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In this work, an automated procedure for extracting chemical profiles of illicit drugs from
chromatographic-mass spectrometric data is presented along with a method for comparison of
the profiles using Bayesian inference. The described methods aim to ease the work of a forensic
chemist who is tasked with comparing two samples of a drug, such as amphetamine, and delivering
an answer to a question of the form ”Are these two samples from the same source?” Additionally,
more statistical rigour is introduced to the process of comparison.

The chemical profiles consist of the relative amounts of certain impurities present in seized
drug samples. In order to obtain such profiles, the amounts of the target compounds must be
recovered from chromatographic-mass spectrometric measurements, which amounts to searching
the raw signals for peaks corresponding to the targets. The areas of these peaks must then be
integrated and normalized by the sum of all target peak areas.

The automated impurity profile extraction presented in this thesis works by first filtering
the data corresponding to a sample, which includes discarding irrelevant parts of the raw data,
estimating and removing signal baseline using the asymmetrical reweighed penalized least squares
(arPLS) algorithm, and smoothing the relevant signals using a Savitzky-Golay (SG) filter. The
SG filter is also used to estimate signal derivatives. These derivatives are used in the next step to
detect signal peaks from which parameters are estimated for an exponential-Gaussian hybrid peak
model. The signal is reconstructed using the estimated model peaks and optimal parameters are
found by fitting the reconstructed signal to the measurements via non-linear least squares methods.
In the last step, impurity profiles are extracted by integrating the areas of the optimized models for
target compound peaks. These areas are then normalized by their sum to obtain relative amounts
of the substances.

In order to separate the peaks from noise, a model for noise dependency on signal level was
fitted to replicate measurements of amphetamine quality control samples non-parametrically. This
model was used to compute detection limits based on estimated baseline of the signals.

Finally, the classical Pearson correlation based comparison method for these impurity profi-
les was compared to two Bayesian methods, the Bayes factor (BF) and the predictive agreement
(PA). The Bayesian methods used a probabilistic model assuming normally distributed values with
normal-gamma prior distribution for the mean and precision parameters. These methods were
compared using simulation tests and application to 90 samples of seized amphetamine.
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Chapter 1

Introduction

In the forensic context there often arises a situation where a forensic chemist is asked if
two samples of a drug come from the same source. For this purpose, the samples are usu-
ally analyzed using hyphenated methods, such as gas chromatography-mass spectrometry
(GC-MS)[1][2] and from the raw data provided by these methods, impurity profiles are
extracted. The answer to the question regarding the source of the samples is then re-
duced to comparing their corresponding profiles. These profiles consist of the amounts of
certain residual compounds in the sample that result from imperfections in the manufac-
turing stage, believed to be unique enough to allow for separation of similar and dissimilar
samples from each other. This is, in essence, a hypothesis comparison problem with the
first hypothesis being ”These samples are similar / come from the same source.” and the
second being ”These samples are dissimilar / come from difference sources.”

This comparison problem is currently solved by using similarity metrics, such as the
Pearson correlation coefficient, combined with a simple threshold for judging if two sam-
ples are similar. These metrics are usually not based on any statistical reasoning, but
rather rely simply on empirical experimentation such as in the case of amphetamine [3].
In this work, a more rigorous approach utilizing the Bayesian framework (see e.g. [4]) for
the hypothesis comparison is introduced based on work done on similar data for oil sam-
ples[5]. The resulting Bayesian similarity measures are formulated and applied to both
real and simulated chromatographic data of amphetamine samples and their properties
are analyzed.

In addition, this work also covers the problem of actually obtaining the impurity pro-
files necessary for sample comparison in an automated way. While software and systems
exist for analyzing data (such as the free OpenChrom software [6]), they are often not
designed for the purpose of processing data in forensic context, where the samples are
often dirty and contain many interfering components. Furthermore, in forensics it can be
useful to obtain quick preliminary results that help guiding the investigative process of a
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crime and, as such, there is interest in having a method that can produce results directly
from raw data with minimal effort from the analyst, prompting the automatization of the
extraction of relevant features from data. Work on such automatization has been done
before in works such as [7][8], but these methods often assume overly optimistic settings
where the noise can be easily controlled. This cannot, in general, be assumed for the
kinds of samples often studied in the forensic context. Therefore, in this work a method
is developed for automatically processing chromatographic-mass spectrometric raw data
in order to extract the relevant features from which the sample impurity profiles can be
comprised. To this end the methodology introduced in [9] is taken as the basis and ex-
panded to develop an algorithm for handling the entire process from the raw data to the
impurity profiles.

Finally, for the automated feature extraction to work, an important issue is the analysis
of the noise present in chromatographic sample, which is often ignored in the develop-
ment of such methods. A procedure is introduced applying non-parametric regression
techniques such as kernel regression [10] to estimate the noise standard deviation as a
function of signal level. This is motivated by the strong relationship between the two
properties as noted in, for example, [11]. This is of great importance as no single detec-
tion limit for chromatographic peaks is valid for every region of a signal where the baseline
may fluctuate radically.

This work is structured as follows. In chapter 2, detailed descriptions of the general
procedure and methods used for noise analysis, the feature extraction algorithm and the
impurity profile comparison are presented. As much generality is retained as possible,
and it should be stressed, that the methods used here should in theory be applicable with
minor modifications to any situation where data similar to that produced by GC-MS is
handled.

In chapter 3, a case study on amphetamine data is conducted using two datasets
consisting of quality control measurements and data from actual confiscated amphetamine
samples provided by National Bureau of Investigation in Finland. Furthermore, simulated
data is used to determine the performance of the different similarity measures developed
in chapter 2. The process of simulation is discussed and described in detail.

The final chapter contains discussion of the results obtained and includes suggestions
for future research. Possible improvements for the current method are also explored.

Implementation of the methods was carried out in R[12] and C++ as facilitated by
the powerful Rcpp interface [13]. In cases where ready made functions were applied,
appropriate citations are included.
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Chapter 2

Methods for Noise Analysis, Automatic
Impurity Profile Extraction and
Impurity Profile Comparison

This chapter consists of three distinct parts. In the first section the matters related to
noise analysis and constructing a non-parametric model for signal level and noise standard
deviation dependence are discussed. In the second part, the algorithm for extracting
impurity profiles is developed and in the last part the different methods for comparison
are described and their theoretical backgrounds are presented.
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Figure 2.1: A chromatogram corresponding to signal from single ion channel.
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2.1 Noise Analysis of Chromatographic-Mass Spectro-
metric Data

A chemical sample impurity profile consists of the integrated chromatographic peaks cor-
responding to the compounds relevant to the profile. In order to detect and identify these
peaks and separate them from baseline noise it is essential to determine reasonable de-
tection limits for each chromatogram. These detection limits necessarily depend on the
estimated level of noise in the chromatogram and, as such, it is important to determine
this noise level accurately.

Some classical methods for determining this level are to use a blank sample or regions
of baseline from the chromatogram to compute a standard deviation for the noise. This
value can then be multiplied by a constant, such as 3 or 10, to establish a limit of detection.
Unfortunately, these approaches are not sufficient when the noise is heavily dependent on
the signal level of a heavily varying baseline, which is often the case in chromatographic
measurements (see [14] for detailed discussion on chromatographic noise). In addition,
identifying regions of baseline from a non-blank chromatogram by any automated method
is notoriously difficult. Thus, a more sophisticated noise model can be useful for inferring
the relevant detection limits.

In this section, a general methodology is described which allows estimating the effect
of signal intensity on the noise level by using repeated chromatographic measurements of
single sample. Since this process is based on locally linear kernel regression, it is non-
parametric and does not require prior specification of an explicit model for signal-noise
dependence (for details on non-parametric regression, see e.g. [15]). The resulting model
allows estimating the noise standard deviation given baseline intensity level.

In the first part, the necessary preprocessing of analytical measurements from samples
is discussed. The second part discusses in detail the actual methods for obtaining a
regression model for the data.

2.1.1 Preprocessing the Data from Repeated Measurements

In order to use repeated chromatographic measurements from, for example, quality con-
trol samples to estimate a model between signal mean and noise standard deviation, the
raw data must first be preprocessed. In the case of chromatography-mass spectrometry,
the raw analytical data consists of mass spectra measured against retention time. The
mass spectra can be represented as vectors of intensity values with each component cor-
responding to a specific mass to charge ratio value, which uniquely characterize specific
ions. Thus, the data from one sample forms a matrix where each row corresponds to a
specific retention time or scan and each column corresponds to an ion channel.
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More formally, suppose that a sample has been repeatedly measured Nr ∈ N times
and the corresponding chromatographic runs are indexed by nr ∈ {1, . . . , Nr}. Then, the
data corresponding to nth run is given by

Xn =
[
x1
nr
, . . . ,xInr

]
,

where I ∈ N is the total number of ion channels considered and xinr
= (xinr,1, . . . , x

(i)
nr,T

)T

is a column vector corresponding to the intensity values of ion i measured at the retention
times t1, . . . , tT ∈ R+. In reality, the number T ∈ N of the total amount of scans can vary
between chromatographic runs n and, as such, the data should be trimmed so that the
retention times t1 and tT match between runs.

Assuming this trimming has already been done, the data can be rearranged to take
the form

Xi =
[
xi1, . . . ,x

i
Nr

]
,

where xinr
corresponds to a column vector consisting of the measurements of ion i in run nr.

Since each of these vectors are repeated measurements of the same sample, it can roughly
be assumed that, for a given scan t ∈ {1 . . . , T} and ion i, the values {xi1,t, . . . , xiN,t}
should only differ due to some level of random noise. Assuming no systematic bias, this
noise can be considered to have zero mean and, as is common in chromatography, the
amount of noise can be represented by its standard deviation.

However, chromatographic measurements are well known to be prone to shifts in re-
tention time caused by the physical aspects of the measurement process. While signal
alignment methods such as parametric time warping (PTW)[16] could be applied, they
cannot be guaranteed to function in regions of pure baseline. As such, a simpler way to
alleviate this issue is proposed here.

The total amount of scans T included in the analysis can be chosen so that it can be
divided into windows of length w ∈ N , with w chosen so that T = Pw, P ∈ N . Then new
P -dimensional vectors zinr

of mean intensities are obtained by setting the pth component
of the vector to the mean of the values in window p ∈ {1, . . . , P}. That is, for window p,
if l ∈ {1, . . . , T} is an index such that l = (p − 1)w and {xl+1, . . . , xl+w} are the values
corresponding to the window, the pth component of zinr

is given by

zinr,p = x̄nr,p =
1

w

l+w∑
t=l+1

xt. (2.1)

This leaves us with the reduced data set

Xi,win =
[
zi1, . . . , z

i
Nr

]
,
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where zinr
= (x̄nr,1, . . . , x̄nr,P )T.

From this reduced data set the mean and standard deviation for each row, correspond-
ing to some window p, are computed, and these are taken as estimates of realized signal
intensity levels and noise standard deviations. For each ion i, this results in two vectors,

mi = (mi
1, . . . ,m

i
P )T (2.2)

and
si = (si1, . . . , s

i
P )T, (2.3)

where for each window p ∈ {1, . . . , P}

mi
p =

1

N

Nr∑
nr=1

x̄inr,p (2.4)

and

sip =

√√√√ 1

N − 1

N∑
n=1

(mi
p − x̄in,p)2. (2.5)

This results in I vectors of signal means and standard deviations. The vectors corre-
sponding to different ion channels can be concatenated if no difference in noise behaviour
between channels is found. The resulting data set then consists of pairs of window means
and standard deviations (mj, sj) ∈ R+ × R+, where j ∈ {1, . . . , J} and J = IP .

As the retention time windows used to obtain these data points should be kept small,
it is probable that the size of the resulting data set becomes fairly large, which may pose
a computational difficulty. If this is the case, data binning can be used to reduce the
number of data points as most of them are bound to come from low baseline regions and
are therefore close to each other. Binning will introduce some estimation error, but with
large amount of data and small bin width, the error should be negligible. [17]

For the purposes of this study, the binning was executed according to the simple
binning rule given in [18] as follows. Suppose that the values mj all lie between a and b
with 0 < a < b < ∞. Then a grid of K ∈ N points gk, k ∈ {1, . . . , K} can be set in the
interval [a, b], with g1 = a and gK = b. Then each observation (mj, sj) is assigned to the
grid point it is closest to and for each grid point gk the amount of points assigned to the
grid point ck and the total sum of values assigned to the point dk are collected. These
form new binned data points of the form (gk, ck, dk). Thus, after binning only up to K
data points remain and as the bins with zero counts can be discarded, this can result in
massive savings in terms of dataset size.
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2.1.2 Locally Linear Regression Using Gamma Kernels and Binned
Data

Given a dataset of points (mj, sj), j ∈ {1, . . . , J}, J ∈ N, where the first component
corresponds to signal mean and second component to corresponding standard deviation,
the task of estimating the relationship between the quantities m and s can be interpreted
a regression problem of the form

sj = f(mj) + εj,

where f is the unknown regression function describing the relationship and εj is random
zero mean residual with variance that is allowed to depend on the value of mj. Since
mj ≥ 0 for all j, the support of f can be assumed to be [0,∞). In order to keep the
method as general as possible, no prior information is claimed of the relationship described
by f and, as such, non-parametric methods are used to obtain regression function estimate
f̂ .

A commonly used non-parametric regression method is the Nadaraya-Watson (NW)
kernel regression, which is essentially a weighted average smoother with weights provided
by a continuous function known as kernel. However, it has been noted that the NW
kernel regression suffers from considerable bias near boundaries of the regression function
and from inability to model perfectly linear relationships[19]. Furthermore, the usual
symmetric kernels themselves create bias near boundaries due to assigning weight outside
the support of the regression function. The first problem can be solved by using locally
linear regression, where for each point of estimation the weights are given by solving a
local linear equation and the second problem is avoided by using asymmetric gamma
kernels. A detailed description of the impressive theoretical properties of this method is
given in [20].

Formally, the gamma kernel centered at m ≥ 0 is defined for x ≥ 0 as

Km,b(x) =
mx/b

Γ
(
x/b+ 1

)
bx/bem/b

, (2.6)

where b > 0 is a smoothing parameter. The form of the gamma kernel in fact corresponds
to a gamma density with parameters x/b + 1 and b with respect to the kernel center m
and the shape of the kernel becomes more asymmetric as x approaches the boundary.
This asymmetry is what allows the kernel to properly handle proximity to boundary.
The gamma kernel further has the attractive property that the amount of smoothing
is adaptive and depends on the value of x. In Figure 2.2 is illustrated a kernel with
parameters m = 7 and b = 1. More illustrations are given in appendix A.
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The locally linear regression estimate at x using this kernel is obtained by minimizing

N∑
i=1

[sk − v − β(x−mk)]
2Kmk,b(x), (2.7)

which corresponds to solving a weighted linear least squares problem. This essentially
means locally fitting a line l(x0) = v̂+ β̂(x− x0), with x kept fixed and v̂, β̂ denoting the
solution to the least squares equation. The problem is local in the sense that the kernel
function assigns noticeable weights only to data points close to x. The regression estimate
at x is therefore given by f̂(x) = l(x) = v̂ and, as such, we are only interested in the
estimate v̂ for the purpose of the regression. It should be noted that β̂ could be used to
estimate the derivative of f , but this is not necessary in the current work.

Finally, the estimate f̂(x) = v̂ is given by the formula

f̂(x) =

∑J
j=1 Lj(x)sj∑J
j=1 Lj(x)

, (2.8)

with local linear weights

Lj(x) =
1

J

[
S2(x)− S1(x)(x−mj)

]
Kmj ,b(x), (2.9)

where

Si(x) =
1

J

J∑
j=1

(x−mj)
iKmj ,b(x), i = 1, 2. (2.10)

However, in the current application, binned data of the form (gk, ck, dk), k ∈ {1, . . . , K},
where gk is the grid point, ck count of original data points assigned to the grid point
and dk is the total sum of sj assigned to the grid point, are used. For such data, the
corresponding binned estimate is given by

f̂ bin(x) =

∑K
k=1 dkL

bin
k (x)∑K

k=1 ckL
bin
k (x)

, (2.11)

where the weights are now defined by

Lbink (x) =

[
Sbin2 (x)− Sbin1 (x)(x− gk)

]
Kgk,b(x)∑K

k=1 ck
(2.12)

with

Sbini (x) =

∑K
k=1(x− gk)ickKgk,b(x)∑K

k=1 ck
, i = 1, 2. (2.13)
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To make use of this estimate, it is necessary to specify of the smoothing parameter b.
In the context of non-parametric regression methods, leave-one-out cross-validation can
be used to minimize the mean squared cross-validation error[21]. The basic idea of this
method is to leave one sample out from the fit at a time and then use the remaining data
sets to estimate the value of the missing sample. In this case the error function is defined
for estimator f̂ and measured values si as

MSE(f̂) :=
J∑
j=1

(
sj − f̂(mj)

1− Lj(mj)

)2

(2.14)

and, for binned data, the equivalent binned mean square error (BMSE)[22] is defined as

BMSE(f̂ bin) :=
K∑
k=1

Dk − 2f̂ bin(gk)dk + f̂ bin(gk)
2cl

(1− Lbink (gk))2
, (2.15)

where Dk are the sums of squared values s2
i corresponding to grid point gk. The optimal

smoothing parameter b is then the one that minimizes (2.14) for normal locally linear
regression and (2.15) for the binned version.

2.2 Automatic Extraction of Impurity Profiles
While obtaining data through chromatography-mass spectrometry is routine work in most
laboratories these days, extracting useful features from this data is not so straightforward.
In the case of forensic drug sample comparison, the samples are characterized by impurity
profiles consisting of the relative amounts of specific chemical compounds in the samples.
These compounds are impurities in the sense that they are the byproducts of the man-
ufacturing process of the substance and, as such, comprise only a small portion of the
sample making detection difficult. The detection and quantification of these compounds
by hand is a time consuming process and it is therefore desirable to automatize it as far
as possible.

In this section, a general procedure for this automation is presented utilizing recent
advances in the field of chemometric. In the first part, the developed algorithm is outlined
as a whole. Then the sub-tasks of the algorithm, data filtering, peak detection, peak
deconvolution and feature extraction are each examined separately.

2.2.1 Basic Concepts and Method Outline

The problem of feature extraction in the case of chromatography-mass spectrometry data
can be formalized as follows. A measured sample X is a S by I matrix, with S, I ∈ N
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where each row corresponds to a single scan and each column corresponds to a measured
ion channel. Explicitly,

X =


x1,1 . . . x1,i . . . x1,I
... . . . ...

...
xs,1 . . . xs,i . . . xs,I
...

... . . . ...
xS,1 . . . xS,i . . . xS,I

 , (2.16)

where s ∈ {1, . . . , S} and i ∈ {1, . . . , I}. Each scan s is associated with a retention time
rs, which represents the time since beginning of measurement when the scan was made.

The goal is to extract from this raw data information related to Nt ∈ N target com-
pounds. A compound nt ∈ {1, . . . , Nt} produces signal peaks in several ion channels
depending on its mass spectrum around a retention time Rt. This retention time is not
assumed to be exact, but rather a system dependent parameter with the actual compound
elution occurring within some retention time window around it.

One of the ion channels, in which elution of the compound causes a peak, is assumed
to have been chosen as the target ion channel based on such things as chemical stability
and ability to characterize the amount of the compound in the sample. One or more of
the remaining ion channels are assumed to be chosen as qualifier ion channels and are
used to verify that a peak is indeed produced by the compound of interest.

This verification is based on the idea that signal peaks corresponding to the compound
should occur simultaneously in the target and qualifier ion channels. Furthermore, the
relative areas of these peaks should match the known mass spectrum of the compound.
When a peak has been verified as being caused by the target compound, the area of the
target ion peak is used to quantify the amount of the compound in the sample. Thus, in
order to extract the impurity profile, these peaks must be identified from raw signal for
each target compound and their areas calculated.

To this end the suggested method proceeds first by filtering the raw data in order to
discard irrelevant information and improve signal to noise ratio. This is accomplished
by extracting only a small retention time window centered at retention time Rt for each
compound. Furthermore, for each compound, only the ion channels relevant to it are
retained. For the remaining data, the baseline is corrected and, from baseline signal,
noise levels are estimated and signal likely to be noise is set to zero. Finally, the signals
for each ion channel are smoothed and the first and second derivatives of the signals are
computed numerically.

In the peak detection step, these derivatives are used to identify all the peaks present
in the signal for each ion channel. Parameters relevant to a peak model are estimated
from the detected peaks and peaks occurring in different ion channels at same time are
matched and assumed to come from a single compound.

14



The deconvolution step utilizes a mathematical peak model and parameters estimated
in previous step to compute a non-linear least squares fit to the signal. In this step
peaks matched as being produced by the same compound are assumed to share certain
parameters to enhance robustness of the fitting. This step is important in order to solve
issues caused by potentially overlapping peaks. The step is concluded by discarding
compounds missing either the target or any qualifier peaks.

After deconvolution, for each retained compound, the peak model fitted for the target
and qualifier ion signals is integrated, producing a vector of peak areas. The ratio of the
qualifier peak areas to the target peak area is computed and compared to values derived
from the known mass spectrum of the target compound. If the values match within
predetermined tolerance, the peak is assumed to represent the target compound.

Each step is critical for the successful extraction of the impurity profile. However,
any one step can be modified separately and adjusted to fit the needs of the current
application.

2.2.2 Data Filtering

The point of the data filtering step is to extract only the information relevant to the target
compounds and help separate noise from signal by improving signal to noise ratio. The
implementation carried out in this study is described here in detail.

Let X, nt and Rt be defined as in Section 2.2.1. The signal peaks corresponding to the
compound nt should appear within a system dependent retention time tolerance window
near Rt with radius rtol > 0, which is a parameter provided by the user. Furthermore,
to avoid a situation where a peak is cut off from this window because it appeared right
at the border, an external window margin rext > 0 should be added to rtol. Thus, the
total signal window radius to be considered is given by w := rtol + rext. Let S,E ∈ N
be the scans corresponding to measurement with smallest retention time above Rt − w
and largest retention time below Rt + w respectively. Then the signal relevant to this
compound is given by

Xt :=


xS,i1 . . . xS,iq . . . xS,iQ
... . . . ...

...
xs,i1 . . . xs,iq . . . xs,iQ
...

... . . . ...
xE,i1 . . . xE,iq . . . xRe,iQ

 , (2.17)

where S ≤ s ≤ E, q ∈ {1, . . . , Q} and i1, . . . , iQ ∈ N are all the ion channels associated
with the compound with Q ∈ N,Q > 1. Note that the ion channels iq need not be in any
specific order.
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Figure 2.3: Example of a fitted baseline and the corresponding detection limit with c = 3.

For each ion channel iq, the signal within the window is first baseline corrected. The
baseline is estimated by the asymmetric re-weighted penalized least squares algorithm
(arPLS) [23], which has been developed as an improvement to the popular asymmetric
least squares (ALS) algorithm [16]. The advantages of arPLS include that it is able to
deal with pure baseline areas, which can be encountered in this context and it is more
flexible than ALS in the sense that it allows signal level to be below baseline due to noise.
The estimated baseline z is subtracted from the signal, resulting in baseline correction.

Once the baseline has been computed, the noise Sts is estimated at the baseline for each
point s ∈ {S, . . . , E}. This can be accomplished using the model described in Section 2.1.
The signal peak threshold, that is the minimum intensity that can be considered a peak,
is defined at each point s as

thrth,s := cSts, (2.18)

where c > 0 is a multiplier supplied by the user. Typical choices for c would be 3, 5 or 10.
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Figure 2.4: Side by side comparison of raw signal and completely filtered signal including
the target ion channel and two qualifier ion channels.

By having the threshold depend on the index s, different parts of the signal are allowed
to have different detection limits. Furthermore, for the raw signal, the threshold would
be thrt,qh,s + zs, where zs ∈ R is the value of the baseline at s. Thus, the defined threshold
corresponds to the classical detection limit definition in chromatography where limit is set
as noise standard deviation at baseline level multiplied by a factor, resulting in a certain
minimum signal to noise ratio.

The signal is further trimmed by setting all values below certain proportion, such as
10 %, of the threshold to zero in order to further reduce presence of baseline areas in
signal. This results in a signal with some disjoint areas with positive values. Of these
areas, any that do not contain at least a single value above the peak threshold are also
set to zero.

The remaining signal is smoothed using the Savitzky-Golay polynomial filter[24], im-
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plemented in R package signal[25], which is widely used in chromatography[14]. This
requires specification of the polynomial degree and filter window width and in this work
approach similar to [9] is adopted with the degree of the polynomial left as user defined
parameter and the window width found by minimizing the Durbin-Watson criterion [26]
within a range of possible window widths given by user. The DW criterion is given by

DW =

∑n
i=2[(yexp,i − ysmd,i)− (yexp,i−1 − ysmd,i−1)]∑n

i=1(yexp,i − ysmd,i)2
× n

n− 1
(2.19)

for experimental signal yexp and smoothed signal ysmd with n measurements. The criterion
measures how often consecutive differences between smoothed and original signals have
the same sign. If they have the same sign, then this implies systematic difference which
is undesirable as in that case the smoothing did not remove only noise. The optimal
smoothing is achieved when DW = 2. As such, the best window width is found by
finding the one that results in DW value closest to 2. In addition, the first and second
derivatives of the signal are also computed by the Savitzky-Golay filtering algorithm.
Appendix A contains illustrations of the effect of the window width on smoothing as well
as examples of derivatives produced by the filter.

The noise of these derivatives is also computed similar to [9]: Let dj, j = 1, 2 be the
jth derivative of the signal and L := 2w + 1 be the width of the signal window. Then
define the residual

sjk :=

∣∣∣∣dj(k)− dj(k − 1) + dj(k + 1)

2

∣∣∣∣ , k ∈ {2, . . . , L− 1}, (2.20)

where dj(k) is the value of the derivative at index k. Then, the noise of the derivative is
given by

εj := median(sj), , (2.21)

where sq,j is the vector containing the residuals. The detection thresholds for the deriva-
tives are given by

thrtfd,q = aε1 (2.22)

for the first derivative and
thrtsd,q = bε2 (2.23)

for the second derivative. Here a, b ∈ N are user given multipliers.
The end result of these operations is a smoothed signal with greatly reduced noise

(see Figure 2.4). However, as the window width was chosen so that it is wider than the
actual retention time tolerance of the peak location, the window can be further trimmed
by removing from its beginning and end sections that surely do not contain relevant
signal. This can be beneficial in reducing computational complexity in later stages of
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processing as it results in less non-relevant peaks to be fitted. In the current application,
this trimming was accomplished by finding the scans t1, t2, with retention times rt1 , rt2
such that Rt <= rt1 <= Rn− rtol and RS + rtol <= rt1 <= RE, that were respectively the
largest and smallest scans, for which signal in all ion channels was zero after processing,
and then reducing the window to contain only the scans in the range [t1, t2].

2.2.3 Peak Detection

The peak search algorithm presented here is heavily based on the method presented in
[9]: the peaks are assumed to conform to a specific parametric model, and the parameters
are estimated from peaks identified using the numerical first and second derivatives of the
signal. As suggested in the article, the third derivative of the signal is not used as it is
assumed no replicate measurements of the signal are available. In the current method,
however, instead of the polynomially exponentially modified Gaussian model (PMG)[27],
a simpler exponential Gaussian hybrid (EGH)[28] model is used. EGH peak model is
similar to exponentially modified Gaussian (EMG)[29] model but it is more numerically
stable. The EGH model is given by

fegh(t,H, tR, σ, τ) =

{
H exp −(t−tR)2

2σ2+τ(t−tR)
, 2σ2 + τ(t− tR) > 0

0, 2σ2 + τ(t− tR) ≤ 0
, (2.24)

where the parameters H, tR and σ are positive numbers specifying the height, peak center
location and peak width respectively, and τ is a real number specifying peak asymmetry.
The parameters are very similar to those of the PMG model used in [9], so the method
described in that article is easily adapted to the EGH model with minor modifications. As
typically the retention time interval for scans is fixed, tR can be taken to be the retention
time when peak maximum is reached, but just as well the scan number can be used. The
actual retention time is important only when the compound is identified in the peak area
integration phase.

Given this peak model, the objective of the peak detection procedure is to find all
the peaks occurring in the filtered signal Xt

f of a target compound t, obtained by the
algorithm described in Section 2.2.2, and to estimate the values of the model parameters
for each found peak. Thus, the end result is a collection of peak parameters for each
peak. Furthermore, as the ultimate goal is to identify peaks corresponding to specific
compounds, peaks occurring simultaneously in different ion channels are matched based
on their estimated retention times and grouped together as single compound. Once the
peaks have been detected and corresponding peak parameter estimates and their upper
and lower limits have been obtained, peak deconvolution is performed by fitting the model
peaks to the data through nonlinear least squares. This allows separation of overlapping
peaks in order to improve accuracy of peak area calculation.
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Suppose that the filtered data Xt
f ,the derivatives Dt

j, j = 1, 2 and the thresholds thrt,qh ,
thrt,qfd and thrt,qsd have been obtained by applying the algorithm from Section 2.2.2 and let
q be the ion channel in which peaks are being searched. For brevity, the superscripts
indicating the ion channel and compound are dropped. The peak detection procedure
works by first identifying peaks for each ion channel separately. When a peak occurs in
signal this results in two regions in the first derivative: a positive region to the left of
the peak center and a negative region to the right, with a zero crossing at the maximum
value. Thus, a peak region is identified as the region of signal starting when the first
derivative first crosses the threshold thrfd and ending when, after crossing the zero to
negative values, it reaches −thrfd. This is illustrated in Figure 2.5. These regions are
collected and analyzed separately with the basic assumption that each region contains at
least one peak.

For each detected peak region, the corresponding part of the second derivative of the
signal is then inspected. The second derivative is used to detect highly overlapping peaks,
which may produce separate negative areas in the second derivative at corresponding
peak centers, even when only a single maximum is seen in the corresponding region of
the original signal and only one zero crossing is observed in the first derivative. Thus,
the algorithm searches for all negative regions in the second derivative, which are then
assumed to indicate separate peak components. A negative region is here defined as
starting when the second derivative crosses the threshold −thrsdn,q from above and ending
when it crosses the threshold from below. Furthermore, the region should be included in a
sequence of negative values of the second derivative with width of at least wsd > 1. These
conditions should guard against spikes caused by noise being identified as peaks. The
value of the parameter wsd can be set by the user and should depend on the resolution
of the measurement process. In the current implementation, minimum width of 3 was
found to provide satisfactory results. Furthermore, the signal maximum value within
the negative region must exceed the corresponding threshold value of thrh in order to be
included in further analysis.

Once these negative regions have been identified, several characteristic values are ex-
tracted from the signal. Firstly, the beginning of the negative region t1 is set as the scan
preceding the second derivative crossing the threshold −thrsd from above. Similarly, the
end of the region t2 is taken as the first scan where the second derivative crosses the
threshold from below (see Figure 2.6). Additionally, the retention times corresponding to
t1 and t2 provide natural lower and upper bounds for the peak center tR respectively.

Secondly, the peak center tR, the measured peak height h1 ∈ R+ at tR, and the
measured second derivative absolute value h2 ∈ R+ at tR are determined by one of two
different methods depending on the value of the signal at t1 and t2. If values at t1 and t2
are less than the measured signal maximum at tmax ∈ [t1, t2], tR is determined by fitting a
quadratic polynomial using least squares to the measurements corresponding to tmax, tleft
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Figure 2.5: Illustration of the peak region detection. The green line is the threshold on
the positive side and the peak region starts when the derivative first crosses this line from
below. The red line is the threshold on the negative side and the peak region ends when
derivative crosses this line from above.
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Figure 2.6: Illustration of the negative region detection. The red line is the negative
threshold. Part of the second derivative below this signal is considered to be relevant.
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Figure 2.7: A quadratic fit around the minimum of the second derivative of a signal.

and tright, with the last two retention times referring to the signal values to the left and
right from the maximum. The peak center tR is then set as the retention time where
the polynomial reaches its maximal value, as it has been shown that this procedure can
improve the accuracy of the estimation of the retention time of peak maximum[30]. The
parameters h1 and h2 are simply set as the measured value of the signal and the absolute
value of the second derivative at tmax respectively.

If instead the signal maximum in interval [t1, t2] is found at either t1 or t2, implying
a high level of overlap, the scan corresponding to the minimum of the second derivative
tmin ∈ [t1, t2] is used. The quadratic fit is then done using the values of the second
derivative at this and the two adjacent points to the left and right of the minimum.
Consequently, the retention time tR is set as the location of the minimum of the fitted
curve and h1 and h2 are set as the signal value and the second derivative absolute value
at tmin respectively. An example of this fitting is given in Figure 2.7.
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Thirdly, the peak height parameter H can be estimated by first defining its maximum
and minimum values

Hmax := max{h1,

(
(t2 − t1)

2

)2

(h2+thrsdn,q} and Hmin := min{h1,

(
(t2 − t1)

2

)2

(h2−thrsdn,q},

(2.25)
where the above expressions are based on a theoretical Gaussian peak as described in the
article [9]. Given these bounds, H is simply estimated as their mean by taking

H :=
Hmax +Hmin

2
. (2.26)

Furthermore, in order to estimate the asymmetry parameter τ , define the peak shape
parameters

Av := |tA − tR| and Bv := |tB − tR|, (2.27)

where tA and tB are the scans for which signal attains value vH to the left and right of the
peak center tR respectively. These values characterize the skewness of the detected peak
(see Appendix A for illustrations), and from them the asymmetry parameter is computed
by the formula suggested in [28] as

τ =
−(Bv − Av)

ln(v)
. (2.28)

This estimation is ignored if the measured maximum signal value in the interval [t1, t2] is
at the end points. Otherwise, the values of the signal at t1 and t2, denoted by Vt1 and Vt2
respectively, are determined with their ratios to the peak height defined by

v1 =
Vt1
H

and v2 :=
Vt2
H

. (2.29)

Then, to ensure that the peak is actually separable from any overlapping signal at the
height corresponding to vH, the ratio is set as the maximum

v = max{v1, v2}. (2.30)

Finally, the retention times tA and tB are obtained as

tA = arg min
t<tR

|xf,s − vH| (2.31)

and
tB = arg min

s>tR

|xf,s − vH|, (2.32)
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where xf,s are the values of Xf corresponding to the current ion channel q and scan s.
Lastly, the parameter τ is obtained by applying equations (2.27) and (2.28).

The last parameter σ corresponding to peak width is computed in similar way as in
[9], but without the error term depending on the third derivative, which was deemed too
unstable for this application. The formula for the parameter is derived by the reasoning
that for a Gaussian peak, its standard deviation is given by both s1 := (t2 − t1)/2 and
s2 :=

√
|h1/h2|, with s1 = s2. While it is not assumed any encountered peak is actually

Gaussian, these values are nevertheless used to obtain a rudimentary estimate of the peak
width as

σ =
s1 + s2

2
(2.33)

with upper and lower bounds given by

σmin := min{tR − t1, t2 − tR, s2} (2.34)

and
σmax := max{tR − t1, t2 − tR, s2} (2.35)

respectively.
Thus, for each detected peak, a vector of parameters along with their bounds can

be obtained. These vectors are then used to characterize the peaks as follows. Suppose
Mq ∈ N peaks have been found in ion channel q. Then the mqth peak pmq , with mq ∈
{1, . . . ,Mq}, is given by

pmq = (t
mq

R , t
mq

1 , t
mq

2 , Hmq , H
mq

min, H
mq
max, σ

mq , σ
mq

min, σ
mq
max, τ

mq). (2.36)

Peaks characterized in this way require determining four parameters each. However,
peaks corresponding to a single compound should share parameters as their retention time
and asymmetry should be nearly identical due to the characteristics of the measurement
process. To build on this idea, suppose that the target ion channel is given by q = 1.
Then the compounds corresponding to the peaks pm1 are given by

Cnc = {pmq , q ∈ {1, . . . , Q} | |tmq

R − t
m1
R | < ptol}, (2.37)

where ptol is a tolerance parameter given by the user defining how close peak retention
times must be to be considered to have appeared at the same time and nc is the index
of the compound, starting with 1 and increasing by one for each new compound. Only
one peak from each ion channel can be matched to a compound, if two peaks in the same
ion channel are close enough to the first peak in compound then the one that is closest is
picked. Since there are likely peaks not corresponding to the ones found this process is
repeated for each remaining ”free” peak in the next ion channel. This is continued until all
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peaks are assigned to a compound, even if that compound contains only the single peak,
resulting in Nc ∈ N peaks. Then, for each compound Cnc and for each peak pq ∈ Cnc ,
the compound retention time is computed as

tnc
R =

∑
q t
q
R

|Cnc |
, (2.38)

and the compound asymmetry parameter as

τnc =

∑
q τ

q

|Cnc |
. (2.39)

Here |Cnc | denotes the number of peaks in the compound and summation is calculated
over all peaks in Cn. For the retention time, the compound upper bound and lower bound
are set as the maximum and the minimum of the single peak retention times associated
with the compounds respectively. These compound parameter estimates are then used to
replace the corresponding parameters for each peak.

2.2.4 Peak Deconvolution

Suppose Nc ∈ N compounds Cnc have been detected in the signal X corresponding to
a target compound according to the method in Section 2.2.3. A reconstruction of the
measured signal can then be computed by applying the peak model defined by (2.24)
to parameters contained in the compounds as follows. Let ts and te be the scans cor-
responding to the retention time window relevant to the target compound and, for each
compound, let znc,q = [znc,q

ts , . . . , znc,q
te ]T be a vector with elements given by

znc,q
t = fegh

(
t, tnc,q

R , Hnc,q, σnc,q, τnc,q
)
, t ∈ {ts, . . . , te}, (2.40)

where the parameters tnc,q
R , Hnc,q, σnc,q and τnc,q correspond to a peak detected in ion

channel q in compound Cnc . In case no peak in ion channel q was associated with the
compound, the elements of the vector zqnc

can be considered to be zero. These vectors
then correspond to reconstructed signal within the relevant retention time window in the
ion channel q caused by a peak. Together, these signals form the matrix

Znc =
[
znc,1, . . . , znc,Q

]
, (2.41)
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representing the contribution of the compound Cnc to the total signal. The total signal
matrix is then given by the sum of all compound signals

Z =
Nc∑
nc=1

Znc =


z1
ts · · · zqts · · · zQts
... . . . ...

...
z1
t · · · zqt · · · zQt
...

... . . . ...
z1
te · · · zqte · · · zQte

 . (2.42)

As many peaks may be overlapping, it is highly probable the estimated parameters are
not optimal. As such, it is of interest to try and tune the parameters so that Z corresponds
to the measured signal X as closely as possible. Similarly to [27], this is treated here as
an optimization problem. The objective function to be optimized is here considered to be
the sum of squares across all ion channels given by

S2 =

Q∑
q=1

te∑
t=ts

(xqt − z
q
t )

2. (2.43)

Thus, the goal is to find the set of parameters that result in the reconstructed signal
matrix Z minimizing S2.

Due to the shape of the peak function, this is not a linear least squares problem
and as such, non-linear iterative least squares methods must be used. In this work, a
ready-made optimization tool utilizing the powerful Levenberg-Marquardt method [31]
for solving non-linear least squares in R package nloptr [32] is used. Fit to the signal of
a single compound obtained using this method is given in Figure 2.8. This method was
chosen due to its speed and its ability to handle the constraints in many of the parameters.

The result of this procedure are the optimized peak parameters for detected com-
pounds. Since a compound must have peaks in all ion channels to be considered a can-
didate for the target compound, only parameters corresponding to such compounds are
retained. The rest can be discarded as the optimization process should have taken care
of any overlapping in peaks. These remaining parameters are arranged in matrices

θd :=


tR,d τd H1

d σ1
d

...
...

...
...

tR,d τd Hq
d σqd

...
...

...
...

tR,d τd HQ
d σQd

 , (2.44)

where d ∈ {1, . . . , D} denotes the index of the candidate compound and D ∈ N is the total
number of candidates found. The final result for a single compound is thus a list of such
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Figure 2.8: Fitted signal (black) and measured signal (red). Severe asymmetry in the
measured peak causes some difficulties with peak fit due to rigidity of the EGH peak
model.
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matrices containing optimized parameters. Note that the peak center and asymmetry
parameters are identical for each peak.

2.2.5 Feature Extraction by Peak Integration

The last step of obtaining features that comprise the impurity profile of a sample is the
integration of the peak areas. In this step, the candidate compounds found in the decon-
volution step are inspected and the areas of the target ion channel peaks are compared to
those of the qualifier ion channel peaks. The ratio of the target peak area to the qualifier
peak areas must match the known spectrum of the target compound closely enough for a
compound to be considered to match the target.

For a given target compound, let

P = {θ1, . . . , θD} (2.45)

be the set of parameter vectors corresponding to candidate compounds found in the signal,
with vectors θd provided by the deconvolution step as given in (2.44). Then, for each θd
the area corresponding to the peak in ion channel q is obtained by computing the integral

Aq :=

∫ te

ts

fegh(t, tR,d, H
q
d , σ

q
d, τd) dt , (2.46)

where ts, te are the first and last scans of the retention time window considered for the
compound. In practice this is done by numerical integration and in the current imple-
mentation the integrate function utilizing adaptive quadrature from R base package is
used.

Suppose further that A1 is the area of the target peak. The relative areas of the
qualifiers with respect to the target are obtained by calculating for each q > 2 the ratio

vq :=
Aq
A1

. (2.47)

Denote by vTq the ratio of the qualifier to the target expected based on the spectrum of
the target compound. Then, a compound is accepted as a match for the target compound
if

|vq − vTq | < ftol(v
T
q ), (2.48)

where ftol is a function giving the tolerance corresponding to the ratio vTq . This function
should be defined by the user and is technically arbitrary. However, it may be necessary
to allow the tolerance to change with respect to the value of the ratio, as larger ratios may
introduce higher absolute error. This is done in the current implementation by setting

ftol(x) = max 0.3, 0.3x, (2.49)
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to allow for higher tolerance for higher ratios, but to keep the tolerance at 0.3 in minimum.
The expected ratio is often actually below 0.3, but in such cases the mere presence of the
small qualifier peak should be an indicator for a matching compound. The exact values
given here were hand tuned based on quality control data and they should be determined
separately for each application as the tolerance is highly dependent on the nature of the
data.

Furthermore, an additional requirement for a compound to be accepted is that the peak
center retention time should be within a user defined tolerance from the expected retention
time of the compound. While technically only a retention time window of interest is
considered for analysis in the filtering step, the external tolerances for the retention time
window make it a possibility that compounds outside this range are detected.

Finally, it is possible that more than one match is found among the detected com-
pounds. In such a case a choice needs to be made and for the current application, the
detected compound with largest target ion channel peak area is chosen to represent the
target compound. Such a situation should, however, be very uncommon, although further
investigation into such occurrences and how to deal with them might be warranted.

Let An then be the target peak area for the target compound n ∈ {1, . . . , N}, where
N ∈ N is the total number of targets. The end result of this step is to obtain for each
sample a vector of areas

A = [A1, . . . , AN ]T. (2.50)

These vectors are called impurity profiles and can be used for sample comparison as
described in the next section.

2.3 Comparison of Chemical Impurity Profiles
This section describes the methods used for preprocessing and comparing chemical sam-
ples through their impurity profiles obtained by the process defined in the previous sec-
tion. These methods are largely based on the harmonized approach, which was developed
for amphetamine in [3] and applied to cocaine samples in [33], that utilizes the Pearson
correlation coefficient [34] for comparison. However, Bayesian methods similar to ones
described in [5] are also considered. To this end, an explicit probabilistic model is in-
troduced and applied to the current data and the data preprocessing steps necessary for
applying this model are also described.

First, the preprocessing steps for the data are explored and discussed. Followed by
description of the different methods used in this work to compare the samples. For com-
parison, similarity measures are produced along with equivalent dissimilarity measures.
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2.3.1 Preprocessing Area Data

In order to use the area data provided by feature extraction process in the previous section
for comparison, some preprocessing of the data is necessary. This preprocessing includes
data normalization, in order to make features comparable between samples, and data
weighing to ensure each feature will have sufficient impact on the result. More formally,
suppose that for each sample indexed by ns ∈ {1, . . . , Ns}, Ns ∈ N, a vector of target peak
areas Ans is obtained through the integration step described in the previous section. As
the samples have different concentrations, the total summed area of all components of Ans

varies between samples. As such, the values themselves are not necessarily comparable as
is. In this application, the standard method of treating these vectors established in [3] is
used to obtain the final impurity profiles.

Firstly, any value in these vectors below 1 % of the area of the internal standard
is considered to be not detected in order to remove very small peaks from comparison.
The area of the internal standard peak is obtained by applying the previous steps to
the corresponding target and qualifier ions. As is established in [3], these values are
set to an arbitrarily small, positive number, such as 200 in the current implementation.
Additionally, some areas may be combined depending on the chemical properties of the
corresponding compounds, in which case the total number of variables is reduced slightly.
To make the features comparable across samples, the impurity profiles are normalized by
their sums, resulting in vectors of proportions of each impurity in the samples given by

vns =
Ans∑Nf

nf=1A
ns
nf

, (2.51)

where nf ∈ {1, . . . , Nf} is the index of the impurity and Nf is the total number of features.
While these proportions are technically comparable, the fact that some compounds

tend to have much higher concentrations in the sample than others causes the unfortunate
effect that the proportions of less concentrated compounds are reduced very close to zero.
In order to reduce this effect, weighing is introduced as suggested by [3] using the 4th
root resulting in the weighed vectors of proportions defined as

vns
W = [(vns

1 )0.25, . . . , (vns
Nf

)0.25]T. (2.52)

It should be noted that taking the 4th root is in some sense ad hoc and other transfor-
mations might be considered. However, this has been established as the standard way to
treat these profiles and as such it is used here.

The weighed proportion vectors vns
W can then be used for the comparison by, for

example, the Pearson correlation coefficient, which is the current standard method in am-
phetamine profile comparison. However, in this work more flexible probabilistic modeling
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Figure 2.9: An example of an impurity profile after normalization and applying 4th root.
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is considered and, to that end, the features are further transformed from the (0, 1) interval
to entire real line. This transformation is achieved using the logit transformation given
by

logit(x) = log

(
x

1− x

)
, x ∈ (0, 1). (2.53)

These transformed features are then denoted as

vns
L := [logit(vns

W,1), . . . , logit(vns
W,Nf

]T. (2.54)

In order to make probabilistic modeling more straightforward, each logit transformed
feature is centered around zero by subtracting its mean. That is, given the feature corre-
sponding to Nf , define its mean by

mvL
Nf

=

∑NS

ns=1 v
ns
L,Nf

Ns

(2.55)

and the vector of the means of all features by

mvL = [mvL
1 , . . . ,mvL

Nf
]T. (2.56)

Then the zero centered logistically transformed feature vectors are given by

vns
L0

) = vns
L −mvL . (2.57)

The weighed impurity profiles given by the vectors vns
W and the logistically transformed

zero centered profiles given by vns
L0

can then be used for the comparison by Pearson
correlation or the Bayesian methods presented in the following section. As a side note,
while outside the scope of the current study, many other transformations and weighing
schemes could be considered such as standardizing the features or taking the logarithm
instead of the 4th root.

2.3.2 Comparison by Pearson Correlation Coefficient

The current standard measure for chemical impurity profiles in the case of amphetamine
is the Pearson correlation coefficient. During a development project for a harmonized
method for amphetamine comparison, this measure was found[3] to have the best per-
formance out of several measures considered [33]. However, no statistical framework was
designed around this method and as such, the choice is based purely on empirical experi-
mentation. Regardless, this method has been found to provide satisfactory performance
and is included here for comparison.
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Figure 2.10: An example of an impurity profile after logit transform and zero centering.

34



Given two random variables X and Y , the Pearson correlation coefficient [34] between
them is defined as

ρXY :=
cov(X, Y )

σXσY
, (2.58)

where cov(X, Y ) is the covariance between the variables defined by the formula

cov(X, Y ) = E[(X − µX)(Y − µY )] (2.59)

and σX , σY are the standard deviations of the variables given by

σX =
√

E[(X − µX)2] (2.60)

and µX , µY are the means of the variables given by

µX = E(X). (2.61)

The values of ρXY range from -1 to 1 and they measure various levels of linear correlation
between the variables. Value of 1 means that an increase in X always coincides with an
equal increase in Y relative to the variable means and conversely -1 indicates a decrease in
X coincides with an equal increase in Y . As only samples xi, xi, with i ∈ 1, . . . , n, n ∈ N,
from the variables are available, in practice the sample correlation coefficient

rx,y :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.62)

is used, with x̄, ȳ denoting the sample averages and x,y denoting the vectors of samples.
In the case of the impurity profiles, the values xi and yi correspond to the features of the

profiles x and y. Thus high correlation means that for the two impurity profiles, the same
features are above the mean and below the mean in similar proportions. However, it should
be stressed that the measurement does not take into account the absolute differences in
the features and as such it discards information to some extent.

The final correlation score, adjusted so that its values lie in the range [0, 1] is obtained
as

COR(x,y) :=
1 + rx,y

2
. (2.63)

When dissimilarities are required, the correlation distance can be obtained by simply
computing

CORD(x,y) := 1− COR(x,y). (2.64)
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2.3.3 Comparison by Bayesian Methods

The use of Bayesian reasoning in comparison of the impurity profiles is attractive because
it allows for more rigorous statistical and mathematical basis for comparison. To this end,
a probabilistic model is presented here to facilitate the comparison through statistical
methods. Before defining the model, it should be noted that for two impurity profiles to
be similar, the features should match closely enough. What is enough depends on the
uncertainty of the obtained values of the features.

Model Specification

As in [5], one possibility is to use replicate measurements to estimate distributions of the
features. However, in the current application, a problem arises that usually no replicate
measurements are available for each sample. Instead, quality control samples with several
replicate measurements are available. In this work, it is proposed that these replicate
measurements can be used to estimate the overall uncertainty of the obtained feature, the
idea being that the measurement uncertainty should not depend so much on the sample
itself, but rather on the equipment and methodology used to obtain the features.

To facilitate this, it is assumed that, given a logistically transformed and zero centered
impurity profile or feature vector v, each feature vi follows a normal distribution with the
density function

fi(v | µ, τ) =

√
τ

2π
exp

{
−τ(v − µ)2

2

}
(2.65)

with the mean µ and precision τ . Since these parameters are both unknown, a normal-
gamma prior distribution defined by

πi(µ, τ | µ0, κ, α, β) =
βα
√
κ

Γ(α)
√

2π
τα−0.5 exp{−βτ} exp

{
−κτ(µ− µ0)2

2

}
(2.66)

is assumed with hyperparameters µ0, κ, α and β. This density corresponds to assuming a
N (µ0, κτ) distribution for µ0 conditional on τ and Gamma(α, β) distribution for τ . Care
should be taken not to mistake the hyperparameter µ0 for the mean µ of the measurement
model. The parameters may vary depending on the feature, but subscripts are dropped
to improve readability. This prior distribution is chosen because it is conjugate to the
normal model with unknown mean and precision, which allows for easy computation of
the marginal likelihoods and posterior predictive distributions needed for comparison. For
details on the derivation of the marginal likelihood and posterior predictive distribution
as well as the conjugacy property of the normal-gamma prior, see e.g. [35].

The selection of the hyperparameters µ0, κ, α, β for each feature is an important issue
and, while specifying a universal method for choosing them is beyond the scope of this
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work, one approach that is taken in this work, and discussed more in the next chapter, is
to use replicate measurements of a sample to estimate how high precision can be expected
of the measurement equipment.

The hyperparameter µ0 is the prior estimate of the feature mean and, when zero
centered features are used, it can be set to 0. The parameter κ can be thought of as
how certain we are of our prior mean estimate µ0, with high values indicating confidence
that features do not stray far from µ0. Since in this context little knowledge is available
a priori of the features given the sample, this parameter can be set to be very small.
Thus, the core of the model used here comes down to the parameters α and β, which
specify the distribution of the precision of the obtained features. The parameters reflect
how accurate the observed values are believed to be with respect to the true value and,
additionally, how certain this estimate of accuracy is. These parameters can be easiest
understood through the mean and variance of the parameter τ as they are given by

E(τ) =
α

β
and Var(τ) = E((τ − E(τ))2) =

α

β2
(2.67)

based on the properties of the gamma distribution (see e.g. [36]). These quantities mean
that, whenever α increases, the expected value of the precision τ increases implying higher
expected accuracy of observed feature. If β is increased, the expected value is decreased,
but the variance decreases as well and much more quickly, corresponding to certainty
in the precision. Thus, this model should at least in principle be able to capture the
characteristics of the measurement uncertainty with respect to the features.

Bayesian Similarity and Dissimilarity Measures for Sample Comparison

The two Bayesian methods for sample comparison considered here, the Bayes factor [37]
and the predictive agreement [38], require knowledge of the marginal likelihood and the
posterior predictive distribution of the statistical model, with the former specifying the
total probability of the data under a model and latter specifying the distribution of a
new observation. In order to state the corresponding formulae, the posterior update rules
for the hyperparameters of the model given observations are first defined. To this end,
suppose n measurements of feature v, denoted by vector v = [v1, . . . , vn]T, have been
made with mean v̄. Then the update rules of the model hyperparameters given these
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observations are given by the equations

µn =
κµ0 + nv̄

κ+ n

κn =κ+ n

αn =α +
n

2

βn =β +
1

2

n∑
k=1

(vk − v̄)2 +
κn(v̄ − µ0)2

2(κ+ n)
.

(2.68)

Given the posterior parameters, the marginal likelihood can be shown to be

pmarg(v) =

∫
Θ

n∏
k=1

fi(vk | µ, τ)πi(µ, τ)dµdτ =
Γ(α)

Γ(αn)

βα

βαn
n

√
κ

κn
(2π)−0.5n, (2.69)

with Θ denoting the parameter space, and the posterior predictive distribution for a single
new measurement v∗ can be expressed as

ppred(v∗ | v) =
1√
π

Γ(αn + 0.5)

αn

√
κn

2βn(κn + 1)

(
1 +

κn(v∗ − µn)2

2βn(κn + 1)

)−(αn+0.5)

. (2.70)

These explicit formulae allow for quick computation of the Bayesian comparison methods
presented in the following.

The problem of comparing two samples can be expressed as determining which of two
hypotheses is more probable. In this case, these hypotheses can be framed as ”the two
samples have the same underlying distribution”, denoted by H0, and ”the two samples
have different distributions”, denoted by H1. The Bayesian framework is a natural choice
for this (see [4]) and the Bayes factor given by

BF (x) =
p(x,y | H0)

p(x,y | H1)
, (2.71)

where x,y are the observations so far of two samples and p(x,y | H0), p(x,y | H1) denote
the data marginal likelihood under the different hypotheses, is an often used method for
such comparisons praised for being objective in the sense that it ignores some of the
influence of prior distributions[39]. However, for the comparison by Bayes factors to be
reliable, sufficient data should be available, which is often not the case. The absence of
data may cause such model evaluation to overestimate the support of a match provided
by the evidence as shown in [38]. It should be noted the Bayes factor is also known as
the likelihood ratio in the forensic setting (see e.g. [40]), but the former terminology is
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preferred here to stress the fact that the marginal likelihoods are results of integration
rather than maximization of a likelihood function.

In the current case, it is assumed only one replicate measurement of two different
samples corresponding to a single feature are available denoted by v1 and v2. The marginal
likelihoods for this data under the different hypotheses are given by

p(v1, v2 | H0) =

∫
Θ

2∏
k=1

fi(vk | µ, τ)πi(µ, τ)dµdτ (2.72)

=pmarg(v1, v2) (2.73)

and, assuming independence of the parameters for the distributions of the two samples
under H1,

p(v1, v2 | H1) =

∫
Θ

fi(v1 | µ1, τ1)πi(µ1, τ1)dµ1dτ1

∫
Θ

fi(v2 | µ2, τ2)πi(µ2, τ2)dµ2dτ2 (2.74)

=pmarg(v1)pmarg(v2). (2.75)

From these likelihoods, the Bayes factor in favor of H0 regarding feature i is then given
by

BFi(v1, v2) =
pmarg(v1, v2)

pmarg(v1)pmarg(v2)
. (2.76)

Then, for entire impurity profiles vk = [v
(1)
k , . . . , v

(Nf )

k ]T, k = 1, 2, define the total Bayes
factor by taking the mean of each individual factor

BF(v1,v2) =

∑Nf

i=1 BFi(v
(i)
1 , v

(i)
2 )

Nf

. (2.77)

The values given by the Bayes factor can vary anywhere on the non-negative real line
and, as such, converting it to a reasonable dissimilarity measure can be difficult. For
the sake of comparison with the other methods the dissimilarity measure is in this work
defined by

BFd(v1,v2) = 2 max
v,w

BF (v,w)− BF(v1,v2), (2.78)

where the maximum is taken over all pairs of profiles v,w. This guarantees a non-negative
measure that decreases as the support for H0, and thus similarity, increases. It is not
suggested that this is in any way reasonable metric, and it is only used for comparison.

An alternative, proposed in [38], is to compare the predictive distributions directly,
as these distributions summarize all the knowledge available regarding the unknown dis-
tribution of the variables[41]. This comparison is done by integrating over the minimum

39



of the two predictive distributions induced by the two samples resulting in the measure
called the predictive agreement given by

PA(v) =

∫
min{p(z | x), p(z | y)} dz , (2.79)

where the integral is computed over the entire space of possible observations z and x,y
denote the data at hand. The predictive agreement has been shown to be a conservative
measure of similarity of distribution and furthermore it provides similarity scores within
the interval [0, 1] due to both predictive distributions being positive and integrating to 1.

Assuming the same setting as with the Bayes factor, the predictive agreement for
feature i between two samples can be explicitly expressed as

PAi(v1, v2) =

∫
R

min{p(v∗ | v1), p(v∗ | v2)}dv∗. (2.80)

Similarly as in the case of the Bayes factor, the total predictive agreement between two
samples is measured as the mean of predictive agreements over all features

PA(v1,v2) =

∑Nf

i=1 PAi(v
(i)
1 , v

(i)
2 )

Nf

. (2.81)

The corresponding dissimilarity measure can be simply defined as

PAd(v1,v2) = 1− PA(v1,v2). (2.82)

Finally, it should be noted that evaluating the predictive agreement is computationally
intensive as it requires computing an integral for Nf features for each No ∈ N observations
resulting in calculating

Nf

(
No

2

)
=
NfNo(No − 1)

2
(2.83)

integrals in total. To speed up the computation, the algorithm for evaluating the predictive
agreement was implemented in C++ utilizing the numerical integration routines provided
by the RcppNumerical [42] R package.
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Chapter 3

Testing the Methods on Real and
Simulated Data

In this chapter, the methods developed previously are applied to real data and the results
are described. Firstly, the available datasets are described in detail along with the methods
used for simulating data. Secondly, the results of applying noise analysis as described in
Section 2.1 are presented. Thirdly, the performance of the automated feature extraction
presented in Section 2.2 is examined based on quality control samples and, lastly, the
performance of the different comparison methods described in Section 2.3 is tested on the
simulated data and their properties analysed by applying them to real data. The details
of how the hyperparameters for the probability model used in the Bayesian comparisons
were chosen are also discussed.

3.1 Real Data
In this study, two datasets of Gas Chromatography-Mass Spectrometry (GC-MS) [1] mea-
surements of amphetamine samples were provided by the Forensic Laboratory of National
Bureau of Investigation in Finland. The first one, consisting of measurements of two dif-
ferent quality control samples with 35 replicates for each, was used to estimate the noise
model for the signal as well as the precision of computations. In addition, the performance
of the impurity profile extraction algorithm was tested on this dataset. The second dataset
consisted of GC-MS measurements of 90 amphetamine samples with no prior knowledge
of association between any of the samples. These were used to produce parameters for
data simulation as well as examine the differences between different comparison methods.

The raw data consisted of 301 ion channels monitored 5584 scans resulting in matrices
of 5584 rows and 301 columns for each sample. The raw data was provided in the Analyti-
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cal Data Interchange (ANDI) format, from which the signal matrices were extracted using
tools given in R package xcms[43]. Also, information on the relevant target compounds
was provided, containing for each compound the corresponding mass spectra, target and
qualifier ion channels and their expected retention times.

3.2 Simulated Data
Simulated data was generated based on properties collected from the second dataset.
While an attempt was made to produce as realistic data as possible, it should be noted
that the underlying process is much more complex than suggested by the procedure here,
which is unavoidably quite ad hoc. As such, the simulated data is only used to demonstrate
the properties of the comparison methods. Regardless, the simulated data was generated
so that each simulated sample consisted of signals generated in a retention time window
relevant to each compound and only including the target and qualifier ion channels. This
was done instead of generating entire chromatograms in order to save computation time
since the filtering stage automatically discards any extraneous data in its first phase.

In order to simulate the data, some distributions had to assigned to characteristic
features derived from the dataset. These distributions were fit through the simple method
of moments, which involves estimating the sample moments and setting parameters of a
distributions to match these. In the current setting, the moments estimated were the
mean and the variance of the data.

The EGH peak model was assumed for all peaks and as such, an integral part of the
simulation was to simulate corresponding peak parameters. For the asymmetry parameter
τ , a normal distribution was assigned by setting the mean and variance as estimated from
observed peaks. The retention time parameter or peak location tR was generated by
estimating the mean of the the distances from expected retention time of identified target
peaks and using this value as standard deviation of a normal distribution centered at the
expected retention time.

Many of the other parameters for simulation were generated from gamma distributions.
In order to obtain the shape α and rate β parameters for these distributions, the sample
mean m and variance v were first estimated from the data. Since these moments of a
gamma distributed random variable X are given by

E(X) =
α

β
and Var(X) =

α

β2
(3.1)

the method of moments allows estimating the distribution parameters by assigning these
quantities equal to the sample moments. From this, the equation for mean allows us to
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solve α in terms of β as

α

β
=m

⇔ α =βm.
(3.2)

Using this with the equation obtained for variance gives

v =
α

β2
=
βm

β2
=
m

β
(3.3)

from which it is obtained that
β =

m

v
. (3.4)

Inserting this to the equation for α gives

α =
m2

v
(3.5)

and thus the method of moments estimators for α and β are obtained. Using this method,
the distributions for simulating the peak width σ and peak height H were obtained based
on observed peaks. The distributions for total sum of peak areas SA, the ratio of internal
standard peak areas to total sum of peak areas RIS, the initial impurity quantities and
the distribution for peak heights were obtained the same way . The total amount of peaks
for each window was generated from poisson distribution based on the number of peaks
detected in total in each window on average.

The actual simulation process begins by simulating for each target compound a value
based on the observed target ion peak areas in the second dataset. These values are
normalized by their sum to obtain the proportions of different compounds in the sample.
Given this profile, the target peak areas are obtained by generating the total area SA
from the corresponding distribution and the internal standard peak area is simulated by
multiplying the total area with a realization of the distribution for the ratio RIS.

Then, simulation proceeds by generating for each compound the relevant target and
qualifier ion channel signals. To this end, for each ion channel, target compound peaks
are generated by simulating the peak width, asymmetry and retention time from their
estimated distributions. The height is then obtained by finding the value that minimizes
the squared difference between the area covered by the resulting peak function and the
previously generated peak area. This value is found by using the basic optimization
routines provided by R.

Additional peaks are simulated by first generating the total amount of peaks in the
current ion channel and then separately acquiring the parameters for each peak with peak
heights simulated from the gamma distribution fitted to all observed peak heights. The

43



height was restricted to be higher than 1% of and lower than 3 times the height of the
target compound peak in the channel. In order to prevent these peaks from completely
covering the target compound peaks, their retention times are restricted so that they are
always at least 3 time units away from the target compound peak center. This setting
was found to still allow for large amount of overlap while not completely drowning the
”true” signal.

The contributions to the total signal from all peaks are computed by applying the EGH
peak model to the simulated parameters and computing the values of the corresponding
peak functions at each scan within the retention time window and summing them to a
blank signal. This results in a ”perfect” signal for a single ion channel.

In order to make the signal more realistic, baseline and noise are added. The baseline
is simulated by first computing a baseline mean parameter µbl by calculating the me-
dian of simulated target compound peak heights and multiplying this value by a factor
generated from Gamma(50, 1000) distribution, parametrized by shape and rate. The dis-
tribution is assigned so that the multiplying factor is usually close to 0.05, but is allowed
to occasionally be much larger or smaller in order to emulate random levels of baseline
fluctuation. Once the mean has been generated, five random values ci, i = 1, . . . , 5 from
uniform distribution in the interval (0, 0.5) are generated and five corresponding variance
parameters are computed as σibl = (ci ∗ µbl)

2, i = 1, . . . , 5. Using the method of moments,
these are used to obtain five shape and rate parameters for gamma distributions. From
each of these five distributions a single value is generated resulting in five random num-
bers. These are assigned to five equally spaced scans within the window, starting and
ending with the first and last scan of the window. Then spline interpolation facilitated
by the spline function included in the basic R installation is applied to the square roots
of these values and, thus, the basic shape of the baseline is obtained by squaring these
values. The reason for taking a square root is to avoid negative values in the resulting
curve. This process and possible baselines are illustrated in Figure 3.1.

Finally, noise is added to the baseline by generating it from a normal distribution
centered at the baseline with standard deviation depending on the values of the baseline
according to the model developed via the method from Section 2.1. This noisy baseline is
added to the signal resulting in the simulated signal corresponding to a single ion channel.
This process is repeated for each ion channel and each compound until entire sample has
been simulated.

In Figure 3.2 can be seen a comparison of simulated and real signal. The simulated
data is more noisy and has higher tendency to produce overlapping peaks which makes
it more difficult to process than real signal, but for simulation purposes this should be
sufficient and it would appear the simulated data captures the characteristics of the real
data reasonably well.
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Figure 3.1: Randomly simulated baselines with baseline mean randomly set to 23435.92
and with baseline variance randomly generated for each case. Each row corresponds to
one instance of generating the 5 points through which a spline interpolation is performed
to obtain a baseline.
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Figure 3.2: Comparison of simulated and real signal. Simulated signal is noisier and in
this case has quite low intensity level.
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3.3 Noise Analysis of Quality Control Samples
The noise analysis described in Section 2.1 was applied to the quality control samples
and the resulting noise model was used in both the data processing and simulation. The
extraction of signal mean level and standard deviation pairs was done separately for each
of the two sets of 35 replicates corresponding to different samples and, as no difference
between distributions of the obtained pairs was found, these datasets were combined to a
single set of points.

The resulting dataset for noise analysis consisted of over 60000 points making direct
application of kernel methods relatively slow. To this end the binning method described
in Section 2.1 was applied to reduce the data set to 5469 binned points when grid spacing
of 1 was used. Using these points, leave-one-out cross-validation was used to identify the
best smoothing parameter for the kernel regression.

The results of the cross-validation are given in Figure 3.3 and it can be seen that a clear
minimum is achieved in mean squared error. The smoothing parameter value minimizing
the cross-validation error for the regression function was found to be approximately 2477.
The resulting fit is plotted in Figure 3.4.

From the figure, it would appear a reasonably good fit has been obtained. Also, it is
evident that the data indeed contains some structure that does not appear to be entirely
linear. Interestingly, there would also appear to be considerable levels of heteroscedasticity
meaning that the variance of the noise standard deviation seems to increase as the mean
signal level increases.
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Figure 3.3: Cross-validation errors for the regression.
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Figure 3.4: The regression fit to data.
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3.4 Performance of the Impurity Profile Extraction
The feature extraction method described in Section 2.2 was tested using the quality control
samples by inspecting the repeatability of the results based on the two sets of 35 replicates.
An important aspect of tuning the method is to strike a balance between false positive and
negative identifications of compounds. In excess, the former would result in inaccurate
matches or irrelevant source of dissimilarity between samples, while the latter would result
in there being too few identified compounds to reliably compare samples. Truth of the
matter is, however, that an automated system is not likely to handle every situation
perfectly.

Figures 3.5 and 3.6 illustrate, that, for each replicate of the samples, similar profile
is consistently extracted. However, for both samples there is some variation on some of
the smaller features as can be seen in the figure. This can be explained by the fact that
the quality control sample measurements used as raw data here are used to test the cur-
rent state of the equipment. As such, in some cases the equipment is simply dirty which
results in either noisy measurements, which drown out the relevant signal, or even resid-
ual compounds from previous samples, which result in incorrectly identified compounds.
Furthermore, the quality control samples used here have relatively low concentration and
the reliability of the system could be improved by using higher concentrations. The effect
of concentration on the results was not considered in this work, however. As expected,
the comparison methods were able to separate these samples from each other perfectly.
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Figure 3.5: Profiles for quality control sample 1.
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Figure 3.6: Profiles for quality control sample 2.
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3.5 Simulation Study of the Impurity Profile Compar-
ison Methods

In order to apply the Bayesian methods, the hyperparameters had to be estimated first
as discussed in Section 2.3.3. Since features were zero centered, mean could simply be
taken as zero and, in order to remain uninformative about the mean, the parameter κ
was set to 10−6 to limit the effect of this choice on the comparison. The challenge came
from the fact that replicate measurements were only available from two samples. Because
of this, it was not possible to analyze each feature separately as several features were not
present in the available samples. Regardless, after discarding all features that were not
present in every replicate for either of the two samples, it was found that the zero centered
logistically transformed impurity profiles showed very little difference between features in
terms of standard deviation as is demonstrated in Figure 3.7. It can also be seen that
even the differences between the samples are relatively minor.

Thus, a naive assumption was made here that the variance, and thus its reciprocal
precision, was the same for each feature. Furthermore, it was assumed the variance does
not depend on the sample. While it can be seen that reasonable results could be obtained
with these assumptions, it should be emphasized that more rigorous estimation of the
hyperparameters should be done, but this would require kind of data that was not available
for the current work. In any case, considering the zero centered features share a mean,
these assumptions allowed combining the results for each feature resulting in n = 1120
replicate measurements of a single combined feature. From this the hyperparameters were
estimated using the rules (2.68) for the posterior parameters of the normal-gamma model,
by further assuming an improper prior distribution with α = 0 and β = 0 for the gamma
component and µ0 = 0, κ = 0 for the normal component. This resulted in choosing the
hyperparameters αp and βp as

αp =
1120

2
= 560 and βp = 0.5

n∑
i=1

(xi − x̄) ≈ 1.91, (3.6)

where xi are the feature values of the n measurements and x̄ is their mean and zero terms
were dropped.

As there is no guarantee these hyperparameters are optimal and the expected value
for the precision implied by these parameters was optimistically high, the αp parameter
was scaled down by different factors with βp kept fixed to reduce the mean and increase
the variance of the prior distribution for the precision parameter, thus making the corre-
sponding Bayesian similarity measures more lenient. For more details on how the choice
of hyperparameters affects the predictive distribution, see the illustration in Appendix A.

Simulation was run for 1000 rounds, with three samples were generated each round.
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Figure 3.7: Standard deviations of features with no missing peaks for the two quality con-
trol sample replicate measurements. The differences in standard deviations are relatively
low, even between samples.
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Figure 3.8: Densities of values produced by the Pearson correlation similarity measure
under different scenarios.

Sample 1 and 2 were simulated using the same impurity profile and sample 3 using a
different profile. It should be noted that in reality, samples from the same source would
have very similar chromatograms, but the current simulation method could result in
generating vastly different signals for each simulated sample even when the original profiles
were the same. As in [5], three different scenarios were considered:

S1 Identical samples, with sample 1 compared to sample 1.

S2 Samples from same source, with sample 1 compared to sample 2.

S3 Samples from different source, with sample 1 compared to sample 3.

The first scenario is not very realistic, but was included mainly to anchor the untrans-
formed Bayes factor, as well as to see how well different methods separate perfectly iden-
tical and similar samples.

The Pearson correlation similarity COR , and the predictive agreement PA and Bayes
factor BF, using the different hyperparameters, were applied to each scenario each round.
Densities for the similarity values in each scenario and with each method obtained with
the R function density are shown in Figures 3.8, 3.9 and 3.10 for correlation, predictive
agreement and Bayes factor respectively. The minimum, maximum and mean values as
well as the standard deviation and second and third quantiles of the comparison regarding
scenarios 2 and 3 are also presented in the Tables 3.1 and 3.2.

The results show that the correlation measure seems unable to give a score below 0.5
and there seems to be more overlap between the scenarios. The Bayesian methods manage
to separate the scenarios S1 and S2 better, but the influence of the hyperparameter αp is
considerable. When α = 56, the predictive agreement seems to offer the most satisfying
result, as similar samples consistently receive scores well above 0.5 and dissimilar samples
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Figure 3.9: Densities of values produced by the predictive agreement under different
scenarios using different values for α.
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Figure 3.10: Densities of values produced by the Bayes factor under different scenarios
using different values for α.
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S2
Method αp Min 1st quantile Mean 3rd quantile Max SD

COR N/A 0.58 0.88 0.91 0.97 1.00 0.07
PA 560 0.01 0.35 0.46 0.58 0.84 0.16
BF 560 0.34 232.07 315.50 414.51 626.74 132.84
PA 56 0.15 0.58 0.66 0.75 0.94 0.12
BF 56 66.82 411.43 474.94 551.25 697.69 103.31
PA 5.6 0.51 0.78 0.82 0.88 0.98 0.07
BF 5.6 329.86 576.72 614.30 659.07 737.80 60.31
PA 0.56 0.78 0.90 0.92 0.95 0.99 0.03
BF 0.56 789.39 958.32 983.11 1014.33 1064.37 42.87

Table 3.1: Statistics from applying comparison methods to simulated data. Scenario 2.

S3
Method αp Min 1st quantile Mean 3rd quantile Max SD

COR N/A 0.28 0.49 0.56 0.63 0.84 0.10
PA 560 0.00 0.04 0.08 0.11 0.43 0.06
BF 560 0.00 15.38 46.65 65.34 319.82 43.26
PA 56 0.03 0.18 0.22 0.27 0.50 0.07
BF 56 2.40 93.80 136.21 172.50 342.29 56.70
PA 5.6 0.30 0.47 0.51 0.55 0.69 0.06
BF 5.6 132.89 294.78 332.42 372.95 506.11 55.92
PA 0.56 0.67 0.75 0.78 0.80 0.87 0.03
BF 0.56 600.93 739.09 775.62 815.05 927.26 53.84

Table 3.2: Statistics from applying comparison methods to simulated data. Scenario 3.

are well below 0.5, allowing an intuitive interpretation of these values as probabilities
of similarity. While the results from the Bayes factor seem to be consistent with ones
from predictive agreement interpretation seems more difficult. Bayes factor gives under
all scenarios values well above 1, in the order of hundreds in fact, theoretically implying
support for the hypothesis that the samples are similar in almost every case.

To evaluate how well the different measures can classify the samples to similar and dis-
similar given a sample to compare to, receiver operating characteristic (ROC) [44] curves
are also plotted in Figures 3.11 and 3.12 with relevant areas under ROC curve (AUC) pre-
sented in Table 3.3. The AUC is a common measure for estimating classifier performance
and the closer its value is to 1 the better the measure is at indicating similarity. The
AUC value can be interpreted as the probability of ranking a randomly selected similar
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Figure 3.11: ROC curve for Pearson correlation similarity.
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Figure 3.12: ROC curves for predictive agreement and Bayes factor for different values of
parameter α.
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Measure αp AUC
Correlation N/A 0.99540
PA 560.0 0.97561
PA 56.0 0.99621
PA 5.6 0.99851
PA 0.6 0.99847
BF 560.0 0.95694
BF 56.0 0.99312
BF 5.6 0.99833
BF 0.6 0.99792

Table 3.3: Areas under ROC curve (AUC) for different measures.

pair higher than randomly selected dissimilar pair. The basic idea of the ROC curve is
that a possible classification bound is varied across a grid and for each bound the false
positive rate, which is the proportion of dissimilar pairs erroneously labelled as similar,
and the true positive rate, which is the proportion of similar pairs correctly labelled as
similar, are collected and plotted against each other. For the Bayes factor the grid was
set based on the minimum and maximum values of the measure while for correlation and
predictive agreement grid set between 0 and 1 was used. The closer the curve is to the
upper left corner, the better.

The ROC curves show that each measure is capable of separating similar and dissimilar
samples given a reference sample reasonably well. The behaviour of the Bayesian methods
is almost identical, although slight difference can be seen, especially with the highest value
of αp, which seems to offer the poorest performance for both Bayes factor and predictive
agreement. However, correctly selected αp results in both the predictive agreement and
the Bayes factor outperforming the correlation measure. This is also evident from the
AUC measures although the differences are not massive. This would however suggest
that the Bayesian methods are able to perform at least as well as the correlation measure
and with careful modelling, they could be able to even outperform the classical method.

3.6 Applying the Methods to Real Data
The feature extraction and comparison methods were also applied to the second dataset
containing 90 real samples of confiscated amphetamine. While no ground truth of these
samples is known, they can nevertheless be used for illustrative purposes to examine
how the different comparison methods treat the data. To this end, the dissimilarity
measures corresponding to the different comparison methods from Section 2.3 were used

61



to obtain dissimilarity matrices of the data. As the hyperparameter value αp = 5.6
seemed to produce the best results based on the analysis of the previous section, only the
corresponding Bayesian measures are used in this section.

For visualization of the results, classical multi-dimensional scaling (MDS) [45] was
used to obtain a 2D representation of the data. Principal component analysis (PCA)
(see e.g. [46]) corresponding to multi-dimensional scaling on euclidean distance matrix
was also used for the sake of comparison. The basic idea of the classical metric MDS
method is to construct, in this case, a 2D representation of given dissimilarities by finding
coordinates for data points that would produce similar euclidean distances. This is useful
for visualizing data in low dimensions when a dissimilarity matrix can be obtained. PCA,
on the other hand, uses the eigenvectors of the covariance matrix of the data to produce
a set of uncorrelated coordinates, called principal components, for the data, with each
explaining as much of the variance in the data as possible. By selecting only the most
important components, data dimensionality can be reduced. The R functions cmdscale
and princomp were used to perform these transformations. Lastly, PCA was applied to
both the impurity profiles that were treated by normalizing by their sums before taking
4th root and to the logistically transformed zero centered profiles.

Figures 3.13a and 3.13b show the results of applying PCA to the differently pretreated
impurity profiles. From these images it can be seen that the additional logistic transfor-
mation has little effect on PCA, although the points do appear bit more clumped. In
Figures 3.14, 3.15 and 3.16 are the results of multi-dimensional scaling on the distance
measures. The structure of the data seems quite similar to that produced by PCA but
some differences can be seen. The correlation distance seems to produce an even more
cramped representation than PCA while predictive agreement and Bayes factor cause the
data points to be more spread out. It would appear that the Bayesian methods are able
to produce a bit more separation than the correlation measure.
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(a) PCA applied on the impurity profiles used for correlation computa-
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(b) PCA applied to the impurity profiles used for Bayesian measures.

Figure 3.13: PCA applied to differently pretreated impurity profiles.
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Figure 3.14: MDS applied to correlation distances.
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Figure 3.15: MDS applied to PA distances.
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Figure 3.16: MDS applied to BF distances.
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Chapter 4

Discussion

In this work methods for noise analysis, automatic impurity profile extraction given target
compounds and impurity profile comparison for chemical data produced by chromatography-
mass spectrometry have been presented. These methods were applied to real and simu-
lated data and their performance was analysed.

The noise analysis methods introduced were used to identify a clear and non-linear re-
lationship between the signal level and noise standard deviation and local linear regression
was used to obtain a satisfactory model for this relationship. Although more study might
be warranted on how to deal with the apparent heteroscedasticity in the data, the current
method was able to capture the characteristics of the data well, even when approximative
binning methods were used. Cross-validation was found to be a useful tool for finding a
decent smoothing parameter for the non-parametric regression.

The obtained noise model was successfully applied in the automatic impurity profile
extraction. The impurity profile extraction algorithm was found to produce highly con-
sistent estimates with rather noisy data. The performance of the method was not perfect,
however, and more comprehensive study should be conducted regarding identifying the
peaks. A method similar to one seen in [47] might be used to introduce a more proba-
bilistic approach to identifying peak regions instead of the simple detection limits as used
in this study. Regardless, the process was found to be reasonably reliable and was able
to produce requested variables from the data, thus limiting the need for human effort in
the process.

The Bayesian comparison methods implemented in this work were found to produce
similarity measures on par with the correlation measure that is the current standard in
the comparison of chemical profiles of amphetamine in forensics. The Bayesian methods
would appear to have the potential to surpass the classical method, while also introducing
more rigorous statistical basis to the comparison, as long as the model is correctly chosen.
It is important to note that the probabilistic model used for the comparison was relatively
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crude and, as seen from the tests on the simulated data, much care should be taken to the
selection of hyperparameters. Additional research would be needed to develop a robust
method for selecting these hyperparameters in this context, and it might be of interest
to study the possibility of applying other probabilistic models besides the simple normal-
gamma model used in this work. Furthermore, the predictive agreement was found to be
an intuitive and accurate measure of similarity. It overcomes the problems of the Bayes
factor in that it has bound range, and it was also found more conservative in the sense
that, while Bayes factor tends to always result in support for a match, the predictive
agreement more readily gave low scores to dissimilar samples.

In conclusion, it is hoped that this work will provide a basis from which further research
into forensic drug comparison can be conducted. The methods here were applied only to
amphetamine data, but their versatility should allow them to be applied to similar cases
in cocaine and methamphetamine comparison quite naturally. Further applications could
be found in oil sample comparison and analysis of residues from suspected arson cases.
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Appendix A

Illustrations
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Figure A.1: Gamma kernels with different center parameters m and fixed smoothing
parameter b = 1. As can be seen, the gamma kernel becomes wider as m increases.
Changing b simply scales the kernel.

69



15.2 15.4 15.6 15.8 16.0

0
20

0
40

0
60

0
80

0

Raw signal

Retention time

S
ig

na
l i

nt
en

si
ty

15.2 15.4 15.6 15.8 16.0

0
20

0
40

0
60

0
80

0

Smoothed signal, window width 5

Retention time

S
ig

na
l i

nt
en

si
ty

15.2 15.4 15.6 15.8 16.0

0
20

0
40

0
60

0
80

0

Smoothed signal, window width 11

Retention time

S
ig

na
l i

nt
en

si
ty

15.2 15.4 15.6 15.8 16.0

0
10

0
30

0
50

0

Smoothed signal, window width 17

Retention time

S
ig

na
l i

nt
en

si
ty

15.2 15.4 15.6 15.8 16.0

0
10

0
30

0
50

0

Smoothed signal, window width 23

Retention time

S
ig

na
l i

nt
en

si
ty

15.2 15.4 15.6 15.8 16.0

−
10

0
10

0
30

0

Smoothed signal, window width 29

Retention time

S
ig

na
l i

nt
en

si
ty

Figure A.2: Effect of window width on smoothing done by the Savitzky-Golay filter.
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Figure A.3: Signal derivatives given by Savitzky-Golay filter with window width 5.
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Figure A.4: Illustration of the effect of the asymmetry parameter on the EGH peak shape.
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Figure A.5: Illustration of the effect of changing the parameter α on the predictive dis-
tribution derived from the normal gamma model. As can be seen, high levels of gamma
cause the distribution to center more quickly around the observation x.
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