host
and the environment (Costello et al. 2012; Ottman et al. 2012).
Knowledge of the deterministic and stochastic factors affecting
the host–microbiota homeostasis could help in defining the fac-
tors responsible for evolutionary selection and establishment of
the symbiosis between human and microbes.

Bacteria form the dominant domain in the large intestinal
microbiota and hence we focus here on the accumulated knowl-
edge of this group. For convenience, the definition of technical
terminologies used in this review is given in Table 1. We discuss
the concepts of the bacterial compositional and functional core,
community types and alternative stable states of the microbial
ecosystem. We will further discuss how improved understand-
ing of these features could be instrumental in microbial diag-
nostics, predicting changes or homeostasis and determining the
efficacy of intervention strategies for microbiome modulation.

THE COMMON CORE MICROBIOME IN THE
HUMAN LARGE INTESTINE

A major goal in human microbiome studies is to identify and
characterize the bacterial taxa and functions that are shared by
the majority of individuals. Viewing the bacterial community
froma taxonomic perspective reveals an increasing level of com-
plexity toward the lower taxonomic ranks from phylum level to
species level. Moreover, the intestinal bacteria interactwith each
other and the host at various levels from single cells to popula-
tions of specific bacteria to the entire community. The complex-
ity of such multi-scale interactions presents a major challenge
in understanding community functioning and its impact on host
health (Greenblum, Turnbaugh and Borenstein 2012; Greenblum
et al. 2013). One way to approach this challenge is to focus on
the most abundant bacterial species and specifically the preva-
lent ones that are shared by many individuals.

Coevolution of host andmicrobiome can be explained by eco-
logical selection processes (Pianka 1970; Ley, Peterson and Gor-
don 2006). Host factors such as genetics, immune regulation and
age represent top–down selection that plays a role in shaping the
microbial community. In contrast, bottom–up selection results
in the growth of microbes that have specialized functions, such
as those associated with degradation of specific dietary com-
ponents. Another concept is the r/K selection where organisms
that have adapted to maximize the rate of growth are so-called
r-strategists, whereas those adapted to compete and survive
when resources are limited are known as K-strategists (Pianka
1970). However, applying these idealized concepts to the highly
complex, dense and dynamical intestinal ecosystem is challeng-
ing (Freilich et al. 2010). The large intestine is known to have spa-
tial heterogeneity in terms of bacterial species which occupymi-
crohabitats (Donaldson, Lee andMazmanian 2016). For example,
the outer mucus layer is densely populated compared to the in-
ner mucus layer (Johansson et al. 2008). The presence of micro-
habitats with variable population densities suggests that, rather
than being present at one of the two endpoints, the bacterial
community should be viewed along the r-K continuum that is
governed by top–down and bottom–up selection processes.

The aforementioned factors result in the selection of bac-
teria belonging to specific phylogenetic clusters with adaptive
and functional features characteristic for the ecosystem. This
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Table 1. Terms and definitions used in this review.

Terminologies Definitions Reference

Active functional core The common functions that are translated and translated actively
across human population and have an effect on the whole
ecosystem.

Kolmeder et al. (2012)

Alternative stable states Resilient community states that are stable and resist change over
ecologically relevant timescales.

Fukami and Nakajima (2011)

Alternative transient states The community states that are not necessarily stable and vary in
structure and/or function.

Fukami and Nakajima (2011)

Bacterial phylogenetic core The assemblage of phylogenetically related bacterial taxa in the
human intestinal microbiome.

Rajilić-Stojanović et al. (2009); Tap
et al. (2009)

Bimodal bacteria Bacteria observed to be present in either high or low abundances
within a given population of individuals. The states may be driven
by external factors and are not necessarily resilient to changes.

Lahti et al. (2014)

Bistable bacteria Bacteria that have two alternative stable states of low and high
abundance, and unlike bimodal bacteria, the states are able to
resist change.

Faith et al. (2013); Lahti et al. (2014)

Common core microbiota Community of microbes and their functions that are shared in
majority of humans.

Qin et al. (2010)

Deterministic effect Assembly of communities in a deterministic manner which is a
result of environmental factors and interactions between
community members.

Fukami and Nakajima (2011)

Human intestinal microbiome The entire habitat (all microbes, their genomes and surrounding
environment) in the human.

Marchesi and Ravel (2015)

Microbiota The assemblage (collection and combination) of microorganisms
present in a defined environment

Marchesi and Ravel (2015)

Minimal intestinal metagenome The catalog of functions (coding capacity as assessed by
metagenomics) involved in the homeostasis of the whole
ecosystem, encoded across many species.

Qin et al. (2010)

Resilience The capacity of a community to return to the original state after
perturbation.

Paine, Tegner and Johnson (1998);
Walker et al. (2004)

Stability Tendency of the community to maintain a state of homeostasis
and resist disturbances or to show resilience after disturbance.

Scheffer et al. (2001)

Stochastic effect Assembly of communities as a result of unpredictable
disturbance, dispersal or birth–death events.

Chase and Myers (2011)

coexisting community of microbes and their functions, which
are characterized by the minimal intestinal metagenome, have
co-evolvedwith the host formutual benefits and are prevalent in
the population, constitutes the common core (Jalanka-Tuovinen
et al. 2011; Li et al. 2014). The core microbiota may include spe-
cific keystone species that are important for maintaining an ef-
ficiently functioning ecosystem, and whose gain or loss may
have profound influence on ecosystem structure and function
through their effect on other community members (Paine 1966).
In the intestinal tract ecosystem, examples of keystone species
include bacteria that are part of the common core. Their func-
tional capabilities include for instance breakdown of complex
carbon sources to support the growth of the other coremembers
(Ze et al. 2013; Trosvik andMuinck 2015). In the following section,
we will discuss both the phylogenetic core and the minimal in-
testinal metagenome.

Phylogenetic core

Several studies focused on defining a human intestinal core
microbiota in terms of phylogenetic composition (Hamady and
Knight 2009). Longitudinal surveys of fecal bacterial 16S riboso-
mal RNA (rRNA) sequences in individuals for extended periods
of time of up to more than 10 years have revealed that a signif-
icant fraction of bacterial phylotypes is continuously present in
the large intestine indicating that it comprises a stable individ-
ual core in healthy adults (Faith et al. 2013; Rajilić-Stojanović et al.

2013). Cross-sectional comparisons of the fecal microbiota in a
large population cohort have indicated the presence of a preva-
lent core microbiota, which comprises those bacterial taxa that
can be detected in themajority of individuals (Zoetendal, Rajilić-
Stojanović and De Vos 2008). In contrast, the individual core mi-
crobiota includes those taxa that are frequently detected within
a particular individual; this can overlap with the common core,
but also include individual-specific features.

Several studies have aimed to characterize the composition
of the common core but their comparison is difficult since dif-
ferent criteria were used (Table 2). The discrepancy in categoriz-
ing the common core microbiota could be partially attributed to
methodological differences in determiningmicrobiota composi-
tion and defining the core. Importantly, the depth of sequencing
and analysis, number of samples and taxonomic resolution are
the factors that affect the analysis.

The aforementioned issues pertaining to the analytical def-
inition of core microbiota have been addressed by using the
HITChip (Human Intestinal Tract Chip), a phylogenetic microar-
ray targeting 16S rRNA gene sequences of bacterial taxa that
are reported to occur in the human intestinal tract (Salonen
et al. 2012). This phylogenetic microarray represents a measure-
ment platform with high reproducibility, robustness and dy-
namic range, allowing the incorporation of both abundant and
rare taxa in microbiota profiling. However, while capturing the
vast majority of intestinal microbial species, these and other
phylogenetic microarrays lack the ability to detect novel taxa
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Table 2. Overview of studies that aimed at identifying the compositional and functional core.

Core
Sr. No. Compositional Functional¶ Number of subjects Criterion—other comments Study/ year

1 No Yes 154 Presence of OTU in all
individuals—both obese and
lean subjects included

Turnbaugh et al.
(2009)

2 66 OTUs No 35 Presence of OTU in more than
50% individuals

Tap et al. (2009)

3 15 genus-like groups No 10 The study used phylogenetic
microarray for the first time to
demonstrate the common core

Rajilić-Stojanović
et al. (2009)

4 19 No 4 Low number of subjects Claesson et al. (2009)
5 406 in elderly subjects (at

least 65 yr). 18 in subjects
between 18 and 58 yr

No 127 Criterion was presence of OTU
in more than 50% individuals.
Included ageing subjects

Claesson et al. (2011)

6 6% (V1–V3) to 8% (V3–V5) No 327 Criterion was presence of OTU
in at least 95% of individuals

Huse et al. (2012)

7 Not studied Yes 3 Criterion was proteome
features present in all subjects

Kolmeder et al.
(2012)

8 Variable No 104 Depending on the cut-offs
selected for ubiquity and
abundance

Li, Bihan and Methé
(2013)

9 75 species 294 110 genes 124 The most common species
were those present in≥90% of
individuals with genome
coverage >1%

Qin et al. (2010)

Common genes are those
present in >50%

10 290 phylotypes No 115 Core size depends on depth of
analysis. Present in all
individuals (phylogenetic
microarray technology)

Salonen et al. (2012)

10 288 phylotypes No 9 Present in all individuals at a
detection threshold of 0.03%
(phylogenetic microarray
technology)

Jalanka-Tuovinen
et al. (2011)

11 22 OTUs No 64 Observed at an average
frequency of occurrence higher
than 90%

Zhang et al. (2014)

12 43 OTUs No 20 Present in 15 out of 20
individuals

Nam et al. (2011)

13 9 genera, 30 OTUs No 314 9 genera present in all and at
OTU level shared by at least
90%

Zhang et al. (2015)

14 17 genera No 4000 (Dutch, Belgian, UK
and USA)

Prevalence threshold was 95%.
At varying low mean
abundance the number of core
genera detected was higher

Falony et al. (2016)

14 genera 4000 plus 308 samples from
Papua New Guinea Peru,

and Tanzania
35 genera In 1106 individuals from

the Belgian Flemish Gut
Flora Project cohort

that can be assessed by next-generation sequencing techniques
(Hazen et al. 2010; Roh et al. 2010; Tottey et al. 2013). Previously,
the HITChip-based analysis of >1000 rare and abundant bac-
terial phylotypes from 130 genus-level groups in 115 adults re-
vealed a common core of 290 phylotypes (Jalanka-Tuovinen et al.
2011; Salonen et al. 2012). We extended this methodology to an-
alyze the common core in a cohort of 1006 non-compromised

Western adults (Lahti et al. 2014). This provided a global view
of the common core that revealed bacteria related to Faecal-
ibacterium prausnitzii, Oscillospira guillermondii and Ruminococcus
obeum as the top three taxa shared by all adults (Fig. S1, Support-
ing Information). Previously, we reported that the method used
for DNA extraction affected the microbiome analysis and that
mechanical extraction is to be preferred, as further confirmed by
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the International Human Microbiome Standards analysis
(Salonen et al. 2010; Santiago et al. 2014). Hence, we separately
analyzed the samples processed using a mechanical or enzy-
matic DNA extraction protocol. While no major difference in
the inclusion or exclusion of major core bacteria was observed,
differences in their ranked cumulative fractional abundances
were observed (Fig. S2, Supporting Information). Limiting our
analysis to the subset of 401 samples obtained by mechanical
extraction using repeated bead-beating revealed that bacteria
related to F. prausnitzii, R. obeum and Subdoligranulum variabile
to be the top three taxa shared by all adults. Moreover, we
found that 34 out of the 130 genus-like groups targeted by the
HITChip are shared in 95% of the subjects at the minimum
detection threshold of 0.1% relative abundance, with the
highest prevalence being observed for bacteria belonging to
the order Clostridiales (Fig. 1; see Supporting Information for
methods). This estimate is similar in number to the recently
published data by the Belgian Flemish Gut Flora Project (FGFP)
on 1106 individuals at 95% prevalence (Falony et al. 2016).
However, in the same study, additional inclusion of the subjects
from the LifeLines-DEEP study cohort (Dutch nationals), as
well as from UK and US studies, resulted in a reduced core
consisting of 17 genera that could be observed in both cohorts
and there was no specific threshold on relative abundance
for identifying core bacteria. In comparison, our study cohort
included subjects from across mainland Europe, UK/Ireland
and the USA (see Supporting Information). The lower estimates
of the core size in the FGFP cohort could be partially explained
by technical issues, including differences in DNA extraction
methods, variations in sequencing depth or 16S rRNA gene
primer sequences. However, at genus level, the reported core
taxa from these two studies are largely consistent (Table S1,
Supporting Information). Furthermore, reducing the stringency
in the prevalence threshold in our data set to 80% and 50%
with a constant detection threshold of 0.1% resulted in an
increased size of the common core from 34 to 44 and 55 genera
at 80% and 50% prevalence, respectively (Fig. 1 and Table S1,
Supporting Information). Thus, half the population studied
here shared 42% of the 130 genus-like groups investigated. This
further supports previous observations that the definition of the
core microbiota is sensitive to the abundance and prevalence
thresholds (Salonen et al. 2012). In addition, there is a large
amount of shotgun metagenomics data available in public
databases which in some cases can identify species and led
to the metagenome species concept defining not yet cultured
and genomically sequenced taxa (Sunagawa et al. 2013). This
metagenomic approach is not affected by primer or PCR bias but
to some extent is limited by the depth of sequencing and choice
of DNA extraction method. Therefore, we further investigated
the largest available metagenome catalog of 1267 human fecal
samples to identify the core bacterial genera (Li et al. 2014).
At a detection threshold set at 0.1%, only Bacteroides spp.
were detected to be present in >90% of the samples (Table S1,
Supporting Information). In order to overcome the influence of
lower sequencing depth, we reduced the abundance threshold
by 10-fold to 0.01% (still a conservative threshold) and identified
eight genera namely Bacteroides, Eubacterium, Faecalibacterium,
Alistipes, Ruminococcus, Clostridium, Roseburia and Blautia in
more than half of the studied population (Table S1, Supporting
Information). While a comparison of technologies is not the
aim of the current review, we would like to highlight that the
core microbiota includes a limited number of taxa that are
commonly observed, irrespective of the technology used. As
sequencing costs decline and new bioinformatics tools are

being developed, shotgun metagenomics can be expected to
become a standard in microbiome research and will lead to
more uniformity between studies for comparisons. Hence, it
will be imperative to revisit the core microbiota analysis in
the future for more conclusive evidence. Studies incorporating
strain-level comparison and identification of genomes without
a reference genome will provide an even more detailed picture
of the members, dynamics and functional aspects of the core
microbiota (Qin et al. 2010; Li et al. 2014; Scholz et al. 2016). We
hypothesize that different phylogenetic groups, which share
important core functions in the intestinal ecosystem, co-exist
and are part of the core. Analysis of the cumulative fractional
abundance indicated that the common core bacteria are among
the most dominant taxa in the Western adult population,
including bacteria related to F. prausnitzii, R. obeum, S. variabile,
Prevotella melaninogenica and Oscillospira guillermondii (Fig. S2,
Supporting Information). Cultured representatives for the vast
majority of the common core bacteria are available and have
sequenced genomes with information regarding their general
metabolic traits and their association with human health. To
this end, an extensive survey of literature was done to identify
the general metabolic traits of the common core genus-like
groups, and information for a subset discussed in more detail
in this review is highlighted in Table 3. For information on
other common core genus-like groups, see Table S2 (Supporting
Information). We observed that there is a lack of in-depth un-
derstanding of the physiology of most of the core bacteria and
their potential role in improving the stability of the intestinal
microbiome.

Minimal intestinal metagenome

The human intestinal microbiome is a functional organ, with
complex overall effects on host health. Therefore, it is crucial
to identify functions commonly associated with the microbiota
in health and disease. Whole shotgun metagenomics is widely
used for identifying functional potential of the intestinal mi-
crobiome. Initially, the metagenomic core was analyzed based
on the DNA isolated from fecal samples of 18 individuals with
European ancestry (Turnbaugh et al. 2009). Despite the limited
sample size, this analysis suggested the presence of a minimal
intestinal metagenome that was shared by almost all subjects
in this study. In a first comprehensive metagenome study, the
functional similarities of the fecal metagenome of 124 European
individuals with 3.3 million unique open reading frames were
reported and indicated that on average 38% of an individual’s
total gene pool is shared with others (Qin et al. 2010). In a recent
study, the coding capacity of the large intestinal microbiome
was addressed in further detail by studying the metagenome of
1070 individuals from three continents, i.e. Europe, America and
Asia (Li et al. 2014). This study, which included both healthy and
compromised subjects, identified around 9.9 million unique mi-
crobial genes within the intestinal microbiome, and the analy-
sis indicated that this estimate is close to the saturated cover-
age of core gene content and functions. In case of the intesti-
nal ecosystem, the minimal functional core can be expected to
also contain more ecosystem-specific pathways, such as those
involved in resistance to bile and ability to grow in an anoxic
environment using fermentation or anaerobic respiration with
terminal electron acceptors other than oxygen. In the first large-
scale metagenomic study, more than 1000 clusters of genes that
encode vital functions necessary for survival in the large intes-
tine were identified (Qin et al. 2010). This would suggest that the
genomes of core bacterial taxa would have evolved toward high
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Figure 1. Bacterial phylogenetic core in the human large intestinal microbiome. We use data and analysis methodology from our previous studies (Jalanka-Tuovinen
et al. 2011; Salonen et al. 2012). The data set was filtered based on DNA extraction method i.e. we included only the samples processed with the repeated bead beating
method (rbb) which has been shown to outperform other methods (Salonen et al. 2010).
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Figure 2. Spearman correlation coefficient for KO profiles for 80 genomes representative of the top 50 genus-level bacterial taxa including the phylogenetic core.
(A) The distribution of Spearman correlation values in the core taxa. (B) The representative core bacterial genomes and their correlation to other genomes (each
point depicts an independent genome correlated to genome on y-axis). The genomic data were produced by the US Department of Energy Joint Genome Institute
http://www.jgi.doe.gov/ in collaboration with the user community and were accessed using the IMG system.

http://www.jgi.doe.gov/
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Table 3. Selected core genus-like taxa in human large intestine. Prevalence, general metabolic trait and health associations of few key taxa in
the human intestine. Microbiota profiling was done as described previously (Lahti et al. 2014). The analysis is based on 130 genus-like groups
as defined by (Rajilić-Stojanović et al. 2009). For a more detailed information on all the common core genus-like taxa can be found in the
supplementary Table S2.

Sr. No. Genus-like taxa Prevalence General metabolic trait Health association(s)

1 Faecalibacterium prausnitzii 100% Produce butyrate, formate
and lactate (Duncan et al.
2002)

Decreased abundance in
Crohn’s disease and colon
cancer (Kang et al. 2010; Chen
et al. 2012)

2 Bifidobacterium 99.50% Produce lactate and acetate
by utilizing various
oligosaccharides (Turroni
et al. 2008)

Widely used in probiotic
preparations for health
benefits (Turroni et al. 2008)

3 Akkermansia 96.26% Dominant mucin degrader
(Belzer and de Vos 2012)

Indicator of a healthy
metabolic profile in humans
(Dao et al. 2016)

4 Prevotella melaninogenica 89.53% Acetate producer (Wu et al.
1992)

One of the tipping elements
(Lahti et al. 2014)

5 Ruminococcus bromii 88.53% Amylolytic activity (Ze et al.
2012)

Keystone species and healthy
effects via breakdown of
resistant starch (Ze et al. 2012)

5 Bacteroides fragilis 86.28% Few strains have ability to
degrade mucin (Tailford
et al. 2015)

Anti-inflammatory effects and
also opportunistic pathogen
(Sansonetti 2011)

functional redundancy. To assess whether the common core ob-
served in this study also demonstrated functional redundancy,
we analyzed the representative genomes of the top 50 bacte-
rial taxa that are part of the phylogenetic core (Fig. 1). Since our
analysis was performed at genus level, we included known in-
testinal genomes from different species targeted by the HITChip
which resulted in selection of 80 bacterial genomes representa-
tive of 50 genus-like taxa (Table S3, Supporting Information) (Ra-
jilić-Stojanović et al. 2009).We first identified the KEGG orthologs
(KO) abundances for each of the genomes using the Integrated
Microbial Genomes (IMG) system and calculated the Spearman
correlation coefficient (Markowitz et al. 2012) (Figure 2, see Sup-
plementary data for details). From the inferred network, we ob-
served that bacteria belonging to the phylum Bacteroidetes have
high functional redundancy, whereas the phylum Firmicuteswas
comprised of a large number of more functionally diverse core
bacteria (Fig. 3). Recently, analysis of the gyraseB encoding gene
(gyrB) in fecal samples from humans and related primates (wild
chimpanzees, bonobos and gorillas) indicated that Bacteroides
and Bifidobacterium spp. have cospeciatedwith theirmammalian
hosts over thousands of generations suggesting strong symbi-
otic association of these taxa (Moeller et al. 2016). This would
indicate that the host may also play a role in selecting function-
ally redundant species, which results in high competition for re-
sources in the ecosystem but at the same time leads to higher
ecosystem stability, which ultimately benefits the host (Coyte,
Schluter and Foster 2015). However, the common core also in-
cludes taxawith specialized functional roles. A striking example
is Ruminococcus bromii that was previously reported as a keystone
species for its ability to degrade resistant starch and supporting
growth of other bacteria capable of utilizing glucose, maltose,
panose and isomaltose for growth (Ze et al. 2012). A similar role
of providing simple carbon sources and amino acids for support-
ing growth of microbes in the vicinity of the mucus layer can be
played by degraders of mucin, another important food source in
the colon. The abundant representative of the Verrucomicrobia,
Akkermansia muciniphila, another core member (Fig. 1), is consid-

ered a keystone species in this process and is capable of using
mucus as sole carbon and energy source, while signaling to the
intestinal mucosa (Belzer and de Vos 2012; Everard et al. 2013;
Derrien, Belzer and de Vos 2016).

Metagenomic sequencing data can provide insights into the
function, taxonomic position and strain-level diversity of both
known and not yet cultured species (Sunagawa et al. 2013; Li
et al. 2014; Nielsen et al. 2014; Jeraldo et al. 2016). However, the ac-
tive functions within the intestinal microbiome cannot be iden-
tified based on DNA sequencing data alone but require analy-
sis of transcripts and proteins. To this end, several studies have
addressed the active functional capacity of the intestinal mi-
crobiota at the RNA and protein level, supporting the presence
of an active functional core (Verberkmoes et al. 2009; Erickson
et al. 2012; Kolmeder et al. 2012, 2015). Metatranscriptomics anal-
ysis of fecal samples from 10 American adults revealed alter-
ations in gene-expression profiles after changes in dietary in-
take (David et al. 2014). Similarly, metaproteomic comparison
of 29 non-obese and obese adults has shown larger differences
in the active functional bacteria between the two groups than
those observed at the compositional level (Kolmeder et al. 2015).
While these studies are a step toward functional understanding
of the human microbiome, the field is still young. Improved sta-
tistical techniques and clinically relevant predictions will play
a key role in a wider adoption to identify changes of functional
features characteristic of different disease states.

CLUSTERS, CONTINUOUS GRADIENTS AND
ALTERNATIVE STABLE STATES

Several approaches have been employed to identify overarch-
ing community types, as well as alternative stable states in
more specific taxonomic groups (Arumugam et al. 2011; Holmes,
Harris and Quince 2012; Ding and Schloss 2014; Lahti et al.
2014). Moreover, longitudinal analysis of bimodal bacteria re-
vealed temporal stability of the alternative states of low andhigh



190 FEMS Microbiology Reviews, 2017, Vol. 41, No. 2

Figure 3. Functional correlation network of 80 bacterial genomes representative of the top 50 common core bacteria. The Spearman correlation matrix is represented
as a network in which each genome is a node and each correlation an edge; the width of the edges is proportional to the magnitude of the correlation (the higher the

correlation the thicker the edge line). The nodeswith correlation coefficients below 0.5 are not connected, and genomeswere placed by a graph ‘spring’ layout algorithm
in qgraph (Epskamp et al. 2012). The genomic data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with
the user community and were accessed using the IMG system.

abundance, which are in some cases observable as ecosystem-
level shifts (Lahti et al. 2014). One potential explanation for the
observed bistability could be that these states are resilient to
perturbations and stable over ecologically relevant timescales
(Connell and Sousa 1983). Additionally, the transition from one
stable state to an alternative stable state as a result of a dis-
turbance by e.g. dietary change, may comprise a period which
can be stable for a long time relative to the extreme end state,
called the alternative transient state (Fukami and Nakajima
2011). In alternative transient states, the communities are in a
variable, non-resilient state and vary in structure and/or func-
tion as a result of processes such as priority effects (time and
order of species arrival), external conditions and determinis-
tic processes (Fukami and Nakajima 2011). Thus, the intesti-
nal bacterial community can be viewed as a landscape repre-
senting varying global and/or local levels of stability, species
richness and diversity (Arumugam et al. 2011; Koren et al. 2013;
Thaiss et al. 2014; Zoetendal and de Vos 2014). In this context,
the core bacteria and their abundances can be considered as

potential biomarkers thatmay indicate changes in the intestinal
ecosystem.

Alternative community states

In an early approach to detect ecosystem-level structures in
the intestinal microbiome, deep metagenome analysis sug-
gested the presence of three clusters, termed enterotypes and
characterized by co-occurring taxa named after their domi-
nant bacterial groups i.e. Bacteroides, Prevotella and Ruminococcus
(Arumugam et al. 2011). One can argue whether it is possi-
ble to infer community assembly rules for the complex and
highly dynamic intestinal ecosystem based on discrete alter-
native community types or whether the intestinal microbiome
should rather be viewed as a continuous dynamic ecosys-
tem, which is in constant flux but existing in a microbiota–
host homeostatic state (Jeffery et al. 2012; Knights et al. 2014).
Recently, it was reported that the enterotype-like clustering
observed in ordination analysis could be influenced by the

http://www.jgi.doe.gov/
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initial abundances of Prevotella and Bacteroides in the samples
that were analyzed (Gorvitovskaia, Holmes and Huse 2016).
Moreover, it has been demonstrated that high levels of Prevotella
and Bacteroides can co-exist in the host, suggesting that these
types could be complementary rather than mutually exclusive
(Lahti et al. 2014). In addition, a separate study showed that re-
moval of these two taxa from analysis did not result in differen-
tiation of communities into clusters, suggesting that the dom-
inance of Prevotella or Bacteroides did not represent underlying
differences in community structure (Gorvitovskaia, Holmes and
Huse 2016). However, that study also found that the dominance
of Prevotella or Bacteroides correlated well with dietary habits and
lifestyle. Thus, it was suggested that the abundance of Prevotella
and Bacteroides might be considered as a ‘biomarker’ of diet and
lifestyle instead of using the term enterotypes (Gorvitovskaia,
Holmes and Huse 2016). A different approach to clustering and
classification of samples based on microbial profiling data uses
a probabilistic approach, called the Dirichlet multinomial mix-
ture (DMM) models (Holmes, Harris and Quince 2012; Ding and
Schloss 2014). This approach found evidence for the presence
of alternative community configurations in the human intesti-
nal microbiome regardless of the extensive intra- and inter-
personal variations (Holmes, Harris and Quince 2012; Ding and
Schloss 2014).

Ecologists have also applied graph theory-based approaches
to identify species interactions networks and modularity. In
most studies, the co-occurrence and co-abundance network
have been inferred from correlation-based and other similar-
ity measures (Weiss et al. 2016). One such attempt incorpo-
rated sparse regression with a number of similarity measures to
predict microbial co-occurrence and co-exclusion relationships
(Faust et al. 2012). It was observed that the microbial commu-
nity is organized into microcommunities which would indicate
a trade-off between certain combinations of microbes that may
represent alternative communities (Faust et al. 2012). Recently,
other tools have been developed to handle sparse compositional
data (Friedman and Alm 2012; Gevers et al. 2014; Kurtz et al.
2015). Compared to the standard correlation analyses, these new
methods take better into account the sparsity, compositionality
and high dimensionality of the taxonomic networks. One exam-
ple is the use of CCREPE to identify Crohn’s disease associated
community network where it was observed that proinflamma-
tory bacteria dominate and co-exclude other potentially bene-
ficial taxa (Gevers et al. 2014). This seems to be an example of
a community shift. A similar observation of variable modular-
ity in microbial interaction network was made in inflammatory
bowel disease (IBD) patients and non-IBD controls (Baldassano
and Bassett 2016). At the population level, the two states had a
different modular structure and highlighted the different com-
munity memberships. However, it is vital to remember that the
tools and models for identifying co-occurrences and modularity
inmicrobiome data still need improvement (Weiss et al. 2016). In
all cases, these studies are observational and do not include in-
terventions and hence inferences on causality cannot be made
(de Vos and de Vos 2012). In general, more comprehensive longi-
tudinal analyses and intervention studies will be needed to es-
tablish causal relationships.

Continuous gradients and bistability

The observed dynamics of the large intestinal ecosystem sug-
gests the possibility for transitions between alternative and
potentially stable states, with diet being one of the major
driving factors (Wu et al. 2011; Cotillard et al. 2013; Salonen et al.

2014; Falony et al. 2016). For instance, it has been observed that
a diet rich in proteins and animal fat is associated with the Bac-
teroides dominance, whereas carbohydrates have been linked to
high abundance of Prevotella (Wu et al. 2011). The extremes of di-
etary habits point toward a Prevotella/Bacteroides trade-off driven
by diet and suggesting a gradient in relative abundances be-
tween the two extreme states (high and low abundance) (Kelsen
and Wu 2012). The joint population frequencies (represented as
peaks and valleys) of the bistable taxa, Prevotella and Bacteroides
exhibit a landscape distribution in the Western adult popula-
tion (Fig. 4A). This highlights the population-level variation in
these key taxonomic groups. These two taxa exhibit high de-
gree of functional redundancy as based on their genomic con-
tent when compared to functions shared between populations
belonging to the Firmicutes or Bifidobacterium spp. (Fig. 3). Previ-
ously, ecosystem-level models based on metagenomic and ge-
nomics data indicated that the habitat filtering (selection pres-
sure inflicted by the habitat) may have greater impact than
functional independence or cooperation on the community
composition and thus, may result in selection of function-
ally redundant species (Levy and Borenstein 2014). It has also
been proposed that the stability of intestinal microbiota is af-
fected more by competing species than cooperating species
(Coyte, Schluter and Foster 2015). A new hypothesis emerged
from the analysis of genome-based models that showed the
module-derived functional redundancy to be reduced in the
Bacteroides spp. as compared to other genera, potentially link-
ing this to a decreased resilience to perturbations (Vieira-Silva
et al. 2016). Future studies aimed at mechanistic understand-
ing of the interaction between these and other highly abundant
or bistable taxa in the community and their potential role in
ecosystemic transitions could provide the clues for microbiota
modulation for instance based on dietary, antibiotic or other
interventions.

To assess the dynamics of the large intestinal microbiota, it
is necessary to studymicrobiota composition over different time
scales and investigate the influence of perturbations. Compared
to cross-sectional studies, analysis of time-series can provide
information on intraindividual variations. Longitudinal analy-
sis of larger populations gives insights into dynamics and sta-
bility of microbiota and could be informative in identifying key
species thatmay play a role in ecosystem shifts (Faust et al. 2015).
By applying a discrete time Lotka-Volterra model to character-
ize bacterial interaction networks, it was observed that a high
abundance does not necessarily imply a large role in intestinal
microbiota stability (Fisher and Mehta 2014). The identified key-
stone species (Bacteroides fragilis and B. stercosis) in this study had
moderate abundances but showed disproportionate influence
on the interaction network. However, this study was limited by
the number of individuals (two) included in the study. Variations
of the Lotka-Volterramodel have been usedwidely in ecology for
the understanding of two species interactions. It is well known
that the use of antibioticsmay have a large impact on themicro-
bial community and makes it prone to invasion by pathobionts
(Bokulich et al. 2016). A combination of Lotka-Volterra model-
ing and regression analysis in antibiotic-treated mice predicted
that a microcommunity network was important in protection
against Clostridium difficile invasion (Stein et al. 2013). It was ob-
served that a compromised community showed a catastrophic
shift into an alternative state, which was stable and did not re-
vert back to the initial community state after removal of the per-
turbations. Future studies applying these and other models on
larger human cohorts may give better insights and aid in under-
standing ecology of the large intestinal microbiome.
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Figure 4. Two-dimensional kernel density (2D-kde) estimates. The abundance of bacteria (log10 transformed relative abundance data) mapped onto the x- axis and
y-axis respectively, and the z-axis represents the kernel density estimate, in a 3D perspective plot showing the joint population frequencies of these two taxa demon-
strating features similar to a landscape. (A) Mapping of P. melaninogenica and B. fragilis illustrates two distinct peaks that represent low B. fragilis and high P. melaninogenica

population and low B. fragilis low P. melaninogenica population. (B) Mapping of P. melaninogenica and Dialister illustrates three distinct peaks that represent low Dialister

and high P. melaninogenica population; lowDialister and low P. melaninogenica population; highDialister and low P. melaninogenica population. The phylogeneticmicroarray
data were obtained from previous study (Lahti et al. 2014).

In the intestinal tract microbiota, there exists a dynamic
state and consists of species with varying fluctuations in abun-
dances (Caporaso et al. 2011; Flores et al. 2014; Thaiss et al. 2014).
As there are thousands of species in the ecosystem, stability
may arise in multiple states within a closed domain of possi-
ble alternative states also called ‘basins of attraction’ defined by
a dynamic attractor (Scheffer et al. 2001; Rosenfeld 2008; Pep-
per and Rosenfeld 2012). The microbial community in a given
individual may move from one attractor to another over time
and may include transiently occurring species from external
sources (e.g. food) (Fukami and Nakajima 2011; Lang, Eisen and
Zivkovic 2014). In many studies, single time point fecal sam-
ples are analyzed and these may represent alternative transient
states and consequently explain the high individuality observed
in many studies (Flores et al. 2014). However, personalized pat-
terns in the intestinal microbiota were detectable over 10 years
of time, as shown by long-term monitoring of five healthy sub-
jects (Rajilić-Stojanović et al. 2013). Dense sampling of the hu-
man intestinal microbiota has revealed diurnal oscillations in
relative abundance of almost 10% of all bacterial taxa and re-
vealed a repetitive pattern of fluctuations inmicrobiota commu-
nity configurations specific for a given time of the day (Thaiss
et al. 2014). These fluctuations highlight the dynamic nature of
the intestinal microbiota and indicate that there exists low and
high abundance states for most bacteria. When put in perspec-
tive of the alternative transient states, these observations reveal
an interesting feature of the intestinal microbiota. It is possi-
ble that the daily factors such as diet result in changes in the
microbiota structure and composition (introduction of transient
bacteria through food and water) and thus result in alternative
transient states. This has been experimentally verified by small
studies of extreme diets (plant-based diet or animal-based diet)
and a diet swap study of African Americans and Native Africans
(David et al. 2014; O’Keefe et al. 2015). There can be several
possible paths of alternative transient states that may reach in

one of multiple states within a limited set of attractors. How-
ever, if there is a major shift in dietary habit, this might push
the community on an alternative transient path that ultimately
results in a catastrophic shift in the community. Investigation
of individual bacterial groups revealed bistability (i.e. alterna-
tive states of either high or low relative abundance) and identi-
fied six genus-level groups that were not only bimodal in their
population frequencies but also exhibited bistability, i.e. be-
ing predominantly present at either high or low relative abun-
dance with less frequent observations and a reduced tempo-
ral stability of the intermediate abundances (Lahti et al. 2014).
The intermediate abundance range (tipping point) exhibited re-
duced temporal stability within subjects (Lahti et al. 2014). These
bistable groups varied relatively independently and hence were
termed ‘tipping elements’. At a community level, the corre-
sponding compositional states could be described as specific
combinations of such bistable tipping elements. Similar to Pre-
votella melaninogenica and B. fragilis distribution, we were inter-
ested in observing the population frequencies of highly abun-
dant bistable bacteria P. melaninogenica and a lower abundance
bistable taxon such as Dialister spp. in the cohort of Western
adults. We used these examples to illustrate the alternative
stable states mapping of the two-dimensional kernel density
estimates for bacteria related to P. melaninogenica and Dialis-
ter. This analysis revealed three areas with high kernel den-
sity (Fig. 4B). The less abundant Dialister group can exist in
its high and low abundance states with P. melaninogenica low
and high abundance states. Previously, the longitudinal assess-
ment of bistability revealed that Prevotella groups exist in highly
bistable states and that their abundance levels are more stable
in individuals over 3 months compared to other bistable taxa
(Lahti et al. 2014). Furthermore, it was observed that the intesti-
nal microbiota composition of individuals with bistable taxa
closer to the tipping point is more variable in time (Lahti et al.
2014). This indicates that the two extreme states are resilient,
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and changes in the ecosystem are more pronounced when
bistable taxa have relative abundances closer to their tipping
point.

POTENTIAL IMPLICATIONS OF COMMUNITY
CHARACTERISTICS FOR MICROBIOME
MODULATION STRATEGIES

In the past few decades, research investigating the ecology of
the intestinal microbiome has revealed various features, such
as community assembly, temporal dynamics and stability and
host covariates associated with intestinal microbiota (Table 4).
The knowledge of positive, negative or neutral effects of bacteria
on the ecosystem may help in identifying targets for therapeu-
tic modulation. Additionally, features such as resilience of the

ecosystem and effect of perturbations need to be understood in
detail. In the modification of an ecosystem, perturbation (ran-
dom, episodic or programmed events) plays a major role (Paine,
Tegner and Johnson 1998). The type of perturbation will affect
the assembly of the community and also play a role in deter-
mining the recovery state. For example, the low and high Pre-
votella states are highly stable and do not easily change over a
short period of treatment (Lahti et al. 2014). Furthermore, the
initial state of a bacterial community has been reported to af-
fect its recovery after antibiotic treatment (Raymond et al. 2015).
It has also been observed that a low calorie dietary interven-
tion could be helpful for obese individuals with lower bacterial
richness (Tap et al. 2015). Richness of the large intestinal micro-
biome is commonly associated with higher resilience (Lozupone
et al. 2012). Resilience and stability are the key features of the in-
testinal microbiome that need to be addressed while attempting

Table 4. Representative studies investigating the ecology of the intestinal microbiome employing high-throughput sequencing approach (most
recent in each category have been listed).

Sr. No. Names of the study Conceptual insights

1 Temporal variability is a personalized feature of the human
microbiome (Flores et al. 2014).

Elucidates the temporal dynamics and stability of the
microbiome including the human.

2 Moving pictures of the human microbiome (Caporaso et al.
2011).

First large-scale longitudinal sampling temporal dynamics and
stability of the human microbiome.

3 Transkingdom control of microbiota diurnal oscillations
promotes metabolic homeostasis (Thaiss et al. 2014).

Address the diurnal changes in microbiota and identifies
hourly fluctuations in some bacterial genera.

5 Cospeciation of gut microbiota with hominids (Moeller et al.
2016).

Provides support to the theory of cospeciation of human
intestinal tract microbiota along with hominids.

5 Ecological modeling from time-series inference: insight into
dynamics and stability of intestinal microbiota (Stein et al.
2013).

Temporal dynamics and stability and influence of perturbation
on community dynamics and stability.

6 The long-term stability of the human gut microbiota (Faith
et al. 2013).

Addresses the question of long-term stability of microbial
community using novel high-throughput sequencing method.

7 Antibiotics, birth mode and diet shape microbiome
maturation during early life (Bokulich et al. 2016).

Elucidated the community assembly in early life and effect of
perturbation on shaping the microbiome.

8 Population-level analysis of gut microbiome variation (Falony
et al. 2016).

Population level insights into intestinal microbial community
structure and composition with analysis of large number of
co-founding factors.

9 An integrated catalog of reference genes in the human gut
microbiome (Li et al. 2014).

Population level insights into intestinal microbial community
function.

10 Enterotypes of the human gut microbiome (Arumugam et al.
2011).

Differences in community types/clusters in human intestinal
microbiome based on partitioning around the medoid method.

11 Dynamics and associations of microbial community types
across the human body (Ding and Schloss 2014).

Differences in community types/clusters in human intestinal
microbiome on similar lines of Enterotypes paper but using
DMM models.

12 Linking long-term dietary patterns with gut microbial
enterotypes (Wu et al. 2011).

Stability of Prevotella enterotype from the Bacteroides
enterotype was tested.

13 Interpreting Prevotella and Bacteroides as biomarkers of diet and
lifestyle (Gorvitovskaia, Holmes and Huse 2016)

Investigating data bias in detecting enterotypes and address
the issues pertaining to it.

14 Microbial co-occurrence relationships in the human
microbiome (Faust et al. 2012).

Community interactions networks, niche specialization and
assembly of microbial community have been demonstrated.

15 The treatment-naive microbiome in new-onset Crohn’s
disease (Gevers et al. 2014).

Disease and healthy interaction network with respect to
Crohn’s disease are elucidated.

16 Metagenomic systems biology of the human gut microbiome
reveals topological shifts associated with obesity and IBD
(Greenblum, Turnbaugh and Borenstein 2012).

Metabolic network modularity of microbiome in health and
disease state.

17 Identifying keystone species in the human gut microbiome
from metagenomic timeseries using sparse linear regression
(Fisher and Mehta 2014).

A novel method for identifying the keystone species based on
longitudinal studies is reported.

18 Ecology of bacteria in the human gastrointestinal
tract—identification of keystone and foundation taxa (Trosvik
and Muinck 2015)

Using network statistics and reverse ecology the authors
identify foundation and keystone taxa in human intestinal
microbiome.
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modulation. Different alternative states may vary in both re-
silience (tendency of a system to return to a position of equi-
libriumwhen disturbed) and stability (tendency to maintain the
state when subject to disturbance) (Walker et al. 2004). Detailed
understanding and identification of potential markers of these
features will aid in designing intestinal microbiomemodulation
strategies.

In various diseased conditions, there is a shift in the compo-
sition and function of the intestinalmicrobiota driven by specific
bacteria (possibly pathobionts). These bacteria are responsible
for stabilizing an alternative community state, which is unfavor-
able for host health by producing specific metabolites that deter
growth/survival of other bacteria. For example, in an inflamed
intestine, increased levels have been observed of proinflamma-
tory bacteria, such as members of the Enterobacteriaceae, associ-
ated with increased levels of the proinflammatory lipopolysac-
charide produced by this group of Gram-negative bacteria (Wang
et al. 2007). The resulting inflammatory cascade includes an in-
creased concentration of host-produced reactive oxygen species
that hamper growth of indigenous anaerobic bacteria (Lupp et al.
2007). Thus, this aberration may represent an alternative sta-
ble state, the stability of which is maintained by an inflamma-
tory milieu created by the host and influenced by members of
the Enterobacteriaceae. Hence, the transition from higher densi-
ties of obligate anaerobes to proinflammatory facultative anaer-
obeswould be critical for the establishment and/ormaintenance
of a state of increased inflammation. In such cases, a reduc-
tion in numbers of proinflammatory bacteria will be crucial for
a shift toward an alternative state (may or may not be stable)
no longer supportive of inflammation, and thus leading to re-
establishment of anoxic conditions in the intestine. Along with
the reduction in proinflammatory facultative anaerobes, it will
be crucial to support the growth of bacteria capable of tolerat-
ing oxygen at low concentrations, such as lactobacilli and Akker-
mansia muciniphila that have anti-inflammatory effects for re-
establishment of an anoxic milieu (Tien et al. 2006; Ouwerkerk
et al. 2016).

The relative abundance of diagnostic indicator taxa, such
as bacteria belonging to Enterobacteriaceae (increasing relative
abundance) and A. muciniphila (decreasing relative abundance),
was shown to indicate particular environmental conditions such
as an inflamed intestinal milieu (Png et al. 2010). In addition,
indicator taxa can be sensitive to perturbations and therefore
might serve as an early warning sign of unhealthy shifts in the
community. Such indicator taxa can bemonitored as their abun-
dance may reflect the efficacy of intervention strategies. Using
the knowledge of drivers and indicators, it would be possible to
detect diagnostic biomarkers, identify specific therapeutic mi-
crobes (single keystone species or mixed consortia) for treat-
ment and suggest lifestyle changes (such as dietary habits) that
will result in a ‘healthier’ intestinal bacterial community.

Evidence for the predictive nature of intestinal bacteria was
recently presented when investigating obese subjects undergo-
ing dietary interventions (Korpela et al. 2014). The responsive-
ness of the intestinal bacterial community to a specific dietary
intervention was predicted by the baseline relative abundances
of Clostridium clusters IV, IX and XIVa, and Bacilli. The mem-
bers of several of the Clostridium clusters also include a num-
ber of the core phylotypes in the human intestine, most notably
Clostridium cluster IV (C. leptum group, a major constituent of
which is the Ruminococcaceae family) and Clostridium cluster XIVa
(C. coccoides group, which resembles the Lachnospiraceae family)
(Tap et al. 2009; Rajilić-Stojanović and de Vos 2014). Based on
these findings, it is tempting to speculate that some core phy-

lotypes may also serve as indicator species for responsiveness,
and their relative abundance may have profound influence on
the efficacy of a given intervention strategy. Another example is
A. muciniphila,which is a part of the intestinal core, and has been
reported to be indicative of a healthy metabolic profile. Further-
more, its abundance along with high gene richness was indica-
tive of better clinical outcomes after calorie restriction diet in
overweight/obese adults (Dao et al. 2016). Evidence supporting
the importance of bacterial community structure in determin-
ing individuals’ responses to dietary modulation (in ecological
terms; ecological disturbance) was provided by the findings of
Salonen et al. (2014). It was observed that the dietary interven-
tion had little effect on the intestinal bacterial composition of
non-responders who were characterized by higher initial bac-
terial diversity. Thus, a higher baseline bacterial diversity repre-
sents amore resilient community, and increased responsiveness
would be characteristic of an unstable community. This high-
lights that the baseline bacterial diversity could be one of the
potential markers in predicting responsiveness to dietary mod-
ulation. However, it is important to acknowledge the effect of
other, more specific, factors such as relative abundance of cer-
tain bacteria, e.g. bistable bacteria, in determining an individu-
als’ response to intervention. It will be interesting to investigate
whether the bistable groups can serve as predictors for respon-
siveness or non-responsiveness to modulation strategies.

The functional core and the identification of bistability of
specific metabolic processes could also provide clues for pre-
dicting efficacy of interventions. For instance, also the overall
bacterial gene richness has been demonstrated to exhibit bi-
modal population frequencies (Le Chatelier et al. 2013). Western
individuals have been observed to be separated into two groups
based on gene count, i.e. low gene count (LGC) and high gene
count (HGC), with low gene richness being associated with pro-
nounced dys-metabolism and low-grade inflammation. Thus,
LGC and HGC could represent two alternative states in which
one state (LGC) represents a state that is indicative of increased
risk for obesity (Cotillard et al. 2013). In this study, itwas observed
that the LGC group after dietary intervention had improved gene
richness concomitant with improvement in the clinical pheno-
types but showed little change in the inflammation status of
these individuals. These functional alternative states, i.e. LGC
and HGC, provide us with an opportunity to predict the effi-
cacy of any approach used for modulation. This further high-
lights the importance of richness of the intestinal microbiome
(both compositional and functional) as a factor in determining
resilience to ecosystem changes. It is known that species rich-
ness determines the susceptibility to invasion by non-resident
species and resilience to overall ecosystem disturbances (Levine
and D’Antonio 1999). In case of the intestinal microbiome, re-
silience of a community with high functional richness adds an
important dimension to our understanding of its complexity.
Thus, there is a need for considering both species richness and
functional gene richness during intervention studies aimed at
microbiome modulation.

FUTURE PROSPECTS: APPLYING COMMUNITY
LEVEL UNDERSTANDING FOR BENEFICIAL
LANDSCAPING OF THE INTESTINAL
MICROBIOME

In the past decade, numerous studies targeting the human in-
testinal microbiome have led toward remarkable advances in
our understanding of the crucial role these microbes play in
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human health. Recognizing the importance of this micro-
bial community, the intestinal microbiome is often called a
‘metabolic organ’ signifying its crucial functional role which
has an effect on our health status (Bocci 1992). Importantly,
this metabolic organ represents a functioning ecosystem, which
is governed by ecological mechanisms. At present, clinically
meaningful evidence for the potential application of modulat-
ing the intestinal microbiota for therapeutic gain has created
considerable interest and enthusiasm (Smits et al. 2013; Li et al.
2016). Treatment of metabolic syndrome and Clostridium difficile
infection by ecosystem-level cleansing restoration via fecal mi-
crobiota transplantation (FMT) has demonstrated the potential
for translating microbiota research to clinical practice (Li et al.
2016). While FMT is promising with proven efficacy in several
cases, the underlying mechanisms that result in beneficial ef-
fects on host health are unclear and will need further refine-
ment. One of the approaches is targeting specific group(s) of
bacteria to bring about the desired changes in the intestinal mi-
crobiome. The state of a dynamic system may be manipulated
by triggering a switch to an alternative state, for instance with
a strong but temporally limited, transient perturbation (‘pulse’,
antibiotics), or longer impact (‘press’, diet) (Costello et al. 2012;
Faust et al. 2015). These transient perturbations can also be com-
bined with introduction of single bacteria or groups of bacteria
that support or inhibit growth of specific bacteria resulting in
desired changes in composition and function of the intestinal
microbiome.

Managing invasion or overgrowth of pathobionts

In order to manage invasions or overgrowth of pathobionts, we
first need to identify phylotypes that are common residents
and their relative proportions in the intestinal ecosystem. The
study of common core phylotypes and core functions is im-
portant in this aspect as this would form the baseline knowl-
edge of ‘normal’ inhabitants. Comparison of this core healthy
state with diseased states will assist in identifying invasive
species (potentially harmful species that are not part of the core)
and/or pathobionts (resident microbes with pathogenic poten-
tial). For instance, during IBD Enterobacteriacaeae are known po-
tential pathobiont species that affect the numbers of anaerobic
intestinal bacteria as mentioned above. In such cases, the use
of therapeutic microbes combined with specific dietary inter-
ventions can be used to support growth of core phylotypes ca-
pable of fermenting complex polysaccharides to produce short-
chain fatty acids (SCFA) and gas (CO2 and H2), which results in
decreased intraluminal pH to establish an anoxic environment
(Tien et al. 2006; Damaskos and Kolios 2008). Other examples of
pathobionts in the human gastrointestinal intestinal tract are
Helicobacter pylori, Fusobacterium spp., Desulfovibrio and C. dif-
ficile (Biagi et al. 2010; Rowan et al. 2010; Castellarin et al. 2012;
Kamada et al. 2013; Martin and Solnick 2014). In most cases, the
common observation in disease cases is the overgrowth of these
pathobionts. In mouse models of antibiotic-mediated C. difficile
infection, it was observed that a few bacteria confer protection
and imbalance in their populations increases susceptibility to
overgrowth by pathobionts (Stein et al. 2013). These few bacte-
ria included Akkermansia, Coprobacillus and Blautia spp. that are
all part of the core and their inhibition by antibiotics was pro-
posed to support overgrowth of C. difficile assisted by Enterococcus
spp. in mice (Stein et al. 2013). Thus, it could be possible that the
knowledge of common core phylotypes combined with the low
and high abundance states of pathobionts could help in design-
ing specific approaches for managing invasion by pathogens or
increased relative abundance of pathobionts. These approaches

could include changes in the diet that support higher growth
of core phylotypes and functions such as butyrate production
which inhibits pathogen colonization (Scott et al. 2014).

Adapting intervention strategies for modulating the
microbiome

The outcome of a given intervention strategy will depend on the
individual’s response to certain modulation attempts. The re-
sponse of the individual to a specific intervention can be pre-
dicted and monitored by observing overall community descrip-
tors such as species and gene richness and diversity, as well as
abundance/presence/absence of key indicator taxa that may re-
flect the efficacy of intervention strategies. Indicator taxa could
include bistable bacteria, and their shift toward the tipping point
could provide clues for transition from diseased to healthy al-
ternate stable states. Studying the transition between low and
high abundance states or vice versa with an intermediate tip-
ping point could provide clues for the critical time point for
ecosystem restoration by modulating the microbiome toward a
different, possibly healthier state. It is also possible that the shift
from a diseased statemay not necessarily lead to a healthy state
but rather to a state different from either of the states. These
alternative scenarios may be dependent on the strength of per-
turbation that resulted in shift to a diseased state. In any case,
monitoring of microbiome composition and its dynamics over
time should be incorporated in intervention strategies.

Maintenance of a healthy intestinal microbiome
landscape throughout life span

Human health is interlinked with the human body and its asso-
ciatedmicrobiome, and thus,maintaining a healthymicrobiome
is essential. The characteristics of a healthy community com-
position have been debated, and could be potentially identified
by observing the common core and bacterial communities as-
sociated with alternate stable states. The core phylotypes have
co-evolved to provide crucial ecosystem services such as pro-
duction of butyrate (energy source for colonic epithelial cells)
and protection against invasive pathogens and outgrowth of en-
dogenous pathobionts. The process of modulating microbiome
can be initiated in early life by managing certain host associ-
ated and environmental factors like diet. The mode of delivery
has an effect on the pattern of development of the intestinal
bacterial community (Grölund et al. 1999; Cox et al. 2014). Cae-
sarean delivery is associated with a reduced number of Clostrid-
ium species most of which are part of the core microbiota in
adult life (Fig. 1) (Bokulich et al. 2016). However, another recent
report did not observe associations between the delivery mode
and adult microbiota composition (Falony et al. 2016). Maternal
health status (obesity) and maternal stress have also been as-
sociated with an aberrant intestinal bacterial community in in-
fants (Galley et al. 2014; Zijlmans et al. 2015). However, modify-
ing the dietary habits, breast feeding and incorporating specific
oligosaccharides have shown to aid in improving the abundance
of anaerobic bacteria (Haarman and Knol 2006). Exercising regu-
larly is known to have various health benefits. A recent study on
professional athletes revealed that exercise could aid in increas-
ing intestinal bacterial diversity (Clarke et al. 2014). In elderly
subjects, the intestinal microbiome is characterized by reduced
bacterial diversity (Biagi et al. 2010; Claesson et al. 2012). Reduced
abundance of beneficial core bacteria, increased inflammation
and a decrease in the concentration of SCFA’s have also been ob-
served in elderly subjects (Salazar et al. 2013). These deviations
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from a normal adult healthy state could be reduced by targeted
modulation, which may include restoring the healthy core phy-
lotypes (through probiotic and/or prebiotic interventions), re-
ducing proinflammatory bacteria and increasing the SCFA pro-
duction by incorporating dietary fibers in the daily diet.

CONCLUDING REMARKS

In the past few decades, we have gained significant insights into
the composition, dynamics and function of our intestinal mi-
crobiome and its impact on our well-being. The Western adult
population shares dozens of genus-level taxonomic groups that
show high functional correlation. The intestinal microbiome
should be viewed as a complex landscape, which is a mixture of
common and individual characteristics. In addition to continu-
ously changing gradients across bacterial abundance and func-
tion, this intestinal microbiome landscape also includes distinct
features present as alternative stable states across varied com-
positional, structural and functional features. It is now clear that
treatment for most of the disease conditions necessities care-
ful consideration of the intestinal microbiome. A recent exam-
ple is the application of a prediction algorithm based on dietary
habits, physical activity and gutmicrobiota that allowed predict-
ing blood glucose levels and designing personalized diets which
were effective in controlling post-prandial blood glucose levels
(Zeevi et al. 2015). While the field of microbiome research rapidly
moves forward, there has to be a careful consideration of the
confounding variables in the studies, knowing that correlation
does not imply causation, technical bias between studies, differ-
ences in statistical models, human error and most importantly
reproducibility (Ioannidis 2005; Falony et al. 2016). As the micro-
biome research moves into the next phase of diagnostics and
therapeutics, overcoming these issues will be a major focus of
future research.
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