FORMALIZED MATHEMATICS Vol. **23**, No. **3**, Pages 161–176, **2015**

Polish Notation

Taneli Huuskonen¹ Department of Mathematics and Statistics University of Helsinki Finland

Summary. This article is the first in a series formalizing some results in my joint work with Prof. Joanna Golińska-Pilarek ([\[12\]](#page-15-0) and [\[13\]](#page-15-1)) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([\[14\]](#page-15-2)).

We present some *mathematical folklore* about representing formulas in "Polish notation", that is, with operators of fixed arity prepended to their arguments. This notation, which was published by Jan Łukasiewicz in [\[15\]](#page-15-3), eliminates the need for parentheses and is generally well suited for rigorous reasoning about syntactic properties of formulas.

MSC: [68R15](http://zbmath.org/classification/?q=cc:68R15) [03B35](http://zbmath.org/classification/?q=cc:03B35)

Keywords: Polish notation; syntax; well-formed formula

MML identifier: [POLNOT](http://fm.mizar.org/miz/polnot_1.miz)₋₁, version: [8.1.04 5.32.1240](http://ftp.mizar.org/)

The notation and terminology used in this paper have been introduced in the following articles: [\[5\]](#page-14-0), [\[1\]](#page-14-1), [\[4\]](#page-14-2), [\[11\]](#page-15-4), [\[7\]](#page-14-3), [\[8\]](#page-14-4), [\[3\]](#page-14-5), [\[9\]](#page-14-6), [\[16\]](#page-15-5), [\[19\]](#page-15-6), [\[17\]](#page-15-7), [\[18\]](#page-15-8), and [\[10\]](#page-14-7).

1. Preliminaries

From now on k, m, n denote natural numbers, a, b, c, c_1, c_2 denote objects, x, y, z, X, Y, Z denote sets, *D* denotes a non empty set, *p*, *q*, *r*, *s*, *t*, *u*, *v* denote finite sequences, *P*, *Q*, *R*, *P*1, *P*2, *Q*1, *Q*2, *R*1, *R*² denote finite sequencemembered sets, and *S*, *T* denote non empty, finite sequence-membered sets.

Let *D* be a non empty set and *P*, *Q* be subsets of D^* . The functor $\hat{}(D, P, Q)$ yielding a subset of *D[∗]* is defined by the term

¹Work supported by Polish National Science Center (NCN) grant "Logic of language experience" nr 2011/03/B/HS1/04580.

(Def. 1) $\{p \cap q, \text{ where } p \text{ is a finite sequence of elements of } D, q \text{ is a finite sequence}\}$ of elements of $D : p \in P$ and $q \in Q$.

Let us consider P and Q. The functor $P \cap Q$ yielding a finite sequencemembered set is defined by

(Def. 2) for every $a, a \in it$ iff there exists p and there exists q such that $a = p \cap q$ and $p \in P$ and $q \in Q$.

Let β be an empty set. One can check that $\beta \cap P$ is empty and $P \cap \beta$ is empty.

Let us consider *S* and *T*. One can check that $S \cap T$ is non empty. Now we state the propositions:

- (1) If $p \cap q = r \cap s$, then there exists *t* such that $p \cap t = r$ or $p = r \cap t$.
- (2) $(P \cap Q) \cap R = P \cap (Q \cap R)$.

PROOF: For every $a, a \in (P \cap Q) \cap R$ iff $a \in P \cap (Q \cap R)$ by [\[4,](#page-14-2) (32)]. \Box Note that ${$ *⊗* $}$ is non empty and finite sequence-membered.

- (3) (i) $P \cap {\emptyset} = P$, and
	- (ii) $\{\emptyset\} \cap P = P$.

PROOF: For every $a, a \in P$ \cap { \emptyset } iff $a \in P$ by [\[4,](#page-14-2) (34)]. For every a , $a \in \{\emptyset\}$ \cap *P* iff $a \in P$ by [\[4,](#page-14-2) (34)]. □

Let us consider *P*. The functor $P \cap \cap$ yielding a function is defined by

(Def. 3) dom $it = N$ and $it(0) = \{\emptyset\}$ and for every *n*, there exists *Q* such that $Q = it(n)$ and $it(n + 1) = Q \cap P$.

Let us consider *n*. The functor $P \cap n$ yielding a finite sequence-membered set is defined by the term

(Def. 4) $(P \cap \cap)(n)$.

Now we state the proposition:

 (4) $\emptyset \in P \cap 0.$

Let us consider *P*. Let *n* be a zero natural number. Note that $P \cap n$ is non empty.

Let β be an empty set and *n* be a non zero natural number. One can verify that $\beta \cap n$ is empty.

Let us consider P . The functor P^* yielding a non empty, finite sequencemembered set is defined by the term

(Def. 5) Uthe set of all $P \cap n$ where *n* is a natural number.

- (5) $a \in P^*$ if and only if there exists *n* such that $a \in P \cap n$. Let us consider *P*.
- (6) (i) $P^{\frown} 0 = {\emptyset}$, and
	- (ii) for every *n*, $P^{(n)}(n+1) = (P^{(n)}n)^{n}P$.
- (7) $P \cap 1 = P$. The theorem is a consequence of (6) and (3).
- (8) $P \cap n \subseteq P^*$.
- (9) (i) *∅ ∈ P ∗* , and (ii) $P \subseteq P^*$.

The theorem is a consequence of (4) , (5) , and (7) .

- (10) $P^{\frown}(m+n) = (P^{\frown}m) \cap (P^{\frown}n).$ PROOF: Define \mathcal{X} [natural number] $\equiv P \cap (m + \S_1) = (P \cap m) \cap (P \cap \S_1)$. $\mathcal{X}[0]$. For every *k* such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every *k*, $\mathcal{X}[k]$ from [\[2,](#page-14-8) Sch. 2]. \Box
- (11) If $p \in P \cap m$ and $q \in P \cap n$, then $p \cap q \in P \cap (m + n)$. The theorem is a consequence of (10).
- (12) If $p, q \in P^*$, then $p \cap q \in P^*$. The theorem is a consequence of (5) and (11).
- (13) If $P \subseteq R^*$ and $Q \subseteq R^*$, then $P \cap Q \subseteq R^*$. The theorem is a consequence of (12).
- (14) If $Q \subseteq P^*$, then $Q \cap n \subseteq P^*$. PROOF: Define \mathcal{X} [natural number] $\equiv Q \cap \S_1 \subseteq P^*$. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every k, $\mathcal{X}[k]$ from [\[2,](#page-14-8) Sch. 2]. \square
- (15) If $Q \subseteq P^*$, then $Q^* \subseteq P^*$. The theorem is a consequence of (5) and (14).
- (16) If $P_1 \subseteq P_2$ and $Q_1 \subseteq Q_2$, then $P_1 \cap Q_1 \subseteq P_2 \cap Q_2$.
- (17) If $P \subseteq Q$, then for every $n, P \cap n \subseteq Q \cap n$. PROOF: Define S [natural number] $\equiv P \cap \$_1 \subseteq Q \cap \$_1$. $P \cap 0 = \{\emptyset\}$. For every *n* such that $S[n]$ holds $S[n+1]$. For every *n*, $S[n]$ from [\[2,](#page-14-8) Sch. 2]. П

Let us consider *S* and *n*. Let us observe that $S \cap n$ is non empty and finite sequence-membered.

2. The Language

In the sequel α denotes a function from *P* into N and *U*, *V*, *W* denote subsets of *P ∗* .

Let us consider *P*, α , and *U*. The Polish-expression layer(*P*, α , *U*) yielding a subset of *P ∗* is defined by

- (Def. 6) for every $a, a \in it$ iff $a \in P^*$ and there exists p and there exists q and there exists *n* such that $a = p^{\frown} q$ and $p \in P$ and $n = \alpha(p)$ and $q \in U^{\frown} n$. Now we state the proposition:
	- (18) Suppose $p \in P$ and $n = \alpha(p)$ and $q \in U^\frown n$. Then $p^\frown q \in$ the Polish-expression layer(P , α , U). The theorem is a consequence of (14), (9), and (12).

Let us consider *P* and α . The Polish atoms(*P*, α) yielding a subset of *P*^{*} is defined by

(Def. 7) for every $a, a \in it$ iff $a \in P$ and $\alpha(a) = 0$.

The Polish operations(P , α) yielding a subset of P is defined by the term

- (Def. 8) {*t*, where *t* is an element of P^* : $t \in P$ and $\alpha(t) \neq 0$ }. Now we state the propositions:
	- (19) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression layer (P, α, U) . The theorem is a consequence of (4) and (18).
	- (20) Suppose $U \subseteq V$. Then the Polish-expression layer $(P, \alpha, U) \subseteq$ the Polishexpression layer (P, α, V) . The theorem is a consequence of (17).
	- (21) Suppose $u \in$ the Polish-expression layer(*P*, α , *U*). Then there exists *p* and there exists *q* such that $p \in P$ and $u = p \cap q$.

Let us consider *P* and α . The Polish-expression hierarchy(*P*, α) yielding a function is defined by

(Def. 9) dom $it = N$ and $it(0) =$ the Polish atoms(P, α) and for every n , there exists *U* such that $U = it(n)$ and $it(n + 1) =$ the Polish-expression $layer(P, \alpha, U).$

Let us consider *n*. The Polish-expression hierarchy (P, α, n) yielding a subset of *P ∗* is defined by the term

(Def. 10) (the Polish-expression hierarchy $(P, \alpha)(n)$.

Now we state the proposition:

- (22) The Polish-expression hierarchy(P , α , 0) = the Polish atoms(P , α). Let us consider P , α , and n . Now we state the propositions:
- (23) The Polish-expression hierarchy $(P, \alpha, n+1)$ = the Polish-expression layer(*P*, α , the Polish-expression hierarchy(*P*, α , *n*)).
- (24) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression hierarchy $(P, \alpha, n+1)$. PROOF: Define S [natural number] \equiv the Polish-expression hierarchy(*P*, α , $\hat{\mathfrak{s}}_1$) \subseteq the Polish-expression hierarchy(*P*, α , $\hat{\mathfrak{s}}_1$ + 1). *S*[0]. For every *k* such that $S[k]$ holds $S[k+1]$. For every k, $S[k]$ from [\[2,](#page-14-8) Sch. 2]. \square Now we state the proposition:

(25) The Polish-expression hierarchy(P , α , n) \subseteq the Polish-expression hierarchy(P , α , $n + m$).

PROOF: Define S [natural number] \equiv the Polish-expression hierarchy(*P*, α , n) \subseteq the Polish-expression hierarchy(P , α , $n + \mathcal{S}_1$). For every k such that $S[k]$ holds $S[k+1]$. For every k, $S[k]$ from [\[2,](#page-14-8) Sch. 2]. \square

Let us consider *P* and α . The Polish-expression set(*P*, α) yielding a subset of *P ∗* is defined by the term

(Def. 11) U the set of all the Polish-expression hierarchy (P, α, n) where *n* is a natural number.

Now we state the propositions:

- (26) The Polish-expression hierarchy $(P, \alpha, n) \subseteq$ the Polish-expression set (P, α, n) *α*).
- (27) Suppose $q \in$ (the Polish-expression set (P, α)) \cap *n*. Then there exists *m* such that $q \in$ (the Polish-expression hierarchy (P, α, m)) $\cap n$. PROOF: Define S [natural number] \equiv for every *q* such that $q \in$ (the Polishexpression set (P, α)) \hat{S}_1 there exists *m* such that $q \in$ (the Polish-expression hierarchy (P, α, m)) \hat{S}_1 . *S*[0]. For every *k* such that *S*[*k*] holds *S*[*k* + 1]. For every k, $S[k]$ from [\[2,](#page-14-8) Sch. 2]. \square
- (28) Suppose $a \in \text{the Polish-expression set}(P, \alpha)$. Then there exists *n* such that $a \in$ the Polish-expression hierarchy $(P, \alpha, n+1)$. The theorem is a consequence of (24).

Let us consider *P* and *α*.

A Polish expression of *P* and α is an element of the Polish-expression set(*P*, *α*). Let us consider *n* and *t*. Assume *t* $∈$ *P*. The Polish operation(*P*, *α*, *n*, *t*) yielding a function from (the Polish-expression $\text{set}(P, \alpha)$) \cap *n* into P^* is defined by

(Def. 12) for every *q* such that $q \in \text{dom } it$ holds $it(q) = t \cap q$.

Let us consider *X* and *Y.* Let *F* be a partial function from *X* to 2*^Y* . One can check that F is disjoint valued if and only if the condition (Def. 13) is satisfied.

(Def. 13) for every *a* and *b* such that $a, b \in \text{dom } F$ and $a \neq b$ holds $F(a)$ misses *F*(*b*).

Let X be a set. One can check that there exists a finite sequence of elements of 2*^X* which is disjoint valued.

Now we state the proposition:

(29) Let us consider a set *X*, a disjoint valued finite sequence *B* of elements of 2^X , *a*, *b*, and *c*. If $a \in B(b)$ and $a \in B(c)$, then $b = c$ and $b \in \text{dom } B$.

Let us consider *X*. Let *B* be a disjoint valued finite sequence of elements of 2^X . The arity from list *B* yielding a function from *X* into N is defined by

- (Def. 14) for every *a* such that $a \in X$ holds there exists *n* such that $a \in B(n)$ and $a \in B(it(a))$ or there exists no *n* such that $a \in B(n)$ and $it(a) = 0$. Now we state the propositions:
	- (30) Let us consider a disjoint valued finite sequence B of elements of 2^X , and *a*. Suppose $a \in X$. Then (the arity from list $B(a) \neq 0$ if and only if

there exists *n* such that $a \in B(n)$. The theorem is a consequence of (29).

- (31) Let us consider a disjoint valued finite sequence *B* of elements of 2*X*, *a*, and *n*. Suppose $a \in B(n)$. Then (the arity from list $B(a) = n$. The theorem is a consequence of (29).
- (32) Suppose $r \in$ the Polish-expression set(P, α). Then there exists *n* and there exists *p* and there exists *q* such that $p \in P$ and $n = \alpha(p)$ and $q \in$ (the Polish-expression set (P, α)) \cap *n* and $r = p \cap q$. The theorem is a consequence of (28), (23), (26), and (17).

Let us consider P , α , and Q . We say that Q is α -closed if and only if

(Def. 15) for every *p*, *n*, and *q* such that $p \in P$ and $n = \alpha(p)$ and $q \in Q^{\frown} n$ holds $p \cap q \in Q$.

Now we state the propositions:

- (33) The Polish-expression set(P , α) is α -closed. The theorem is a consequence of (27), (18), (23), and (26).
- (34) If *Q* is *α*-closed, then the Polish atoms $(P, \alpha) \subseteq Q$. The theorem is a consequence of (4).
- (35) If *Q* is α -closed, then the Polish-expression hierarchy(*P*, α , *n*) \subseteq *Q*. PROOF: Define \mathcal{X} [natural number] \equiv the Polish-expression hierarchy (P, \cdot) $\alpha, \, \mathcal{S}_1) \subseteq Q$. $\mathcal{X}[0]$. For every *k* such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every *k*, $\mathcal{X}[k]$ from [\[2,](#page-14-8) Sch. 2]. \square
- (36) The Polish atoms $(P, \alpha) \subseteq$ the Polish-expression set (P, α) . The theorem is a consequence of (33) and (34).
- (37) If *Q* is *α*-closed, then the Polish-expression set(*P*, α) \subseteq *Q*. The theorem is a consequence of (28) and (35).
- (38) Suppose $r \in$ the Polish-expression set(P, α). Then there exists *n* and there exists *t* and there exists *q* such that $t \in P$ and $n = \alpha(t)$ and $r =$ (the Polish operation (P, α, n, t)) (q) . The theorem is a consequence of (28) , (23) , (26) , and (17) .
- (39) Suppose $p \in P$ and $n = \alpha(p)$ and $q \in (\text{the Polish-expression set}(P, \alpha))$ *n*. Then (the Polish operation(*P*, α , n , p))(q) \in the Polish-expression set(P , α). The theorem is a consequence of (33).

The scheme *AInd* deals with a finite sequence-membered set *P* and a function α from $\mathcal P$ into N and a unary predicate $\mathcal X$ and states that

- (Sch. 1) For every *a* such that $a \in$ the Polish-expression set(P , α) holds $\mathcal{X}[a]$ provided
	- for every *p*, *q*, and *n* such that $p \in \mathcal{P}$ and $n = \alpha(p)$ and $q \in (\text{the Polish-expression set}(\mathcal{P}, \alpha)) \cap n \text{ holds } \mathcal{X}[p \cap q].$

3. Parsing

In the sequel k , l , m , n , i , j denote natural numbers, a , b , c , c_1 , c_2 denote objects, x, y, z, X, Y, Z denote sets, D, D_1, D_2 denote non empty sets, p, q, r , *s*, *t*, *u*, *v* denote finite sequences, and *P*, *Q*, *R* denote finite sequence-membered sets.

Let us consider *P*. We say that *P* is antichain-like if and only if

(Def. 16) for every *p* and *q* such that *p*, $p \cap q \in P$ holds $q = \emptyset$.

Now we state the propositions:

(40) *P* is antichain-like if and only if for every *p* and *q* such that $p, p \cap q \in P$ holds $p = p \cap q$.

PROOF: If *P* is antichain-like, then for every *p* and *q* such that $p, p \cap q \in P$ holds $p = p \cap q$ by [\[4,](#page-14-2) (34)]. \Box

(41) If $P \subseteq Q$ and Q is antichain-like, then P is antichain-like.

Note that every finite sequence-membered set which is trivial is also antichainlike.

Now we state the proposition:

(42) If $P = \{a\}$, then *P* is antichain-like.

Note that there exists a non empty, finite sequence-membered set which is antichain-like and every finite sequence-membered set which is empty is also antichain-like.

An antichain is an antichain-like, finite sequence-membered set. In the sequel *B*, *C* denote antichains.

Let us consider *B*. One can verify that every subset of *B* is antichain-like and finite sequence-membered.

A Polish-language is a non empty antichain. From now on *S*, *T* denote Polish-languages.

Let *D* be a non empty set and ψ be a subset of D^* . Note that ψ is antichainlike if and only if the condition (Def. 17) is satisfied.

(Def. 17) for every finite sequence *g* of elements of *D* and for every finite sequence *h* of elements of *D* such that $g, g \cap h \in \psi$ holds $h = \varepsilon_D$.

Now we state the proposition:

(43) If $p \cap q = r \cap s$ and $p, r \in B$, then $p = r$ and $q = s$. The theorem is a consequence of (1) and (40).

Let us consider *B* and *C*. Note that $B \cap C$ is antichain-like.

Now we state the propositions:

(44) If for every *p* and *q* such that $p, q \in P$ holds dom $p = \text{dom } q$, then *P* is antichain-like.

PROOF: For every *p* and *q* such that *p*, $p \cap q \in P$ holds $p = p \cap q$ by [\[4,](#page-14-2) (21) . \Box

- (45) If for every *p* such that $p \in P$ holds dom $p = a$, then *P* is antichain-like. The theorem is a consequence of (44).
- (46) If $\emptyset \in B$, then $B = \{\emptyset\}.$

PROOF: For every *a* such that $a \in B$ holds $a = \emptyset$ by [\[4,](#page-14-2) (34)]. \Box

Let us consider *B* and *n*. Note that $B \cap n$ is antichain-like.

Let us consider *T*. Let us observe that there exists a subset of *T [∗]* which is non empty and antichain-like and $T \cap n$ is non empty.

A Polish-language of *T* is a non empty, antichain-like subset of *T ∗* .

A Polish arity-function of *T* is a function from *T* into N and is defined by

(Def. 18) there exists *a* such that $a \in T$ and $it(a) = 0$.

One can verify that every Polish-language of *T* is non empty, antichain-like, and finite sequence-membered.

In the sequel α denotes a Polish arity-function of *T* and *U*, *V*, *W* denote Polish-languages of *T*.

Let us consider *T* and *α*. Let *t* be an element of *T*. Let us observe that the functor $\alpha(t)$ yields a natural number. Let us consider *U*. Note that the Polishexpression layer (T, α, U) is defined by

(Def. 19) for every $a, a \in it$ iff there exists an element t of T and there exists an element *u* of T^* such that $a = t \cap u$ and $u \in U \cap \alpha(t)$.

Let us consider *B* and *p*. We say that *p* is *B*-headed if and only if

(Def. 20) there exists *q* and there exists *r* such that $q \in B$ and $p = q \cap r$. Let us consider *P*. We say that *P* is *B*-headed if and only if

(Def. 21) for every *p* such that $p \in P$ holds *p* is *B*-headed. Now we state the propositions:

- (47) If *p* is *B*-headed and $B \subseteq C$, then *p* is *C*-headed.
- (48) If *P* is *B*-headed and $B \subseteq C$, then *P* is *C*-headed. Let us consider *B* and *P*. Observe that $B \cap P$ is *B*-headed. Now we state the propositions:
- (49) If *p* is $(B \cap C)$ -headed, then *p* is *B*-headed.
- (50) *B* is *B*-headed. The theorem is a consequence of (3).

Let us consider *B*. Let us observe that there exists a finite sequence-membered set which is *B*-headed.

Let *P* be a *B*-headed, finite sequence-membered set. Let us note that every subset of *P* is *B*-headed.

Let us consider *S*. Let us observe that there exists a finite sequence-membered set which is non empty and *S*-headed.

Now we state the proposition:

(51) $S \cap (m+n)$ is $(S \cap m)$ -headed. The theorem is a consequence of (10).

Let us consider *S* and *p*. The functor *S*-head(*p*) yielding a finite sequence is defined by

(Def. 22) (i) $it \in S$ and there exists r such that $p = it \cap r$, if p is S-headed,

(ii) $it = \emptyset$, otherwise.

The functor S -tail (p) yielding a finite sequence is defined by

 (Def. 23) $p = (S\text{-head}(p)) \cap it$.

Now we state the propositions:

- (52) If $s \in S$, then S -head($s \cap t$) = s and S -tail($s \cap t$) = t .
- (53) If $s \in S$, then S -head(s) = s and S -tail(s) = \emptyset . The theorem is a consequence of (52).

Let us consider *S*, *T*, and *u*. Now we state the propositions:

- (54) If $u \in S \cap T$, then *S*-head $(u) \in S$ and *S*-tail $(u) \in T$. The theorem is a consequence of (52).
- (55) If $S \subseteq T$ and *u* is *S*-headed, then *S*-head(*u*) = *T*-head(*u*) and *S*-tail(*u*) = *T*-tail (u) . The theorem is a consequence of (52) .

Now we state the propositions:

- (56) Suppose *s* is *S*-headed. Then
	- (i) $s \cap t$ is *S*-headed, and
	- (ii) S -head($s \cap t$) = S -head(s), and
	- (iii) S -tail $(s \cap t) = (S$ -tail (s)) $\cap t$.

The theorem is a consequence of (52).

- (57) If $m+1 \leq n$ and $s \in S^\frown n$, then *s* is $(S^\frown m)$ -headed and $S^\frown m$ -tail(*s*) is *S*-headed. The theorem is a consequence of (51), (10), (54), and (7).
- (58) (i) *s* is $(S^o 0)$ -headed, and
	- (ii) $S \cap 0$ -head(s) = \emptyset , and
	- (iii) $S^\frown 0$ -tail(*s*) = *s*.

The theorem is a consequence of (4) and (52).

Let us consider *T* and α . One can verify that the Polish atoms (T, α) is non empty and antichain-like.

Let us consider *U*. Let us observe that the Polish-expression layer (T, α, U) is non empty and antichain-like.

One can verify that the Polish-expression layer (T, α, U) yields a Polishlanguage of *T*. The Polish operations(*T*, α) yielding a subset of *T* is defined by the term

(Def. 24) {*t*, where *t* is an element of $T : \alpha(t) \neq 0$ }.

Let us consider *n*. Let us note that the Polish-expression hierarchy (T, α, n) is antichain-like and non empty.

One can check that the Polish-expression hierarchy (T, α, n) yields a Polishlanguage of *T*. The functor Polish-WFF-set (T, α) yielding a Polish-language of *T* is defined by the term

(Def. 25) the Polish-expression set(*T*, α).

A Polish WFF of *T* and α is an element of Polish-WFF-set(*T*, α). Let *t* be an element of *T*. The Polish operation(*T*, α , *t*) yielding a function from Polish-WFF-set $(T, \alpha) \cap \alpha(t)$ into Polish-WFF-set (T, α) is defined by the term

(Def. 26) the Polish operation $(T, \alpha, \alpha(t), t)$.

Assume $\alpha(t) = 1$. The functor Polish-unOp(T, α , t) yielding a unary operation on Polish-WFF-set (T, α) is defined by the term

(Def. 27) the Polish operation(*T*, α , *t*).

Assume $\alpha(t) = 2$. The functor Polish-bin $Op(T, \alpha, t)$ yielding a binary operation on Polish-WFF-set (T, α) is defined by

(Def. 28) for every *u* and *v* such that $u, v \in$ Polish-WFF-set(T, α) holds $it(u, v)$ = (the Polish operation (T, α, t)) $(u \cap v)$.

In the sequel φ , ψ denote Polish WFFs of *T* and α .

Let us consider *X* and *Y*. Let *F* be a partial function from *X* to 2^Y . We say that *F* is exhaustive if and only if

(Def. 29) for every *a* such that $a \in Y$ there exists *b* such that $b \in \text{dom } F$ and $a \in F(b)$.

Let X be a non empty set. Observe that there exists a finite sequence of elements of 2*^X* which is non exhaustive and disjoint valued.

Now we state the proposition:

(59) Let us consider a partial function *F* from *X* to 2^Y . Then *F* is not exhaustive if and only if there exists *a* such that $a \in Y$ and for every *b* such that $b \in \text{dom } F$ holds $a \notin F(b)$.

Let us consider *T*. Let *B* be a non exhaustive, disjoint valued finite sequence of elements of 2*^T* . The Polish arity from list *B* yielding a Polish arity-function of *T* is defined by the term

(Def. 30) the arity from list *B*.

One can check that there exists an antichain-like, finite sequence-membered set which has non empty elements and there exists a Polish-language which is non trivial and every antichain-like, finite sequence-membered set which is non trivial has also non empty elements.

Let us consider *S*, *n*, and *m*. Let *p* be an element of $S \cap (n+1+m)$. The functor decomp(S, n, m, p) yielding an element of S is defined by the term

$$
(Def. 31) \quad S\text{-head}(S \cap n\text{-tail}(p)).
$$

Let p be an element of $S \cap n$. The functor decomp(S, n, p) yielding a finite sequence of elements of *S* is defined by

(Def. 32) dom $it = \text{Seg } n$ and for every m such that $m \in \text{Seg } n$ there exists k such that $m = k + 1$ and $it(m) = S$ -head($S \cap k$ -tail(p)).

Now we state the propositions:

- (60) Let us consider an element *s* of $S \cap n$, and an element *t* of $T \cap n$. If $S \subseteq T$ and $s = t$, then decomp $(S, n, s) =$ decomp (T, n, t) . PROOF: Set $p = \text{decomp}(S, n, s)$. Set $q = \text{decomp}(T, n, t)$. For every a such that *a* ∈ Seg *n* holds $p(a) = q(a)$ by (17), [\[4,](#page-14-2) (1)], (57), (55). □
- (61) Let us consider an element *q* of $S \cap 0$. Then decomp(*S*, 0*, q*) = \emptyset .
- (62) Let us consider an element *q* of $S^n n$. Then len decomp $(S, n, q) = n$.
- (63) Let us consider an element *q* of $S \cap 1$. Then decomp $(S, 1, q) = \langle q \rangle$. The theorem is a consequence of (7) , (58) , (53) , and (62) .
- (64) Let us consider elements p, q of S, and an element r of $S \supseteq 2$. Suppose $r = p^{\frown} q$. Then decomp $(S, 2, r) = \langle p, q \rangle$. The theorem is a consequence of (58) , (52) , (7) , (53) , and (62) .
- (65) Polish-WFF-set(T, α) is T -headed. The theorem is a consequence of (28), (23), and (21).
- (66) The Polish-expression hierarchy (T, α, n) is *T*-headed. The theorem is a consequence of (26) and (65).

Let us consider T, α , and φ . The functor Polish-WFF-head φ yielding an element of *T* is defined by the term

(Def. 33) *T*-head(φ).

Let us consider *n*. Let φ be an element of the Polish-expression hierarchy(*T*, α , *n*). The functor Polish-WFF-head φ yielding an element of *T* is defined by the term

 $(Def. 34)$ *T*-head (φ) .

Let us consider *ϕ*. The Polish arity *ϕ* yielding a natural number is defined by the term

(Def. 35) α (Polish-WFF-head φ).

Let us consider *n*. Let φ be an element of the Polish-expression hierarchy(*T*, α , *n*). The Polish arity φ yielding a natural number is defined by the term

(Def. 36) α (Polish-WFF-head φ).

Now we state the propositions:

- (67) *T*-tail(φ) \in Polish-WFF-set(*T*, α) \cap (the Polish arity φ). The theorem is a consequence of (32) and (52).
- (68) Let us consider an element φ of the Polish-expression hierarchy(*T*, α , $n + 1$). Then *T*-tail $(\varphi) \in$ (the Polish-expression hierarchy (T, α, n)) (the Polish arity φ). The theorem is a consequence of (23) and (52).

Let us consider *T*, α , and φ . The functor (T, α) -tail φ yielding an element of Polish-WFF-set (T, α) $\hat{ }$ (the Polish arity φ) is defined by the term

```
(Def. 37) T-tail(\varphi).
```
Now we state the proposition:

(69) If *T*-head(φ) \in the Polish atoms(*T*, α), then $\varphi = T$ -head(φ). The theorem is a consequence of (67) and (6).

Let us consider *T*, α , and *n*. Let φ be an element of the Polish-expression hierarchy(*T*, α , *n*+1). The functor (T, α) -tail φ yielding an element of (the Polishexpression hierarchy(*T*, α , *n*)) $\hat{}$ (the Polish arity φ) is defined by the term

```
(Def. 38) T-tail(\varphi).
```
Let us consider *ϕ*. The functor Polish-WFF-args *ϕ* yielding a finite sequence of elements of Polish-WFF-set (T, α) is defined by the term

(Def. 39) decomp(Polish-WFF-set(*T*, α), the Polish arity φ , (T, α) -tail φ).

Let us consider *n*. Let φ be an element of the Polish-expression hierarchy(*T*, α , $n+1$). The functor Polish-WFF-args φ yielding a finite sequence of elements of the Polish-expression hierarchy (T, α, n) is defined by the term

(Def. 40) decomp(the Polish-expression hierarchy(T, α , n), the Polish arity φ , (T, α) -tail φ).

Now we state the propositions:

- (70) Let us consider an element *t* of *T*, and *u*. Suppose $u \in$ Polish-WFF-set $(T, \alpha) \cap \alpha(t)$. Then *T*-tail((the Polish operation(*T*, α , *t*))(*u*)) = *u*. The theorem is a consequence of (52).
- (71) Suppose $\varphi \in \text{the Polish-expression hierarchy}(T, \alpha, n+1)$. Then rng Polish-WFF-args $\varphi \subseteq$ the Polish-expression hierarchy(*T*, α , *n*). The theorem is a consequence of (60) and (26).
- (72) Let us consider a finite sequence *p*, a function *f* from *Y* into *D*, and a function *g* from *Z* into *D*. Suppose $\text{rng } p \subseteq Y$ and $\text{rng } p \subseteq Z$ and for every *a* such that $a \in \text{rng } p$ holds $f(a) = g(a)$. Then $f \cdot p = g \cdot p$. PROOF: Reconsider $p_1 = p$ as a finite sequence of elements of *Y*. Reconsider $q = f \cdot p_1$ as a finite sequence. Reconsider $p_2 = p$ as a finite sequence of elements of *Z*. Reconsider $r = g \cdot p_2$ as a finite sequence. $q = r$ by [\[6,](#page-14-9) (33)], $[4, (1)], [7, (13), (3)]. \square$ $[4, (1)], [7, (13), (3)]. \square$ $[4, (1)], [7, (13), (3)]. \square$ $[4, (1)], [7, (13), (3)]. \square$

Let us consider *T*, α , and *D*. The Polish recursion-domain (α, D) yielding a subset of $T \times D^*$ is defined by the term

(Def. 41) $\{t, p\}$, where *t* is an element of *T*, *p* is a finite sequence of elements of $D: \text{len } p = \alpha(t)$.

A Polish recursion-function of α and D is a function from the Polish recursiondomain(α , *D*) into *D*. From now on *f* denotes a Polish recursion-function of α and *D* and γ , γ_1 , γ_2 denote functions from Polish-WFF-set(*T*, α) into *D*.

Let us consider *T*, α , *D*, f , and γ . We say that γ is *f*-recursive if and only if

(Def. 42) for every φ , $\gamma(\varphi) = f(\langle T\text{-head}(\varphi), \gamma \cdot \text{Polish-WFF-args} \varphi \rangle)$.

Now we state the proposition:

(73) If γ_1 is *f*-recursive and γ_2 is *f*-recursive, then $\gamma_1 = \gamma_2$. The theorem is a consequence of (36), (17), (33), (52), (60), (72), and (37).

From now on *L* denotes a non trivial Polish-language, *β* denotes a Polish arity-function of *L*, *g* denotes a Polish recursion-function of β and D , *J*, *J*₁ denote subsets of Polish-WFF-set (L, β) , *H* denotes a function from *J* into *D*, H_1 denotes a function from J_1 into D .

Let us consider L, β, D, g, J , and H . We say that H is *g*-recursive if and only if

(Def. 43) for every Polish WFF φ of *L* and β such that $\varphi \in J$ and rng Polish-WFF-args $\varphi \subseteq J$ holds $H(\varphi) = g(\langle L\text{-head}(\varphi), H\cdot \text{Polish-WFF-args}\varphi\rangle).$

Now we state the propositions:

- (74) There exists *J* and there exists *H* such that $J =$ the Polish-expression hierarchy(L, β, n) and H is *g*-recursive. PROOF: Define \mathcal{X} [natural number] \equiv there exists *J* and there exists *H* such that $J =$ the Polish-expression hierarchy $(L, \beta, \$_1)$ and *H* is *g*-recursive. For every *n*, $\mathcal{X}[n]$ from [\[2,](#page-14-8) Sch. 2]. \square
- (75) There exists a function γ from Polish-WFF-set (L, β) into *D* such that γ is *g*-recursive.

PROOF: Set $W = \text{Polish-WFF-set}(L, \beta)$. Define $\mathcal{X}[\text{object}, \text{object}] \equiv \text{there}$ exists *n* and there exists J_1 and there exists H_1 such that J_1 = the Polishexpression hierarchy(*L*, β , *n*) and H_1 is *g*-recursive and $\$_1 \in J_1$ and $\$_2 =$ *H*₁(\mathcal{F}_1). For every *a* such that $a \in W$ there exists *b* such that $b \in D$ and $\mathcal{X}[a, b]$ by (28), (74), [\[8,](#page-14-4) (5)]. Consider γ being a function from *W* into *D* such that for every *a* such that $a \in W$ holds $\mathcal{X}[a, \gamma(a)]$ from [\[8,](#page-14-4) Sch. 1]. \square

(76) Let us consider an element *t* of *L*. Then the Polish operation(*L*, β , *t*) is one-to-one.

PROOF: Set $f =$ the Polish operation(L, β, t). For every a and b such that *a*, *b* ∈ dom *f* and $f(a) = f(b)$ holds $a = b$ by [\[4,](#page-14-2) (33)]. □

- (77) Let us consider elements *t*, *u* of *L*. Suppose rng(the Polish operation(*L*, *β*, *t*)) meets rng(the Polish operation(*L*, *β*, *u*)). Then $t = u$. The theorem is a consequence of (43).
- (78) Let us consider an element *t* of *L*, and *a*. Suppose $a \in \text{dom}(\text{the Polish})$ operation(L, β, t)). Then there exists *p* such that
	- (i) $p =$ (the Polish operation(*L*, β , *t*))(*a*), and
	- (ii) L -head(p) = t .

The theorem is a consequence of (52).

Let us consider *L*, β , an element *t* of *L*, and a Polish WFF φ of *L* and β . Now we state the proposition:

(79) Polish-WFF-head $\varphi = t$ if and only if there exists an element *u* of Polish-WFF-set $(L, \beta) \cap \beta(t)$ such that $\varphi =$ (the Polish operation(*L*, β , $t(x)$ The theorem is a consequence of (52) .

Let us assume that $\beta(t) = 1$. Now we state the propositions:

- (80) If Polish-WFF-head $\varphi = t$, then there exists a Polish WFF ψ of *L* and *β* such that *ϕ* = (Polish-unOp(*L, β, t*))(*ψ*). The theorem is a consequence of (79) and (7).
- (81) (i) Polish-WFF-head((Polish-un $Op(L, \beta, t)(\varphi) = t$, and

(ii) Polish-WFF-args($(Polish-unOp(L, \beta, t))(\varphi) = \langle \varphi \rangle$.

The theorem is a consequence of (7) , (79) , (70) , and (63) .

Now we state the proposition:

(82) Suppose $\beta(t) = 2$. Then suppose Polish-WFF-head $\varphi = t$. Then there exist Polish WFFs ψ , *H* of *L* and β such that $\varphi = (Poiish\text{-}binOp(L, \beta, t))$ (ψ, H) . The theorem is a consequence of (79), (6), and (7).

Now we state the propositions:

- (83) Let us consider an element *t* of *L*. Suppose $\beta(t) = 2$. Let us consider Polish WFFs *ϕ*, *ψ* of *L* and *β*. Then
	- (i) Polish-WFF-head(Polish-bin $Op(L, \beta, t)(\varphi, \psi) = t$, and
	- (ii) Polish-WFF-args(Polish-bin $Op(L, \beta, t)$)(φ, ψ) = $\langle \varphi, \psi \rangle$.

The theorem is a consequence of (7) , (11) , (79) , (64) , and (70) .

(84) Let us consider a Polish WFF φ of *L* and β . Then $\varphi \in$ the Polish atoms(*L*, β) if and only if the Polish arity $\varphi = 0$. The theorem is a consequence of (53) , (67) , and (6) .

(85) Let us consider a function γ from Polish-WFF-set(L, β) into D , an element *t* of *L*, and a Polish WFF φ of *L* and β . Suppose γ is *g*-recursive and $\beta(t) = 1$. Then $\gamma((\text{Polish-unOp}(L, \beta, t))(\varphi)) = g(t, \langle \gamma(\varphi) \rangle)$. The theorem is a consequence of (81).

Let us consider *S*. Let *p* be a finite sequence of elements of *S*. The functor Flat(*p*) yielding an element of $S \cap \text{len } p$ is defined by

 $(Def. 44) \quad \text{decomp}(S, \text{len } p, it) = p.$

Let us consider *L* and *β*.

A substitution of *L* and *β* is a partial function from the Polish atoms(*L*, *β*) to Polish-WFF-set(*L, β*). Let *s* be a substitution of *L* and *β*. The functor Subst *s* yielding a Polish recursion-function of β and Polish-WFF-set (L, β) is defined by

(Def. 45) for every element *t* of *L* and for every finite sequence *p* of elements of Polish-WFF-set (L, β) such that len $p = \beta(t)$ holds if $t \in \text{dom } s$, then $it(t, p) = s(t)$ and if $t \notin \text{dom } s$, then $it(t, p) = t \cap \text{Flat}(p)$.

Let φ be a Polish WFF of *L* and β . The functor $s[\varphi]$ yielding a Polish WFF of *L* and β is defined by

- (Def. 46) there exists a function *H* from Polish-WFF-set (L, β) into Polish-WFF-set(L, β) such that H is (Subst *s*)-recursive and $it = H(\varphi)$. Now we state the proposition:
	- (86) Let us consider a substitution *s* of *L* and β , and a Polish WFF φ of *L* and β . If $s = \emptyset$, then $s[\varphi] = \varphi$. PROOF: Set $W = \text{Polish-WFF-set}(L, \beta)$. Set $q = \text{Subst } s$. Set $\gamma = \text{id}_W$. γ is *g*-recursive by (62), [\[6,](#page-14-9) (32), (33)], [\[7,](#page-14-3) (3), (17), (13)]. \square

REFERENCES

- [1] Grzegorz Bancerek. [Cardinal numbers.](http://fm.mizar.org/1990-1/pdf1-2/card_1.pdf) *Formalized Mathematics*, 1(**2**):377–382, 1990.
- [2] Grzegorz Bancerek. [The fundamental properties of natural numbers.](http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf) *Formalized Mathematics*, 1(**1**):41–46, 1990.
- [3] Grzegorz Bancerek. [The ordinal numbers.](http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf) *Formalized Mathematics*, 1(**1**):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. [Segments of natural numbers and finite](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) [sequences.](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [5] Czesław Byliński. [Binary operations.](http://fm.mizar.org/1990-1/pdf1-1/binop_1.pdf) *Formalized Mathematics*, 1(**1**):175–180, 1990.
- [6] Czesław Byliński. [Finite sequences and tuples of elements of a non-empty sets.](http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf) *Formalized Mathematics*, 1(**3**):529–536, 1990.
- [7] Czesław Byliński. [Functions and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf) *Formalized Mathematics*, 1(**1**): 55–65, 1990.
- [8] Czesław Byliński. [Functions from a set to a set.](http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf) *Formalized Mathematics*, 1(**1**):153–164, 1990.
- [9] Czesław Byliński. [Partial functions.](http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf) *Formalized Mathematics*, 1(**2**):357–367, 1990.
- [10] Czesław Byliński. [Some basic properties of sets.](http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf) *Formalized Mathematics*, 1(**1**):47–53, 1990.
- [11] Agata Darmochwał. [Finite sets.](http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf) *Formalized Mathematics*, 1(**1**):165–167, 1990.
- [12] Joanna Golińska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. *Studies in Logic, Grammar and Rhetoric*, 40(27), 2012.
- [13] Joanna Golińska-Pilarek and Taneli Huuskonen. Grzegorczyk's non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, *Applications of Formal Philosophy: The Road Less Travelled*, Logic, Reasoning and Argumentation. Springer, 2015.
- [14] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. *Zagadnienia Naukoznawstwa*, XLVII(4), 2012. In Polish.
- [15] Jan Łukasiewicz. Uwagi o aksjomacie Nicoda i 'dedukcji uogólniającej'. In *Księga pamiątkowa Polskiego Towarzystwa Filozoficznego*, Lwów, 1931. In Polish.
- [16] Andrzej Nędzusiak. [Probability.](http://fm.mizar.org/1990-1/pdf1-4/prob_2.pdf) *Formalized Mathematics*, 1(**4**):745–749, 1990.
- [17] Beata Padlewska. [Families of sets.](http://fm.mizar.org/1990-1/pdf1-1/setfam_1.pdf) *Formalized Mathematics*, 1(**1**):147–152, 1990.
- [18] Zinaida Trybulec. [Properties of subsets.](http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf) *Formalized Mathematics*, 1(**1**):67–71, 1990.
- [19] Edmund Woronowicz. [Relations and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf) *Formalized Mathematics*, 1 (**1**):73–83, 1990.

Received April 30, 2015