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AA  Activity area 

AACR American association for cancer research  

ABC  Activated B-cell-like subtype  

AGCT Adult granulosa cell tumor  

ALL  Acute lymphoblastic leukemia  

AML  Acute myeloid leukemia 

AUC  Area under the curve 
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ROC  Receiver operator characteristic  

SVM  Support vector machines 

TAS  Target addiction scoring 

WBC  White blood cells 
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ABSTRACT 
 

Despite recent progress in the field of molecular medicine, the treatment and 

cure of complex diseases such as cancer remains a challenge. Development 

of resistance to first-line chemotherapy is a common cause of current 

anticancer treatment failure. To deal with this problem, the personalized 

medicine (PM) approach has been adapted toward more targeted cancer 

research and management. The PM approach is based on each patient’s 

genetic, epigenetic and drug response profiling, which is used to design the 

best treatment option for the given patient. As the PM approach is increasingly 

being adopted in clinical practice, there is an urgent need for computational 

models and data mining methods that allow fast processing and analysis of 

the massive relevant profiling datasets.   

 

High-throughput drug screening enables systematic profiling of cellular 

responses to a wide collection of oncology compounds and their 

combinations, hence providing an unbiased strategy for personalized drug 

treatment selection. However, screening experiments with patient-derived 

cell samples often results in high-dimensional data matrices, with inherent 

sources of noise. This complicates many downstream analyses, such as the 

detection of differential drug activity or understanding the mechanisms behind 

drug sensitivity and resistance in a given patient.  

 

To meet these challenges, a computational pipeline for drug response 

profiling was developed in this thesis. The pipeline was based on a novel 

metric to quantify drug response, called the drug sensitivity score (DSS). 

Further, by combining the normalized drug response profile of each cancer 

sample with a global drug-target interaction network, a target addiction score 

(TAS) was developed to de-convolute the selective protein targets and obtain 

knowledge on their functional importance. Finally, delta scoring was 
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developed to quantify drug combination effects and to address the problem 

of the clonal evolution of cancer, which often leads to resistance to mono 

therapies. 

 

This novel computational pipeline improves understanding of cancer 

development and translates compound activities into informed treatment 

choices for clinicians. As exemplified in two case studies of adult acute 

myeloid leukemia (AML) and adult granulosa cell tumor (AGCT), the models 

developed here have the potential to significantly contribute to the effective 

analysis of data from individual cancer patients and from pan-cancer cell line 

panels. Hence, these models will play a substantial role in future personalized 

cancer treatment strategies and the selection of effective treatment options 

for individual cancer patients. 
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INTRODUCTION 
 

Cancer is a complex heterogeneous disease that has inter- and intra-tumor 

heterogeneity. Inter-tumor heterogeneity exists between tumors, whereas 

intra-tumor heterogeneity occurs within a tumor. Inter-tumor heterogeneity 

originates from genetic, epigenetic and phenotypic variations between tumors 

of different tissue origin, cell types and individuals, as well as variations 

between individuals with the same tumor type (Burrell et al., 2013; Heppner, 

1984; Janku, 2014; Loewe, 1953; Meacham and Morrison, 2013; Vogelstein 

et al., 2013; Wild, 2012). Although our understanding of tumor biology has 

advanced, the clinical success of targeted therapies remains limited. The 

inter- and intra-tumor heterogeneity of a tumor is one of the biggest 

challenges in cancer treatment (Janku, 2014; Vogelstein et al., 2013). 

Therefore, clinics urgently need to find new approaches for developing 

effective anticancer treatments. 

 

High-throughput drug screening (HTDS) is a functional approach to testing 

large numbers of compounds, to find the best hits for phenotype-based drug 

discovery or drug repurposing for the personalized treatment of cancer. HTDS 

can be implemented as an automated operation platform with a highly 

sensitive compound testing system (Liu et al., 2004; Macarron et al., 2011). 

Because of its high efficiency and low cost, HTDS provides the opportunity to 

profile cellular responses to a large collection of compounds, providing an 

unbiased means for selecting personalized treatment (Pemovska et al., 2013; 

Tyner et al., 2013). However, this approach often results in high-dimensional 

datasets, complicating many downstream analyses, such as the detection of 

differential drug activity or the prediction of drug sensitivity and resistance. 

 

Drug sensitivity is often measured using a single parameter, such as half 

maximal inhibitory concentration (IC50), half maximal effective concentration 
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(EC50) or half maximal growth inhibition (GI50; Marx et al., 2003). As these are 

only a point estimation of the drug response curve, such parameters cannot 

capture the complete information from the complex dose-response curves. In 

HTDS settings, going through thousands of drug response curves visually to 

remove inconsistencies is a demanding task. In the personalized medicine 

setting in particular, drawing conclusions to clinically translate the drug 

response is difficult, due to potential side effects to normal cells. Thus, we 

need a better model for the quantification of drug sensitivity, especially for 

scoring the differential drug response between patient and control samples. 

 

Although the genome sequencing of cancer samples provides a valuable 

molecular profile, extracting key information from this and translating it for 

clinics remains a challenge. Compared to genomic or transcriptomic profiles, 

functional classification of cancer based on drug screening profiling may 

provide more actionable outcomes for clinical utility. The drug sensitivity and 

resistance of a cell is highly dependent on a set of cellular targets. HTDS, 

combined with drug target profiles, enables systematic mapping of the drug 

response phenotype to the genotypic dependencies of cancer cells, leading 

to the identification of the cellular targets responsible for the drug response. 

Such an integrated approach offers insights into the mechanism of the action 

of the compounds and their efficacies in specific cell or cancer types. This is 

called target deconvolution (Gujral et al., 2014; Lee and Bogyo, 2013). 

However, there is currently a lack of systematic approaches that use drug 

response profiling to reveal target dependencies in an unbiased manner. 

 

Because of inter and intra-tumor heterogeneity, a patient often develops 

resistance to single drug treatments. It is therefore necessary to develop a 

combinatorial drug treatment strategy for improved efficacy, overcoming 

resistance and an improved clinical outcome (Fitzgerald et al., 2006; Flaherty 

et al., 2012; Lehár et al., 2009). HTDS makes it possible to systematically 
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evaluate a number of pairwise drug combinations (Borisy et al., 2003). Drug 

combination classes, such as synergistic or antagonistic, are derived from the 

difference in observed and expected combination responses. The expected 

response is calculated on the basis of a selected non-interaction reference 

model. Most reference models have been developed for low throughput drug 

combination experiments, making model assumptions invalid for the complex 

drug interactions of various compound and dose pairs. Therefore, improved 

reference models are needed, especially for high-throughput combination 

studies. 
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LITERATURE REVIEW 

1. Cancer as a complex disease 

According to the web definition by the American Association for Cancer 

Research (AACR), cancer is not a single disease; it encompasses over 200 

diseases, and is characterized by uncontrolled division or proliferation of 

abnormal cells in a part of the body 

(https://www.aacrfoundation.org/Pages/what-is-cancer.aspx). According to 

this definition, cancer is a complex and heterogeneous disease, due to the 

contribution of a combination of predisposing genetic variants and 

environmental factors (Lindblom et al., 2004). The complexity of cancer is 

also associated with tumor heterogeneity through morphological and 

epigenetic plasticity and clonal evolution (Loewe, 1953). According to a study 

by Anand et al., genetic factors contribute to only 5%–10% of the total cancer 

risk, and environmental factors are the major contributor to cancer risk, at 

90%–95% (Anand et al., 2008). It is also known that only 5%–10% of all 

cancer is due to an inherited genetic defect (Anand et al., 2008). Gene 

alteration or mutation causes many cancer phenotypes, and are a result of 

the interaction of the genes with the environment (Anand et al., 2008). Hence, 

molecular characterization becomes a real challenge. Despite substantial 

research and studies on the molecular classification of various cancer types 

and subtypes, most of them still remain poorly characterized. 

 

Over one hundred types of cancer exist (http://www.cancer.gov/about-

cancer/what-is-cancer). Cancer type classifications are usually based on the 

organ or tissue in which the tumor arises. The two broad types of cancer are 

solid and liquid, depending on where in the body the cancer grows 

(https://www.stjude.org/treatment/disease/solid-tumors/what-is-solid-

tumor.html). Solid tumors form a mass or lump of tissue in different body 

parts, such as the ovary or breast. Liquid tumors, such as leukemia or 
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lymphoma, on the other hand, are not usually localized to any specific area 

and originate due to alterations in hematopoietic or lymphoid tissues. Some 

lymphomas, however, may be localized to the lymph node 

(https://www.verywell.com/cancer-types-4013927). According to the type of 

cells from which they originate, cancers are also divided into six major groups 

such as carcinomas, lymphomas, leukemias, myeloma, sarcomas and mixed 

types (https://training.seer.cancer.gov/disease/categories/classification.html) 

 

Leukemia is a hematological cancer caused by an uncontrolled increase in 

the number of white blood cells (WBC), which crowd out normal blood cells. 

This means that the body cannot get enough oxygen to its tissues, control 

bleeding or fight infections. There are four common types of leukemia: Acute 

myeloid leukemia (AML), chronic myeloid leukemia (CML), acute 

lymphoblastic leukemia (ALL), and chronic lymphoblastic leukemia (CLL).  

AML is a heterogeneous hematological cancer, which is characterized by the 

infiltration of bone marrow, blood, and other tissues, caused by the abnormal 

differentiation and clonal evolution of the myeloid progenitor cells. AML is 

cured in only around 40% of adult patients aged under 60. The heterogeneity 

of AML has been known for a long time, yet no great improvement in the 

treatment has been seen so far (Longo et al., 2015; Saultz and Garzon, 2016). 

Ovarian cancer is a solid type of cancer that originates from abnormal cells in 

the ovaries of women. It is often not detected until it has spread within the 

pelvis and abdomen. Ovarian cancer is difficult to treat at the late stage and 

is therefore frequently fatal. Ovarian cancer is the fifth most common cancer 

among females. It is also a leading cause of mortality from gynecological 

cancers. About 70% of ovarian carcinomas are not diagnosed until a late 

stage. Therefore, early diagnosis and treatment are essential (Argento et al., 

2008). Although there are many types of ovarian cancer, about 80% of 

malignancies arise from the epithelium of the ovary (Shepherd, 2000).  

Adult granulosa cell tumor (AGCT) is a type of rare ovarian cancer of non-
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epithelial origin, accounting for 2%–5% of ovarian malignancies and 70% of 

sex chord-stromal tumors (Mancari et al., 2014; Pectasides et al., 2008). 

AGCTs occur in a young age group and are usually detected at an early stage, 

often having features of hyperestrogenism (Kottarathil et al., 2013; Mancari 

et al., 2014). A mutation of the transcription factor FOXL2 is associated with 

97% of the AGCT patients. SMAD3, the regulator of CCND2 and the 

transcription factor GATA4, has also been identified as a potential diagnostic 

biomarker and therapeutic target (Mancari et al., 2014). 

Despite all the technological and molecular advances towards the 

development of new anticancer treatments, resistance to drug treatments 

continues to be a major clinical challenge. To overcome resistance to 

monotherapies, different drugs in different combinations can be tested in pre-

clinical assays before clinical trials. For instance, already over fifty years ago 

it was discovered that testicular cancers can be successfully treated with a 

different combination of an alkylating agent, an antimetabolite and the 

antibiotic actinomycin D (Li, 1960). After these first studies, many drug 

combinations have been approved for the clinical treatment of various cancer 

types (http://www.cancer.gov/about-cancer/treatment/drugs). 

 

2. Personalized medicine: The future of cancer 
medicine 

Personalized medicine is a broad and rapidly growing field of health care. It 

is an approach to tailoring treatment for each individual patient on the basis 

of their unique clinical, genetic, epigenetic, and environmental information 

(Chan and Ginsburg, 2011).  It is also sometimes defined as P4 medicine i.e. 

predictive, preventive, personalized, and participatory (Hood and Flores, 

2012). The main goals of personalized medicine are 1) to identify the optimal 

treatment for each individual patient; 2) to maximize the treatment benefit; 
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and 3) to minimize adverse effects (Schleidgen et al., 2013). The approach 

suits the treatment of complex, heterogeneous diseases such as cancers; 

however, many challenges need to be overcome before it can be actionable 

in clinics. There is currently no standard way of carrying out personalized 

treatment optimization. To fully meet the promise of P4, medicine requires the 

development of standardized experimental platforms and computational 

models to handle multiscale and multivariate data (Hood and Flores, 2012). 

 

3. Functional compound screening 

High-throughput compound screening is often divided into two categories: 

Biochemical assays and cell-based assays (An and Tolliday, 2009; Zang et 

al., 2012). Biochemical assays involve the specific binding of compounds to 

the interesting targets in a homogeneous reaction (An and Tolliday, 2009). 

The limitation of this method is that not all the targets can be purified for 

biochemical measurements, and also that the assay may not represent a 

tissue-specific response because of cell complexity (Zang et al., 2012). Cell-

based assays are of three types: Second messenger assays,  reporter gene 

assays, and cell proliferation/toxicity assays (An and Tolliday, 2009; Zang et 

al., 2012). In recent publications, different cell-based assays have been used 

for high-throughput compound screening (Barretina et al., 2012; Basu et al., 

2013; Garnett et al., 2012; Pemovska et al., 2013; Shoemaker, 2006). It has 

also been recently demonstrated that different experimental parameters, such 

as the storage of compounds, growth medium, cell viability assay, cell plating, 

and drug concentration range may have a substantial impact on the data 

generated, and may influence drug testing results (Gautam et al., 2016; 

Haibe-Kains et al., 2013; Hatzis et al., 2014; Haverty et al., 2016). 

Standardized guidelines for choosing different experimental parameters and 

making data more consistent between laboratories are critical if we are to 

improve data sharing and reusability.  
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4. Quantification of compound activity 
 

When cells are treated with chemical compounds, they respond. The 

response is often measured as percentage cell viability, death, growth, or 

inhibition. The compound response across different concentrations is often 

modeled using the sigmoidal/logistic function, providing fitting parameters 

such as half maximal inhibitory concentration (IC50) (Barretina et al., 2012; 

Cheng and Prusoff, 1973; Garnett et al., 2012; Sebaugh, 2011), half maximal 

effective concentration (EC50) (Sebaugh, 2011), or half maximal growth 

inhibition (GI50) (Marx et al., 2003). The above metrics are highly sensitive to 

the number of cell divisions taking place over the time of the drug response 

assay (Hafner et al., 2016). Perhaps the most commonly used sigmoidal 

function for dose-response curve fitting is  

 

𝑦 = 𝑑 +
𝑎 − 𝑑

1 + 10) *+,   Eq.1 

 

Here, a is the maximal drug response, i.e. top asymptote of the sigmoid curve; 

b is the slope of the curve; c is the IC50 / EC50 / GI50; d is the minimal drug 

response, i.e. bottom asymptote of the sigmoid curve; x is a variable 

concentration; and y is the observed drug response. 
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Figure 1: Drug response before and after logistic curve fitting. Drug response 

measured as percent inhibition (top left) or percent viability (bottom left) at 

different concentrations (left panel) and logistic fitting of the drug dose-

response curve (right panel). IC50, GI50 and EC50 are the logistic fitting 

parameters to be estimated. 

 

The standard response measures, such as IC50, EC50 and GI50, are point 

estimates of the drug/compound response curve (Figure 1). Drug response 

measures can be either absolute or relative. The absolute IC50 /EC50 /GI50 

measure is a response corresponding to 50% control, whereas the relative 

measure corresponds to a response halfway between the lower and upper 

plateaus (Sebaugh, 2011). The IC50 estimate can be improved if the slope of 

IC50
GI50

EC50
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the dose response curve is a property of the cell line and does not change 

with the specific compound. According to this assumption, the center of the 

dose response curve is only influenced by each compound in a cell line (Vis 

et al., 2016). Although these measures are widely used for quantifying drug 

response, the point estimation of the response curve is not always sufficiently 

accurate to represent the actual sensitivity of the drug in a given cancer 

sample. 

 

 

 

Figure 2: Example of relative IC50 / GI50 / EC50 for different response curve 

shapes, shown in different colors.  A) In this plot, the IC50 / GI50 for the three 

completely different drug responses is equal; B) EC50 is equal for the three 

different responses. 

 

Different response curve shapes can have the same relative IC50 value 

(Figure 2). This also applies to the relative EC50 and relative GI50 calculation. 

To avoid such problems, a model that considers the whole response curve, 

such as activity area (AA) or area under the curve (AUC), is used for the drug 

response quantification. Activity area is computed as a sum of the difference 

IC50
GI50

EC50

A. B.
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between compound activity and reference activity over the concentration 

points (Barretina et al., 2012): 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝐴𝑟𝑒𝑎 = 𝐴5 − 𝐴678

9

5:;

	  Eq.2 

 

Here, Ai is activity at concentration i, Aref is reference activity of either 0, or 

max (0, Alow), and Alow is the activity at its lowest concentration.  

 
 

 
 

Figure 3: Example showing area under the curve calculation of percent 

inhibition data. The blue dots represent the percent inhibition value measured 

at a given drug concentration. (A) Histogram approximation of area under 

drug response curve. (B) Model-based integrated area under drug response 

curve calculation. 

 

In addition to such a histogram approximation, the area under the dose-

response curve can be numerically integrated in various other ways, such as  

via the trapezoidal rule (Atkinson, 1989). A histogram approximation such as 
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AA (Figure 3A) works well with a narrow concentration window and high 

number of tested concentrations (Barretina et al., 2012), whereas AUC, 

computed using a trapezoidal approximation or more accurate integrals 

(Figure 3B), works well even when the concentration window is wide and the 

number of concentration points are few, or when some data points are 

missing (Basu et al., 2013; Garnett et al., 2012; Seashore-Ludlow et al., 

2015). 

 

Recently, growth rate inhibition (GR) metrics,  such as GR50 and GRmax, were 

used to estimate the magnitude of the drug-induced growth rate inhibition, 

with endpoint or time course assay (Hafner et al., 2016). The GR value at 

time t in the presence of a drug at concentration c is computed as 

 

𝐺𝑅 𝑐, 𝑡 = 2@(*,B)/@(E) − 1  Eq.3 

 

Here, k(c,t) is the growth rate of drug-induced cells and k(0) is the growth rate 

of untreated cells. In other words, the GR values are simply the ratio of treated 

to untreated growth rates, normalized to a single cell division (Hafner et al., 

2016). 
 

5.  Computational target deconvolution 

The cellular target of a molecularly-targeted compound is typically a protein 

(e.g. kinase) hit by a compound to modulate its functionality. In phenotype-

based compound screening, identification of the underlying molecular signal 

is very important for understanding a compound’s mode of action (Terstappen 

et al., 2007). Target deconvolution refers to the identification of molecular 

targets (in Figure 4, for example) that underlie the observed phenotypic 

response, which is an important part of the phenotype-based drug discovery 
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approach (Lee and Bogyo, 2013). Target deconvolution is important not only 

for elucidating the underlying mechanism of action of the compound, but also 

for better understanding biological processes such as cell differentiation, cell 

proliferation, apoptosis, and cell motility in leukemia (Lee and Bogyo, 2013; 

Terstappen et al., 2007). The advantage of using a phenotype-based 

approach is that it is an unbiased way in which to find functionally active 

compounds in the context of whole biological systems  (Lee and Bogyo, 2013; 

Terstappen et al., 2007). Normal signaling from target proteins is important to 

maintain cellular homeostasis. Body tissue has mechanisms that constantly 

repair DNA damage to maintain homeostasis. Although all mutations are not 

harmful, some alterations or mutations may lead to a cancer. The emergence 

of powerful genome sequencing techniques has made it possible to explore 

the whole target protein space in a high-throughput setup (Baselga and 

Arribas, 2004; Fleuren et al., 2016; Kim et al., 2014).  

 

 

 

Figure 4: Example of compound-target interaction network for some drugs in 

drug screening profiling panel created using STITCH 4.0. 
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Advances in high-throughput drug screening has made it possible to monitor 

and quantify cellular phenotypic activity against hundreds or thousands of 

compounds (Pemovska et al., 2013, 2015; Tyner et al., 2013). Such 

information can be further integrated to identify pathway dependencies in 

hundreds of different cancer cell lines of various types (Barretina et al., 2012; 

Basu et al., 2013; Garnett et al., 2012; Heiser et al., 2012; Seashore-Ludlow 

et al., 2015). For instance, Al-Ali et al. used target-based screening, which is 

an efficient technique for identifying potent modulators of individual, unknown 

targets (Al-Ali et al., 2015). Machine learning models, such as support vector 

machines (SVM) and the maximum relevance (MR) algorithm, have been 

used to identify relevant targets (Al-Ali et al., 2015), and one study (Gujral et 

al., 2014) used the elastic net regression model to identify important kinases. 

The estimate ben of the elastic net model is defined by 

 

𝛽7G = (1 + 𝜆I) 𝑎𝑟𝑔K𝑚𝑖𝑛	‖ 𝑌 − 	𝑋𝛽‖I + 𝜆I‖𝛽‖I + 𝜆;‖𝛽‖   Eq.4 

 

Here, X is the n x p predictor matrix; Y is the response vector, λ is the 

shrinkage parameter, and b are the coefficients of the elastic net regression 

model. The L1 penalty of the model favors sparse models, whereas the 

quadratic part of the penalty enables variable grouping affects and stabilizes 

the L1 norm regularization path (Zou and Hastie, 2005). 

 

Another model called Kinase inhibitors elastic net (KIEN), also based on 

elastic net regularization, integrates information contained in drug-kinase 

networks with in vitro drug response screening  (Tran et al., 2014). KIEN 

identifies a set of kinases associated with drug sensitivities (Tran et al., 2014). 

One study used a weighting-based method on drug screening data (Tyner et 
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al., 2013), and assigned a positive weight to the targets of effective drugs, 

and a negative weight to the targets of ineffective drugs. The final score was 

the sum of the effective and ineffective drug target scores. A similar approach, 

called the Kinase addiction ranker (KAR) has also been developed, in which 

the model integrates kinase inhibition data and gene expression data with 

drug screening data (Ryall et al., 2015). 

 

6. Compound synergy scoring  

A drug combination is the use of more than one compound, with the goal of 

improving efficacy and overcoming resistance in the treatment of complex 

and refractory diseases such as cancer. Usage of a single chemical agent for 

the treatment of disease has limitations, such as inadequate efficacy and 

potential development of resistance to the compound, which leads to a poor 

clinical outcome. To overcome these limitations, a combination of two or more 

compounds is often used (Jia et al., 2009). The effect of a drug combination 

can be synergistic, additive or antagonistic, depending on whether the 

combined effect is greater than, equal to, or less than the summed effects of 

the partner drugs. The combination effects are often quantified by comparing 

the observed combination response to the expected response under the 

assumptions of non-interaction predicted by a reference model. An effect is 

defined as synergistic if the combination produces a greater effect than 

expected, and antagonistic if the combination produces a smaller effect than 

expected. An additive effect is when there is no change in effect after the drug 

combination (Chou, 2006).  

 

There are three popular reference models: The Loewe additivity model 

(Loewe, 1953), the Highest single agent (HSA) model (Berenbaum, 1989), 

and the Bliss independence model (Bliss, 1939). The Loewe additivity model 

defines the expected effect as a self-combination (Figure 5). It assumes that 
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the two drugs target the same molecule or pathway (Loewe, 1953). The model 

states that the expected effect YLoewe satisfies 

 

𝑥;
𝑋RS7T7; +

𝑥I
𝑋RS7T7I = 1  Eq.5 

 

Here, X1
Loewe and X2

Loewe are concentrations of Compound 1 and 2. x1 and x2 

are concentrations of Compound 1 and 2 in mixture (Greco et al., 1995). The 

combination index (CI) is derived from the Loewe additive model as 

 

𝐶𝐼 =
𝑥;
𝑋;
+
𝑥I
𝑋I

  Eq.6 

 

Here, CI>1 means that the combination effect is synergistic, CI<1 means that 

the combination effect is antagonistic, and CI=1 means that the combination 

effect is additive (Greco et al., 1995).  
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Figure 5: Illustration of Loewe additivity model. The dotted line is the additivity 

line where CI=1. The red line is the synergy line where CI<1; the smaller than 

1 the CI value is, the better the synergy between the compounds. If CI>1, 

then the combination is classified as antagonistic. 

 

The HSA model (or Gaddum’s non-interaction model) assumes that the 

expected effect is simply the maximum of the single agent responses at 

corresponding concentrations (Berenbaum, 1989). This means that if the 

effect of the combination exceeds that of a single compound response, there 

must be some form of drug interaction. The HSA model expects a combination 

of compounds with only positive effects, the targets of which are not 

functionally related (Lehár et al., 2007).  

 

𝑌WXY = max	(𝑌;, 𝑌I)  Eq.7 

X2

x2

X1x1

CI = 1

CI > 1

CI < 1
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Here, Y1 and Y2 are the effects of the first and second compound, 

respectively. If the combination effect is higher than the expected effect 

(YHSA), then it is defined as synergistic; if lower than the expected effect, 

antagonistic. Otherwise, the effect is defined as additive. 

 

The Bliss independence model assumes that the individual chemical agents 

are acting independently and that there is no interaction between their 

actions; each drug independently targets different molecules or pathways 

(Bliss, 1939; Goldoni and Johansson, 2007; Greco et al., 1995). This means 

that the chemical agents in the mixture always have a different mode and 

possibly a different site of action (Goldoni and Johansson, 2007).   

 

𝑌]^5__ = 𝑌; + 𝑌I − 𝑌;𝑌I  Eq.8 

 

Here, Y1 and Y2 are the effects of the first and second compound, 

respectively. YBliss is the expected combination effect. If the combination effect 

is higher than YBliss, the interaction is defined as synergistic. If the combination 

effect is lower than YBliss, it is defined as antagonistic. Otherwise, the 

combination effect is defined as additive, which means there is no interaction 

(Goldoni and Johansson, 2007). The Bliss independence model is not 

accepted as a universal reference model, because the occurrence of Bliss 

independence in complex biological systems is rare (Greco et al., 1995). The 

synergy of the compounds can also be quantified as Beta and Gamma 

parameters. Beta (β) is the interaction parameter that minimizes the deviance 

between the observed combination effects and Bliss independence over all 

the dose combinations; whereas Gamma (γ) is the interaction parameter that 
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minimizes the deviance between the observed combination effect and the 

HSA model (Griner et al., 2014). 

 

The Loewe model and the Bliss independence model work well when both 

the chemical agents have positive effects, and also when the effects 

monotonically increase as a function of the concentrations. The HSA model 

only makes sense when both chemical agents have positive effects at all 

concentrations (excluding noise). With the negative effect levels, it becomes 

unclear which effect is "higher" when the single agents go in different 

directions (Lehár et al., 2007). The Loewe additivity model is computationally 

more intensive than the Bliss independence model or the HSA model. 
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AIMS OF THE STUDY 

The overall aim of the study was to develop and implement computational 

models for facilitating the individualized treatment of cancer patients on the 

basis of ex vivo HTDS experiments. The models are needed for system-level 

understanding of cancer development and treatment. Computational models 

in particular allow for the functional investigation of cellular addictions and 

other vulnerabilities in individual cancer samples, as well as the systematic 

stratification of cancer patients and disease subtypes on the basis of their 

treatment responses. The specific aims were: 

1) To develop and implement models for improving the quantification of 

drug responses (sensitivity and resistance) in the HTDS setting. 

2) To develop and implement models for predicting and better 

understanding the target signal networks behind individual drug 

response profiles. 

3)  To develop and implement models for drug combination scoring 

(synergy and antagonism) in high-throughput screening settings. 

4) To apply these models and methods, and suggest new targeted 

treatment alternatives for patients with AML and AGCT. 

 

 

 

 

 

 

 



MATERIALS AND METHODS 
 
 

30 

MATERIALS AND METHODS 

7. Study specimens 

Project I used 14 AML patient samples and 4 bone marrow samples from 

healthy donors as controls as described in Pemovska et al. (2013). Most of 

the samples were from relapsed and refractory patients. After informed 

consent with approval was obtained (No. 239/13/03/00/2010, 

303/13/03/01/2011), the samples were collected in EDTA-treated tubes in 

accordance with the ethical standards of the Helsinki University Central 

Hospital (HUCH), approved by the HUCH Institutional Review Board (Dnro 

60/2011). The consent form covers the use of the drug sensitivity data to 

guide therapeutics with approved drugs. According to Finnish legislation, 

approved drugs in an off-label mode can be used as therapeutics. All the 

samples included in this study were freshly processed. 

 

Project IV used six adult granulosa cell tumor (AGCT) patient samples (two 

primary and four recurrent). Primary cultures of AGCT cells from tumors were 

established as previously described (Kyrönlahti et al., 2010). The cells were 

cultured for four to seven days to increase the cell number in Dulbecco’s 

modified Eagle’s medium (DMEM)/Ham’s F-12 medium, supplemented with 

10% FCS, 1% penicillin/streptomycin and L-glutamine (Gibco, Grand Island, 

NY, USA) in a humidified environment of 37 °C and 5% CO2. The study was 

approved by the ethical committee of Helsinki University Central Hospital and 

the National Supervisory Authority for Welfare and Health in Finland. 

Informed consent was obtained from the patients whose fresh AGCT tissue 

was used in this study. The KGN and COV434 cell lines were obtained from 

the Riken BioResource Center. Both cell lines tested negative for 

mycoplasma infection, and passaged in less than months after receipt or 

resuscitation of a frozen cell vial. KGN and COV434 cells were cultured in 
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DMEM:F12 and DMEM, respectively (Gibco), supplemented with 10% FBS, 

1% penicillin/streptomycin, and 1% L-glutamine.  

 

The ACGT study used three pooled samples of mural granulosa-luteal (hGL) 

as a control. Each of the three hGL samples consisted of granulosa-luteal 

cells derived from 78–122 mature ovulatory follicles from 4–7 different 

patients, and were wild type for the FOXL2 402C->G mutation. The hGL cells 

were isolated as previously described (Shi et al., 2009).  These cells were 

obtained from women undergoing IVF treatment at the Women’s Clinic, 

Department of Obstetrics and Gynecology, Helsinki University Hospital. hGL 

cells are mural granulosa cells from preovulatory follicles that further 

differentiate into corpus luteum after ovulation, and represent the best 

available model of healthy granulosa cells. Prior to the drug sensitivity and 

resistance testing (DSRT) screening, freshly isolated hGL cells were 

suspended into DMEM/F12 growth medium supplemented with 2.5% Nu-

serum I, ITS+TM Premix (both from BD Biosciences, Bedford, MA, USA), 1% 

penicillin/streptomycin, and L-glutamine (Gibco). Bone marrow mononuclear 

cells from seven healthy donors were used as controls in the AML study, as 

previously described (Pemovska et al., 2013).  

 

As additional material in Project I, cancer cell line data for drug sensitivity and 

mutation and copy number profiles were obtained from the Cancer cell line 

encyclopedia (CCLE), in which 504 cell lines were tested for 24 drugs 

(Barretina et al., 2012). In Project II, cell line data for drug sensitivity, gene 

expression, mutation and copy number for 127 cell lines were obtained from 

the Genomics of drug sensitivity in cancer (GDSC) (Garnett et al., 2012), 

whereas the drug sensitivity profiles, drug-target and clinical information of 

151 leukemia patients were obtained from a study by Tyner (Tyner et al., 

2013). Project III used data from a drug screening study of 466 drug 
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combinations for the activated B-cell-like subtype (ABC) (Griner et al., 2014). 

Project IV used the drug screening data of a panel of 68 cell lines derived 

from other solid cancers, including breast (n=19), ovarian (n=31), lung (n=4), 

pancreas (n=9), and prostate cancer (n=5), as a reference set. 

 

8. Drug sensitivity and resistance testing (DSRT) 

The DSRT platform is used to test the sensitivity of compounds in high-

throughput settings. It consists of about 500 drugs, including both approved 

and investigational drugs.  The compounds were preprinted on tissue culture-

treated 384-well plates (Corning 3707) using an acoustic liquid handling 

device (Echo 550; Labcyte Inc.). Each compound was diluted five times into 

five different concentrations with 10-fold dilution. The majority of the 

compound concentrations ranged between 1 nM and 10000 nM. The ready-

made plates were stored in nitrogen pressurized StoragePods (Roylan 

Developments Ltd.).  Each plate also included wells with 16 positive and 16 

negative controls. The positive control consisted of 100 µM of benzethonium 

chloride, and the negative control of DMSO. The controls were used to 

normalize the data. DSRT is done with freshly prepared mononuclear cells 

derived from patients or healthy donors. Before adding the cells to the plate, 

the ready-made plate is suspended in 5 µl MCM and placed on a shaker for 

30 minutes. A single cell suspension of mononuclear cells (10000 cells/well 

in 20 µl) was transferred to every well, using a MultiDrop Combi (Thermo 

Scientific) peristaltic dispenser. The plates were then incubated for 72 hours 

at 37 oC and 5% CO2. After incubation for 72 hours, cell viability was 

measured using the CellTiter Glo luminescent assay (Promega). 
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9. Development of drug response models 

9.1. Drug sensitivity scoring (DSS) 

The existing methods for the quantification of drug response are either a 

single point approximation or area approximation. A new model, called DSS, 

was developed on the basis of the continuous numerical integration of the 

area under the curve to summarize the drug-response relationship. Given the 

logistic function (Eq.1), the area under the curve (AUC) can be computed as 

 

𝐴𝑈𝐶 = 	 𝑅 𝑥 𝑑𝑥 = 𝐼(𝐼𝐶aE
bcYdef

, 𝑆𝑙𝑜𝑝𝑒, 𝑅k5G, 𝑅kl,, 𝐴k5G)  Eq.9 

 

Here, R(x) is the normalized drug response at concentration x, I is an integral 

response, and Amin is the minimum activity level. Three steps of normalization 

are followed to compute three different versions of DSS, denoted by DSS1, 

DSS2 and DSS3. DSS1 is calculated by normalizing the area under the drug 

response curve with the total area, as in Eq.10. 

 

𝐷𝑆𝑆; =
𝐴𝑈𝐶 − 𝑡(𝑥I − 𝑥;)

(100 − 𝑡)(𝐶kl, − 𝐶k5G)
  Eq.10 

 

Here, x1 and x2 are the concentration range at threshold drug response t, and 

Cmin and Cmax are the minimum and maximum treated concentration, 

respectively. DSS1 was further normalized with log10 of max response, Rmax, 

to normalize the effect of the maximal compound response, which may be 

due to off-target effects: 
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𝐷𝑆𝑆I =
𝐷𝑆𝑆;

𝑙𝑜𝑔;E(𝑅kl,)
  Eq.11 

 

If a compound shows a response at low concentrations, then that compound 

is biologically more potent than the compounds that only show a response at 

higher concentrations. DSS2 was further optimized using a concentration 

range to emphasize the drugs that obtain their response over a relatively wide 

dose window rather than the drugs that show a response at only the higher 

end of the concentration range: 

 

𝐷𝑆𝑆n = 𝐷𝑆𝑆I ∗
𝑥I − 𝑥;

𝐶kl, − 𝐶k5G
  Eq.12 

 

To deal with the off-target effects of the drugs, which are most likely clinically 

irrelevant, DSS is set to 0 for cases in which the estimated IC50 is at or beyond 

the maximal tested dose Cmax. Differential or selective DSS (sDSS) is 

calculated by subtracting the average of the healthy controls from the 

samples. 

 

9.2. Target addiction scoring (TAS) 

The sensitivity of the cancer cells to inhibiting a particular protein target is 

estimated using a target addiction score.  Once the drug sensitivity profile of 

the cells in the form of DSS, AUC or IC50 is calculated, the target addiction 

scoring (TAS) for each protein target, t, is computed by averaging the 

observed drug response (DR) over all the compound inhibitors nt that target 

protein t. This can be expressed mathematically as 
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𝑇𝐴𝑆B =
𝐷𝑅5
𝑛B

Gq

5:;

  Eq.13 

 

TAS transforms the drug response space to the target space, mapping the 

observed drug responses to their target addictions. TAS transformation 

enables the direct comparative study of drug sensitivity with their molecular 

signatures. It also provides an insight into individual drug vulnerabilities and 

signal addictions. The same concept was also used in Publication I, and was 

called the Kinase inhibition sensitivity score (KISS), since that analysis only 

used kinase targets. 

 

9.3.  Drug combination scoring 

The Loewe additivity model considers the dose-response curves of individual 

drugs, whereas Bliss independence and the HSA model use point estimates. 

The zero-interaction potency (ZIP) model developed here considers drug 

response curves for both individual drugs and their combinations. The drug 

response curves are described using a four-parameter fitting function (Eq.1), 

which can be rewritten as 

 

𝑦 =
𝐸k5G + 𝐸kl,

𝑥
𝑚

s

1 + 𝑥
𝑚

s   Eq.14 

 

Here, Emin and Emax are the minimal and maximal effects of the compounds; 

m is the relative IC50 and λ is the shape parameter (λ>0). If there is complete 

inhibition of the cell growth, then Emin = 0 and Emax = 0. If zero potency shifts 

for non-interaction are considered, then the above equation for Compound 1, 
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for example, can be simplified as 

 

𝑦 =
𝑥
𝑚

s

1 + 𝑥
𝑚

s  Eq.15 

 

If x2 dose of Compound 2 is added to Compound 1, and there is no 

interaction, then m1 and λ1 will remain unchanged. The drug response curve 

for Compound 1 can then be written as 

 

𝑦I→; =
𝑦I +

𝑥
𝑚;

su

1 + 𝑥
𝑚;

su
  Eq.16 

 

Similarly, the above equation could be written for  𝑦*;→I	 , 𝑦vwx;→I	, 𝑦*I→;	 and 

𝑦vwxI→;	.Then the delta score is computed as the average of the deviation 

between yc and yZIP.  

 

𝛿 =
𝑦*;→I − 𝑦vwx;→I

2 +
𝑦*I→; − 𝑦vwxI→;

2   Eq.17 

 

The delta (δ) score centers around 0, which means that there is no interaction. 

If δ is greater than 0 or less than 0, this means that the interaction is either 

synergistic or antagonistic, respectively. 
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RESULTS 

 

 

 

Figure 6: Systematic overview of drug sensitivity and target addiction analysis 

pipeline. (A) Drug response of sample at different concentrations; (B) 4-parameteric 

logistic curve fitting to extract fitting parameters such as IC50, slope. Rmin and Rmax; 

(C) Computation of drug sensitivity score (DSS) or selective DSS (sDSS) using 

extracted parameters; (D) Waterfall plot showing top sensitive and insensitive drugs 

for patient samples; (E) Heatmap of drug sensitivity profiles across samples; and 

(F) Target addiction scoring and network visualization.  

 

In this thesis, three novel models were developed and implemented to 

analyze drug screening data. In Publication I, a model to quantify drug 

sensitivity using an integrative compound response model was developed. 

Publication I also introduced the concept of target addiction scoring (TAS), 

focusing on a set of kinase targets only, and was called the Kinase inhibition 
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sensitivity score (KISS). In Publication II, the concept of TAS was extended in 

pan-cancer cell line analysis, to take both kinases and non-kinase protein 

targets into account. In Publication III, the ZIP model was developed as a 

reference model for drug combination response scoring. In Publication IV, I 

applied developed models such as DSS and ZIP to AGCT patient samples, 

with the aim of identifying targeted treatments. Overall, in this thesis, I 

developed an integrative bioinformatics approach (Figure 6) to analyzing and 

understanding the underlying biology behind cancer progression, aiming 

toward the eventual goal of personalized cancer treatment.   

 

10. Drug sensitivity scoring (DSS) 

A robust method for quantifying a complex drug-response relationship to a 

single metric was developed on the basis of an integrative quantitative model. 

The selective DSS was calculated by subtracting the control response from 

the patient DSS (Figure 7A). The method was systematically evaluated using 

AML patient samples to test the quantitative performance together with other 

metrics such as IC50 and Activity Area (AA) (Figure 7B),. For the evaluation, 

experts visually categorized 795 compound response curves into five different 

classes, namely very active (18), active (30), semi-active (65), low active (70) 

and inactive (612), and the predictive accuracy of each response score was 

evaluated using the receiver operator characteristic (ROC) analysis. ROC 

analysis (Figure 7B) showed that DSS could better distinguish between active 

and inactive drug responses than IC50 (p <10−5, DeLong's test, DSS3 vs. IC50) 

and AA (p = 6.6 × 10−9, DeLong's test, DSS3 vs. AA). 

 



Drug sensitivity scoring (DSS) 
 
 

39 

 

 

Figure 7: Calculation and evaluation of drug sensitivity score (DSS). (A) 

Selective DSS calculation using healthy bone marrow controls, and (B) 

evaluation of predictive accuracy of drug scoring metric using receiver 

operator characteristic (ROC) analysis to distinguish between 612 inactive 

and 183 active cases of drug response. The dotted line corresponds to 

random classification. 

 

Twenty-two bone marrow aspirates were obtained from 14 leukemia samples 

and 4 bone marrow controls, which were screened against 204 compounds, 

using DSRT. It was assumed that the compounds with a similar mode of 

action would have similar compound response profiles. To evaluate this, the 

drugs were classified into 13 different classes and unsupervised clustering of 

compounds was mapped to the classes using Rand Index (Rand, 1971). The 

Rand Index analysis clearly showed that DSS provides better clustering of 

drugs than AA and IC50. 
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Figure 8: Distribution analysis of CCLE cell lines and AML patient samples. 

Highly sensitive cell lines or samples are in red; other cell lines or samples 

are in blue; Bone marrow controls are in green in cases of patient samples. 

In the first row, the distribution of lapatinib sensitivity in HER2 amplified and 

unamplified CCLE cell lines. The 2nd and 3rd row show the distribution of 

ruxolitinib and entinostat sensitivity in AML patients. 
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The comparative cluster analysis of the compounds with their mode of action 

class using the Rand index demonstrated that DSS systematically improved 

compound clustering compared to IC50 (p = 1 × 10−4, permutation test) and 

AA (p < 5 × 10−4, permutation test). A distribution analysis of the CCLE cell 

line, as well as AML patient drug screening data across compounds and 

across samples/cell lines showed that DSS provided more distinct sub-

groupings of the cell lines or samples (Figure 8). DSS also helped identify 

drug responsive and non-responsive groups of patients or cell lines, enabling 

further investigation of the underlying biology to explain the groupings. I 

presented three examples of such cases in Publication I. The first example 

presented the drug response to PLX4720 (a selective RAF kinase inhibitor) 

across BRAF wild type and BRAF-V600E mutant cell lines; the second 

example, presented the drug response to PD-0325901 across wild type RAS 

and mutated RAS in hematopoietic and lymphoid cells; and the third example 

presented the lapatinib drug response across breast cancer cell lines. All 

these examples showed that DSS improved the drug response scoring 

resolution in cancer cell lines as well as in ex vivo patient samples. Since 

DSS, as well as AA, are based on the area under the curve, their performance 

was comparable than that of IC50. However, DSS computes the exact area 

under the curve instead of using a trapezoidal type of approximation. Further 

normalization (see MATERIALS AND METHODS section for details), using 

maximal drug response and concentration ranges in the case of DSS, also 

improved the quantification compared to other response metrics. An R-

package for DSS was implemented and freely distributed as open source 

software. 
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11. Target addiction scoring (TAS) 

TAS is a method of transforming a drug response phenotypic profile into a 

target addiction profile, using a drug screening profile of the sample and a 

collection of the drugs’ protein targets as input. TAS provides a deep insight 

into the ranking of targets according to functional importance in a given 

sample. The TAS approach (Figure 9) was systematically tested and 

evaluated in cell line data from GDSC, the largest publicly available database 

for drug sensitivity in cell lines, as well as their molecular profiles (Yang et al., 

2013). 

 

First, 107 cell lines were used with complete drug sensitivity profiles for all 

138 compounds to evaluate the model. The predictive power of the TAS 

signatures was assessed using an additional 20 cell lines from GDSC. The 

107 cell lines were clustered using an unsupervised classification method 

based on their gene expression, drug sensitivity and TAS profile. The 

comparative analysis of the clusters shows that tissue origins are the drivers 

of the gene expression, whereas TAS profile clusters were relatively 

independent of the tissue origin.  This means that the information-encoded 

TAS profiles were only partly in agreement with their genomic signatures, 

providing complementary information in comparison to genomic profiling. 
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Figure 9: Schematic illustration of target addiction scoring and its integrative 

analysis with molecular profiles such as gene expression, copy number and 

mutation. The approach takes as input the drug response profiles of 107 cell 

lines and drug-target interaction information on 138 compounds to compute 

the target addiction score (TAS). The resulting TAS profiles of the cell lines 

were compared with the respective molecular and genomic profile using 

congruence analysis.  
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A bootstrap analysis was performed to check the robustness of the clusters 

of 107 cell lines based on IC50, AUC, DSS, and their TAS. The result showed 

that regardless of the drug response metrics, TAS always produced more 

robust sub-clusters. Of all the TAS-based clustering, TAS based on DSS had 

notably higher robustness in the sub-clusters. 

 

A clinical application was shown using 151 primary leukemia patient samples 

profiled for 66 kinase inhibitors (Tyner et al., 2013). The TAS was applied to 

151 leukemia patients’ drug response data. This patient case study 

demonstrated patient-specific addiction patterns that were not explained by 

their diagnostic markers. The TAS package was implemented using R 

programming language and was freely distributed as open source software. 

 

12. Delta scoring of drug combinations 

Delta scoring was based on the ZIP model (Figure 10A) and applied to the 

published data (Griner et al., 2014), in which 466 drugs were screened in 

combination with Ibrutinib.  The ROC curve analysis (Figure 10B) of the delta 

score demonstrated better accuracy in the classification between synergistic 

and antagonistic effects than other combination scoring methods such as 

HSA, Gamma, Beta, and CI. The delta score range is between -1 

(antagonistic effect) and +1 (synergistic effect), which makes the data useful 

and easy to interpret.  
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Figure 10: (A) Illustration of ZIP model formulation for delta scoring in a drug 

response matrix. The degree of interaction at a dose combination (x1, x2) is 

evaluated by comparing midpoint m and shape parameter λ from the 

individual drug responses (first column and last row) as well as their combined 

effects at Column x1, Row x2. Delta scoring considers the changes in m and 

λ for the dose-response curves between Drug 1 alone (bottom row) and the 

combination after adding x2 (Row x2), as well as between Drug 2 alone (first 

column) and the combination after adding x1 (Column x1). (B) Accuracy of 

classification of different drug combination scoring methods using ROC 

(receiver operator characteristics) analysis. The area under the ROC curve 

for each drug combination scoring method is shown for the classification of 

112 synergistic and 91 antagonistic drug combinations. 
 

Even though antagonistic effects are often neglected in drug-drug interaction 

analysis in cancer studies, the antagonistic effects might be important for 

understanding the cross-talk between cancer signaling pathways, which may 

in turn provide clinical guidelines to avoid the administration of toxic drug 

combinations.  
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Figure 11: Illustration of two-dimensional (2D) and three-dimensional (3D) 

visualization of drug combination data. (A) Visualization of percent inhibition 

data matrix in 2D and 3D. The color is scaled in red (100% inhibition), white 

(50% inhibition) and green (no inhibition). (B) Visualization of drug 

combination effects in 2D and 3D. The color is scaled in red (synergistic, d>0), 

white (no interaction, d=0) and green (antagonistic, d<0). 

 

A 2D and 3D visualization (Figure 11) of the drug combination landscape was 
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also created, to give a better understanding of drug-drug interactions over the 

full concentration ranges, instead of just providing a summary interaction 

score. The drug interaction landscape provides a clear picture of the 

concentration range at which the drugs are synergistic or antagonistic. The 

package was implemented using R programming language and is freely 

distributed as open source software. 

 

13. Application to AGCT data 

In this work, I applied the methods developed in this thesis, including DSS 

and delta scoring of drug combinations, to analyze AGCT datasets, with the 

aim of suggesting novel, targeted treatments for AGCT. 

 

Granulosa cell tumor (GCT) is a rare ovarian tumor, and occurs in around 5% 

of total ovarian cancer patients. It has two subtypes, of which the adult 

granulosa cell tumor (AGCT) type is the most common, whereas the juvenile 

type is rare. Although AGCTs can be diagnosed at Stage I, they recur in about 

30% of patients, and about 60% of refractory patients die from recurrent 

disease. Even though radical surgery is the primary treatment of AGCT, 

chemotherapy is needed in the advanced stages and in recurrent disease. A 

platinum-based drug such as cisplatin or carboplatin is commonly used in 

combination with bleomycin and etopside or paclitaxel. However, the 

response rate of the treatment is very low (around 22%). As AGCT is a rare 

cancer subtype, performing randomized clinical trials is challenging. Hence, 

other approaches for revealing potential therapeutic targets for AGCT are 

needed. 

 

In this analysis, I integrated different omics profiles of patients, such as drug 

screening, gene expression and mutation profiles. A total of seven AGCT 
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patient samples and three hGL (healthy granulosa-luteal cells) controls 

underwent drug screening across 230 compounds. Two GCT cell lines, KGN 

and COV434, were also screened for the same collection of compounds, and 

gene expression profiling was carried out for the seven AGCTs. The drug 

responses were quantified using DSS. The correlation analysis (Figure 12) 

shows that the correlation of average AGCT with the KGN cell line is higher 

(Spearman correlation r = 0.83) than that with the COV434 cell lines 

(Spearman correlation r = 0.74) and hGL (Spearman correlation r = 0.68). 

This means that the KGN cell line can be used as a cell line model, as it 

mimics the AGCT response profile. 

 

 

 

Figure 12: Correlation analysis of AGCT samples with KGN, COV484, and 

hGL cells. The drug screening profiles of AGCT were compared to the FOXL2 

C134W mutated GCT cell line KGN, the FOXL2 wild-type GCT cell line 

COV434, and the FOXL2 wild-type hGL pool. The analysis used an average 

of seven AGCT samples and an average of three hGL controls. 

  

All AGCT samples, as well as the KGN cell line, had FOXL2 mutation and 

were sensitive to the tyrosine kinase inhibitor (dasatinib), whereas FOXL2 

wild-type cells, such as COV434 and hGL, were resistant. The GCT cell lines, 

such as COV434 and KGN, were more sensitive to conventional drugs than 
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the AGCT samples. The selective DSS (sDSS) of AGCT samples against hGL 

controls showed dasatinib (a tyrosine kinase inhibitor) as one of the highly 

selective compounds (mean sDSS =11.3). The AGCT drug response profiles 

were compared to the bone marrow (BM) mononuclear cell profiles to 

evaluate sensitivity to healthy proliferating cells. Comparison with BM showed 

that both dasatinib and YM155 were selective. 

 

 

 

 

Figure 13: Drug combination of dasatinib and paclitaxel in KGN cell line. The 

color is scaled in red (synergistic, d>0), white (no interaction, d=0) and green 

(antagonistic, d<0). 

 

The efficacy of dasatinib in combination with conventional therapeutic 

paclitaxel was evaluated. When dasatinib was combined with paclitaxel, the 



Application to AGCT data 
 
 

50 

drug combination result showed synergistic effects in the KGN cell line, 

suggesting potential use of this combination for therapeutic purposes (Figure 

13).  No synergy was observed in the COV434 cell line.  

 

This case study shows the general added value of the computational pipeline 

developed in this thesis for high-throughput drug screening for personalized 

oncology. 
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DISCUSSION 

The term “personalized medicine”, also known as “individualized medicine” or 

“precision medicine” is almost a buzzword today. After the sequencing of the 

human genome, hopes have been high for improvements in health care for 

many complex diseases such as cancer. Anticancer research and clinical 

practice are currently undergoing a paradigm shift in the field of medicine from 

conventional to personalized treatment (Kaur and Petereit, 2012). 

Personalized medicine is a broad field of health care that is informed by the 

individual’s unique clinical, molecular genomic, epigenomics and their 

associated environmental information. In order to fully make personalized 

medicine a reality, several barriers must be overcome, such as education, 

accessibility, regulation, and reimbursement. (Chan and Ginsburg, 2011). As 

personalized medicine involves a huge amount of data integration and 

analysis, we must address technical challenges such as the development of 

storage, and analytical and interpretive methods for translating or 

transforming raw information content for proactive, predictive, preventive and 

participatory health (Overby and Tarczy-Hornoch, 2013). In addition to these 

technical challenges, we also face ethical, legal challenges (Cordeiro, 2014), 

and  economic challenges (Jakka and Rossbach, 2013).  

 

This work dealt with the problems of large-scale omics as well high-

throughput drug screening data analysis and mining. The development, 

advancement and usage of high-throughput technologies have led to an 

exponential amount of data growth that requires new tools and techniques to 

meet the challenges of data acquisition, storage, distribution, and analysis 

(Frelinger, 2015; Marx, 2013; Stephens et al., 2015; Zhang et al., 2015). So 

far, no state-of-the-art methods or pipelines exist that can serve all these 

purposes. Since the datasets are unique, the existing bioinformatics pipelines 

and methods must be customized. New models and efficient computational 
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pipelines are also greatly needed for analyzing and understanding the huge 

profiling datasets to gain meaningful insights that can be translated in clinics 

(Alyass et al., 2015; Frelinger, 2015; Marx, 2013; Ocana and Pandiella, 2010).  

 

In this thesis, I have developed, implemented and applied novel 

bioinformatics models and approaches for the mining and analysis of high-

throughput drug screening data. These new models enable 1) better 

quantification of drug sensitivity, 2) scoring and understanding of the target 

addiction of cancer cells, 3) the integration of target addiction with molecular 

profiling data, and 4) the quantification and analysis of drug combinations in 

high-throughput settings. The thesis includes the original publications of the 

individual methods developed here, and their integrative application to patient 

samples. The models have been carefully tested and found to be useful in the 

high-throughput setting, by minimizing the effort of manual inspection of such 

large datasets. 

 

Publication I describes the development of a quantification model for drug 

response, through integrating dose-response parameters such as the IC50, 

slope, and minimum and maximum response. The traditional approach of 

drug response quantification uses the IC50, which is just one parameter and 

single point of information from the response curve (Sebaugh, 2011). A recent 

analysis has demonstrated the importance of the multiple parameters of drug 

response relationships (Fallahi-Sichani et al., 2013), by showing that using 

only the IC50 as a measure of drug sensitivity causes other valuable 

information in the response curve to be lost. To capture all the information 

contained in the dose-response curve, I have developed an integrative 

quantitative model that considers all the parametric information in computing 

the optimized area under the curve. The availability of in-house AML patient 

sample data, as well as public CCLE and GDSC data, enabled systematic 
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comparative analysis with existing methods such as IC50 (Garnett et al., 2012) 

and AA (Barretina et al., 2012). DSS was found to be robust against sources 

of technical variability, such as the interpolation of intermediate missing data 

points. DSS has shown improved reproducibility compared to IC50, because 

IC50 depends on the concentration range as well as the curve fitting methods 

and their inherent assumptions, whereas DSS is not affected. DSS has also 

improved patient sub-groupings and the stratification of cell lines. DSS 

calculation could be further improved by updating the drug response curve fit 

using the upper bend point of the dose response curve (Pozdeyev et al., 

2014) and by incorporating growth rate differences (Hafner et al., 2016)  or 

drug-induced proliferation changes (Harris et al., 2016). DSS could be 

adopted for siRNA screening or antibody screening, or any other screening in 

which the response is approximately sigmoid. 

 

A recent comparison between CCLE and GDSC drug screening data revealed 

inconsistencies between the drug screening results of different laboratories 

(Haibe-Kains et al., 2013). The inconsistencies originate from either 

experimental or computational factors, or both. To enhance the reproducibility 

of drug screening data, it is important to follow standardized guidelines of 

experimental design, as well as the best computational pipelines and models 

(Hatzis et al., 2014; Haverty et al., 2016). Recent works show that calculating 

the drug response on the basis of the area under the curve model enhances 

the reproducibility of the drug screening data within and between laboratories  

(Bouhaddou et al., 2016; Geeleher et al., 2016; Mpindi et al., 2016). 

 

Publication II expanded on the concept of the kinase inhibition sensitivity 

score (KISS), which was already presented in Publication I. In the case of 

target addiction scoring (TAS), the focus was extended to non-kinase targets. 

In this study, I applied a cell-based pan-cancer approach, showing that TAS 
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provides information that is independent of the tissue origin. This 

complementary information could provide functional relationships in the 

addiction patterns across different subtypes of cancer. The TAS profile 

contained primary and secondary druggable targets, which made the results 

more pharmaceutically actionable and clinically highly relevant, compared to 

the use of genomic profiling, which cannot provide actionable therapeutics for 

many different cancer types. The current model could be extended using an 

additional level of genomic and molecular information, including chromosome 

rearrangement, protein activities and epigenomic data, to obtain a more in-

depth insight of the observed addiction patterns. The analysis showed that in 

comparison to drug screening profiles and genomic profiles, hierarchical 

clustering of TAS profiles provided highly robust clusters. However, the 

pipeline could be improved by using probabilistic model-based clustering and 

including a functional annotation of the genes to guide clustering and take into 

account the effects of the many compounds on the multiple targets.   

 

In Publication III, I developed the ZIP reference model for drug combination 

interactions, which is compatible with the high-throughput experiments. I also 

systematically evaluated the limitations of the currently used drug 

combination reference models. The ZIP model incorporates the 

advantageous features of both the Loewe additivity model and the Bliss 

independence model, which enable systematic assessment of the various 

drug interaction patterns that arise from large-scale drug combination testing 

studies. The model computes the expected effect as the zero interaction 

between two drugs, which means that the potency of one drug is not altered 

by adding another drug. The delta score is calculated by subtracting the 

observed effect from expected effects. The analysis showed that merely 

having a combination score does provide the full picture of the interaction 

landscape. Therefore, I implemented the 2D and 3D interaction plots, which 

illustrate a more complete landscape of the drug interaction. The delta score 
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is centered at 0 and is symmetric with the finite boundary, making scoring 

data more directly interpretable than that in the Loewe additivity model. The 

current model utilizes the curve fitting of drug response relationships. In the 

future, this model could be extended to quantify the degree of interaction 

potency or potency shift between individual drugs and drug combinations. 

 

Publication IV describes a case study of the application of DSS, TAS, and 

delta scoring in AGCT patient samples. The case study shows that the 

developed methods are well suited to the data analysis and integration of drug 

screening profiles, molecular profiles and drug combination profiles for high-

throughput and personalized medicine settings. The results from these 

methods are clinically and pharmaceutically interesting and relevant, and 

warrant many future follow-up and confirmation studies.  
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CONCLUSION 

The massive growth of high-throughput data demands new models to better 

understand and interpret high-dimensional data and to extract the key 

information of most clinical and biological relevance. To meet some of these 

challenges, I have developed three novel models: (i) DSS, to quantify drug 

response, (ii) TAS, to capture the addiction signature of the cells, and (iii) the 

ZIP model, for scoring drug combination effects. The above models have 

been systematically evaluated, and demonstrated that these models were 

robust and perform better than existing models. All these models, i.e. DSS, 

TAS, and delta scoring using the ZIP model, are implemented in the R 

programing language and are freely distributed as open source R packages. 

The clinical and pharmacological relevance of the results are shown in both 

cancer cell lines and patients samples. The methods will significantly 

contribute to the effective analysis of high-throughput data from cancer cell 

lines and patient-derived samples, promote better understanding of cancer 

progression and develop individualized treatment options. 

 

Despite the successful applications and relevant findings, some key 

challenges remain to be tackled in future research. For instance, the drug 

screening data of different laboratories are not consistent, an issue which 

needs to be addressed by a broader array of assays and approaches. Recent 

computational approaches, such as growth rate inhibition matrices (GR) or 

drug-induced proliferation (DIP), may help reduce some of these 

inconsistencies (Hafner et al., 2016; Harris et al., 2016). Other key challenges 

arise from the inter- and intra-heterogeneity of tumors and the clonal evolution 

of cancer cells, which requires development of novel models in the future. 
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THE END

Now this is not the end. It is not even the beginning of the end. But it is, 

perhaps, the end of the beginning.

- Sir Winston Churchill
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