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Abstract

In 1968, Orevkov presented proofs of conservativity of classical over
intuitionistic and minimal predicate logic with equality for seven classes
of sequents, what are known as Glivenko classes. The proofs of these
results, important in the literature on the constructive content of classical
theories, have remained somehow cryptic. In this paper, direct proofs for
more general extensions are given for each class by exploiting the structural
properties of G3 sequent calculi; for five of the seven classes the results
are strengthened to height-preserving statements, and it is further shown
that the constructive and minimal proofs are identical in structure to the
classical proof from which they are obtained.
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1. Introduction

Glivenko’s well known result of 1929 established that a negated propositional
formula provable in classical logic is provable intuitionistically. Similar later
transfers from classical to intuitionistic provability therefore fall under the
nomenclature of Glivenko-style results: these are results about classes of formu-
las for which classical provability gives intuitionistic provability. The interest
in isolating such classes lies in the fact that it may be easier to prove theorems
by the use of classical rather than intuitionistic logic. Further, since a proof
in intuitionistic logic can be associated to a lambda term and thus obtain a
computational meaning, such results have more recently been grouped together
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under the wide conceptual umbrella concerned with the “computational content
of classical theories”.

The first systematic study of these classes appeared in a paper by Orevkov of
1968. Orevkov’s results are not about formulas but about sequents with at most
one formula in the succedent. The classes are defined in terms of absence of
positive or negative occurrences of logical constants in the sequent and establish
that for seven precisely defined classes of sequents, classical derivability in the
predicate calculus with equality is equivalent to intuitionistic derivability.

These old results, although central for the investigations on the computa-
tional contents of classical theories, have not received the attention they deserve,
in part because of their rather complex proofs. There have been, however, iso-
lated e↵orts in the literature to obtain the results first proved by Orevkov in
a more transparent way. This is the case of Nadathur ’s paper (2000) that
obtained anew the conservativity for the first four of Orevkov’s classes, without
equality we must point out, and as a side-product of a study with a di↵erent
purpose. The main purpose of Nadathur’s work was not, in fact, a systematic
study of the constructive content of classical theories, but an investigation of
conditions that are su�cient for restricting sequents to single succedent form,
to obtain goal-directedness in proof search, and the associated proposal of what
he called uniform proofs as a foundation for logic programming.

In a similar direction of investigation, Schwichtenberg and Senjak (2013)
proved that if A is a formula without implications and � consists of formulas
that contain disjunctions and falsity only negatively and implications only pos-
itively, then classical derivability yields minimal derivability. Instead of sequent
calculus, their approach uses natural deduction that is privileged because of its
computational meaning through the Curry-Howard isomorphism, and a method
for eliminating all the occurences of stability axioms, i.e., elimination of double
negation, in the fragment considered.

A G3-style sequent calculus, as in Nadathur’s work, is used by Ishihara
(2000) to obtain a conservativity result of classical over intuitionistic theories.
The result is obtained by defining inductively four classes Q, R, J , and K

of formulas and proving that if a formula in K is classically provable from a
collection of formulas of Q, then it is intuitionistically provable. Ishihara (2013)
extended his previous results by introducing 9 and 8 in the inductive clauses
for the classes R and J , respectively. Both papers use a generalization of the
double negation translation to obtain the stated results.

A famous conservative class is the one given by geometric implications,
with the conservativity result known as the first-order Barr theorem. The re-
sult states that if a geometric implication is provable classically in a geometric
theory, then it can be proved intuitionistically, or even minimally if there are
no negative occurrences of falsity. Negri (2003) proved that the result reduces
to a proof-theoretic triviality when a G3-style sequent calculus is used and geo-
metric implications translated into extra rules the addition of which maintains
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the structural properties of the calculus: a classical derivation of a geometric
implication in such a system is already an intuitionistic or minimal one. The
result has been then generalized in Negri (2014) for theories axiomatized by
formulas that do not contain implications or universal quantifiers in their nega-
tive part. Here, the proof mechanism still exploited the structural properties of
G3-calculi and the translation of axioms into sequent rules, but with systems of
rules rather than plain rules to account for an arbitrary nesting of quantifiers.

In this paper, we show how the appropriate choice of a sequent calculus,
G3c, G3i, and G3m with the treatment of equality as introduced in Negri
and von Plato (2001), greatly simplifies the conservativity proofs: equality is
a part of the calculus and all the structural properties are maintained by the
addition. The results are given in their original formulations, with the classes
defined in terms of absence of certain logical constants in the positive or negative
parts of sequents. For five of the seven classes the results are strengthened to
height-preserving statements; for them, we do not give proof transformations
but actually show that, with the appropriate calculus, the classical proofs are
themselves intuitionistic or minimal proofs. The classical and the intuitionistic
proofs have the same tree structure and the same rules employed, the only
di↵erence being the addition of the principal formula in the premisses of the
left implication rule.

Some remarks on the converse result established by Orevkov and the exten-
sion to more general theories than the theory of equality are presented in the
conclusion.

2. Preliminaries

We refer to Troelstra and Schwichtenberg (2000) and Negri and von Plato (2001,
2011) for the necessary background on sequent calculus. We shall in particular
use the multi-succedent sequent calculi G3c for classical logic, G3i for intu-
itionistic logic, and G3m for minimal logic, defined as below (the two latter
calculi are called m-G3i and m-G3m in Troelstra and Schwichtenberg (2000,
p. 83), whereas Negri and von Plato (2001) follows Dragalin’s formulation of
the multi-succedent intuitionistic calculus, with a single-succedent left premiss
of L�.

In the initial sequents, P is an arbitrary atomic formula. Greek upper case
letters �, � stand for arbitrary multisets of formulas. The restriction in R8 is
that y must not occur free in �, 8xA (and �, for G3c). The restriction in L9
is that y must not occur free in 9xA,�,�. We may summarize these conditions
by the requirement that y must not occur free in the conclusion of the two rules.

The calculus G3m for minimal logic is obtained from G3i by replacing L?
with the initial sequents

?,� ) �,?
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G3c

Initial sequents:

P,� ) �, P

Logical rules:

A,B,� ) �
A&B,� ) �

L&
� ) �, A � ) �, B

� ) �, A&B

R&

A,� ) � B,� ) �
A _B,� ) �

L_
� ) �, A,B

� ) �, A _B

R_

� ) �, A B,� ) �
A � B,� ) �

L�
A,� ) �, B

� ) �, A � B

R�

?,� ) �
L?

A(t/x), 8xA,� ) �

8xA,� ) �
L8

� ) �, A(y/x)

� ) �, 8xA R8

A(y/x),� ) �

9xA,� ) �
L9

� ) �, 9xA,A(t/x)
� ) �, 9xA R9

G3i

A � B,� ) �, A B,� ) �
A � B,� ) �

L�
A,� ) B

� ) �, A � B

R�

� ) A(y/x)

� ) �, 8xA R8
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All the structural rules (weakening, contraction and cut) are admissible
in G3c, in G3i, and in G3m. The calculi are thus complete for classical,
intuitionistic, and minimal first-order logic, respectively.

Orevkov’s conservativity results are proved for predicate calculi with equal-
ity, so we need to extend the above G3 calculi with equality. This should be
done in a way suitable to maintaining the structural properties of the purely
logical calculi and for this purpose we follow the method of Negri and von
Plato (2011, Section 6.3) and extend it to treat substitution of equals not just
in predicates but also in functions.

We recall that axiomatic presentations of predicate logic with equality as-
sume a primitive relation a = b with the axiom of reflexivity, a = a, and the
replacement scheme, a = b&A(a/x) � A(b/x), from which transitivity and sym-
metry are derivable (through Euclidean transitivity). In the standard treatment
in sequent calculus (as in Troelstra and Schwichtenberg 2000, p. 128), one al-
lows derivations to start with sequents of the following form where P is an
atomic formula:

) a = a a = b, P (a) ) P (b)

By Gentzen’s “extended Hauptsatz,” cuts can be reduced to cuts on such se-
quents, but full cut elimination fails. For example, there is no cut-free derivation
of symmetry. Weakening and contraction must also be assumed.

An alternative way of adding equality and the replacement scheme consists
in the method of axioms in the context. This is the method followed by Orevkov.
By this method, the structural properties are maintained, but the presence of
the universal closure of the axioms in the context introduces an element of
perturbation to proof analysis. For example, conservativity of predicate logic
with equality over predicate logic (cf. Negri and von Plato 2011, Section 6.3)
could not be proved by this way of presenting the theory of equality.

To deal with equality, we first restrict the replacement scheme to atomic
predicates P,Q,R, . . . and then convert the reflexivity and replacement axioms
into the following rules

a = a,� ) �
� ) �

Ref
a = b, P (a), P (b),� ) �

a = b, P (a),� ) �
Repl

Substitution of equals in n-ary functions is a rule of simultaneus substitution,1

that corresponds to the axiom

a1 = b1& . . . & an = bn � f(a1, . . . , an) = f(b1, . . . , bn)

1For a concrete theory with equality where such a rule, formulated in a natural deduction
style, is used, see the treatment of the word problem for groupoids in Section 4.3 of Negri
and von Plato (2011). That example also shows why the rule has to be given as a rule of
simultaneous substitution on all arguments of the function.
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It takes the form

f(a1, . . . , an) = f(b1, . . . , bn), a1 = b1, . . . , an = bn,� ) �

a1 = b1, . . . , an = bn,� ) �
Sub

Rule Sub is derivable from Ref and Repl, so it doesn’t need to be taken as a
primitive rule of the calculus for equality. To see this, consider a function of
two arguments. We have the following derivation:

f(a1, a2) = f(b1, b2), a1 = b1, a2 = b2,� ) �

f(a1, a2) = f(b1, b2), f(a1, a2) = f(b1, a2), f(a1, a2) = f(a1, a2), a1 = b1, a2 = b2,� ) �
LW

f(a1, a2) = f(b1, a2), f(a1, a2) = f(a1, a2), a1 = b1, a2 = b2,� ) �
Repl

f(a1, a2) = f(a1, a2), a1 = b1, a2 = b2,� ) �
Repl

a1 = b1, a2 = b2,� ) �
Ref

Here the lower and upper steps of Repl are obtained as instances of the gen-
eral scheme with the predicates P1(x) ⌘ f(a1, a2) = f(x, a2) and P2(x) ⌘
f(a1, a2) = f(b1, x), respectively. The proof is generalized by induction to func-
tions of n arguments.

When rules Ref and Repl are added to G3m, G3i, and G3c minimal, intu-
itionistic and classical predicate logic with equality are obtained, respectively.
We shall denote such extensions by G3m

=, G3i

=, and G3c

=. We have:

Theorem 1 The following properties hold in G3m

=, G3i

=, and G3c

=:

i. The rules of weakening and contraction are height-preserving admissible,
and cut is admissible.

ii. The replacement axiom a = b, A(a/x) ) A(b/x) is derivable for arbitrary
A.

iii. The replacement rule

a = b, A(a/x), A(b/x),� ) �

a = b, A(a/x),� ) �
Repl

is admissible for an arbitrary predicate A.

Proof. See Negri and von Plato (2011, 6.14–6.16). QED.

Next, we obtain the conservativity of first-order logic with equality over first-
order logic also in the presence of functions.2

2The result (without functions) was already established in Negri and von Plato (2011). The
proof given there, based on a prior elimination of the rule of reflexivity from all derivations
of equality-free sequents, can be easily extended in the presence of functions, even with an
explicit rule of substitution of equals. We shall however give here a shorter proof suggested
by a referee.
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We shall use the standard notation (as in Negri and von Plato 2001)

S `n � ) �

to indicate that the sequent � ) � is derivable with a height of derivation at
most n in the sequent calculus S.

Lemma 2 If G3c

=`n a1 = a1, . . . , am = am,� ) �, with �,� containing no
equalities and m � 0, then G3c`n � ) �.

Proof. By induction on n. If n = 0, a1 = a1, . . . , am = am,� ) � is either an
initial sequent or conclusion of L?. In the former case, by the assumption on
�, none of the equalities is principal, and therefore also � ) � is initial. In
the latter, ? is in � and the conclusion follows.

If n > 0 we consider the last rule applied, which gives one of the three cases:
1. Logical rule; 2. Ref ; 3. Repl.

In the first case, we apply the induction hypothesis to the premiss(es) of the
rule, and then the rule.

In the second, if a = a is the atomic formula in the premiss of Ref, we apply
the induction hypothesis to the sequent a = a, a1 = a1, . . . , am = am,� ) �.

In the third case we have a derivation that ends with

a1 = a1, . . . , ak = ak, a = b, P (b), P (a),�0 ) �

a1 = a1, . . . , ak = ak, a = b, P (a),�0 ) �
Repl

If P (a) is an equality predicate, it can be only of the form a = a by the as-
sumption on the given sequent. Similarly we must have a ⌘ b, and therefore
also the premiss consists of reflexivity atoms and an equality-free context. In
this case we proceed as in the previous one. Else, since a ⌘ b by assump-
tion, also P (a) ⌘ P (b). By height-preserving admissibility of contraction we
obtain G3c

=`n�1 a1 = a1, . . . , am = am, a = b, P (a),� ) � and by induction
hypothesis G3c`n�1 P (a),� ) �. QED

As a special case in which the number of reflexivity atoms is zero, we obtain
the conservativity theorem of predicate logic with equality over predicate logic:

Theorem 3 If � ) � contains no equalities and is derivable in G3c

=, then
it is derivable in G3c.

3. Orevkov’s theorems on Glivenko sequent classes revisited

We follow Orevkov’s notation and denote by �+ positive and by �� negative
occurrences of the connective or quantifier � in a sequent.

In re-establishing Orevkov’s results we shall also pay attention to the height
of derivations to show that stronger results are achieved when G3 calculi are
used.
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Theorem 4 : Conservativity for class 1. Suppose that � ) � does not
contain �+ or 8+ and that G3c

= `n � ) �. Then G3i

= `n � ) �. If in
addition � ) � does not contain ?�, then G3m

= `n � ) �.

Proof. By the assumption, the given derivation contains no application of
R � or of R8, therefore it gives directly a derivation in G3i

= by the height-
preserving addition of the principal formula in the left premiss whenever L� is
applied.

If � ) � does not contain ?�, then L? is never used and the intuitionistic
derivation is indeed a minimal one. QED

Theorem 5 : Conservativity for class 2. Suppose that � ) A does not
contain �+ or _� and that G3c

= `n � ) A. Then G3i

= `n � ) A.

The result is an immediate consequence of the following lemma:3

Lemma 6 Suppose that G3c

= `n � ) � where � ) � does not contain �+

or _�. Then

⇢
there is A in � such that G3i

= `n � ) A if � 6= ;
G3i

= `n � ) � if � = ;

Proof. By induction on the height of the derivation.
If � ) � is an initial sequent, then the principal formula will do; if it is

conclusion of L?, then any formula from � or the empty set gives the desired
conclusion.

If the last rule is L&, with premiss C,D,�0 ) � and � 6= ;, by induction
hypothesis we find A in � such that C,D,�0 ) A is derivable in G3i

= (with
height diminished by one) and by L& we have derivability of C&D,�0 ) A

(with the same height as the original derivation). The case with � = ; is
proved similarly.

If the last rule is R&, with premisses � ) A1,�0 and � ) A2,�0, there are
four cases to consider, according to the provenance of the formulas B1 and B2

given by the inductive hypothesis. If one is A1 and the other A2, we conclude by
applying R&. If one or both are in �0 we just take that derivation to conclude.

If the last rule is R_, with premiss � ) �0
, A1, A2, by inductive hypothesis

there is A in �0
, A1, A2 such that G3i

= `n�1 � ) A. If A is in �0 we have
already the conclusion. If A is either A1 or A2, then by height-preserving
admissibility of weakening we obtainG3i

= `n�1 � ) A1, A2 and the conclusion
G3i

= `n � ) A1 _ A2 follows by a step of R_. (Observe that the argument
would break apart if rule L_ were allowed, because the two formulas given by
the inductive hypothesis in the case � 6= ; could be di↵erent, thus preventing
from restoring the original antecedent by application of L_.)

3It was observed by a referee that the proof below gives a stronger statement than just a
“classical disjunction property” as in the original submission, with the benefit of an immediate
proof of Theorem 5.
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If the last rule is L�, with premisses �0 ) C,� and D,�0 ) �, and � 6= ;,
by inductive hypothesis we find A1 in C,� and A2 in � such that �0 ) A1 and
D,�0 ) A2. We distinguish the two cases for A1. In the first case, A1 ⌘ C and
we have the following derivation, where we use the height-preserving admissible
rules of left and right weakening:

�0 ) C

C � D,�0 ) C,A2
LW,RW

D,�0 ) A2

C � D,�0 ) A2
L�

In the second case, from �0 ) A1 we obtain the conclusion C � D,�0 ) A1 by
height-preserving admissibility of left weakening. If � = ;, we have a derivation
ending with

�0 ) C D,�0 )
C � D,�0 )

L�

By induction hypothesis on the two premisses we obtain the following derivation
in G3i

=

�0 ) C

C � D,�0 ) C

LW
D,�0 )

C � D,�0 )
L�

with the same derivation height. (Observe that the addition of R� among the
rules allowed in the derivation would break down the induction if the formula
given by the induction hypothesis in the case � 6= ; is in the context of the
premiss.)

If the last rule is a rule for equality, we simply apply the inductive hypothesis
and then the rule.

The cases in which the last rule is a rule for the quantifiers are straightfor-
ward: first the inductive hypothesis is applied and then, possibly, in case the
selected formula is the active formula of the rule, the rule is applied again (after
an additional height-preserving step of RW in the case of R9) to restore the
conclusion. The variable conditions, if any, are satisfied because the application
is performed with a context which is included in the original one. QED

Corollary 7 Suppose that � ) � does not contain �+ or _� and that G3c

= `n

� ) �. Then G3i

= `n � ) �. If in addition � ) � does not contain ?�,
then G3m

= `n � ) �.

Proof. The first part is immediate consequence of Lemma 6. The proof that
the additional assumption on ? gives a minimal derivation is as for class 1.
QED

As a special case of the conservativity established in the corollary, we obtain
the sequent calculus version of the result proved by Schwichtenberg and Senjak
(2013):
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Corollary 8 If A is a formula without implications and � consists of formulas
containing disjunction and falsity only negatively, and implications only posi-
tively, then classical derivability implies minimal derivability.

Theorem 9 : Conservativity for class 3. Suppose that � ) A does not
contain �+ or 8� and that G3c

= ` � ) A. Then G3i

= ` � ) A. If in
addition � ) A does not contain ?�, then G3m

= ` � ) A.

By the following lemma, the proof of conservativity for class 3 can be reduced
to that for the second class. Here the proof follows Orevkov’s method of permu-
tation of rules. The idea is to divide all the rules that can possibly be involved
in a derivation of a sequent in the class in two groups. The first group G1 con-
sists of the equality rules and the right rules that can be used in the derivation
of the sequent, that is, G1 ⌘ {Ref, Repl, R&, R_, R9, R8}. The second group
G2 consists of all the left rules that can possibly be used in the derivation, i.e.
G2 ⌘ {L&, L_, L�, L9}. It is then proved that derivations of sequents in the
third class can be taken to a form in which any rules from the second group
follows any rule from the first group. The conclusion will follow because for
sequents in the first part of the derivation we have conservativity by the result
for class 2. The second part consists instead of rules that are identical (modulo
use of height-preserving weakening for L�), in the classical, intuitionistic, and
minimal calculus.

Lemma 10 Suppose that � ) � does not contain �+ or 8� and that G3c

= `
� ) �. Then there is a derivation of � ) � with the property that all the
rules in group G1 precede all the rules in the group G2.

Proof. In general, permutation of rules is straighforward in case the principal
formula of the upper rule is not an active formula of the lower rule, and this
applies to each of the desired permutations: for the permutations below the
equality rules, observe that these rules have atomic formulas as active formulas;
for the permutations below the other rules, note that these rules do not include
R � and thus their active formulas are on the right-hand side of sequents.
Observe that in the permutation for rules below R8 the variable condition is
satisfied: the only case to be analyzed with a potential clash of variable is the
one in which L9 is permuted below R8. In this case, the eigenvariable of L9
is necessarily distinct from that of R8 so the variable conditions are satisfied
when the two rules are permuted. QED

Theorem 11 : Conservativity for class 3-multi. Suppose that � ) � does
not contain �+ or 8� and that G3c

= ` � ) �. Then G3i

= ` � ) �. If in
addition � ) � does not contain ?�, then G3m

= ` � ) �.
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Proof. By Corollary 7, any sequent in the part of the derivation tree with
rules in G1 is also derivable in G3i

=. The part with rules in G2 maintains the
derivation in G3i

=. The conclusion for G3m

= is obtained as before. QED
Next we have:

Theorem 12 : Conservativity for class 4. Suppose that � ) A does not
contain ��, _+, or 9+ and that G3c

= `n � ) A. Then G3i

= `n � ) A. If
in addition � ) A does not contain ?�, then G3m

= `n � ) A.

Proof. Observe that the only rules of G3c

= that can produce a single-
succedent conclusion from a multi-succedent premiss are R_, L �, and R9.
It therefore follows from the assumed restrictions that all the sequents in the
derivation of � ) A are necessarily single-succedent ones, thus all the instances
of R� and of R8 in the derivation are actually correct instances of these rules
in G3i, hence in G3i

=. The result then follows by a straightforward induction
on the height of the derivation. QED

The following lemma and its corollary have restrictions that permit to relax
the restrictions on R � of the classes 1, 2, 3 to restrictions which ban only
the applications of R � in which the succedent is not ?. More specifically,
the classes are defined as the classes 1, 2, 3 with the restriction on positive
implications replaced by a restriction on positive implications with succedent
which is not ? and all negative implications (the genuine ones and negations).
The statement of the lemma (but not the idea behind the proof) di↵ers from
that in Orevkov where a calculus with primitive negation is used; the calculi
that we use have instead a defined negation, and therefore the restrictions are
here formulated in terms of negative or positive occurrences of ?, rather than
on the polarity of occurrences of negation.4 The requirement that a sequent
� ) � does not contain negations in negative parts is clearly not equivalent to
the one that it does not contain ?�. However, we are interested in proving a
conservativity result, so we can further assume without loss of generality that
� does not contain ? because, if it did, the result would trivially hold.

Lemma 13 Suppose that � ) � does not contain ?�, _+, or �+ and that �
is empty or ? occurs positively in all the formulas of �. Then � ) � is not
derivable in G3c

=.

Proof. Clearly, � ) � is not an initial sequent (atomic formulas do not contain
?), nor an instance of L?. We consider all the possible ways of decomposing

4The statement of Lemma 4.3 in the English translation of Orevkov’s article contains a mis-
print: the sentence “the succedent of S is empty or occurs positively in all of the subformulas
of the succedent of S” should be “the succedent of S is empty or negation occurs positively in
all of the formulas of the succedent of S.” Our guess was confirmed by a comparison with the
Russian original, which is correctly translated into: “Lemma 4.3. Whatever be the sequence
S of the calculus C*, if there are no occurrences of logical connectives of type ¬�, _+ and �+

and if the succedent of S is empty or ¬ occurs positively in all formulas of the succedent of S,
then the sequent S is not derivable in the calculus C*.”
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the sequent. The possible rules are Ref, Repl, L&, R&, L_, L�, L9, R9, L8,
R8 and it is seen by inspection on each of these that if the conclusion of the rule
satisfies the assumptions, also the premiss, or at least one of the two premisses,
does. Well foundedness of the decomposition procedure and invertibility of the
rules gives the conclusion. QED

Corollary 14 Suppose that � ) A does not contain ¬�, _+, �+, or ��, that
� does not contain ?, but � ) A contains a positive occurrence of negation.
Then � ) A is not derivable in G3c

=.

Proof. Because of the restrictions on implication, negation, hence ?, is found
positively in A, so the sequent satisfies the conditions of the above lemma. QED

Corollary 15 If a sequent � ) A that does not contain ¬�, _+, �+, or ��

but contains a positive occurrence of negation, is derivable in G3c

= then it is
also derivable in G3i

=.

Proof. If � contains ?, the result is obvious because the sequent is a conclusion
of L?. If � does not contain ?, the result holds vacuously as a consequence of
Corollary 14. QED

Conservativity for Orevkov’ classes 5, 6, and 7 is then trivially obtained. We
state (and prove) these results in detail:

Theorem 16 : Conservativity for class 5. Suppose that � ) A does not
contain ��, _+, 8+ and does not contain �+ with the possible exception of
negations and that G3c

= `n � ) A. Then G3i

= `n � ) A.

Proof. If � ) A does not contain positive negations, the class is a subclass of
class 1, and the result follows. If it contains positive negations, it holds vacuosly
by Corollary 15. If � contains ?, the result is obvious because the sequent is
a conclusion of L?. If � does not contain ?, the result holds by Corollary 15.
QED

Theorem 17 : Conservativity for class 6. Suppose that � ) A does not
contain ��, _+, _� and does not contain �+ with the possible exception of
negations and that G3c

= `n � ) A. Then G3i

= `n � ) A.

Proof. As above, with class 2 in place of class 1. QED

Theorem 18 : Conservativity for class 7. Suppose that � ) A does not
contain ��, _+, 8� and does not contain �+ with the possible exception of
negations and that G3c

= ` � ) A. Then G3i

= ` � ) A.

Proof. As above, with class 3 in place of class 1. QED
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4. Conclusion

We have proved conservativity for classical over intuitionistic (or minimal) first-
order logic extended with the theory of equality for seven sequent classes. The
direct methods of proof analysis in G3 sequent calculi give for all the classes
transparent proofs and yield for five of them stronger, height-preserving, state-
ments. The conversion of axioms into rules for the theory of equality also shows
to what extent the specific form of the axioms of equality plays a role in the
proofs. It is natural then to ask whether it is possible to extend the result to
more general theories. As observed by a referee, all the results in Section 3
continue to hold if we consider any Horn theory in place of the theory of equal-
ity. The reason is that any such theory can be converted into rules that follow
the regular rule scheme and have at most one premiss: in all the proofs we
require only that the added rules are the same for the classical, intuitionistic,
and minimal calculus, and have only atomic formulas as active and principal;
further, for the validity of Lemma 6, we need to exclude positive disjunctions
in the theory, or equivalently, rules with several premisses. We further observe
that we can extend the results to geometric theories with no disjunctions, that
is, to extensions by rules of the form5

Q(y/x), P ,� ) �

P ,� ) �
HGRS

where Q and P indicate the multisets of atomic formulas Q1, . . . Qn and P1,

. . . , Pm, respectively, and the eigenvariables y of the premiss are not free in the
conclusion.

All the proofs are identical to those for the theory of equality, but there is a
potential clash of variables in the permutation of the rules for quantifiers past
the geometric rules in the proof of Lemma 10. The only case of permutability
to be checked is thus the one of L9 past HGRS. This is unproblematic because
of the variable condition of L9. No critical cases arise because we do not need
to permute R9 (the rule is in G1) nor L8 (ruled out by the assumption on the
endsequent).

Orevkov’s results also concern with a converse to the conservativity of the
seven classes, that can be stated as follows: if for a class of sequents classical
derivability yields intuitionistic derivability, then the class is contained in one of
the seven classes. Orevkov proves the result by contradiction: from the assump-
tions that a class is not contained in any of the seven classes, a list of possible
violations to the defining properties of each class is obtained. For example, it
is not in class 1 if it either contains positive occurrences of implications or of

5The proof-theoretic properties of extensions of sequent calculi by rules of such form are
investigated in Negri (2003). A systematic treatment of sequent calculus extended by geomet-
ric rules is also found in Negri and von Plato (2011), Chapter 8, with examples of geometric
theories without disjunctions detailed in Chapter 5.
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universal quantifiers. An enumeration of all the possible cases (obtained from
a conjunction of disjunctions of possibilities) gives di↵erent possibilities of co-
existing connectives or quantifiers in the positive or negative part. The list is
reduced by taking into account inclusions between some of the cases and the
empty conservativity result for the last three classes. In the end, the result
is reduced to showing that there are sequents corresponding to each remain-
ing combination that are derivable classically but not intuitionistically. For
this purpose, Orevkov first shows that derivations are reducible to appropriate
forms (for which the denomination weeded and weakly weeded is introduced in
the English translation of the article). These are derivations that do not contain
excess applications of logical rules or of formulas and that obtain a characteri-
zation in terms of the order of application of rules. All such preparatory work is
avoided with the use of the G3i calculus for intuitionistic logic, and all under-
ivabilities are shown in a straightforward way by failed root-first proof search
as in Section 4.3(b) of Negri and von Plato (2001).

Acknowledgements: I wish to thank Helmut Schwichtenberg for having brought
to my attention Orevkov’s conservativity results, Hajime Ishihara for a useful
discussion on his approach to conservativity classes and Per Martin-Löf for the
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