
Visualizing Quickest Visibility Maps
Topi Talvitie

Department of Computer Science, University of Helsinki, Finland

Abstract
Consider the following modification to the shortest path query problem in polygonal domains:
instead of finding shortest path to a query point q, we find the shortest path to any point that
sees q. We present an interactive visualization applet visualizing these quickest visibility paths.
The applet also visualizes quickest visibility maps, that is the subdivision of the domain into cells
by the quickest visibility path structure.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases path planning, visibility

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.26

1 Introduction

Finding shortest paths within a polygonal domain is a classical problem in computational
geometry. The query version of the shortest path problem for a fixed point s is

Shortest Path Query: Given a point q, how should we move from s to reach q?

The problem of shortest path queries is solved by building a shortest path map for s, defined
as the decomposition of the domain into cells such that the shortest paths to all points
q within that cell is the same (the only changing vertex is the endpoint q). Consider a
modification of this problem, where we only need to see the query point:

Quickest Visibility Query: Given a point q, how should we move from s to see q?

This kind of query would be natural in applications where it is important to only see or
become seen by the target point, for example for inspecting the query point or establishing
communication with it. Quickest visibility queries were first studied in the case of simple
polygons in [2]. This visualization accompanies the paper [1] which presents algorithms
for the general case of polygons with holes and improves the results in the case of simple
polygons. The visualization applet demonstrates the core concepts of quickest visibility
queries: quickest visibility paths, quickest visibility maps and visibility wave propagation.
These are briefly outlined below. For more formal definitions and proofs please refer to [1].

2 Quickest visibility paths

A quickest visibility path (QVP) from s to q is the shortest path from s to some endpoint t

such that q is visible from t. It is possible that q is directly visible from s. In that case, the
quickest visibility path is the path of length zero from s to s (Fig. 1a). If t lies in the interior
of the domain, the path always enters t orthogonally to line tq, because otherwise we could
adjust the location of t to shorten the path (Fig. 1b). Otherwise t is either in a vertex of a
polygon (Fig. 1c) or on an edge of a polygon such that tq contains a polygon vertex (Fig. 1d).

© Topi Talvitie;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 26–28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/84362788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


T. Talvitie 27

(a) q is directly visible from s. Therefore s = t and
the QVP has length 0.

(b) t lies in free space. The QVP and tq meet
orthogonally in t.

(c) t lies on a polygon vertex. (d) t lies on a polygon edge. Segment tq touches a
polygon vertex.

Figure 1 The four different types of quickest visibility paths from s to q. The quickest visibility
path is drawn as a solid yellow line.

3 Quickest visibility maps

A quickest visibility map (QVM) for a polygonal domain and a source point s is the subdivision
of the domain into cells such that for all points q within a cell, the QVP from s to q has the
same structure. We say that two QVPs have the same structure if the paths differ only in
the last point q, and in the case of paths of type shown in Fig. 1b, the second-to-last point t

that moves when point q moves. See Fig. 2 for an example of a QVM.
Once a QVM has been built for source point s, one can query quickest visibility paths

from s to any q by using point location query data structures to find the QVM cell q lies
in. Therefore QVM is the analogue of shortest paths maps in the case of quickest visibility
paths.

4 Implementation

The visualization applet consists of two parts: the backend library, implemented in C++,
and the user interface, implemented in JavaScript.

The backend implements an algorithm for finding the quickest visibility path to a given
query point. It does not use quickest visibility maps, as exact QVM construction would very
complicated to implement. Instead, it handles quickest visibility paths of types shown in
figures 1a, 1c and 1d by querying shortest paths using the visibility graph. That leaves only
visibility paths of type where the path endpoint lies in free space (Fig. 1b), which can be
found by iterating all polygon vertices v visible to q, and all points from which the extension
of vq is orthogonally visible. This can be implemented simultaneously for all v as two ray

SoCG’15



28 Visualizing Quickest Visibility Maps

Figure 2 A screenshot from the visualization applet, showing the subdivision of the polygonal
domain by the red lines into the quickest visibility map for source point s.

sweeps around q to both directions in O(n log n) time with the help of precomputed shortest
paths to all polygon vertices.

The user interface contains a polygon editor, in which the user can edit the polygon and
set the source point s. It visualizes quickest visibility paths using the backend library. It
draws the QVM by querying the quickest visibility paths to a dense grid of points in the
domain, drawing points of the QVM edges in locations where adjacent grid query points
have different quickest visibility paths. A local optimization algorithm is used to improve
the precision of the QVM edges.

The visualization is a client-side HTML5/JavaScript applet. The backend library is
compiled from C++ to JavaScript using the Emscripten compiler. The precomputation used
for drawing the QVM edges is parallelized using Web Workers, which makes the loading
phase faster in multi-core systems. The applet should work on all modern browsers, including
the newest versions of all major web browsers.

Acknowledgments. The research was supported by the University of Helsinki Research
Funds.

References
1 E. M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf,

and T. Talvitie. Shortest path to a segment and quickest visibility queries. In SoCG, 2015.
2 R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons. In

European Workshop on Computational Geometry, pages 187–190. Technische Universiteit
Eindhoven, 2005.


	Introduction
	Quickest visibility paths
	Quickest visibility maps
	Implementation

