
Identification of variant compositions in related
strains without reference

Mikko Rautiainen, Leena Salmela, and Veli Mäkinen

Helsinki Institute for Information Technology
Department of Computer Science, University of Helsinki, Finland

Abstract. Current DNA sequencing technologies do not read an entire
chromosome from end to end but instead produce sets of short reads, i.e.
fragments of the genome. Haplotype assembly is the problem of assigning
each read to the correct chromosome in the set of chromosomes in a
homologous group, with the aid of the reference sequence. In this paper,
we extend an existing exact algorithm for haplotype assembly of diploid
species (Patterson et al, 2014) to the reference-free, polyploid case. A
reference-free method does not exploit a reference genomic sequence of
a species and thus we cannot exploit a known linear order for the reads
and resulting variant positions. Therefore we obtain an unordered variant
composition as a result. This setting can be also applied to the study of
relative abundances of related bacterial strains.

Keywords: variant composition, reference free sequence analysis

1 Introduction

The genome of an organism is a sequence or sequences of the nucleotides, A, T,
C, and G. Eukaryotic genomes are composed of chromosomes, each of which is
a sequence of nucleotides. The chromosomes are further arranged into groups
of homologous chromosomes, where two or more chromosomes are almost exact
copies of each other. For example, humans’ genomes are arranged into pairs of
homologous chromosomes, one of which is inherited from the mother and the
other from the father. Species with pairs of homologous chromosomes are called
diploid. Species with groups of more than two homologous chromosomes, for
example some potato species which have groups of 3 or 4 chromosomes [7], are
called polyploid. The sequence of a chromosome is called a haplotype sequence,
and a chromosome in a homologous group is sometimes called a haplotype.

Homologous chromosomes are typically very similar to each other with minor
variation. A common variation is the single nucleotide polymorphism (SNP),
where the haplotype sequences vary by exactly one nucleotide at some location,
either as a substitution, having a different nucleotide in the chromosomes, or indels
(insertion-deletion), where a nucleotide has been inserted or deleted from one of
the chromosomes. SNPs can be either heterozygous, where all of the haplotypes
have a different variant (nucleotide), or homozygous, where some haplotypes
have the same variant. Figure 1a shows an example of SNPs. Two chromosomes

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/84363103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. Rautiainen et al.

haplotype 1 ACTAACGCTGAAGACTAGT
haplotype 2 ACTCACGCTGAAGAC - AGT
reference ACTAACGCAGAAGACGAGT

(a) Haplotypes and reference sequence

ACT
A
C

ACGCTGAAGAC
T
-
AGT

(b) Consensus sequence

Fig. 1. The haplotypes of a genome and the corresponding consensus sequence

from an organism are compared to a reference genome. The sequences have three
SNPs. In the beginning there is a heterozygous SNP with a substitution, in the
middle there is a homozygous SNP with substitutions, and in the end there is a
heterozygous SNP with an indel and a substitution.

Current sequencing technologies produce sets of reads, also called fragments,
which are short sequences of DNA from anywhere in the organism’s genome. Due
to the difficulty of assembling a genome from sequenced reads, most species lack
a reference genome. A reference genome may also be incomplete or otherwise
unusable. Furthermore, polyploid genomes are more difficult to sequence than
diploid sequences. Another similar case is a population of closely related bacteria
or virii. A reference genome may not be available given the sheer amount of
bacterial species. For this reason, reference-free algorithms which do not require
a reference genome are useful for poorly understood genomes.

Since the chromosomes or strains are very similar, they can be represented
as one sequence and a list of positions where SNPs are found. Figure 1b shows
an example with two sequences having a common consensus with two SNPs.
However, the consensus does not tell whether the A and the T belong in the
same sequence or not. SNPs have different effects on an organism’s phenotype
depending on which other variants are found in the same chromosome [19, 21],
thus having just a list of SNPs misses phase information, which describes which
variants occur in the same chromosomes or strains. Identification of variant
compositions aims to correct this. A variant composition is an assignment of the
variants to the chromosomes or strains.

The process of assigning the variants of a SNP to the chromosomes is called
phasing. In this paper we generalize an existing exact phasing algorithm for diploid
genomes [17] to the reference-free, polyploid case. The phasing algorithm’s time
and space complexities are both exponential in the maximum coverage of the
input. The coverage of a position is the number of reads that cover the position.
See Figure 2 for an example.

2 Previous work and our contribution in context

Identification of variant compositions is closely related to the haplotype assembly
problem which seeks to solve the sequences of an organism’s haplotype. A variant
composition is a list of variants for each haplotype at the SNPs, which can be
used to calculate the haplotype sequences given a reference genome. Haplotype
assembly problem has multiple similar formulations [14]. These formulations are

Identification of variant compositions in related strains without reference 3

Fig. 2. The long, solid line is the genome, which is unknown, and the short solid lines
represent the reads and their location in the genome. The position at the first dashed
line is covered by three reads and thus has a coverage of three. Similarly, the second
dashed line has a coverage of five.

based on building a haplotyping matrix, where the reads are rows and SNPs are
columns, and partitioning the rows into chromosomes such that all reads in a
partition agree on the variant at each SNP. A haplotyping matrix does not always
have such a partition, and then the problem is to modify the matrix the least to
make such a partition possible. Lippert et al. [14] suggest three formulations, of
which we follow the minimum error correction that aims to flip the least amount
of cells in the matrix. Haplotype assembly is NP-hard both in general [14] and
also in the case when there are no gaps between reads [6].

Identification of variant compositions is also related to the quasispecies spec-
trum reconstruction problem [2], which aims at reconstructing the sequences of
the strains in a population of bacteria or virii and their frequencies. Variant
compositions can be used to reconstruct the sequences, once reference sequences
are given.

Haplotype assembly for diploid organisms, organisms only having two chromo-
somes, has many algorithms available, both exact [5, 10, 9, 17] and probabilistic
[3, 12]. Solving the haplotype assembly for polyploid organisms, organisms having
more than two chromosomes, is a more recent field of research. Both exact [16, 8]
and probabilistic algorithms [1, 4, 20] are available.

Deng et al. [9] published in 2013 an exact algorithm for the diploid haplotype
assembly problem with the minimum error correction formulation. The algorithm
has a time complexity of O(|S|2CC) where |S| is the number of SNPs and C is the
maximum coverage. Patterson et al. [17] extended the algorithm to the weighted
minimum error correction formulation, and improved the time complexity to
O(|S|2C−1). In this paper we further extend the algorithm to the polyploid case

with a time complexity of O(|S|C kC

k!), where k is the number of chromosomes.
The algorithm uses only the reads and requires no reference genome.

For our implementation, we use DiscoSNP [22] to detect SNPs in the reads
in a reference-free manner. DiscoSNP first builds a de Bruijn graph of the reads
and then uses it to find the SNPs.

3 Extending haplotyping to multiple strains without
reference

Our method has three stages. As preprocessing, a haplotyping matrix is built
from the reads. The second stage manipulates the haplotyping matrix to lower

4 M. Rautiainen et al.

(a) A binary matrix before banding (b) A binary matrix after banding

Fig. 3. Matrix banding

coverage. The third stage, the phasing stage, assigns the reads into strains. Due
to the lack of space, we describe the coverage reduction and phasing stages that
form the algorithmic core of our contribution. More details are available in [18].

3.1 Coverage reduction

After the prerocessing stages, we assume to have a haplotyping matrix F that
contains the SNPs as columns, reads as rows, and the value of a cell is either the
read’s nucleotide at the SNP or a marker “−” indicating that the read does not
cover that SNP. In the first case, the read is said to support a certain variant,
that is the nucleotide, at the SNP. The haplotyping matrix is then said to have a
variant at that cell. Additionally we have a weight matrix W where the entry
W (i, x) describes the certainty of the haplotyping matrix entry F (i, x).

Because the phasing algorithm is exponential in coverage, reducing the cover-
age is necessary. Coverage is either essential, when a read supports some variant
for a SNP, or accidental when a read does not directly support a SNP, but
supports SNPs both before and after it.

Since a reference genome is not used, the reads cannot be ordered by aligning
them to a reference genome. Instead we use matrix banding [11] to reduce
accidental coverage. The haplotyping matrix is treated as a binary matrix, where
cells with a variant are 1, and cells without a variant are 0. The rows and
columns are then permutated to bring the ones together in the matrix. The same
permutation is also applied to the weight matrix. Figure 3 shows an example of
a matrix before and after banding. Cells with a variant are colored black, and
cells without are white. The ideal output would be a solid diagonal band.

We use methods presented in [11] for matrix banding. First we find an
approximate consecutive-ones property (C1P) on the haplotyping matrix. The
C1P is a permutation of the columns such that in any row, the ones are in
consecutive positions. Then barycentric sorting is used. For each row, a centerpoint
is calculated as the average position of the ones and the rows are sorted based
on the centerpoints. The same operation is then performed on the columns. This
is repeated for a certain number of iterations and the best iteration’s matrix is
selected. The last step in matrix banding uses simulated annealing.

Identification of variant compositions in related strains without reference 5

After banding, methods similar to the ones in [15] are used to still lower the
essential coverage.

3.2 Phasing

The algorithm by Patterson et al. [17] works with two strains. Here we extend
the algorithm for an arbitrary number of strains. The output of the phasing
algorithm is an assignment of the reads into the strains.

A partition is an assignment of the reads, or a subset of reads, to the strains.
Partitions are stored as a partition vector, which describes for each read either
the strain where it is assigned, or a marker that this read is not assigned to any
strain. For example, {1,−, 2, 1, 3,−} is a partition of four reads into three strains,
where reads 1 and 4 are in the same strain and reads 2 and 6 are not assigned to
any strain. The example partition is over reads 1, 3, 4, and 5.

The overlap of two partitions is the indices where they both have a value. For
example, the overlap of {1, 2, 2,−,−} and {−, 1, 2, 3, 3} is indices 2 and 3.

The unpermutated form of a partition P is marked as u(P). In the unpermu-
tated form the strains are re-labeled according to the order in which they appear
in the partition vector. For example, the partition vector {3, 1, 3, 2, 2, 1, 4} has
the unpermutated form {1, 2, 1, 3, 3, 2, 4}.

This operation of re-labeling the strains is called a renumbering which is a
bijection on strain numbers. A renumbering vector describes how the strains are
re-labeled. Given a partition P and a renumbering vector R, the renumbered
partition P ′ is given by P ′i = RPi . The renumbering vector for the example above
is {2, 3, 1, 4}. For example, strain number 2 in the original partition is replaced
with 3 in the renumbered partition. Changing a partition to its unpermutated
form is one example of a renumbering but others are also used in the algorithm.

Two partitions are equivalent if and only if their unpermutated forms are
equal, and then both partitions assign the reads into same sets. Only partitions
in the unpermutated form need to be considered in the algorithm since all other
partitions are permutations of some unpermutated form.

The set of active reads for a SNP is the reads that cover it, either essentially
or accidentally. The active reads for SNP i are denoted as α(i).

The set of all partitions over a set of reads r is marked as Par(r). Note that
this set does not actually have all partitions, only all unpermutated forms. This

cuts the number of partitions from k|r| to k|r|

k! .
A partition P1 extends partition P2 if and only if their unpermutated forms

over the overlapping area are equal. The notation Ext(P1, P2) is used to mark
this. The set of partitions that extend a partition is said to be its extensions.

A partition is conflict-free if all reads in a strain assign the same variant at
each SNP. For example, the haplotyping matrix in Figure 4 is conflict-free for
the partition vector {1, 2, 1, 2}, but not for the partition vector {1, 2, 2, 2}. In the
conflicting example, the cell at read 3 and SNP 2 is in conflict since it is different
from the consensus variant of strain 2 for SNP 2.

In practice, the haplotyping matrix rarely has a conflict-free partition. Instead,
the algorithm finds the partition closest to a conflict-free partition, with the

6 M. Rautiainen et al.

1 2

1 C T

2 C C

3 C T

4 C C

Fig. 4. A haplotyping matrix

distance being the total weight of the conflicting cells in the haplotyping matrix.
For a partition P , haplotyping matrix F , weight matrix W , strain s, variant
v ∈ {A, T,C,G}, and a SNP number i, we define a cost function

δ(P, s, v, i) =
∑

x|Pi=s∧F (x,i)6=v

W (x, i).

The function describes the cost for assigning the strain s to have variant v at
SNP i. Using this, we define the partition cost function

∆(P, i) =
∑
s∈[1,k]

min
v∈{A,T,C,G}

δ(P, s, v, i)

as the cost of partition P at SNP i. This cost function is the minimum cost to
make the partition conflict-free. These functions are generalizations of the cost
functions described in [17], and are equal to them in the case of two strains.

The algorithm is a dynamic programming algorithm that goes through the
SNPs one by one. The table C contains the best scores for a partition at any
SNP; element C(i, x) is the best score at SNP i for partition x. At the first SNP,
the table is initialized with

C(1, x) = ∆(x, 1),∀x ∈ Par(α(1)).

At every SNP other than the first, the cost of a partition at the current SNP is

C(i, x) = ∆(x, i) + min
y∈Par(α(i−1)),Ext(x,y)

C(i− 1, y).

which is the sum of the cost for that partition at the current SNP and the cost
of the best-scoring partition of the previous SNP that is extended by the current
partition. To get the final result, the table C can be backtraced and the partitions
at each SNP must be merged.

When two partitions are merged, one of them must usually be renumbered. For
example, the partition {−,−, 1, 2, 1, 1, 3} extends the partition {1, 2, 3, 4, 3,−,−},
since the unpermutated form of the overlapping part is {−,−, 1, 2, 1,−,−} for
both partitions. The algorithm renumbers the rightmost partition to correspond
to the leftmost partition’s strain numbers. The renumbering vector is constructed
by first assigning the overlapping part. Having a left partition P , a right partition
Q and a set of indices for the overlapping part I, the renumbering vector R is
given by the equation

RPx = Qx, x ∈ I

Identification of variant compositions in related strains without reference 7

This equation only assigns the renumbering vector for the strains which
appear in the overlapping part and it works only when the two partitions actually
extend each other, otherwise it would produce more than one value for some
indices. Some indices may be left unassigned by this equation. The remaining
indices must be arbitrarily chosen to make the renumbering vector a bijection.
The implementation simply assigns the remaining values in order. In the example
above, the renumbering vector would be {3, 4, 1, 2}. The values of the first two
indices are determined by the overlapping part, and the last two arbitrarily. The
final merged partition is then {1, 2, 3, 4, 3, 3, 1}. After the algorithm has passed
through all SNPs, the solution is the merged partition with the lowest score.

When some values of the renumbering vector are chosen arbitrarily, the
merged partition’s early reads and late reads are assigned essentially randomly.
In the above example another consistent merging is {1, 2, 3, 4, 3, 3, 2}. Therefore
some strains may be swapped in the middle of the partition. The experiments
section measures how often this happens in practice.

Calculating the partition cost function δ directly from its equation would
take O(c) time, where c is the coverage at the current SNP, and ∆ would take
O(kc) time. However, two optimizations make it possible to do it faster. The first
optimization is to iterate through the partition only once, and calculate δ for all
strains simultaneously. This is done by keeping a two-dimensional array x with
size k ∗ 4 that keeps track of the cost of assigning a strain to a nucleotide. At
each read in the partition, the cost of the strain that the read is assigned to is
increased at the nucleotide the read has at that position. For example, if read
5 is assigned to strain 2, and read 5 has the nucleotide A at the current SNP,
then the value at x2,A is increased by the weight of the cell when the iteration
handles read 5. The final cost is then calculated with

∆(P, i) =
∑

s∈[1..k]

max(xs,A;xs,T ;xs,C ;xs,G)− (xs,A + xs,T + xs,C + xs,G)

This improves the cost for calculating ∆ to O(c+ k).
The second optimization uses a Gray code to order the partitions. A Gray

code is an ordering of vectors, in this case the partition vectors, where two
consecutive vectors differ by exactly one element. Then, calculating the next
x from the previous x can be done in constant time. At each SNP, the first x
must be calculated as usual. Then, using a notation xi,s,a to mark x for the ith
partition, xi+1,s,a is equal to xi,s,a except for the element that changed between
the two partitions. For example, if the read 5 with nucleotide A was assigned to
strain 3 at the previous partition, and to strain 4 at the current partition, then
the next x is calculated with

xi+1,3,A = xi,3,A −W (5, i)

xi+1,4,A = xi,4,A +W (5, i)

xi+1,s,a = xi,s,a otherwise

This removes the need to iterate through each partition and ∆ can be calculated
in amortized constant time. The Gray code optimization was originally described

8 M. Rautiainen et al.

1, 1, 1

1, 1, 2

1, 2, 1

1, 2, 2

1, 2, 3

(a) A graph of partitions for 3 reads

1, 1, 1
1

1, 1, 2
2

1, 2, 1
1

1, 2, 2
1

1, 2, 3
2

(b) A hamiltonian path in the partition graph
over 3 reads with nodes marked

Fig. 5. Example of partitions for three reads

by Patterson et al. [17]. However, extending it to multiple strains requires a
special Gray code that orders only the unpermutated forms of the partitions.

Consider a graph of the partitions, where nodes are partitions, and edges
connect partitions which differ by exactly one element. A Gray code over the
partitions is possible if the graph has a Hamiltonian path, or a path visiting each
node exactly once. For a partition over one read, this is trivially true. Then, a
path for the graph with c+ 1 reads can be constructed from a path in the graph
with c reads. Each node in the graph with c reads is divided into the partitions
where the first c elements are equal, and the final element varies. Figures 5a and
6 show an example of extending a graph of 3 reads to a graph of 4 reads. The
node {1, 2, 1} is divided into the nodes {1, 2, 1, 1}, {1, 2, 1, 2} and {1, 2, 1, 3}.

There are two key features of the graph that make a Hamiltonian path possible.
First, a node’s child nodes form a clique, so they can be visited in any order.
Second, if two nodes were connected in the previous graph, their child cliques
will have at least two connections between the cliques: the nodes that end with 1
are connected, and the nodes that end with 2 are connected. These nodes exist
in all cliques. Therefore, to build a Hamiltonian path for the c+ 1 graph from
the c graph, mark every other node in the path with a 1, and every other with a
2. Then, for each node that is marked with a 1, the sub-path starts at the child
clique’s node that ends in 1, visits all nodes that end in 3 or higher, and ends at
the child node that ends with 2. Correspondingly, for nodes marked with a 2, the
sub-path starts at the child clique’s node that ends in 2, visits all nodes ending
with 3 or higher, and ends at the node ending with 1. Figures 5b and 7 show an
example of extending a path in the graph of 3 reads to the graph of 4 reads. The
graph does not need to be explicitly created, and only the nodes in the path are
processed. Since extending the graph by one read will at least double the number
of nodes, the total number of nodes processed is at most twice the number of
nodes in the final graph, so ordering the partitions with the Gray code can be
done in linear time in the number of partitions.

The algorithm has running time of O(|S|C kC

k!), where C is maximum coverage,
k is the number of strains and |S| is the number of SNPs.

Identification of variant compositions in related strains without reference 9

1, 1, 1, 1

1, 1, 1, 2

1, 1, 2, 1

1, 1, 2, 2

1, 1, 2, 3

1, 2, 1, 1

1, 2, 1, 2 1, 2, 1, 3

1, 2, 2, 1

1, 2, 2, 2

1, 2, 2, 3

1, 2, 3, 1

1, 2, 3, 2 1, 2, 3, 3

1, 2, 3, 4

Fig. 6. A graph of partitions for 4 reads

4 Experiments

The experiments were run on simulated data based on the E. coli genome. The
simulated mutant genomes were created by taking the first ten thousand bases
from the E. coli genome and creating four mutant strains from it. The mutations
were created with a uniform 1% probability of substitution per base. Only SNPs
with substitutions were created. Reads were sampled from random locations with
an average coverage of 20 for each strain, for a total average coverage of 80 before
coverage reduction. All reads were created error-free.

Two different methods were used to build the haplotyping matrix from the
reads. In the first method, the simulated method, the SNPs were directly read from
the mutated genomes and the haplotyping matrix was built with full knowledge
of the genomes. The simulated method represents a very optimistic upper bound
for the algorithm’s accuracy. In the second method, the DiscoSNP method, SNPs
were detected by DiscoSNP [22] and processed to form the haplotyping matrix.
The DiscoSNP method represents a more realistic impression of the algorithm’s
accuracy.

Two experimental settings were used. First, the read length was varied from
100 bases to 2000 bases, and the algorithm’s accuracy was measured with each
length. In the second setting, errors were introduced into the haplotyping matrix
and the algorithm’s accuracy measured for several read lengths. The errors were
introduced directly into the haplotyping matrix immediately after creating it,
before any coverage reduction. The reads passed to DiscoSNP were still error-free.

10 M. Rautiainen et al.

1, 1, 1, 1

1, 1, 1, 2

1, 1, 2, 1

1, 1, 2, 2

1, 1, 2, 3

1, 2, 1, 1

1, 2, 1, 2 1, 2, 1, 3

1, 2, 2, 1

1, 2, 2, 2

1, 2, 2, 3

1, 2, 3, 1

1, 2, 3, 2 1, 2, 3, 3

1, 2, 3, 4

Fig. 7. A hamiltonian path in the partition graph over 4 reads

This was done to make sure that the experiments only measure errors made by
the implementation instead of the external tools.

We used switch distance to measure the accuracy of predictions. Originally
switch distance is defined for two strains [13]. Informally, switch distance builds
consensus genomes from its reads, and then aligns the consensus genomes to the
actual genomes. Switch distance is then the number of times a consensus genome
switches from one actual genome to another, allowing up to a certain number of
alignment errors where a consensus genome’s nucleotide differs from the actual
genome’s nucleotide.

To calculate the switch distance for multiple strains, we developed a simple
dynamic programming algorithm, whose details can be found in [18]. Informally,
this extended measure calculates the fraction of positions where genomes are
switched. In the graphs, we report switch accuracy, which is the inverse of the
switch distance, or the fraction of SNPs where genomes are not switched.

4.1 Effect of varying read length

In the read length experiment, the implementation’s accuracy was measured with
varying read lengths. Read lengths were varied from 100 bases to 2000 bases.
Figure 8 shows the switch accuracy.

The results show that accuracy depends greatly on read length. Even in the
simulated method, reads shorter than about 300 bases have poor accuracy, and
100 bases long reads have an accuracy about as good as random guessing. On

Identification of variant compositions in related strains without reference 11

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0.75

0.8

0.85

0.9

0.95

1

Read length

S
w
it
ch

a
cc
u
ra
cy

Simulated
DiscoSNP

Fig. 8. Switch accuracy as a function of read length

the other hand, long reads have a very high accuracy. The simulated method was
completely accurate at 700 bases long, and the DiscoSNP method at 1600 bases,
except for a strange dip at 2000 bases long reads. The experiment shows that
the implementation cannot work for short reads even in the best case, but works
well for long reads.

4.2 Effect of varying error rate

In the error rate experiment, the implementation’s accuracy was measured with
varying error rate. The error rate was varied from 0% to 15% chance of a
substitution error per base. The errors were introduced into the haplotyping
matrix immediately after building the matrix, before any coverage reduction.
Read lengths were 1000, 1600 and 2000 bases long for the DiscoSNP method,
and 500, 700 and 1000 bases long for the simulated method. Only uniformly
distributed substitution errors were considered. The switch accuracy stayed over
0.98 accuracy level in all these settings, and the increase in read length improved
the accuracy level to 1 still at error level 8% in simulated data.

5 Conclusion

In this paper we gave a proof of concept implementation of an exact haplotyping
algorithm for multiple strains. The performance on simulated data is promising.

Acknowledgements

This work was supported in part by the Academy of Finland (grants 267591 to
L.S. and 284598 (CoECGR)).

12 M. Rautiainen et al.

References

1. D. Aguiar and S. Istrail. Haplotype assembly in polyploid genomes and identical
by descent shared tracts. Bioinformatics, 29(13):i352–i360, 2013.

2. I. Astrovskaya et al. Inferring viral quasispecies spectra from 454 pyrosequencing
reads. BMC Bioinformatics, 12(Suppl 6):S1, 2011.

3. S. Bayzid et al. Hmec: A heuristic algorithm for individual haplotyping with
minimum error correction. ISRN Bioinformatics, 2013:10, 2013.

4. E. Berger et al. Haptree: A novel bayesian framework for single individual polyplo-
typing using ngs data. PLOS Computational Biology, 10(3):e1003502, 2014.

5. Z. Chen, F. Deng, and L. Wang. Exact algorithms for haplotype assembly from
whole-genome sequence data. Bioinformatics, 29(16):1938–1945, 2013.

6. R. Cilibrasi et al. On the complexity of several haplotyping problems. In R. Casadio
and G. Myers, editors, Algorithms in Bioinformatics, volume 3692 of Lecture Notes
in Computer Science, pages 128–139. Springer Berlin Heidelberg, 2005.

7. D. S. Correll. The potato and its wild relatives. Texas Research Foundation, 1962.
8. S. Das and H. Vikalo. Sdhap: haplotype assembly for diploids and polyploids via

semi-definite programming. BMC Genomics, 16:260, 2015.
9. F. Deng, W. Cui, and L. Wang. A highly accurate heuristic algorithm for the

haplotype assembly problem. BMC Genomics, 14(Suppl 2):S2, 2013.
10. D. He et al. Optimal algorithms for haplotype assembly from whole-genome sequence

data. Bioinformatics, 26(12):i183–i190, 2010.
11. E. Junttila. Patterns in permuted binary matrices. PhD thesis, University of

Helsinki, 2011.
12. V. Kuleshov. Probabilistic single-individual haplotyping. Bioinformatics,

30(17):i379–i385, 2014.
13. S. Lin et al. Haplotype inference in random population samples. American journal

of human genetics, 71(5):1129–1137, 2002.
14. R. Lippert et al. Algorithmic strategies for the single nucleotide polymorphism

haplotype assembly problem. Briefings in Bioinformatics, 3(1):23–31, 2002.
15. V. Mäkinen et al. Interval scheduling maximizing minimum coverage. CoRR,

abs/1508.07820, 2015.
16. J. Neigenfind et al. Haplotype inference from unphased snp data in heterozygous

polyploids based on sat. BMC Genomics, 9:356, 2008.
17. M. Patterson et al. Whatshap: Weighted haplotype assembly for future-generation

sequencing reads. Journal of Computational Biology, 22(6):498–509, 2015.
18. M. Rautiainen. Identification of variant compositions in related strains without

reference. Master’s thesis, University of Helsinki, 2016.
19. J. C. Stephens et al. Haplotype variation and linkage disequilibrium in 313 human

genes. Science, 293(5529):489–493, 2001.
20. S.-Y. Su et al. Inference of haplotypic phase and missing genotypes in polyploid

organisms and variably copy number genomic regions. BMC Bioinformatics, 9:513,
2008.

21. R. Tewhey et al. The importance of phase information for human genetics. Nature
Reviews Genetics, 12:215–223, 2011.

22. R. Uricaru et al. Reference-free detection of isolated snps. Nucleic Acids Research,
43(2):e11, 2014.

