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ABSTRACT

CaO ist ein preiswerter Ersatz für Ca als Legierungselement in Mg-Legierungen. Als
Legierungselement wird CaO bereits in den sogenannten ECO-Mg-Legierungen (Environ-
ment COnscious magnesium / Umweltbewusstes Magnesium) eingesetzt. In der Liter-
atur wird berichtet, dass sich CaO in Mg auflöst. Jedoch besteht keine Theorie die das
Auflösen von CaO in Mg erklärt. Der Effekt von Ca auf das Oxidationsverhalten von
Mg ist seit längerer Zeit bekannt so wie im Zusammenhang mit den sogenannten ECO-
Mg-Legierungen. Wie Ca oder CaO dabei in der Oxidschicht der Mg-Ca-Legierungen
miteinander interagieren, konnte bisher noch nicht geklärt werden.

Diese Arbeit untersucht die Hypothese, dass die Stabilität von CaO und MgO in
den gebräuchlichen Ellingham-Diagrammen nicht ausreichend dargestellt ist. Die exper-
imentelle in situ-Synchrotron-Untersuchung während des Schmelzens und des Erstarrens
in Verbindung mit thermodynamischen Berechnungen zeigen, dass das ∆G der Oxidation
von Ca und Mg im gesamten Mg-Ca-O-System betrachtet werden muss und nicht nur
die störchometrischen Reaktionen. Es zeigte sich bereits, dass Mg in der Lage ist, CaO
im festen Zustand zu reduzieren, welches im Gegensatz zur allgemein beschreibenden
Ansicht steht. Die in situ-Experimente wurden an dem Mg-xCaO und dem Mg-xCa-
6CaO System durchgeführt. In diesen Experimenten konnte das Auflösungsverhalten
der Phasen während des Aufschmelzens und die Phasenbildung während der Erstarrung
verfolgt werden. Die Versuchsergebnisse der Erstarrungsreihenfolge konnten durch die
thermodynamischen Berechnungen bestätigt werden. Diese Berechnungen wurden auf
der Grundlage von verschiedenen Literaturwerten für die thermodynamischen Daten von
CaO und MgO durchgeführt, um das ternäre Mg-Ca-O Phasendiagramme zu berechnen.
Basierend auf den thermodynamischen Berechnungen wurde eine Theorie entwickelt, wie
Ca in der Oxidschicht wirken könnte. Die Theorie stützt sich auf der Idee, dass sich ein
Pilling-Bedworth-Verhältnis (PBV) aus der Kombination von MgO und CaO einstellt.
Dieses beruht auf Annahme der Bildung einer Oxidschicht aus CaO auf reinem Mg (PBV
> 1) und MgO auf reinem Mg (PBV < 1). Bei einem Volumenanteil von CaO höher als
0.49 in der Oxidschicht, berechnet sich ein PBV von > 1.



ABSTRACT

CaO is used as a cheap replacement for Ca addition to addition in Mg. CaO as an
alloying element are used in the ECO-Mg (Environment COnscious magnesium) alloys.
The CaO dissociation in Mg is reported in literature, but with out a theory that can
which explain the dissociation of CaO in Mg alloys. The effect of Ca on the oxidation
resistance was known for long time and also observed from ECO-Mg. However an expla-
nation on how Ca or CaO is incorporated into the oxide layer of Mg-Ca has not been
clarified.

This thesis investigate the hypothesis that the stability of CaO and MgO in the commonly
used Ellingham diagram is not accurately described. The in situ synchrotron radiation
diffraction experimental investigation of the melting and solidification and thermodynamic
calculation show, that the change of Gibbs free energy ∆G must be considered for the en-
tire Mg-Ca-O system and not only the stoichiometric reactions. This investigation shows
that Mg reduces CaO even in solid state, which is the opposite of the commonly ascribed
view. The in situ experiments were performed on the Mg-xCaO and Mg-xCa-6CaO
systems. It was possible to follower the dissociation of the phases during melting and the
phase formation during the solidification. The experimental results from the solidification
sequence were used to validate the thermodynamic calculations. A number of different
literature values of the thermodynamic data of CaO and MgO were used to calculate the
ternary phase diagram Mg-Ca-O. Based on the thermodynamic calculations a theory
was developed, on how Ca is incorporated in the oxide layer. The theory used the idea of
a Pilling–Bedworth ratio (PBR) for CaO on pure Mg (PBR > 1) and the MgO on pure
Mg (PBR < 1). At a volume fraction of CaO higher as 0.49 in the oxide layer forms with
a PBR of > 1.
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CHAPTER 1

Introduction

Ca increases the oxidation resistance of Mg alloys at elevated temperatures up to 645 ◦C

with a Ca concentration of 0.2 wt.%. Investigations on the oxidation behaviour of Mg-

Ca alloys report, an increase in the elevated temperature oxidation resistance but use

different experimental set-up to investigate the oxidation of Mg-Ca alloys. The reasons

behind this effect is not well understood. The Standard Gibbs free energy (∆G) of CaO

is higher than of MgO and should remain an inert oxide that enhance protection from the

oxidation Mg. However, the investigations show that CaO is less stable than MgO in the

Mg rich corner of the ternary Mg-Ca-O system, which change theoretical basis for the

protective nature of CaO. The Pilling–Bedworth ratio (PBR) of Ca/CaO is lower than

of Mg/MgO so that this cannot be used to explain the increase in oxidation resistance.

The explanation for the improvement in high temperature oxidation is that Ca increase

the density of the oxide layer, but the exact nature of this is not fully understood. The

oxidation resistance and the mechanical properties at elevated temperature are important

for the high temperature resistant Mg alloys. This can increase the temperature range

for applications of Mg alloys. It will also give the opportunity make Mg products safer

in the field of transportation where fires can occur.

An other approach is the use CaO as an cost efficiency alloying addition for Mg alloys, as

a replacement for Ca. However, the investigation on ECO-Mg (Environment COnscious

magnesium) do not provide a theory, which explain the dissociation of CaO in Mg alloys.

However, investigations show that CaO dissociate up to a certain amount in Mg alloys,

1



B. Wiese CHAPTER 1. INTRODUCTION

which indicates also that the CaO is less stable than MgO in the Mg rich corner of the

Mg-Ca-O system.

For the investigation of the phase transformation between a Mg alloy and CaO, standard

technique e.g. differential scanning calorimetry (DSC) or differential thermal analysis

(DTA) are not useful to follow the phase transformations. This technique using for the

detection of the phase transformation the energy provides a good temperature resolution,

but does not provide information on the phase evocation. If some phase transformation

occur at a similar temperature, e.g. CaO + 3Mg −→ MgO + 2Mg + Ca −→ MgO +

Mg2Ca, it is not possible to distinguish between these reactions.

An experimental set-up that follow the phase transformations with a useful time and tem-

perature resolution is the in situ experiments using X-ray synchrotron radiation diffrac-

tion. The results from this type of investigation provide the information involved during

the dissociation of CaO during the heating and the effect of CaO on the solidification of

Mg and Mg-Ca alloys. This shows the interaction between Mg and Ca and their oxides

and which phases occur during this process, which help to understand the dissociation of

CaO.

2



CHAPTER 2

Aims and objectives

Previous investigations show that CaO dissociate in the presence of molten Mg. These

investigations show that CaO is reduced by Mg or Mg-Al alloys, but do not explain the

exact mechanisms behind this reduction. Kondoh et al. [1] considered the role of Laves

phases in the dissociation of CaO in Mg. This theory is based on the reduction of CaO

by Mg and relates to the formation of the Laves phase Mg2Ca. The enthalpy of mixing

also play an important role together with the change in standard Gibbs free energy (∆G)

of the phase formation. The other problem with this theory is the large deviation between

∆G of MgO and CaO, the highest deviation was investigated by Gourishankar et al. [2].

Gourishankar et al. [2] investigated the MgO and the CaO positions in the Ellingham

diagram and found that they should be interchanged, and use this change in Ellingham

diagram to explain the protective effect observed in Mg-Ca alloys.

The aim of this work is to show the interactions between Mg and Ca and their oxides,

when it occurs and its their roles during melting and solidification. The experimental

investigation was conducted with in situ synchrotron radiation diffraction. This is used

to determine the temperature range and the state (whether liquid or solid) in which the

dissociation of CaO occurs and which phases form during this process. The experimental

data is compared with the thermodynamic calculations to evaluate and to improve the

thermodynamic parameters of the Mg-Ca-O system. The thermodynamic calculations

are conducted in collaboration with the Institute of Metallurgy - Thermochemistry &

Microkinetics group in TU Clausthal.

3
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This will show:

• Information on the phases formation or transformation sequence driving the CaO

dissociation.

• A different theory different from the effect of the ∆G, will be proposed to explain

the CaO dissociation.

The in situ diffraction experiments were performed with Mg-xCaO and Mg-xCa-yCaO

systems, which will provide an experimental basis the influence of CaO on Mg and Mg-

Ca alloys. This will lead to a better understanding of the Mg-Ca-O system to understand

the effect of Ca on the oxide layer formation and the way Ca protect Mg alloys.

4



CHAPTER 3

State of the Art
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3.1 Magnesium with Calcium and Calcium Oxide

3.1.1 Magnesium

Magnesium (Mg) is classified as an alkaline earth metal. It is in the group 2 of the

periodic table, like Be, Ca, Sr, Ba and Rd. In the periodic table it is listed with the

atomic number 12 with a atomic weight of 24.31 u (4.0359 · 10−26 kg). The crystal

structure of Mg is hexagonal close-packed (hcp) (Space group: P63/mmc) (Fig. 3.1) with

a lattice parameters of a = 0.32092 nm and c = 0.52105 nm [3]. The ratio between a

and c is 1.6236 which is close to the ideal ratio of 1.633 for a close-packed hexagonal

structure. [3–5]

a

c

120°

60°

(a) Mg cell

a

c

(b) Mg cell with atoms

Fig. 3.1: a) Unit cell of hcp Mg and b) Mg cell with atoms.

Properties of Mg in comparison with other metals are listed in Tab. 3.1 for room temper-

ature (RT). Due to the crystal structure it is the difficult to deform Mg during processing,

in comparison with metal of other crystal structures, e.g. body-centered cubic (bbc) or

face-centered cubic (fcc). The homogeneous deformation require more than 5 indepen-

dent slip systems as provided by von Mises [6], but Mg has only 3 slip systems and 2

are dependent at RT so deformation is accommodated by twinning. Above 225 ◦C [4, 7]

more slip systems are activated in Mg and the main deformation mechanism is no longer

twinning. The low ductility of Mg at room temperature is related to the twining, due

6
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low number of independent slip systems available. [3–5]

The following properties are considered to be disadvantageous for Mg in structural ap-

plications [3, 8]:

• Low elastic modulus compared with other structural metals (E),

• relatively low deformability (below 225 ◦C [4,7]), limited cold workability and tough-

ness,

• relatively low creep resistance,

• and relatively high corrosion rate (high chemical reactivity).

Tab. 3.1: Mg in comparison with other metals [9, 10]

Properties Unit Mg Al Ca T i Fe

Density g
cm3 1.74 2.7 1.54 4.5 7.87

Melting point ◦C 650 660 180 1670 1536
Hardness HV 30-45 21-41 17 120-200 103

Tensile strength MPa 98-245 39-117 55-115 290-740 192-245
Yield strength MPa 90-230 10-98 14-85 180-390 98

Youngs modulus GPa 45 68 20 112 206
Crystal structure hcp fcc fcc hcp bbc

Mg, like many other metals, is used in alloyed state as pure Mg does not satisfy require-

ments of a structural metal. [10]

3.1.2 Mg-Ca alloys

Ca increases the strength of Mg alloys by grain refining, solution strengthening and

dispersion strengthening by formation of the Laves phase Mg2Ca [4, 11–13]. Ca also

increase the deformability (rollability) with addition up to 0.3 wt.% [3].

Ca increased the oxidation resistance of Mg alloys at high temperatures up to 645 ◦C

with a Ca concentration of 0.2 wt.% [14]. The oxidation resistance and the mechanical

properties at high temperature are important for high temperature Mg alloys, as this can

increase the temperature range for Mg alloy applications. Ca additions will also make

Mg products safer in field of transportation where fires can occur. [8]

7
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The corrosion rate at ambient temperature increase with Ca [8, 15]. Compared with the

corrosion rate, the effect of Ca on the density is low [5,8,16]. Ca addition > 0.8 wt.% can

decrease the castability of Mg alloy. Ca increase the reaction between the steel moulds

and the melt (tendency to stick), which decrease the usability of Mg-Ca alloys for die

casting. With the increment of Ca the tendency to form hot cracks also increases. [3, 8]

However, the biggest advantage of Ca for alloying is the increase in mechanical properties

at high temperature. For applications at high temperature, especially creep resistance is

important. Mg and Ca form a temperature stable Laves phase Mg2Ca. Ca in combina-

tion with other alloying elements also form stable phases. [3, 17, 18]

A relatively new field of Mg alloys is the use of Mg alloys as biodegradable materials.

Ca is a important metallic trace element of the metabolism in a human body, followed

by Mg which is also a metallic trace element in human body. This is the basis for the

development of biodegradable materials based on the Mg-Ca system. According to Gu

et al. [19, 20] and Rad et al. [16] the Mg-xCa alloy show good biocompatibility. The

challenge for this type of alloys is to tailor the property profile on corrosion/degradation

rates for a use as biodegradable implant material. [16, 19–21]

Commercially available Ca containing alloys are ECO-Mg (Environment COnscious mag-

nesium) [22–24] prepared with CaO or Non-flammable magnesium alloy [25] containing Y

in combination with Ca. It is also used in the MRI alloys (MRI 230D (Mg-Al-Ca-Sr-Sn)

and MRI 153M (Mg-Al-Ca-Sr) alloys) developed by Dead Sea Magnesium Ltd. for high

temperature applications [26].

3.1.3 Mg-Ca system

The early work on the Mg-Ca system was conducted by Barr [27] at 1911 and Páris [28]

at 1937. These studies are revisited in the most recent studies. A collection of the relevant

studies on the Mg-Ca system are shown in the Tab. 3.2. The Tab. 3.2 shows the significant

points of the Mg-Ca system with phase formation temperatures.

Mg-Ca system forms a stable intermetallic phase, with C14 Laves structure a with chem-

8
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Tab. 3.2: Selection of significant points of the Mg-Ca system from literature. (x) specified
values, (y) experimental values from the graphs and (C) calculated values.

Ca-content
Reaction [at.%] T [◦C] Literature Remarks

L → Mg (hcp) 0 650 Chase [29] (x)
Melting 0 649.3 Aljarrah [30] (C)

L → Ca (bcc) 100 842 Chase [29] (x)
Melting 100 841.2 Aljarrah [30] (C)

Ca (bcc) → Ca (fcc) 100 443 Chase [29] (x)
allotropic transformation 100 442.5 Aljarrah [30] (C)

L → Mg2Ca + α-Ca (fcc) 69.14 446 Baar [27] (y)
Eutectic 73.42 445 Páris [28] (y)

67 445 Haughton [31] (y)
73 442 Klemm [32] (y)
73 445 Nayeb-Hashemi [33] (C)
73 442 Aljarrah [34] (C)
- 445 Vosskühler [35] (y)

L → Mg2Ca + α Mg (hcp) 12.25 518 Baar [27] (y)
Eutectic 11.05 525 Páris [28] (y)

10.49 517 Haughton [31] (y)
10.56 516 Vosskühler [35] (y)
10.5 516.5 Nayeb-Hashemi [33] (C)
10.56 514 Aljarrah [30] (C)

- 516 Nowotny [36] (y)

L → Mg2Ca 33.33 718 Baar [27] (y)
Melting 33.33 725 Páris [28] (y)

33.33 714 Vosskühler [35] (y)
33.33 715 Nayeb-Hashemi [33] (C)
33.33 714 Aljarrah [30] (C)

9
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ical composition Mg2Ca [32,37,38]. This intermetallic phase separate the Mg-Ca system

to a double eutectic system (Fig. 3.2). The first investigation of Barr [27] and Páris [28]

show a higher Ca content, than the current investigations. The stoichiometric compo-

sition Mg2Ca was determined by Voßkühler [35] at 1937. The investigations on this

system assume that that Mg2Ca Laves phase is a point phase, but Nowotny et al. [36]

and Klemm et al. [32] predict existence of range compositions for Mg2Ca. However, this

extended range is inconsistent, and discussed by Klemm et al. [32] in reference to Nowotny

et al. [36]. Today thermodynamic calculations has been performed with the Mg2Ca Laves

phase with and without a composition range, but this is still under discussion. [30,39–43]

The higher Ca content of Mg2Ca from Baar [27] and Páris [28] shifted the Mg-Ca system

to higher Ca contents. Recent studies [31, 32, 35] on Mg-Ca system takes in to account

the melt loss of Ca. The composition of the samples are thus determined after the thermal

treatment of the experiments. This was conducted by Voßkühler [35] and Haughton [31]

and show, compared with the early investigations, a lower Ca content for the liquidus

line. The investigation of Klemm et al. [32] confirm the results of Haughton et al. [31].

This is the reason that for calculations e.g. from Nayeb-Hashemi and Clark 1987 [33] and

Agarwal et al. 1995 [34] the results form Baar [27] and Páris [28] were not considered,

but the results of Vosskühler [35], Haughton [31] and Klemm [32] has been.

The maximum solid solubility of Ca in Mg was determined to be between 0.43 at.%

(0.71 wt.%) and 1.1 at.% (1.8 wt.%) at the eutectic temperature of 516 ◦C. The solid

solution of Ca in Mg is shown in Fig. 3.2(b) in the Mg rich side of the Mg-Ca system

with experimental data and thermodynamic calculations (the full line are calculated with

Pandat 8.1 with the PanMagnesium 8 database). Two regions of solid solution lines

can be identified. The experimental results of Vosskühler [35] and Burke [45] are more

reliable. Vosskühler’s [35] investigation is based on a heat treatment of different alloy

compositions under different temperatures. Burke’s [45] investigations show comparable

values of the solid solution, but his experimental method is different. He investigated

the volume content of Mg2Ca of number of Mg-Ca alloys after the heat treatment. The

content of Ca is plotted with the volume content of Mg2Ca and the interpolation at a

10
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Fig. 3.2: Mg-Ca system phase diagram calculated with PandatTM8.1 software with Pan-
Magnesium 8 database. a) in comparison with literature values for the liquid-line of
1) Baar [27], 2) Páris [28], 3) Vosskühler [35] and 4) Klemm [32]). b) in comparison
with literature values of the solid state solubility of Ca in Mg from 1) Haughton [31], 2)
Nowotny [36], 3) Vosskühler [35], 4) Bulian [44], 5) Burke [45], 6) Nayeb-Hashemi [33] and
7) Aljarrah [30] for a Ca concentration up to 2 wt.%. x) specified values, y) experimental
values from the graphs and (C) calculated values. The full line are calculated with Pandat
8.1 with the PanMagnesium 8 database.
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given temperature gives the maximum amount of Ca in solid solution.

Due to the high melt loss potential of Ca the production of alloys with a high content

Ca of is difficult. This can explain the limited investigations on the Ca rich side of the

Mg-Ca (50 to 100 wt.% Ca) system. Another reason for this is the high affinity of Ca to

oxygen [27].

3.1.4 Physical properties of CaO

CaO is the oxide of Ca and it has the same crystal structure as MgO. The crystal struc-

ture is based on NaCl (Space group: Fm-3m) with a lattice parameter of 0.48 nm. CaO,

like MgO, is hydrophilic and reacts with H2O to Ca[OH]2. If CaO react to Ca[OH]2

the density change from 3.32–3.35 g/cm3 to 2.08–2.30 g/cm3, this lead to an increase

in volume by 2.75 times. [46] To dry Ca[OH]2 to CaO a temperature of approximately

512 ◦C [47] necessary. Dissociation of Ca[OH]2 was first reported in 1956 [48] during this

thermal dissociation process CaO2 a peroxide or dioxide form. According to literature

CaO2 dissociate below 300 ◦C [46]. The formation of CaO2 is reported in the litera-

ture [48, 49] and the process of drying Ca[OH]2 to produce CaO2 is patented [50] for

technical applications.

3.1.5 Interaction between CaO and MgO

According to the Ellingham diagram CaO is more stable than MgO at low temperatures

[51,52], therefore, it is expected that CaO remains unreacted during melting of Mg. This

means that in a simple binary reaction the standard Gibbs free energy ∆G is lower for

CaO than for MgO at low temperatures, e.g. [51, 52]. Howerver, Gourishankar et al. [2]

measured the enthalpies and ∆G for CaO and MgO. This work derived new values for

the standard enthalpies of the formation at 298 K of CaO and MgO, namely, is −602

and −635 kJ/mol. This a deviation from the JANAF [52] +33 kJ/mol for CaO and

−34 kJ/mol for MgO. This is important as MgO and CaO swap the positions in the

Ellingham diagram. The Tab. 3.3 list different thermochemical values of CaO and MgO

12
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based on the publications [2, 52–54].

Tab. 3.3: Different thermochemical values for CaO and MgO based on the literature
Chase 1985 [52], Binnewies 2002 [53], Hillert 1989 [54] and Gourishankar 1993 [2].

Reference [52] [53] [54] [2]
1985 2002 1989 1993

CaO -646345 -646489 -632143 -602000
MgO -609536 -609220 -609635 -635000

∆G [J/mol] at 298.15 K (25 ◦C)

5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0 2 2 5 0 2 5 0 0
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 C a O  ( G o u r i s h a n k a r )
 M g O  ( J A N A F )
 C a O  ( J A N A F )

M P ,  M g

Fig. 3.3: Difference between in the ∆G for MgO and CaO from JANAF [52] and Gour-
ishankar et al. [2] datas replotted in one Ellingham diagrams taken from Gourishankar et
al. [2].

The idea to use CaO as an alloying addition for Mg alloys came from the group of Shae

K. Kim in Korea [22, 23]. However, the publications from this group do not provide a

theory, which explain the dissociation of CaO in Mg alloys. [14,23,55–65]

Investigations on the oxidation behaviour of Mg-Ca alloys report, an increase in the high

temperature resistance but the quantitative effect on the experimental conditions [14,59,

65]. These investigations use different experimental set-up to investigate oxidation of Mg-

Ca alloys. The formation energy (∆G) of CaO is higher than of MgO and should remain

an inert oxide that enhance protection from the oxidation Mg. However, Gourishankar et

al. [2] found that CaO is less stable than MgO, which change mechanism the protective

associated with nature of CaO. The PBR of Ca/CaO is lower than of Mg/MgO so that

this cannot be used to explain the increase in oxidation resistance. The explanation for
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the increment of the high temperature oxidation is that Ca increase the density of the

oxide layer, but the exact nature of this is not fully understood [65].

Kondoh et al. [1] proposed a calculation to explain the dissociation of CaO in Mg-Al

alloys. They used the standard Gibbs free energy for the reaction between pure Mg

and CaO Eq. 3.1 - 3.2 and Mg-Al and CaO using Eq. 3.3. This calculation take in

to account of all the reaction products not just oxides from the oxidation of CaO. In

this case Mg will reduce CaO and form MgO (Eq. 3.1) the change of ∆G is positive.

However, this calculation does not take in to account the effect of enthalpy of mixing

on the effect the actual phase formation. If the formation of Laves phases for Mg-CaO-

system (Eq. 3.2) or Mg-Al-CaO-system (Eq. 3.3) was considered, the ∆G is lower than

that for the starting condition. Kondoh et al. [1] calculated the standard Gibbs free energy

from the Ellingham diagram values (Fig. 3.4(b)) for different temperatures, Fig. 3.4(b).

They [1] used the thermodynamic data from Barin (1977) [51] and Knacke (1991) [66]

in their calculations. Small deviations in the ∆G for the single phase formations change

the ∆G for the system. However, the Tab. 3.3, it is not clear how large is the difference

between MgO and CaO. Gourishankar et al. [2] proposed that they swap positions in

the Ellingham diagram, Fig. 3.3.

Mg + CaO =⇒MgO + Ca+ ∆G (3.1)

3 ·Mg + CaO =⇒MgO +Mg2Ca+ ∆G (3.2)

2 · Al +Mg + CaO =⇒ Al2Ca+MgO + ∆G (3.3)

The melting point of pure CaO is 2327-2899 ◦C [46,54,68,69,71] and pure MgO is 2597-

2827 ◦C [46,54,68,69,71]. In the binary MgO-CaO system the melting point decrease to

an eutectic temperature of between 2280−2360 ◦C [68,70]. The calculated binary MgO-

CaO system are illustrated in Fig. 3.5, from Serena et al. [67].
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Fig. 3.5: The calculated binary MgO-CaO system from Serena et al. [67] with data from
◦ Doman et al [68], × Rankin and Merwin [69] and + Ruff et al. [70]. HCa = CaO as
Halite and HMg = MgO as Halite.
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3.2 High Temperature Oxidation

The definition of high temperature oxidation is oxidation at an elevated temperature

without water. The region of high temperature oxidation start at a temperature T >

100 ◦C. In relation to corrosion at high temperature, the oxidation is defined as the

reaction between a metal and oxygen. However, this is a technical definition and deviates

from the chemical definition of oxidation. The high temperature oxidation includes not

just O also other elements e.g. N or S and describes the oxidation of the metal to its

ionized state [72,73].

3.2.1 Ellingham diagram

The Ellingham or Richardson diagrams (in the following only Ellingham diagram) is a

type of graph which shows the stability of compounds in relation to the partial pressure

and temperature. The Ellingham diagrams provide information on the change in Gibbs

free energy for oxidation (∆G) (Fig. 3.6) of the reaction between a metal and the O, N

or S (depending on the environment) as a function of temperature at a given pressure.

Eq. 3.4 is the function for ∆G, which depend on the enthalpy (H) and the entropy (S).

The H is a fixed value at a given temperature and pressure for a phase and describe the

release of energy during the reaction between the metal and the oxygen. However, the

change in ∆G depends on the −T · ∆S, if the temperature increases the ∆G decrease.

This is related to the increase in entropy with the temperature. The ∆G can be plotted

as a function of temperature in relation to the reference of 1 Mol e.g. O2 or N2 at 1 bar.

∆G = ∆H − T ·∆S (3.4)

The free energy at a given temperature (position in the diagram) gives information on the

stability of oxide, nitride or sulphide in relation to the metal. Also the partial pressure

can be included in the Ellingham diagram, which provide information in about the partial

pressure range where the phases are stable. For an example the ∆G as a function of the
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Fig. 3.6: Difference between in the ∆G of MeO and Me2O plotted in one Ellingham
diagram .

temperature for MeO and Me2O are plotted in to a Ellingham diagram (Fig. 3.6). Up to

a temperature of approximately 520 ◦C MeO is more stable than Me2O, due to the lower

∆G. Both oxides are show a linear increase in ∆G up to a phase change. The enthalpy

(H) is depends on the phases present, if the oxide under goes a phase transformation, H

and entropy (S) will change e.g. melting, vaporising etc. If a phase cross the zero line

from the reference phase of 1 Mol of O2 in this case, the reference phase (O2) is more

stable than the oxide. The reference line moves with the partial pressure. If the pressure

< 1 bar the reference line moves down, as illustrated in Fig. 3.6, or pressure > 1 bar up.

3.2.2 Thermodynamics kinetics and their effect on reaction speed

The thermodynamics together with the kinetics determine the stability, sequence and

structure of the oxide layers at high temperatures. [72,74]

The thermodynamics is the driving force for the reaction. The first tool in the high

temperature oxidation is the thermodynamics to estimate the stability of metals and

oxides, for this purpose the Ellingham diagram is an important tool. However, this tool

gives no information on the enthalpies of mixing in a system with more than one oxide.

The change in enthalpy of mixing can change the structure of the oxide layer, if more

than one oxide of one or more metals involved in the oxidation process. [72,74]
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The kinetics explains the speed of the oxidation, so that the kinetics define the growth

rate of the oxide layer. Kinetic is defined as a combination of reaction speed and the

mobility of the reacting species. [72]

∆G is the driving force for a reaction, if the ∆G higher, then the reaction speed r increases.

However, the ∆G is constant at a given temperature and only affected by the composition.

[72]

The kinetics is a function of the temperature at constant free activation energy ∆Ga,

shown in the Fig. 3.7. The reaction speed r increase with the temperature and also with

a lower ∆Ga. If the ∆G too high the reaction is inhibited, this can reduce the possibility

of this reaction. Under this condition a reaction will not occur, even if the reaction release

a high amount of energy. The possibility for a reaction increases exponentially with the

temperature. This relation is given by the Arrhenius function and describes, the relation

between temperature and ∆Ga with the reaction speed r as follows: [72, 74]

r = r0 · e−
∆Ga

(mol)
R·T (3.5)

• r0 Proportional constant of the reaction speed

• R Universal gas constant (8.314 J
K·mol

)

• ∆Ga
(mol) Change in free activation enthalpy per mol.

3.2.3 Diffusion during oxidation process

Diffusion in general describe the movement of atoms (e.g. ion or molecule). The diffusion

is a thermally activated process that strongly depends on the temperature, this connec-

tion of temperature and diffusion rate is coupled by the Arrhenius function (Eq. 3.5).

Quantitative diffusion is described by the Ficks law (Eq. 3.6) and it gives a value for

atoms that move in one direction. Ficks law can only applied to binary systems, as the

chemical activity can be different for each component in a system. Therefore the diffusion

flux J by the chemical potential µ should be considered. [72,74,75]
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J = −DdcD
dx

= −DdcD
RT

dµ

dx
(3.6)

• J Diffusion flux

• D Diffusion coefficient

• cD Concentration

• x Distance

• µ Chemical potential

The diffusion is related to the distance an atom can travel in a given time through the bulk

material. The classification of diffusion is defined by the system in which the diffusion

occurs. Self diffusion occurs in a pure material or homogeneous system where a static

movement of atoms occurs. In an inhomogeneous system the diffusion has a direction,

and the local chemical composition change with the movement of the atoms. The second

case is important in technical systems e.g. alloys or oxide layers. The driving force in a

heterogeneous material is to minimize the energy by achieving a constant distribution of

elements in the system. e.g. in alloys or oxide compositions. Depending on the stability

of phases in such a heterogeneous system, it is possible that stable phases can form or

grow, because this will result in a lower energy state than a constant distribution of

elements. [72,74]

In the case of oxidation the diffusion of O to the metal or metal to O play an important

role in the oxidation speed of metals or alloys. If the oxide layer is dense and without

cracks, it will inhibit further oxidation.

3.2.4 Pilling–Bedworth ratio

The theory on the oxide layer or protection layer formation on metals was established in

1923 by Pilling and Bedworth [76]. They invented an equation to estimate the oxidation
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behaviour at high temperature. The Pilling–Bedworth ratio (PBR) explain the high tem-

perature oxidation behaviour of different metals and their oxides [72,76]. The PBR is the

ratio between the molar volume of oxide in relation to the molar volume of metal, shown

in Eq. 3.7. The Eq. 3.7 represents the molar volume change through to the formation of

the oxide at the interface to the metal. This volume change is used to explain possible

stress generation in the oxide layer. The stress developed in this oxide layer can reach a

maximum stress at a critical layer thickness. The calculated PBR indicate if tensile or

compressive stress is expected in the oxide layer. For PBR < 1 a tensile stress is expected

and the oxide layer cracks, this indicate that the oxide layer is not stable, as a result

is not protective. If the PBR = 1 no stress occurs in the oxide layer and the layer is

protective. Where PBR > 1 a compressive stress expected and the oxide layer is dense,

this indicate that the oxide layer is stable and protective as a result. If the PBR >> 1

the compressive stress is to high and oxide chips will drop from the metal/oxide interface.

These three cases are illustrated in the Fig. 3.8 Tab. 3.4 shows the PBR values of some

metals [72, 74,76].

• PBR Pilling–Bedworth ratio,

• M molar mass,

• nm number of metal atoms per one molecule of the oxide,

• ρ density,

• V molar volume.

PBR =
Voxide
Vmetal

=
Moxide · ρmetal

nm ·Mmetal · ρoxide
(3.7)

Change of weight for various PBR on the oxidation is shown in Fig. 3.9. The best oxide

layer is dense and has a good interface between metal and oxide, this is the cases of PBR

≥ 1. Such a oxide layer reduces the oxidation speed with increased oxide thickness, this

leads to a parabolic growth of the oxide layer. If the PBR >> 1 the oxide cracks and lets in
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Fig. 3.8: Evolution of the oxide layer for PBR < 1, ≈ 1 and > 1 [72,76].

Tab. 3.4: Pilling-Bedworth-Ration (PBR) of different metals with the PBR of the oxides
of this metal [72, 76]. * Pilling and Bedworth from 1923 [76]. ** calculation based on
crystallographic data from [77].

Oxide CaO MgO Al2O3 ZrO2 NiO FeO TiO2

*0.78 / *0.84 / Fe(Fe, Cr)2O4.
PBR **0.63 **0.81 1.28 1.65 1.65 1.7 1.73

Fe(Fe, Cr)2O4.
Oxide CoO Cr2O3 FeCr2O4 SiO2 Ta2O5 Nb2O5

PBR 1.86 2.05 2.1 2.15 2.5 2.68

oxygen, which can easily reach the metal, this lead to a parabolic oxidation at the begins

with a strong increase in the oxidation speed after breaking off of oxide chips. Equally if

the PBR < 1 the oxidation speed does not decrease, as the oxidation progresses cracks

forms in the oxide layer and this let oxygen reach the metal. The oxidation behaviour

in this case is a linear weight increase. The worst case for the oxidation under high

temperature conditions is a linear weight loss. This happens when the oxide at this

temperature is liquid or gaseous. The kinetics of oxide growth is mainly correlated with

diffusion. When the oxide layer grows the oxidation speed decrease in the presence of

dense oxide layer, as the O anion and the metal ions have to diffuse through the oxide

layer driven by the ∆G of the reaction. [72,73,76,78]

If the PBR 6= 1 this leads to a stress in the oxide layer and the base metal. For a PBR

< 1 a tensile stress is observed in the oxide layer and compressive stress in the metal, if

the PBR > 1 the stresses swap for oxide layer and the base metal. [72, 73,79]
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Fig. 3.9: The change in weight for three different cases of PBR during the oxidation
process [72] for Mg (PBR < 1), Al (PBR > 1) and Ta (PBR >> 1).

3.2.5 Thermodynamic and kinetic related layer formation

The layer structure depends on the thermodynamic and kinetic processes, that takes over

during the oxidation. The kinetic of the diffusion and the thermodynamic driving force

determine the sequence of the oxide layer growth. The theory on parabolic growth of

the oxide layer are proposed by Wagner [78] for a dense oxide layer. This theory can be

applied for thin oxide layers, if the PBR < 1 but only at the initial state of oxidation. The

Wagner model for a parabolic growth of a oxide layer for a metal oxide describes based on

whether the layer grows on the metal side or on the gas side. The growth direction is based

on the mobility the O2 anions or metal cations through the oxide layer (Fig 3.10). The

mobility of the anions and cations are related to the defect structure of the oxides. This

directly influence the parabolic constant of growth kp in the oxidation process (Fig. 3.9).

The driving force according to Wagner for the oxide layer growth is the partial pressure

of oxygen between metal-oxide interface and oxide-gas interface. [72–74,78,80]
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Fig. 3.10: Wagner’s model of oxide layer formation depending on the mobility of the O2

anions or metal cations: a) faster mobility the O2 anions and b) faster metal cations than
the anions. [72,78].

3.2.6 Oxidation of alloys

The oxidation of pure metals are governed by the factors described above, but in case of

alloys additional effects needs to be take in to account. These additional effects for the

oxidation of alloys are [72,73]:

• Different alloying elements have a different attractions to O2 (∆GA 6= ∆GB).

• The activity and the concentration of alloying additions contributes to changes in

∆G of the system.

• Differences in diffusion coefficient (DA 6= DB).

• The oxide layer is composed of different oxides.

In the case of a binary system with the elements A and B most common the oxide

layer forms as illustrated in Fig. 3.11. Fig. 3.11(a) shows the major contribution to the

formation of the protective oxide from element B. Below the oxide layer the alloy become

impoverished of B. This impoverishment plays no role if B diffuse fast and the oxide layer

grows slowly. This ideal oxidation system works under the following conditions [72, 73]:

• B-oxide is more stable than A-oxide (∆GB < ∆GA).

• The amount of B is high enough to form a protective layer.
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Fig. 3.11: The oxide layer formation on binary system with the alloying elements A and B:
a) as protective B oxide layer and b) A oxide as protective layer with internal B oxide. [72]

The Fig. 3.11(b) shows the case that the B content is not high enough or close to the

impoverishment limit of B, to form a protective layer. In this case major oxide layer

composed of A, which grows faster and is less protective. If the activity of B (∆GB) high

enough, to form B oxides, and the partial pressure for B lower is than that of A, B oxide

form in and below the A oxide (internal oxide). [72,73]

A collection of additional layer structures for A-B alloy system is described in Wood [73]

and Anžel [81].

3.2.7 Protective oxide layer on alloys

In general most or all elements in an alloy contribute to the protective oxide layer for-

mation. In metallic systems the miscibility of the oxide can result in forming different

systems of oxides, as described below [72,73]:

• No solid solution of the oxides (AxOy and BzOv),

• mixed oxide ((A,B)xOy)
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• and formation of a new type of oxide (AB2O3 mainly form as spinel type oxide).

The oxide layer composition and sequence at a given temperature can be taken from a

isothermal section of a phase diagram, when the oxidation processes reach the steady

state condition [73]. When, a binary A-B alloy form of only BxOy oxide layer, Xu [79]

proposed a method to calculate the PBR for this single oxide. When the system has more

than one oxide, this method can not be applied.

3.2.8 Oxidation of Mg alloys on high temperature

The high temperature oxidation of Mg alloys is important during the casting or thermo-

mechanical treatment. The general mechanism of high temperature oxidation is explained

in Section 3.2. This section focus on the specific behaviour of Mg and Mg alloys at high

temperature.

The oxidation of pure Mg at high temperatures does not form a protective layer (exlained

in Section 3.2.4). Due to the lower volume of the MgO to the volume of the Mg, the

oxide layer develops cracks and corrosive gases can react with Mg. Fournier et al. [82]

observed that the growth of the oxide at 300 ◦C follows the inverse logarithmic/parabolic

law (similar to Fig. 3.8 b) with PBR ≈ 1). He reported that at and above 400 ◦C the

oxidation rate of Mg increases considerably. From 400 ◦C Mg evaporates and forms MgO

nodules on the surface by reacting with oxygen. Emley [4] concluded that up to 450 ◦C

Mg form a very thin protective layer or film, and above 450 ◦C the layer become porous

and no protective. It is important to protect Mg during high temperature processes, e.g.

hot deformation or welding. The high reactivity of Mg means, that it can ignite and

endanger the workers and the production line. In the case of Mg parts, the environment,

the size, the shape, the exposed temperature and the exposure time determine if a Mg

part maybe ignited. The time to ignition or if an alloy may be ignited depend on the

alloy composition and the microstructure. [83–85]

The alloying elements can reduce the oxidation potential and increase the oxidation re-

sistance of the solid and/or liquid Mg [86, 87]. Listed below are some alloying elements
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which are reported to successfully reduce the oxidation and improve ignition resistance of

Mg:

• Be [4, 65,83,84,88–90,90–92]

• Ca [4, 14,55,59,86,88,93,94]

• CaO [14, 22–24,56–58,61–63,65,94]

• Rare earth elements e.g.: Nd [83, 95, 96], Gd [86, 97], Ce [86, 98], Pr [86], Sm [86],

Dy [86], Er [86] and in mischmetal [91]

• Y [55, 86,97–100]

• Sr, Si and La [86]

• Zn, Sn, Ni, Cu, In, Ag and T l [83].

However, an explanation on how these alloying elements are incorporated into the oxide

layer of the Mg alloys has not proposed. Some theories exist on the effect of these alloying

elements on the ignition resistance, which are not verified or are contradictory between

investigations.

The improvement in the ignition resistance is explain by the formation of thermodynam-

ically stable oxide phases containing alloying elements with a PBR > 1 [83, 86, 87]. This

is similar to the high temperature oxidation of metals, as described in Section 3.2.4. For

rare earth addition this concept can be used to explain the interaction of the alloying

elements during the oxidation process. However, other alloying elements, e.g. Ca and

Sr, show a PBR < 1, but provide protection. Sr does not form a thermodynamically

more stable oxide compared with Mg and still provide protection. In an investigation

from 1953 [101], Mg-Al-Be and Mg-Al-Ca-Be alloys was molten in air without ignition.

Thus, the role of Ca on the oxidation resistance was known for long time [102]. However,

an explanation on how Ca or CaO is incorporated in to the oxide layer of Mg-Ca has not

been clarified. Sakamoto et al. [102] reported that the ignition point increased with Ca

additions over the melting point of Mg by adding up to 1 wt.% Ca. They reported that
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the oxide film on the Mg–Ca consists of CaO surface film and below this is a mixture

of MgO–CaO. However, Sakamoto et al. [102] did not clarify why this CaO protective

film can form on a molten Ca-bearing Mg alloy. Similar results are reported by Ha et

al. [14, 58] on the oxide layer of Mg-Ca and Mg-CaO alloys. However, the main reason

behind this protection effect is not clarified. The leading hypothesis is based on the PBR,

thermodynamic stability of oxide layer or the kinetic of the diffusion and reaction on the

oxide layer formation.

Ce and Si do not form a thermodynamically stable oxide compared with MgO, but PBR

of the Ce and Si oxides is > 1 and form protective layer better than MgO [86]. The

protection of the binary Mg alloys thouge alloying addition is not fully understood and

the thermodynamics of the simple oxidation reaction (xM + yO =⇒MxOy + ∆G) should

take in to account the enthalpy of mixing and the secondary phase formation. This will

contribute to the understanding of complex systems. Fan et al. [98] investigated Mg-Y

and Mg-Y -Ce alloys and found that the oxide layer is mainly Y2O3, and Ce2O3 is not

observed. However, if Ce (5 wt.% Ce / ignition point 647 ◦C) added without Y the

ignition resistance increase, but not as large increase as with the addition of Y (3.8 wt.%

Y / ignition point 660 ◦C). The addition of Y and Ce in combination (3 wt.% Y and

0.68 wt.% Ce / ignition was not detected up to 900 ◦C) show a significantly higher increase

in ignition point in air. The kinetics of the possible reaction and the diffusion of different

alloying elements (Wagner [78]) affect the oxide formation (Section 3.2.5) and was also

reported Czerwinski [83] for the oxidation of Mg. The ongoing research of Fan et al. [103]

consider the oxide layer formation on the melt of the Mg-Y -Ce alloys (3 wt.% Y and

0.68 wt.% Ce / no ignition up to 900 ◦C) and proposed a theory on the oxidation kinetics

in the layer formation theory. They showed that the outer layer contained a mixture of

Y2O3 and Ce0.202Y0.798O1.601, and the inner layer is mainly Mg and MgO with a little

amount of Y2O3. This shows an enrichment of RE-containing oxides on top of the Mg

alloy melt, which provides improved ignition resistance.

The improved ignition resistance of Mg system is related to a denser or closed oxide layer.

At present there is no theory to explain how these alloying additions density the oxide
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layer. The approach of using highly reactive metals to improve the oxidation resistance

of Mg alloys, Section 3.2.7, is a hypothesis that has not been investigated [104].

3.2.9 Melt protection of Mg alloys

The high affinity of Mg to oxygen and the high vapour pressure of molten Mg [5, 105],

makes it necessary to prevent oxidation and burning during Mg production. During

the fabrication of Mg, different technologies are used to reduce or prevent the oxidation

during melting. This type of oxidation result in the ignition of the melt; which is difficult

to handle and is a safety issue. For safe handling of Mg different technologies were

developed. It is possible to separate this in 4 groups.

1. pure element powders, e.g. S [4, 5, 106]

2. fluxes, such as salt [3, 4, 106–109] and minerals [4, 106,108],

3. cover, shielding or protection gases [4, 5, 92,106,110–115],

4. or by alloying elements [4, 106], that form a stable layer on the melt.

Beck [5] reported that pure S powder was used as the earliest protective medium for Mg.

It was suggested that a MgS formed a protection layer on the Mg melt, which prevent

further oxidation. [4, 5, 106]

After this, liquid salt fluxes were used for the Mg melt protection [3–5, 106–109], to

separate the melt form the ambient air. The fluxes contain low melting point eutectic

compounds and the ingredients of the fluxes are listed in Tab. 3.5. This technology was

able to provide a safe handling of Mg melt, but the disadvantages of the fluxes include the

detrimental effect on the quality of the casting, equipment and specific boundary for the

casting process. The fluxes are not only used to protect the melt from ignition, but also

prevent Mg evaporation. The evaporation of Mg change the actual composition of Mg

alloy and the condensation of Mg can create safety issues as small Mg crystals can subli-

mate in colder places in the cast facility and ignite. A small operating temperature range

available for fluxes and flux is retained within the ingots, which limits the effectiveness
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of the flux. Flux remains in the cast product reduces the quality of the casting and the

salt fluxes contaminate the ingots. This contamination increases the corrosion rate of the

cast products. The flux also contaminate the scrap, which makes recycling difficult. The

most components of commercial fluxes are hydrophilic, after the removal from the casting

facility, during the remelting process, this can lead to gas evolution. This gas evolution

is extremely dangerous and endangers workers and the cast shop. The melt protection

with fluxes lead to multiple issues. Fluxes increase the corrosion of casting equipment is

also a reason for the Mg producers avoid using flux in the production. The S and fluxes

are highly corrosive and limit the endurance of the casting equipment. Cl-containing

salts were a common flux components, and subsequently produce of HCl gas, which is

highly corrosive and detrimental to operator health. Emley [4] explained the mechanisms

associated with fluxes for the Mg production in more detail. [3, 106–108,116]

Tab. 3.5: Components of various protective and refining ingredients used in protective
fluxes. [3, 4, 107,108]

Protective base, wt.%
MgCl2 CaCl2 NaCl KCl

Inspissation (viscous) agents, wt.%
BaCl2 BaF2 MgF2 CaF2 MgO SiO2 C

The protection gases were used in the beginning in combination with fluxes. These gases

prevent ignition of Mg melt. [3, 4, 92, 107, 110, 117] The cover (also called shielding or

protection) gas, overcome the disadvantages of fluxes on the Mg casting. The gases could

be active, in that the gas react with the Mg melt and form a layer that protect the melt

from a direct contact with air and reduce the evaporation of Mg. The second group of

protection gases are inert gases like Ar or gases that show low or slow interaction with the

Mg melt like N2 or CO2. The inert gases are used mostly as a carrier gas for active gases.

The active gases have the advantage, that they form a layer on Mg melt. In case of a air

draught or re-filling Mg in to the melt the active gases provide short time protection from

oxidation up to ignition. A list of different protection gases are shown in Tab. 3.6. The

active gases show a higher impact on the Global Warming Potential (GWP) compared

with CO2.
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Tab. 3.6: Chemical compounds and names of different protection gases. [3, 92, 107, 110,
117,118]

Chemical compounds
and names

Atmos-
pheric
lifetime
[yre]

Global Warm-
ing Potential
(GWP) in a
time period of
100 yrs

Active gas

SF6 3,200 23,900

SO2
several
days

0

HFC134a (CF3CH2F ) 14.6 1,300
HFE7100
(C4F9OCAH3)

no values 390

NovecTM612
(C3F7C(O))

0.014 ≈1

CH4 12 24
N2O 120 no values

Active gas (experimental)
BF3 no values no values
SO2F2 no values ≈1

Carrier Gas

Ar - -
He - -
N2 - -
dry air - -
CO2 100 - 150 -
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The most commonly used active gases in Mg production are SO2, HFCs and SF6 [3,92,

110, 117]. A small volume of (0.01 to 5.0 vol.%) active gases are used together with the

carrier gases. The composition of the protection gases used in the Mg casting process

are mostly based on the experience in the cast shop: the casting process, the alloy, the

equipment and on economic parameters. The choice for the carrier gases is based mainly

on the availability and the cost.

The reasons in keeping the amount of active gas low as possible include:

• High price,

• highly corrosive properties of the gases,

• high Global Warming Potential (GWP) and

• health and safety of the workers.

These points are not applicable for all active gases. The disadvantages of active protec-

tion gas is similar to the disadvantages of flux. Gas (as SO2, HFCs and SF6) or the

reaction product are highly corrosive to the steel used for casting equipment and limit

the endurance of the equipment. [3, 92, 108,119,120]

The first active gas used in combination with fluxes was SO2. The problem with SO2

is that it is highly corrosive to the equipment and it reacts with water to form H2SO3.

H2SO3 can damage the skin and lungs [46]. The impact on the GWP is 0 for SO2, which

make it unique in the group of active gases (Tab. 3.6) [120]. However, the corrosion of

the equipment and low Threshold Limit Value (TLV), for exposure to H2SO3 (1.5 mg
m3 in

germany), makes it unsuitable [3,46,92,106,108,119,121,122]. The protection of the melt

works by a reaction between SO2 and the Mg melt and which forms protection layer on

the melt. Possible reactions in the SO2 protection system are shown in Eq. 3.8 and 3.9

for N2 as a carrier gas [109, 119, 123]. In case of CO2 as a carrier gas, it will form C on

the surface, which is comes from the reaction in Eq.3.10 [123].

Mg(l) +O2 + SO2 =⇒MgSO4(s) (3.8)
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MgSO4(s) + 4Mg(l) =⇒ 4MgO(s) +MgS(s) (3.9)

2Mg(l) + CO2 =⇒ 2MgO(s) + C(s) (3.10)

SO2 protection gas works well while there is oxygen available, if no oxygen available,

e.g. in a closed melting system, no protection is provided [121,124]. The possible reaction

proposed is shown in Eq. 3.11, there Mg reduces SO2 [109,119]. Wang and Xiong [121,124]

found that the content of air was important during the use of SO2 as protection gas for

AZ91D. They reported that in the beginning the protection layer is composed mostly of

MgO and MgS, but over time the content of MgSO4 increases. MgS interacts with O2

in the carrier gas and provide the melt protection through the formation of MgSO4.

Mg(l) + SO2 =⇒MgO(s) + (S + SO + S2O) (3.11)

SF6 was first used in 1977 for the melt protection of Mg. H.J. Müller [107] reported, that

SF6 was used as an experimental gas for the melt protection. Due to the negative impact

on the greenhouse effect, the use of fluorinated greenhouse gases likely to be prohibited

from 2050 in European Union in general. The Article 13 in the (EC) No 842/2006 [118],

allow to the use of SF6 below 850 kg
year

, for the magnesium die-casting and in recycling

of magnesium die-casting alloys until 2018. It should be noted, that the emissions from

Mg foundries are extremely low compared with the applications in other industrial areas,

such as high voltage switching plants [119,125]. SF6 is one of the standard protection gas

used in the Mg fabrication industry [113, 115, 120, 122, 126]. Western world smelters use

SF6 for the protection of primary Mg. China and the former countries of Soviet Union

of Russia (e.g. Ukraine and Kazakhstan) use SO2 [127]. Compared with SO2, SF6 is

non-toxic, non-corrosive and provides protection for Mg melt [113,120,126].

It is possible to use CO2, N2, dry air and Ar as carrier gas [109,119]. SF6 can react with

the molten Mg according to the following:

When SF6 content is < 0.5 vol.%

Mg(l) + SF6 + dry air =⇒MgO(s) + SF6 (3.12)
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SF6 > 0.5 vol.%

Mg(l) + SF6 + dry air =⇒MgO(s) +MgF2(s) + SO2 + with traces of SF6 (3.13)

or also

Mg(l) + SF6 +O2 =⇒MgF2(s) + SO2F2 (3.14)

MgO(l) + SF6 =⇒MgF2(s) + SO2F2. (3.15)

Cashion [106] proposed a similar reaction with more steps as shown in Fig. 3.12.

SF6(g) SF4 + 2F Mg(l)

MgO(s)

MgF2(s)

SO2F2 + 2F 

SO2 + 2HF 

SOF2 + 2HF 
H2O

H2O

+

1/2O2

Fig. 3.12: The proposed mechanism for decomposition of SF6 to form the protective
surface film containing MgO and MgF2. [106]

The protection mechanisms for active gases on the Mg melt is explained in a manner

similar to the PBR. This explanation is used to describe the interaction of active protection

gases, e.g. SF6 with Mg. Many publications [113,128–130] report the formation of MgF2

on the surface of the melt. Ha et al. [114] calculated a PBR of 1.29 for Mg/MgF2.

This explanation is similar to the oxide (Tab. 3.4) formation during high temperature

application. The result is a dense layer of MgF2, which protect the melt from the direct

contact with air (O2 content), CO2 orN2. However, the investigations of Cashion [106,113]

show, that in the presence of SF6, the contact angle between solid MgO and molten Mg is

reduced. He reported poor wetting of the MgO by Mg melt and a non-adherent surface

film when there is no SF6. Pettersen et al. [128] showed that compared with oxygen

and fluorine contents on the surface of Mg sulphur content is low with SF6. The SEM

investigations of Pettersen et al. [128] show that in the surface films the amount of Mg

will balance the oxygen and fluorine content as MgO and MgF2. [126,128,131,132]
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Substitutions for SF6 are available e.g. NOVECTM 612 [122], HFC (e.g. HFCl34a

(CF3CHtF) [122] and HFC125 [133, 134]) and more listed in Tab.3.6. The fluorinated

protection gases have a comparable effect on the MgO-Mg2F layer on top of the Mg

melt. The F based gases provide the ignition resistance of Mg melt by forming Mg2F .

CO2 fossil
fuel use
56.6%

CO2
(deforestation,
decay of
biomass, etc)
17.3%

CH4
14.3%

N2O
7.9%

F-gases
1.1%

CO2 (other)
2.8%

Fig. 3.13: Global greenhouse gas emissions statistics in 2004 [135].

This has led over the time to develop exotic ways to protect the Mg melt from ignition.

One of these is the use of solid CO2, it cools the top of the Mg melt, lowering the vapour

pressure and inhibit the air access to the molten Mg. The GWP of solid CO2 is 1,

provided that the production of solid CO2 is not considered. The disadvantage is the

generation of highly toxic carbon monoxide and solid carbon on the interface between

melt and CO2. This technology is patented by Linde AG [136] and not currently used

commercially. [122,137]

Another approach to protecting the Mg alloys during melting and casting process, is to

add special alloying elements to improve the ignition resistance. Beck [5] and Emley [4]

reported that some alloying elements can reduce the oxidation behaviour of the molten

Mg. These elements interact during the oxidation and form a dense oxide layer on the

top of the melt. Consequently, the compositions of the Mg alloys can be used to improve

the ignition and oxidation resistance of Mg alloys. This created a new type of Mg

alloy, named and patented under ECO-Mg (Environment COnscious magnesium) [22–24]
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which use CaO as a alloying addition or Non-flammable magnesium alloy [25] with Y in

combination with Ca as alloying elements.

The alloying elements can reduce the oxidation potential and increase the oxidation resis-

tance on the solid and/or liquid Mg [86,87]. The Section 3.2.8 lists some alloying elements

which have been reported to successfully reduce the oxidation and improve ignition resis-

tance of Mg alloys in solid and liquid state.

The improvement in the ignition resistance is explained by the formation of thermody-

namically stable oxide phases containing the alloying elements with a PBR > 1 [83,86].

ECO-Mg and Non-flammable magnesium alloy have a good potential to be developed

for industrial application. The bottleneck with the substitution of gases or fluxes with

alloying elements is the production of these alloys. All the alloys start with high purity

Mg and high purity alloying elements to produce master alloys or the commercial Mg

alloys. Thus, some protection is required to produce this ECO-Mg and Non-flammable

magnesium alloys.
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3.3 Physical background of X-ray diffraction

3.3.1 X-ray diffraction

X-ray diffraction (XRD) is a method used for the determination of crystallographic phase.

X-ray or other wave forms interact with the material investigated. Due to the angle of the

diffraction or reflection, the geometric arrangement of the atoms can be calculated for a

given a crystal lattice. The waves scatter from lattice planes separated by the interplanar

distance d (Fig.3.14). The path difference between two waves with constructive interfer-

ence is given by 2d sin θ, where θ is the diffraction or scattering angle. The constructive

interference between X-ray with a wavelength (λ) with atomic plane related through the

spacing between such atomic planes (d) and angle of interference (2θ). This relation is

given by the Bragg equation Eq. 3.16. [75,138,139]

2d sin(θ) = nλ⇒ d =
nλ

2 sin(θ)
(3.16)

2θ

..

θ θ

d
d

Fig. 3.14: Diffraction and the interplanar distance d in a crystal at the Bragg position.

The Bragg equation describes the relationship between wavelength λ , the angle θ , the

order of interference n and the distance d of the lattice planes, which is specified in

Eq. 3.16. At a given wavelength (λ) and the angle (θ), as shown in Fig. 3.14, it is possible

to calculate the distance (d) of the lattice planes. The Eq. 3.16 shows that at short
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wavelengths (λ), the diffraction occurs at lower angles (θ). The interplanar distance (d),

can be related to a lattice plane as described by the Miller indices. The formula for this

can be described in Eq. 3.17 for cubic structures and in Eq. 3.18 for hexagonal structures.

d =
a√

h2 + k2 + l2
(3.17)

d =
a√

4
3
(h2 + k2 + h · k) + l2

(c/a)2

(3.18)

Depending on the orientation of the crystal relative to the incident X-ray beam different

lattice planes reflect the beam where the crystal is in the Bragg condition. According

to the Eq. 3.17 and Eq. 3.18 d is always smaller than or equal to the lattice constants.

[75,138,139]

n · λ
2d
≤ 1 (3.19)

3.3.2 X-rays

X-rays are electromagnetic waves with a wavelength λ between 0.001 to 10 nm. This

wavelength is lower in comparison with visible light, λ 430-640 nm, by two to six orders

of magnitude. The wavelength λ is directly related to the energy of electromagnetic

waves. The conversion of energy to the wavelength is specified in Eq. 3.20 to Eq. 3.22.

The photon energy of the X-ray radiation is in the range 5 to 5000 keV . [138–141]

The energy or the wave length of X-ray may be calculated with Eq. 3.20 - 3.22.

f =
c

λ
(3.20)

in to Eq. for energie Er

Er = h · f (3.21)

λ =
c · h
Er

⇒ λ[nm] =
1, 2398419

Er[keV ]
(3.22)

The constants for these equations are:
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• f Frequency

• c speed of light in vacuum 2, 99792458 · 108m
s

• h Planck constant 6.62606957 · 10−34Js

• Er energy 1.60217656535 · 10−19J = 1eV

The X-ray sources include laboratory scale X-ray tubes or synchrotron sources.

3.3.3 X-ray tube

The basic principle of the X-ray tube is based on the release of X-ray radiation from a

cathode. The general set-up is shown in Fig. 3.15. The simple X-ray tube uses thermal

emission for electrons. The electrons are accelerated by an external electrical field. The

energy or wavelength λ depend on the anode material (mostly a metal) and the accel-

erating voltage. During interaction with the metal the electrons are decelerated and a

different type of radiation is produced. The radiation from this process is normally the

X-ray radiation [142]. For investigations the emission of K-α important, as this generate

X-rays with a fixed energy as well as wavelength (λ). The high energy electrons are able,

to remove a electron from the atomic shell of the metal. The vacancy created is filled

with an electron from a higher orbit, and the energy difference is be emitted as a photon.

The possible transitions are material dependent. The energy of the emitted X-ray is de-

termined by the anode material according to the Moseley’s law and has a fixed value for

a given element [143].

X-ray tube provide a range of set-ups for X-ray diffraction (XRD) investigation. The

most common applications for X-ray diffraction is:

• d-spacing and structure determination of new phases

• Phase analysis in inhomogeneous materials (powder diffractometry)

• Texture measurements

• Retained stress measurements etc.

40



B. Wiese 3.3 Physical background of X-ray diffraction

-
-

-

+ -

x-ray

high voltage
to accelerate
the elecrons

electrical
heated cathode

water
cooled anode

+

-

vacuum x-ray produce when
high speed electrons
hit the metal target

Fig. 3.15: General set-up of a X-ray tube.

3.3.4 Synchrotron

A synchrotron is a brilliant X-ray radiation source. The general synchrotron is com-

posed of straight sections with accelerator and bending magnets, that guide bunches of

charged particles (elections or positrons) on a circular trajectory with relativistic speed.

The bending magnets change the direction of the charged particles on curved path us-

ing a magnetic field. The third generation of synchrotrons use undulator or wigglers for

the emission of synchrotron radiation. Undulators and wigglers are tools used to bend

the trajectory of the charged particles periodically by magnets. These oscillations pro-

duce intense beams of radiation with a low angle deviation. The emitted radiation is

guided through a monochromator and focusing device, before the radiation is used for an

experiment. [138,144]

Brilliance of the synchrotron radiation is determined by photons for unit time [sec], source

size [mm2], opening angle [mrade2] and 0.1 % spectral bandwidth Eq. 3.23. A synchrotron

generates radiation with wavelengths of 10−12 to 10−4 m, this covers the spectra from

X-rays up to infra red radiation. For diffraction investigations a synchrotron radiation

source must have a wavelength shorter than the expected lattice spacing (Section 3.3).

Synchrotron radiation provide these wavelengths, by the adjusting the energy of the beam

(Section 3.3.2). In comparison with lab scale X-ray sources, the energy can be adjusted
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in the synchrotron and is used mostly with a high energy which correspond to shorter

wavelengths. [138,144,145]

B =
[Photons]

[sec] · [mm2(source)] · [mrad2] · [0.1%bandwith]
(3.23)

High energy X-rays offer larger penetration depths. This is required for the investigation

of bulk structures in engineering materials. To investigate processes that can occur rapidly

in a engineering materials the hight flux of photons provide a required short acquisition

time. This provide the possibility for the in situ experiments for time and temperature

depended processes using synchrotron radiation. [138,146]

A list of investigation conducted which used synchrotron diffraction methods are listed

below:

• Heat treatment (phase formation or transformation) [146]

• Tensile and compression testing for internal stress, phases changes, texture changes

etc. [138,146–148]

• Stress detection during cutting, welding etc. [138,146,149]

• Solidification different alloy systems, e.g. Mg alloys [150–152], Al alloys [153, 154],

steels [155], Nd alloys [156] and Zr alloys [157].
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CHAPTER 4

Experimental

4.1 In situ investigations

During the development of the experimental setup, three different experimental setups

were investigated for the in situ synchrotron measurement. The changes to the setup

include the sample preparation, the furnaces used and the temperature-time-program.

The set up with the sample preparation was developed in two earlier experimental in-

vestigations. The first experiment provided only a powder after the experiment and not

a bulk sample of Mg with 10 wt.% CaO to verified the in situ results [158] with the

microstructural evaluation. The second experiment was conducted with gas atomised Mg

and Al powders with CaO powder, but the results show the oxide on the metallic powder

present the development of a homogenised microstructure [159]. Based on these results

the third setup was developed to use in this investigation.

4.1.1 Sample preparation

Pure Mg(99.99 %) was investigated as a reference material to test the setup. The first

group of samples contain pure Mg (99.99 %) with CaO powder (Calcium oxide ≥ 96 %

powder from CARL ROTH). The second set of samples contain the master alloys Mg6Ca

and Mg16Ca with 6 wt.% CaO powder (Calcium oxide ≥ 96 % powder from CARL

ROTH).
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B. Wiese 4.1 In situ investigations

The nominal compositions of the samples investigated are listed as follows:

• Pure Mg

• PureMg with 20, 30 and 50 wt.% CaO powder: Mg20CaO, Mg30CaO and Mg50CaO

• Mg6Ca master alloy with 6 wt.% CaO powder: Mg6Ca+6CaO

• Mg16Ca master alloy with 6 wt.% CaO powder: Mg16Ca+6CaO

The pure Mg and the Mg-Ca master alloys were produced by cutting. The CaO powder

was dried for 6 h at 350 ◦C into small chips. This chips were mixed with the CaO powder

for 3 min, to create a uniform mixture. The mixture was pressed with a hydraulic press

to cylinders with a diameter of 4 mm and a hight of 3 to 4 mm. The applied pressure was

100 MPa and samples were held for 1 min under this pressur. The samples were stored

in sealed plastic bags until the in situ investigations.

4.1.2 In situ synchrotron radiation diffraction measurement

The in situ investigations were conducted at DESY (Deutsches Elektronen-Synchotron)

in Hamburg Germany. The measurement time was given under the Proposal I-20130330:

In situ diffraction of the melting and the solidification of magnesium alloys containing

CaO in 2013 at PETRA III. The setup in general is illustrated in Fig. 4.1. The source

for the synchrotron radiation in all experiments was the PETRA III [145, 160] and the

setup was in the measurement hutch P07 of the High Energy Materials Science (HEMS)

beamline [145]. The synchrotron radiation diffraction study was conducted with a beam

energy of 100 KeV , this can be converted in to a wavelength of λ = 0.0124 nm. The

beam cross section was set to 1 x 1 mm2.

The experiment was conducted in the induction coil of a furnace built for in situ syn-

chrotron radiation measurements, as shown in Fig. 4.2. The furnace chamber and induc-

tion coil (gap in the coil) were modified to allow the X-ray beam to pass after interacting

only with the sample. The setup was isolated from the surrounding with two windows

covered with Kapton foils to allow the passage of beam without interference. The sample
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synchrotron radiation

Synchrotron:

PETRA III 

at DESY

beam stop

Ar

heatingbeam gap

diffraction cones detector 

kapton foilkapton foil

sample-to-detector-distance 

furnace chamber

sample

Fig. 4.1: General setup for the in situ synchrotron radiation diffraction measurement.

Fig. 4.2: The camber of the induction furnace built for the in situ synchrotron radiation
measurements on the left and right a schematic of the sample holder with graphite crucible
sealed with a steel lid.
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were heated in an Ar atmosphere to 750 ◦C at 10 K
min

, held at 750 ◦C for 5 min to en-

sure melt homogeneity, and then cooled at 10 K
min

to 200 ◦C (fully solidified state) before

air-cooling to room temperature. The molten samples were held in position in a graphite

crucible with a steel lid. The graphite crucible was inverted (Fig. 4.2 right up in the

corn) and the steel lid sealed with a high temperature glue, Thermocoll from KERAMAB

N.V. The crucibles were prepared in ambient condition. The temperature-time-curve was

controlled with a S type thermocouple welded to the lid of the crucible. The crucible with

sample was rotated by 90 ◦ during acquisition to improve statistics.

The two dimensional (2D) diffraction patterns were recorded in transmission geometry

with a PerkinElmer XRD 1622 Flatpanel detector [161] at a sample-to-detector-distance

of 1162.7 mm (calibrated with LaB6 reference), as illustrated in Fig. 4.1. The patterns

were recorded every 12 s with a acquisition time of 1 s, together with the heating rate the

temperature resolution is 2 ◦C. X-ray line profiles were obtained by azimuthal integration

of the 2D diffraction patterns through 360◦ using FIT2D V12.077 software. For phase

identification simulated line profiles were generated with CaRIne 3.1 CrystallographyTM

with crystal structure data from the Pearson’s Crystallography Database [77].

4.2 Composition measurement of the Mg chips

The Mg, Ca and O contents of the pure Mg and the pure Mg-Ca master alloys chips

were measured with a TESCAN VEGA III, equipped with an EDAX energy-dispersive

X-ray spectrometer (EDXS) operating at 20 kV . For this measurement the chips were

pressed with a hydraulic press to cylinders with a diameter of 4.0 mm, under an applied

pressure of 500 MPa and held for 1 min under pressure. The three samples of these

compacted chips were measured on three different areas on the surface with EDXS for

10 min, to determine the composition of the chips
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4.3 Metallographic investigation

4.3.1 Grinding and polishing the in situ samples

The samples were embedded in epoxy resin, with DEMOTEC 30, 2/3 powder and 1/3

hardner liquid mixed to form the resin which was left to harden. The specimens were

prepared by grinding with SiC paper to 2500 grit at a speed of 150 min−1. In the first

step 3 µm diamond paste were used followed by a mixture of 1 µm diamond and OPSTM

(≈ 1 µm) anhydrous suspension with at a speed of 80 min−1, for polishing the samples.

4.3.2 Scanning electron microscopy

Microstructures were investigated using a TESCAN VEGA III, operating at 20 kV ,

equipped with an EDAX energy-dispersive X-ray spectrometer (EDXS) and the local com-

positions determined with EDXS compositional maps. The Scanning electron microscopy

(SEM) investigation was conducted on polished samples. The compositional maps were

recalculated with the software Iridium Ultra in wt.%. After the recalculation the maps

are saved as ASCII files and converted with ImageJ in to PNG files. The scripts used to

convert the ASCII files are provided in the appendix (Section F). The scripts change the

picture size and include the scale bar depending on the pixel size of the maps.
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CHAPTER 5

Results

5.1 Composition of the Chips

The Mg, Ca and O content of the pure Mg and the Mg-Ca master alloys chips were

measured with SEM-EDXS, Tab. 5.1.

Tab. 5.1: The measured composition for pure Mg, Mg6Ca and Mg16Ca chips using SEM-
EDXS measurement.

Sample Composition Ca [wt.%] O [wt.%] Mg [wt.%]

Pure Mg average - 2.3 ± 0.5 97.7 ± 19.6
standard deviation - 0.2 0.2

Mg6Ca average 4.9 ± 1.0 3.9 ± 0.8 91.1 ± 18.2
standard deviation 0.2 0.2 0.3

Mg16CaO average 15.1 ± 3.0 6.0 ± 1.2 78.9 ± 15.8
standard deviation 0.6 0.3 0.8

48



B. Wiese 5.2 Pure Mg

5.2 Pure Mg

The X-ray line profiles from the synchrotron investigation show the melting of pure Mg

during heating cycle, Fig. 5.1(a). At the start the peaks from Mg are observed. A small

reduction of the intensity and the movement of the peak position to lower 2θ angle, due

to the thermal expansion was observed during heating. Once the temperature reached

651.6 ◦C the intensity of the Mg peaks decreased rapidly with no intensity detected at

654.2 ◦C. Above this temperature the patterns show the diffraction peaks of the graphite

crucible and a diffuse background due to molten Mg. During the holding time no change

can be detected. The first sets of Mg peaks appear during solidification at 649.1 ◦C and

the solidification ends at 647.0 ◦C, Fig. 5.1(b). There is no statistical distribution of peaks

during the cooling (Fig.5.1(b)) indicating, that only a small volume of Mg is in Bragg

condition. The detected temperatures for disappearance and appearance of Mg are listed

in Tab. 5.2.

Tab. 5.2: Phase changes with temperatures in the sample pure Mg. The abbreviation
(H) for heating and (C) for cooling.

Reaction Experimental data ± 5 [◦C]
Disappearance of Mg start 651.6 (H)
Disappearance of Mg end 654.2 (H)
Appearance of Mg start 649.1 (C)
Appearance of Mg end 647.0 (C)
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Fig. 5.1: Selected line profiles from a) heating and b) cooling process of the pure Mg
sample with the observed phases indicated.
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5.3 Mg20CaO

The temperature at which, the detected phases, appear or disappear are listed in Tab. 5.3

and the line profiles (LP) at different temperatures are illustrated in Fig. 5.2.

The X-ray line profiles show that peaks due to Ca[OH]2, CaO, Mg and graphite crucible

are present in the beginning. During heating the main peak of CaO becomes more visible

when heated above 291 ◦C, due to the thermal expansion of Mg. This is followed by the

stabilisation of the intensity of CaO peaks up to 396 ◦C and a second increase in peak

intensity at 502 ◦C to a maximum of intensity. The peak intensity of CaO decreased from

568 ◦C. During heating the peaks of MgO and CaO2 are detected at a temperature of

340 ◦C. The peaks of Ca[OH]2 starts to disappear at 408 ◦C and are undetectable at

500 ◦C. The peak of CaO2 disappeared at the same temperature when the MgO peaks

became stable, at 618 ◦C. In the temperature range between 620 and 637 ◦C the Mg

peaks disappear. With the disappearance of Mg the diffuse contrast of the melt was

detected. From 664 ◦C the CaO peaks stabilise and show no further changes in intensity.

During cooling the first peaks of Mg are detected at 570 ◦C and no intensity changes

were detected below 509 ◦C. The Laves phase Mg2Ca was detected at 511 ◦C with no

further intensity changes below 509 ◦C.

The microstructure of the sample used for the in situ investigation was analysed with

SEM. The EDXS maps show the distribution of the elements Mg, Ca and O in the

solidified sample, Fig. 5.3. From the microstructure the solidification sequence can be

understood. The solidification begins with Mg grains and ends finally with an eutectic

solidification of a Mg and Ca rich lamellar structure. The O agglomerates in the eutectic

region in a form of clusters of oxide particles with a higher concentration of Mg. The

final composition was measured using EDXS with 6.8 ± 1.4 wt.% Ca, 8.7 ± 1.7 wt.% O

and balance Mg. This composition deviates form the nominal content of 14.3 wt.% Ca,

5.7 wt.% O and balance Mg.
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Fig. 5.2: Selected line profiles during a) heating and b) cooling of the sample Mg20CaO.
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Tab. 5.3: Phase changes with temperatures in the sample Mg20CaO. The abbreviation
(H) for heating and (C) for cooling.

Reaction Experimental data ± 5 [◦C]
Increment of CaO end (stable) 291 (H)

Appearance of CaO2 340 (H)
Appearance of MgO start 340 (H)
Increment of CaO start 2 396 (H)

Disappearance of Ca[OH]2 start 408 (H)
Disappearance of Ca[OH]2 end 500 (H)
Increment of CaO end 2 (max.) 502 (H)

Decrement of CaO start 568 (H)
Disappearance of CaO2 618 (H)

Appearance of MgO end (stable) 618 (H)
Disappearance of Mg start 620 (H)
Disappearance of Mg end 637 (H)

Decrement of CaO end (stable) 664 (H)
Appearance of Mg start 570 (C)

Appearance of Mg2Ca start 511 (C)
Appearance of Mg end 509 (C)

Appearance of Mg2Ca end 509 (C)

(a) SE (b) Mg

(c) Ca (d) O

Fig. 5.3: The (a) SE micrograph and EDXS maps for (b) Mg, (c) Ca and (d) O of
Mg20CaO. (The composition in wt.%.)
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5.4 Mg30CaO

The appearance or disappearance of the phases are listed in Tab. 5.4 and the line profiles

(LP) for the experiment are illustrated in Fig. 5.4. The LP numbers were used, as the time

and temperature of the experiment could not recorded, due to experiment set-up error

associated with RAM overflow. The calculation of the actual temperature of the patterns

was not possible. The comparison with other temperature-time curves and temperature

determined by considering the thermal expansion of the lattice distance of graphite and

Mg were not successful in generating the reliable temperature data. However, the results

show the phase evolution sequence during heating and cooling.

The X-ray line profiles show that Ca[OH]2, CaO, Mg and graphite from the crucible are

present in the beginning. During the heating the peaks of CaO decrease to a minimum

intensity by LP 109. Followed by an increase up to the maximum peak intensity at LP

263. During heating the peaks of CaO2 are detected at LP 132 and disappear at LP 259.

The peaks of MgO are detected at LP 163 and increased up to LP 204. Followed by the

second increase in the peak intensity of MgO at LP 225 and no intensity changes were

detected after LP 339. Followed by the maximum in the peak intensity for CaO at LP

263 and it decreased to a stable of peak intensity at LP 309. During heating the peaks

of Mg decrease in intensity between LP 257 and 267. When Mg start to disappear Mg

the diffuse contrast of melt was detected. After the disappearance of the Mg peaks the

intensity of the CaO peaks become stable at pattern 309 and the intensity of MgO peaks

are stable after LP 339. From this LP 339 the CaO and MgO peaks remain stable and

show no changes in intensity.

During cooling the first peaks of Mg are detected at LP 406 and and no intensity changes

were detected after LP 409. The Laves phase Mg2Ca was detected at LP 407 with no

further intensity changes.

The microstructure of the sample from the in situ experiments were investigated with

SEM. The EDXS maps illustrate the distribution of the elements Mg, Ca and O in the

solidified sample, Fig. 5.5. From the microstructure the solidification sequence is proposed.
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Fig. 5.4: Selected line profiles (LP) during a) heating and b) cooling of Mg30CaO.
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Tab. 5.4: Phase changes with the pattern number in the sample Mg30CaO. The abbrevi-
ation (H) for heating and (C) for cooling.

Reaction Experimental data
pattern number

Increment of CaO start 109 (H)
Appearance of CaO2 132 (H)

Appearance MgO start 163 (H)
Disappearance Ca[OH]2 start 165 (H)

Disappearance of Ca[OH]2 end 204 (H)
Appearance of MgO end (stable) 204 (H)

Increment of MgO start 225 (H)
Disappearance of Mg start 257 (H)

Disappearance of CaO2 259 (H)
Increment of CaO end (max.) 263 (H)

Decrement of CaO start 263 (H)
Disappearance of Mg end 267 (H)

Decrement of CaO end (stable) 309 (H)
Increment of MgO end (stable) 339 (H)

Appearance of Mg start 406 (C)
Appearance of Mg2Ca start 407 (C)
Appearance of Mg2Ca end 407 (C)

Appearance of Mg end 409 (C)

The solidification begins with Mg dendrites and ends with the eutectic solidification of a

Mg and Ca rich lamellar structure. The O agglomerates in the eutectic regions as clusters

of oxide particles with a higher concentration of Mg in a larger region and smaller regions

with a higher concentration of Ca. The final composition was measured using EDXS with

9.4 ± 1.9 wt.% Ca, 6.4 ± 1.3 wt.% O and balance Mg. This composition deviates from

the nominal content of 21.4 wt.% Ca, 8.6 wt.% O and balance Mg.

56



B. Wiese 5.4 Mg30CaO

(a) SE (b) Mg
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Fig. 5.5: The (a) SE micrograph and EDXS maps for (b) Mg, (c) Ca, (d) O and (e) Si
of the Mg30CaO. (The composition in wt.%.)
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5.5 Mg50CaO

The diffraction patterns of the Mg50CaO sample are not detected during the in situ

experiment, due to a failure in the recording process. The microstructure of the Mg50CaO

sample was investigated with SEM. The EDXS maps of the microstructure shows the

distribution of the elements Mg, Ca, O and Si in the solidified sample, Fig. 5.6. The

EDXS maps illustrate a separated microstructure with O rich regions and metal rich

regions. From the microstructure in the metal rich regions the solidification sequence

can be deciphered. Due to the globular shape of the Mg grains, it is assumed that the

solidification begins withMg grains. The solidification ends with the eutectic solidification

of a Mg and Ca rich lamellar structure, which dominated the metal rich regions. The

metal rich regions are embedded in the O rich regions. The O rich regions show two areas.

The first area with a Ca content between 25 to 35 wt.% and aMg content of approximately

45 wt.% with a lower O content. In the second region only Mg was detected with no Ca.

This area contained more O compared with the first region. The O rich regions with Ca

and Mg are show some holes and cracks. Some SiO particles from the polishing solution

(OPS) adhere inside these holes and cracks, which can be identified by the position of O,

Si and SEM SE image, and this is disregarded. The final composition was measured by

EDXS with 12.6 ± 2.5 wt.% Ca, 12.8 ± 2.6 wt.% O and the balance Mg. The Si is from

the polishing solution (OPS) on the surface of the polished sample and was not included

in the calculations. This composition deviate form the nominal content of 35.7 wt.% Ca,

14.3 wt.% O and balance Mg.
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(a) SE (b) Mg

(c) Ca (d) O

(e) Si

Fig. 5.6: The (a) SE micrograph and EDXS maps for (b) Mg, (c) Ca, (d) O and (e) Si
of the Mg50CaO. (The composition in wt.%.)
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5.6 Mg6Ca+6CaO

This composition was used to determine data away from the CaO iso composition line.

The temperature at which phases, appear or disappear are listed in Tab. 5.5 and the LP

at different temperatures are illustrated in Fig. 5.7.

Tab. 5.5: Phase changes with temperatures in the sample Mg6Ca+6CaO. The abbrevia-
tion (H) for heating and (C) for cooling.

Reaction Experimental data
± 5 [◦C]

Disappearance Ca[OH]2 start 350 (H)
Appearance of CaO2 351 (H)

Disappearance of Ca[OH]2 end 433 (H)
Appearance of MgO start 486 (H)
Disappearance of Mg start 504 (H)

Disappearance of Mg2Ca start 504 (H)
Disappearance of Mg2Ca end 506 (H)
Increment of CaO end (max.) 589 (H)

Decrement of CaO start 589 (H)
Disappearance of Mg end 602 (H)
Disappearance of CaO2 667 (H)

Decrement of CaO end (stable) 671 (H)
Appearance of MgO end (stable) 675 (H)

Appearance of Mg start 581 (C)
Appearance of Mg end 504 (C)

Appearance of Mg2Ca start 504 (C)
Appearance of Mg2Ca end 504 (C)

The X-ray LP show that Ca[OH]2, CaO, Mg, Mg2Ca and graphite from the crucible are

present at the beginning of the experiment. The peak intensity of Ca[OH]2 decreased

from 350 ◦C, followed by the appearance of CaO2 peaks at 351 ◦C. During heating the

peaks of Mg decrease at of 504 ◦C and completely disappear by 602 ◦C. The peaks of

Mg2Ca decrease at the same temperature as Mg, 504 ◦C and completely disappear by

506 ◦C. With the disappearance of Mg the diffuse contrast of the melt was detected.

The first peaks of MgO were detected at a temperature of 486 ◦C. During heating the

intensity of CaO peaks increased and then start to decrease from a temperature of 589 ◦C.

The peak of CaO2 disappeared at 667 ◦C and CaO peaks became stable at a temperature

of 671 ◦C, followed by the stabilisation of the peak intensity of MgO at 675 ◦C.
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During cooling the first peaks of Mg were detected at 581 ◦C and intensity changes was

not observed below 504 ◦C. The Laves phase, Mg2Ca was detected at 504 ◦C with no

further intensity changes.

The microstructure of the sample from the in situ experiment was investigated with

SEM. The EDXS maps show the distribution of the elements Mg, Ca, Si and O in

the solidified sample, Fig. 5.8. The Si is from the polishing solution (OPS) in pits of

the polished sample, and can be disregarded, Fig. 5.8(e). From the microstructure the

solidification sequence can be understood. The solidification begins with Mg grains and

dendrites formation and ends with an eutectic solidification of a Mg and Ca rich lamellar

structure. The O agglomerates in the eutectic region and form clusters of mixed Ca and

Mg oxide particles with a Ca and Mg rich region. The final composition was, measured

using EDXS, 8.2 ± 1.6 wt.% Ca, 4.8 ± 1.0 wt.% O and balance Mg. This composition

deviates from the nominal content of 10.3 wt.% Ca, 1.7 wt.% O and balance Mg.
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Fig. 5.7: Selected line profiles during a) heating and b) cooling of the sample
Mg6Ca+6CaO.
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(e) Si

Fig. 5.8: The (a) SE micrograph and EDXS maps for (b) Mg, (c) Ca, (d) O and (e) Si
of Mg6Ca+6CaO. (The composition in wt.%.)
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5.7 Mg16Ca+6CaO

The temperatures at which phases appear or disappear are listed for Mg16Ca+6CaO in

Tab. 5.6 and the LP at different temperatures are illustrated in Fig. 5.9.

Tab. 5.6: Phase changes with temperatures in the sample Mg16Ca+6CaO. The abbrevi-
ation (H) for heating and (C) for cooling.

Reaction Experimental data
± 5 [◦C]

Disappearance Ca[OH]2 start 234 (H)
Disappearance of Ca[OH]2 end 382 (H)

Appearance of phase CaO2 start 444 (H)
Decrement of CaO start 481 (H)
Appearance MgO start 481 (H)

Disappearance of Mg2Ca start 497 (H)
Disappearance of Mg start 497 (H)

Disappearance of Mg2Ca end 512 (H)
Disappearance of Mg end 574 (H)

Disappearance of CaO2 end 750 (H)
Decrement of CaO end (stable) 750 (H)
Appearance MgO end (stable) 759 (H)

Appearance of Mg start 533 (C)
Appearance of Mg2Ca start 510 (C)

Appearance of Mg end 507 (C)
Appearance of Mg2Ca end 507 (C)

The X-ray line profiles show that Ca[OH]2, CaO, Mg, Mg2Ca and graphite from the

crucible are present in the beginning. During heating the peaks of Ca[OH]2 decrease

starting at a temperature of 234 ◦C and disappear from 382 ◦C. CaO2 peaks appear

at 444 ◦C. The peaks of CaO started to decreases at the same temperature where the

MgO peaks were first detected, at 618 ◦C. During heating the peaks of Mg and Mg2Ca

decrease from 497 ◦C. Followed by the complete disappearance of Mg2Ca at 512 ◦C and

Mg at 574 ◦C. A diffuse contrast of the melt was detected with the disappearance of Mg.

The peaks of CaO2 disappeared at the same temperature at which CaO peaks became

stable, at 750 ◦C. During holding the intensity of MgO peaks became stable at 759 ◦C.

During cooling the first peaks of Mg was detected at 533 ◦C and no intensity change was

detected below 507 ◦C. The Laves phase, Mg2Ca, was detected at 510 ◦C with no further
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intensity change below 507 ◦C.

The Fig. 5.10 shows the microstructure of the Mg16Ca+6CaO sample with SEM. The

EDXS maps show the distribution of the elements Mg, Ca, O and Si in the solidified

sample. From the microstructure the solidification sequence is determined. The solidifi-

cation begins with Mg grains and ends finally with a eutectic solidification of Mg and Ca

rich lamellar structure. The O agglomerates in the eutectic region are clusters of oxide

particles. Mg and Ca rich regions in the O rich region can be distinguished. In some

regions the O rich particles drop out of the sample during preparation, and generate pits.

The final composition was measured using EDXS and found to be with 15.3 ± 3.1 wt.%

Ca, 6.1 ± 1.2 wt.% O and balance Mg. The Si is from the polishing solution (OPS)

on the surface of the polished sample was not used to calculate the composition. This

composition deviates from the nominal content of 20.3 wt.% Ca, 1.7 wt.% O and balance

Mg.
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(a) SE (b) Mg

(c) Ca (d) O

(e) Si

Fig. 5.10: The (a) SE micrograph and EDXS maps for (b) Mg, (c) Ca, (d) O and (e) Si
of Mg16Ca+6CaO. (The composition in wt.%.)
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CHAPTER 6

Discussion

6.1 Melting and solidification of pure Mg

Mg melts between 651.6 and 654.2 ◦C and solidifies between 649.1 and 647.0 ◦C. Ac-

cording to literature the melting temperature of Mg is at 650 ◦C [29] and the accuracy of

measurement is ±5 ◦C in this experimental setup. The delay in the melting and solidifica-

tion process is due the kinetics associated with nucleation growth of Mg. This is related

to the time that the Mg atoms need to reorganizes themselves for the phase transition

from solid to melt and reverse, which results in heating over the required temperature as

well as undercooling. It is also possible that the heat flow from the sample through the

lid to the thermocouple show a slightly lower temperature. The O content of the pure

Mg chips dose not affect the solidification temperature during the heating and cooling.

The non statistical distributions of peaks (Fig.5.1) indicate that only few Mg crystals are

in Bragg condition. This is related to the small number of nucleation sites in pure Mg,

which minimise the number of grains in the measured volume. This is also related to the

slower cooling rate and the grain growth that lead to a non-random distribution of grain

orientations.
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B. Wiese 6.2 Reaction during heating

6.2 Reaction during heating

6.2.1 MgxCaO (x = 20 and 30 wt.%)

The X-ray line profiles from the synchrotron investigation show for the samples of Mg20CaO

and Mg30CaO, that Ca[OH]2 and CaO are present in the beginning. The CaO was dried

before the sample preparation, but Ca[OH]2 forms on CaO due to the humidity in air

during the sample production and during storing. This is due to the highly hydrophilic

nature of CaO. [46–49]

The dissociation of Ca[OH]2 in all CaO containing samples starts before Mg melts. The

dissociation temperature for Ca[OH]2 is at 512 ◦C [47]. The Tab. 6.1 lists the dissoci-

ation temperatures of Ca[OH]2 in Mg20CaO and Mg30CaO samples and are illustrated

in Fig. 6.1. The Mg20CaO values show that the dissociation of Ca[OH]2 started be-

fore 512 ◦C, at 408 ◦C, and disappear completely by 500 ◦C. The literature values are

for Ca[OH]2 only and not in the presence of Mg. It is possible that Mg decrease the

temperature for the dissociation of Ca[OH]2, due to a catalytic influence of Mg on the

dissociation of Ca[OH]2.

Tab. 6.1: Phase formation temperatures detected during heating from Mg20CaO, and LP
numbers for Mg30CaO.

Mg20CaO Mg30CaO
Ca[OH]2 Disappearance start 408 165

Disappearance end 500 204
CaO2 Appearance 340 132

Disappearance 618 259
CaO Disappearance start 568 263

Stable 664 309
MgO Appearance 340 163

Stable 618 204
Increment - 225

Stable - 339
Mg Melting starts 620 257

Melting ends 637 267
T ± 5 [◦C] LP no.

Before Ca[OH]2 dissociates CaO2 phase was detected. CaO2 has been reported to be
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Fig. 6.1: Phase formation detected during heating of Mg20CaO with temperatures and
of Mg30CaO with pattern number. Values from Tab. 6.1.

a byproduct of the thermal dissociation of Ca[OH]2 in the presence of P2O5 (high O2

partial pressure) [48]. The temperature delay between the beginning of dissociation of

Ca[OH]2 and appearance of CaO2 is most likely related to the smaller volume of CaO2

at the start. The peak (0,0,2) at 2.38 ◦ of CaO2 is the only peak without any significant

overlap with other reflections, but is it close to the peak (1,0,0) at 2.28 ◦ of Ca[OH]2.

The appearance of CaO2 may be due to interaction with CaO or due to conversion of

small amount of Ca[OH]2, the change which is not detected.

When Ca[OH]2 start to dissociate and CaO2 detected, the first peaks of MgO were also

detected. So that Mg react with the O out of Ca[OH]2 and after this with CaO2. This

shows that MgO is more stable than CaO2. The metastable CaO2 dissociate into CaO

and the free O react with Mg to MgO. These reactions happen at the same time, and

it is not possible to distinguish which is the dominant reaction in this reaction chain. In

the last step of the dissociation of CaO, the main fraction of CaO dissociate and react to

form MgO. The range in which the reaction occur are slightly different in the Mg20CaO

compared with Mg30CaO.

The first MgO peaks appear at the same temperature as CaO2 in the Mg20CaO sample
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B. Wiese 6.2 Reaction during heating

at 340 ◦C and the peaks of MgO reach a maximum intensity and is stable at 618 ◦C. The

CaO2 disappears at the same temperature. According to the literature CaO2 dissociate

below 300 ◦C [46], but it was detected at 340 ◦C. In this case CaO2 forms from the

dissociation of Ca[OH]2. The dissolution of CaO started at 568 ◦C, before the Mg

melts at 620 ◦C and the dissolution speed increased in the molten Mg (up to 637 ◦C)

and peak intensities of CaO became stable (not zero) at 664 ◦C. In case of Mg30CaO

the MgO peaks appear later than the CaO2 peaks and the dissociation of CaO stopped

(not zero) before peaks of MgO became stable. A small amount of CaO stays in the

melt of Mg20CaO and Mg30CaO, which is related to kinetics of dissociation as well as

saturation of Mg liquid. It is proposed, that in this state a reaction layer enriched with

high concentration of MgO forms around CaO particles with a critical layer thickness.

This reaction product around the CaO particles decrease the diffusion of Mg ions from

the melt to these particles or only a certain amount of CaO can be dissociation in molten

Mg.

In case of Mg30CaO the first MgO peaks appear at LP 163. In Mg30CaO show a stabil-

isation of the peak intensity between LP 204 and 225 with a second increment up to LP

339 this is unlike Mg20CaO where a single increment in the intensity was observed. The

fist increment in Mg30CaO occurs in the same range than the dissociation of Ca[OH]2,

but the second increment is correlated with the dissociation of CaO2 and CaO.

According to literature the melting temperature of Mg is 650 ◦C [29] and the experiment

shows melting between 620 and 637 ◦C for Mg20CaO. The melting range of 17 ◦C indicates

the solid state reaction between Mg and Ca containing phases. After Mg reduced the

CaO, Ca diffuse into solid Mg. The Ca in Mg reduce the melting temperature as

observed in the binary Mg-Ca system. In contrast to Wiese et. al [158] in this work

Mg2Ca Laves phase was not detected. This relates to the preparation of sample in

previous investigations where Mg chips and CaO powder mixture was not compacted.

During the reaction between the solid Mg and CaO MgO and Ca form and the Ca diffuse

in to the solid Mg. When the Ca concentration is low a solid solution forms, when Ca

concentration is above the solubility limit Mg2Ca Laves phase form. The diffusion in
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B. Wiese 6.2 Reaction during heating

the non-compacted Mg chips and CaO powder sample observed by Wiese et al. [158] is

close to unidirectional diffusion, due to the plate like geometry (2D) of the Mg chips.

This decreases the time required to reach the solid solution limit. In this investigation

compacted samples are likely to provide a multi-directional diffusion thus only a solid

solution forms. Kondoh et al. [1] proposal for the dissociation of CaO in Mg-Al alloys

can not be applied in this situation. Kondohs theory proposed the formation of the Laves

phase Al2Ca during in the dissociation of CaO. The present investigation shows that pure

Mg is able to dissociate CaO with out the formation of the Laves phase Mg2Ca. The

conclusion from Kondoh et al. [1] is that not the formation of Laves phases that reduce the

energy of the system, but the enthalpy of mixtures, that effect the actual phase formation

as well the dissociation of CaO.

When it is assumed that the oxides do not effect the melting temperature in the Mg-Ca

system, it is possible to determine from the binary Mg-Ca system the amount of Ca,

which is in the solid solution in Mg from the temperature at which the liquid forms. For

this the Pandat 8.1 software with PanMag8 database was used. The melting range of

Mg20CaO was measured to be between 620 ◦C and 637 ◦C. Melting start at 620 ◦C at

which, a Ca content of approximately 0.1 wt.% Ca is soluble in Mg. The accuracy of

the temperature with ±5 ◦C resulted in a accuracy for the Ca content of ±0.02 wt.% in

this case. The Ca is completely in solution at 637 ◦C at which the Ca content at the

liquidus is 2.2 wt.% ±0.9 wt.%. This suggested that in the semi-solid region more Ca is

incorporated in to Mg. This is likely to be due to increased diffusion of Ca associated

with increased temperature, and the enhancement in the diffusion of Ca to solid Mg

through liquid Mg. The amount of Ca in solid solution increased in the melting range

by a factor of approximately 22, according to the composition of Ca at the liquidus. The

dissociation of CaO during the melting of Mg, increase the amount of Ca dissolved in

the system.
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6.2.2 MgxCa+6CaO (x = 6 and 16 wt.%)

The X-ray line profiles show, for the samples of Mg6Ca+6CaO and Mg16Ca+6CaO,

that Ca[OH]2 and CaO present in the beginning. The Ca[OH]2 forms during sample

preparation due to the highly hydrophilic nature of CaO, as explain in Section 6.2. [46–49]

The dissociation of Ca[OH]2 in all Ca and CaO containing samples started and ended

before the Mg-Ca alloys melt. The dissociation temperature Ca[OH]2 is lower than

512 ◦C [47], due to the same reasons as provided in Section 6.2. The Tab. 6.2 lists the

dissociation temperatures of Mg6Ca+6CaO and Mg16Ca+6CaO for Ca[OH]2 and these

temperatures are illustrated in Fig. 6.2. In Mg6Ca+6CaO the dissociation of Ca[OH]2

started at 350 ◦C and in Mg16Ca+6CaO at 234 ◦C. The Ca[OH]2 disappeared completely

by 433 ◦C in Mg6Ca+6CaO and at 382 ◦C in Mg16Ca+6CaO. The literature values are

only for the single component Ca[OH]2 and not in a system with Mg. The presence of

Mg and Ca are likely to decrease the temperature for the dissociation of Ca[OH]2, due

to a catalytic influence of Mg and Ca on the dissociation of Ca[OH]2. Compared with

the Mg20CaO the dissociation started and ended at lower temperatures. It is possible

that the metallic Ca is more effective than Mg in increasing the driving force for the

dissociation. This can explain also that the same amount of CaO and Ca[OH]2 become

dissociated faster in the Mg16Ca+6CaO sample than in the Mg6Ca+6CaO sample.

Before Ca[OH]2 started to dissociate CaO2 phase was detected in the Mg6Ca+6CaO sam-

ple. This may be contrasted with the Mg16Ca+6CaO as well Mg20CaO and Mg30CaO

samples. In case of the Mg16Ca+6CaO, the CaO2 phase was detected at a higher tem-

perature than in for Mg20CaO and Mg30CaO samples. As mentioned in Section 6.2, the

formation of CaO2 was reported to be abyproduct of the thermal dissociation of Ca[OH]2

in the presence of P2O5 (high O2 partial pressure) [48]. The temperature delay between

the dissociation start of Ca[OH]2 and appearance of CaO2 is mostly related to low volume

of these phase for the diffraction measurements. It is expected that the volume fraction

of CaO2 and of Ca[OH]2 in Mg6Ca+6CaO Mg16Ca+6CaO samples are lower than that

observed in the Mg20CaO and Mg30CaO samples, which make the detection during the
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B. Wiese 6.2 Reaction during heating

Tab. 6.2: Phase formation temperatures detected during heating from Mg6Ca+6CaO and
Mg16+6CaO.

Mg6Ca+6CaO Mg16Ca+6CaO
Ca[OH]2 Disappearance start 350 234

Disappearance end 433 382
CaO2 Appearance 351 444

Disappearance 667 750
CaO Disappearance start 589 481

Stable 671 750
MgO Appearance start 486 481

Stable 675 759
Mg Melting start 504 497

Melting end 602 574
Mg2Ca Disappearance start 504 497

Disappearance end 506 512
T ± 5 [◦C] T ± 5 [◦C]
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Fig. 6.2: Phase formation detected during heating of Mg20CaO, Mg6Ca+6CaO and
Mg16Ca+6CaO. Values from Tab. 6.2.
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dissociation or formation of these phases difficult.

The first peaks of MgO were detected in Mg6Ca+6CaO and Mg16Ca+6CaO at higher

temperatures, than in the Mg20CaO and were detected after the detection CaO2. MgO

was detected in Mg6Ca+6CaO at 486 ◦C and in Mg16Ca+6CaO at 481 ◦C, which are rel-

ativey close temperatures. These are contrasted with Mg20CaO, as Mg did not react with

O from Ca[OH]2 or the amount ofMgO formation is below the threshold for the detection,

the amount of CaO as well as Ca[OH]2 and CaO2 are lower than in Mg20CaO. The Mg

react with the O out of CaO2 and CaO. The metastable CaO2 dissociate in to CaO and

the free O react with Mg to MgO. This reactions happen at the same time and it is not

possible to distinguish which is the dominant reaction in this reaction chain. The range of

temperature at which this reaction occurs is slightly different in the Mg6Ca+6CaO and

Mg16Ca+6CaO samples. The CaO2 dissociation ends at 667 ◦C in Mg6Ca+6CaO and at

750 ◦C in Mg16Ca+6CaO, which is a higher temperature than for Mg20CaO at 618 ◦C.

According to the literature CaO2 should dissociate below 300 ◦C [46]. As CaO2 forms

from the dissociation of Ca[OH]2 at higher temperatures the presence of other phases

are likely to stabilises the CaO2. The first MgO peaks appear in Mg6Ca+6CaO and

Mg16Ca+6CaO at similar temperatures. In Mg16Ca+6CaO the peak intensity of MgO

stabilises at 675 ◦C and in Mg16Ca+6CaO during holding at 750 ◦C, which are higher

temperature than in Mg20CaO at 618 ◦C. This could be related to a lower diving force

for the dissociation of CaO, due to a presence of Ca in the MgxCa+CaO samples.

The dissolution of CaO start at 589 ◦C in Mg6Ca+6CaO and stabilised (not zero) together

with the dissolution of CaO2 and the stabilisation of MgO at approximately 670 ◦C. The

dissolution of CaO started at 481 ◦C in Mg16Ca+6CaO and stabilised (not zero) together

with the dissolution of CaO2 and the stabilisation of MgO at approximately 750 ◦C. The

appearance of CaO2 in Mg6Ca+6CaO occurs at a lower temperature compared with

Mg16Ca+6CaO, this could be due to the higher amount of Mg in Mg6Ca+6CaO com-

pared with Mg16Ca+6CaO. This leads the formation of MgO in Mg6Ca+6CaO and the

formation of CaO and MgO due to the CaO2 dissociation in Mg16Ca+6CaO. So that

CaO dissociates in Mg6Ca+6CaO at 598 ◦C when a larger amount of Mg is molten.
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B. Wiese 6.2 Reaction during heating

The dissociation speed of CaO is higher and related to the higher diffusion rate in the

molten state. In Mg16Ca+6CaO the dissociation start of CaO was detected at the same

temperature when first MgO peaks were detected at 481 ◦C. The driving force for the

dissociation of CaO is lower due to the higher amount of Ca. The lower melting range

leads to a faster increase of the liquid fraction in the sample. When the amount of liquid

is higher, the driving force for the diffusion is lager and dissociation speed of CaO in-

creases. The phase formation temperatures for MgO (stabilisation), CaO (stabilisation,

not zero) and CaO2 (dissolution) occurs in both samples at the same temperature, so

that the phase formation sequence is the same but it ends at a higher temperature with

the higher Ca content. As proposed before, the reaction products from around the CaO

particles decreasing the diffusion of Mg from the melt to these particles, which results in

relation of CaO particles in the melt.

According to the calculation from Pandat 8.1 software with the PanMag8 database and

the literature (Tab. 3.2) [31,33,35,36] the eutectic temperature Mg-Ca system is approx-

imately 516 ◦C. The first melt were detected at 504 ◦C in Mg6Ca+6CaO and 497 ◦C in

Mg16Ca+6CaO, these temperatures are lower than the eutectic temperature of the binary

Mg-Ca system on the Mg rich side. The first detection of the liquid was determined as

the appearance of the diffuse background due to molten metal and the decrease in the

intensity of Mg and Mg2Ca peaks. The decreases in the intensity of Mg is only result

in a small change in the LP. However, the disappearance of the Mg2Ca peaks are unique

and free of any interpretation. The slight decrease in the intensity of the Mg2Ca peak

could be also related to the dissolution of Mg2Ca into Mg. The Mg2Ca peaks disappear

at 506 ◦C in Mg6Ca+6CaO and at 512 ◦C in Mg16Ca+6CaO. In case of Mg16Ca+6CaO

the detected temperature is within the error in measurement ±5 ◦C form Section 6.1.

However, this can not explain the lower eutectic temperature in the Mg6Ca+6CaO. It is

possible that there is slower heat flow from the sample through the lid to the thermocouple

thus a lower temperature is detected. It is also possible that the temperature distribution

is not uniform, e.g. the outer layer of the sample is warmer and partially molten. This

is related to the heat conductivity and the heat flow inside the sample, and non uniform
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B. Wiese 6.2 Reaction during heating

distribution of metallic phases and oxides with different heat conductisvities.

The increase in the Mg2Ca Laves phase during the dissociation of CaO could not be ver-

ified, due to the high Ca content in Mg6Ca+6CaO and Mg16Ca+6CaO and the presence

of Mg2Ca. Thus, the Ca containing samples could not be used to verify the experimental

results of Wiese et al. [158] and of Kondoh et al. [1]. However, the results from Mg20CaO

and Mg30CaO with higher CaO contents did not show the formation of Mg2Ca during

heating.

If we assume that the oxides did not affect the melting temperature in the Mg-Ca system,

the eutectic temperature in the metallic Mg-Ca is approximately 516 ◦C. The liquidus

of Mg6Ca is 613 ◦C and Mg16Ca is 520 ◦C, this is not in agreement with the measured

temperatures. The measured temperatures are slightly lower, at 602 ◦C for Mg6Ca+6CaO

and 574 ◦C for Mg16Ca+6CaO . This decrease in the liquidus temperature is is likely to

be due to the formation of MgO, which increase in the amount of Ca in the melt due

to the reduction of CaO, CaO2 and Ca[OH]2. Due to the reduction of available Mg in

the melt with the formation of MgO, the amount of Ca effectively higher in the melt.

The result is that the composition is closer to the eutectic composition, which reduced

the melting range.

It is possible determine from the binary Mg-Ca system the amount of Ca, which is in

solution withMg at liquidus the temperature. The liquidus temperature of Mg6Ca+6CaO

was measured at 602 ◦C, which correspond to a Ca content of approximately 7.4 wt.%.

The accuracy of the temperature measurement with ±5 ◦C resulted in a accuracy for the

Ca content of −0.7/+0.6 wt.% in this case. The liquidus temperature of Mg16Ca+6CaO

was measured at 574 ◦C, which correspond to a Ca content of approximately 10.6 wt.%.

The accuracy of the temperature measurement with ±5 ◦C, resulted in a accuracy for the

Ca content of −0.7/+0.6 wt.% in this case. The liquidus temperature of Mg6Ca+6CaO is

lower than that of pure Mg6Ca, so that the Ca content has increased during heating. This

is attributed to the dissociation of CaO in and incorporation of Ca into the alloy. This

shows that a Ca content of 6 wt.% at the start condition compared with the composition

of the liquidus with composition with 7.4 wt.%, results in an increment of 1.4 wt.%. The
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results form Mg6Ca+6CaO are in a good agreement with the results from Mg20CaO. At

the liquidus of Mg20CaO shows the incorporation of CaO into semi-solid Mg in the solid

state and a enrichment of Ca in to Mg. In the case of Mg16Ca+6CaO the melting need

more time which resulted in a higher melt temperature. Thus, the liquidus temperature

correspond to a lower Ca content, compared with that in the binary Mg-Ca system. This

due to the Mg2Ca in the alloy prior to the experiment which has decreased the content

of Ca dissolved in Mg significantly.

6.3 Reaction during cooling

6.3.1 MgxCaO (x = 20, 30 and 50 wt.%)

The during solidification of the samples intensity changes was not observed for MgO and

CaO, in Mg20CaO and Mg30CaO. This indicate that MgO is more stable than the CaO

in the Mg rich corner of the ternary Mg-Ca-O system and it is possible the CaO dissociate

up to a certain amount in Mg alloys. A small amount of CaO remained after melting.

However, the main oxide phase observed during solidification is MgO, as indicated by the

higher intensity of the MgO peaks compared with CaO. A phase transition from CaO to

MgO during the solidification under equilibrium conditions is a possible reaction, but a

slow solid-state diffusion can resulted in non-equilibrium condition with a major fraction

of MgO.

The Tab. 6.3 lists the solidification sequence of the Mg20CaO and Mg30CaO samples

with the start and end temperatures as well LP number for various phase formation and

this is illustrated in Fig. 6.1. In the case of Mg20CaO and Mg30CaO the solidification

begins with Mg and ends with the eutectic solidification of Mg and Mg2Ca. The final

solidification is eutectic reaction related to the disappearance of the background from the

molten metal and the appearance of Mg2Ca. The solidification of Mg20CaO starts at

570 ◦C with Mg and ends with the formation of Mg2Ca at 511 to 509 ◦C. The eutectic

appearance of Mg2Ca at approximately 510 ◦C at a temperature 6 ◦C lower than that
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reported in literature (approximately 516 ◦C, Tab. 3.2) [31, 33, 35, 36]. This temperature

difference in forming of Mg2Ca is likely to be associated with undercooling required to

form Mg2Ca, but it is within the accuracy of measurement, ±5 ◦C. The explanation in

this case is that energy causes barrier to formation of Mg2Ca to form at a slightly lower

temperature compared with eutectic temperature of the Mg-Ca system. The deviation

from the eutectic temperature is relatively small to that detected in the binary Mg-Ca

system. Due to the failure described in Section 5.4 only the LP number was used to

follow the solidification in the sample Mg30CaO. However, the solidification sequence of

Mg30CaO starts the formation of Mg and then the eutectic Mg and Mg2Ca structure

forms similarly to the Mg20CaO. Based on the results from Mg20CaO sample the eutectic

formation temperature is assumed to be the similar and that O only has a negligible effect

on the formation temperature. The presence of MgO reduce the amount of free Mg in

the melt by forming MgO. This increased the Ca content in the melt in relation to Mg,

which will lower the temperature for the formation of α-Mg, as the rest of the melt has

a composition closer to the eutectic composition of the binary Mg-Ca system.

If we assumed that the oxides did not affect the solidification temperature in the Mg-Ca

system. It is possible to determine the amount of Ca in solid solution from the binary

Mg-Ca system, as described in Section 6.2. The start of the solidification of Mg20CaO

was measured at 570 ◦C and the eutectic solidification of Mg and Mg2Ca at 510 ◦C.

From the start of the solidification of Mg at 570 ◦C, the Ca content in the melt is

approximately 11.0 wt.%. If the solidus line at 570 ◦C was considered the α−Mg forms

with a Ca content of ≈ 0.2 wt.%. The accuracy of the temperature with ±5 ◦C resulted

in a accuracy for the Ca content of −0.5/+0.6 wt.% in this case. The eutectic formation

of the metallic phases was detected at 510 ◦C, at the eutectic temperature the Ca of the

remaining liquids is content is 16.3 wt.%.

The nominal composition of the samples deviate from that measured using SEM-EDXS.

The measurement with EDXS, contain inaccuracies associated with the measuring of light

elements, e.g. O. Due to the small sample size from synchrotron radiation experiment,

other analytical techniques such as inductively coupled plasma optical emission spec-
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Tab. 6.3: Phase formation during cooling for Mg20CaO with temperatures and for
Mg30CaO with pattern number. Illustrated in Fig. 6.1.

Mg20CaO Mg30CaO
Mg Solidification start 570 406

Solidification end 509 409
Mg2Ca Solidification start 511 407

Solidification end 509 407
T ± 5 [◦C] LP no.
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Fig. 6.3: Detected phase formation during heating of Mg20CaO and Mg30CaO. Values
from Tab. 6.1.
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troscopy (ICP-OES) could not be used to accurately determine the O concentration. In

all three samples the measured Ca content was lower than the nominal composition. The

deviation between nominal and measured content of O for the Mg20CaO higher than that

expected but for Mg30CaO and Mg50CaO lower than that expected from the nominal

composition. The higher O content of the Mg20CaO compared with the nominal com-

position is related to the higher O content of the pure Mg chips. However, the lower O

content of the Mg30CaO and Mg50CaO samples compared the nominal composition is

related to the formation of Ca[OH]2 and possible loss of CaO during the sample produc-

tion, given the Ca content is lower than expected. The lower Ca content in Mg20CaO

sample is also due to possible loss of CaO during during preparation.

Tab. 6.4: The nominal and measured of the compositions for Mg20CaO, Mg30CaO and
Mg50CaO samples. Deviations between nominal and measured compositions are also
indicated.

Sample Composition Ca [wt.%] O [wt.%] Mg [wt.%]

nominal 14.3 5.7 80.0
Mg20CaO measured 6.8 ± 1.4 8.7 ± 1.3 84.5

deviation -7.5 3.0 4.5

nominal 21.4 8.6 70.0
Mg30CaO measured 9.4 ± 1.9 6.4 ± 1.3 84.2

deviation -12.0 -2.2 14.2

nominal 35.7 14.3 50.0
Mg50CaO measured 12.6 ± 2.5 12.8 ± 2.6 74.6

deviation -23.1 -1.5 24.6

Ca[OH]2 was found at the beginning of the in situ experiment. If the Ca[OH]2 formed

before weighing, the amount of Ca will be lower and the amount of O higher. For an

example 20 wt.% CaO in Mg has 14.3 wt.% of Ca and 5.7 wt.% of O, but 20 wt.%

Ca[OH]2 in Mg contains only 10.8 wt.% of Ca, 8.6 wt.% of O and 0.5 wt.% of H.

However, this can not fully explain the lower content of Ca, but the slight increase in O.

The ratio between the Ca and O contents for CaO should be approximately 5:2 (in wt.%)

and for Ca[OH]2 approximately 5:4 (in wt.%). In all three samples the final content of

O is higher than the that, calculated from based on CaO but not as high as that from

Ca(OH)2. The argument is that the CaO is not the only source of O in these samples.

In the case of Mg30CaO the amount O is so high, that approximately 4
5

of the Ca is from
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Ca[OH]2 and approximately 1
5

of the Ca from CaO. All samples are produced on the

same day, so that the deviation in the Ca[OH]2 and CaO contents for the samples should

be not so high. The higher O concentration could be also related to the oxidation of the

pure Mg chips during the production and storage these samples, due to the large surface

area of the pure Mg chips and the strong driving force for the oxidation.

The lower amount of Ca in the measured composition can be explained by the loss of

CaO during the preparation of these samples. Due to the size difference between the pure

Mg chips and the CaO powder, the CaO separate easily form the Mg chips. During

filling the CaO particles disperse.

If the values is the Tab. 6.4 are used, the total concentration of Ca is 6.8 wt.%, O is

8.7 wt.% and balance Mg in Mg20CaO sample. With the supposition that O forms

only MgO and available from only CaO value for Ca and the rest are Mg and Ca, the

concentration was calculated to be Mg 91.3 wt.% and Ca 8.7 wt.%. As mentioned the

EDXS measurement are inaccurate for elements for O. The actual concentration of O

higher in the Mg20CaO sample than measured by EDXS, and content of Ca is higher in

the Mg-Ca alloy.

The in situ results are in agreement with the SEM investigations. The microstructures

of Mg20CaO and Mg30CaO samples shows globular to dendritic Mg and the eutectic

lamellar structure of Mg and Mg2Ca. This microstructure is characteristic of the Mg rich

side of the binary Mg-Ca system [16, 21, 36]. For the Mg20CaO and Mg30CaO samples

of the O agglomerates in the eutectic region in a form of clusters of oxide particles. The

EDXS maps show a higher concentration of Mg in the O rich region compared with the

O free region in the eutectic structure. Together with the synchrotron X-ray radiation

diffraction results these oxide rich regions are identified as major MgO and minor residue

of CaO. The location of the oxides within the eutectic regions is due to the primary

solidification of Mg. The Mg nuclei grow and the oxide particles agglomerate in the

liquid side of solidification front. This moves the oxide particles out of the Mg grains and

clusters of these particles form in the melt. Below the eutectic temperature the rest of

the melt solidify and encompass the oxide particles between the eutectic structure.
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Compared with the samples Mg20CaO and Mg30CaO the Mg50CaO sample shows a

different microstructure. The microstructure of the Mg50CaO is mainly dominated by a

region with a high content of O. Two types of O rich regions could be determined. One O

rich region has a Ca content between 25 to 35 wt.% and a Mg content of approximately

45 wt.% with a lower O content. This indicates that this region contain Ca, which seem

to be mainly in the form of eutectic with CaO. Due to the higher amount of O compared

with the Mg20CaO and Mg30CaO sample, the volume fraction of oxide is higher and is

more uniformly distributed. However, as in situ measurement was not successful for this

sample, and it is not clear if the content of CaO in the solidified sample higher than in

the other samples. The second O rich region contained a higher O content with mainly

Mg, so that this region mainly consisted of MgO and a minor fraction of CaO.

The samples Mg30CaO and Mg50CaO show a higher content of Ca and O compared

to the Mg20CaO sample and a region with mainly CaO in the microstructures. This

indicates that a higher amount of CaO can not fully dissociated in the Mg melt and

explain the compact CaO agglomerations after the melting.

The metallic regions are embedded with O rich regions. This metallic regions shows

globular Mg and the characteristic eutectic lamellar structure containing Mg and eutectic

formation of Mg and Mg2Ca, which is in agreement with the Mg rich side of the binary

Mg-Ca system [16, 21, 36]. In this sample the Ca content is higher, which explains the

higher volume fraction of the lamellar regions of Mg and Ca.

6.3.2 MgxCa+6CaO (x = 6 and 16 wt.%)

The during solidification of the samples, after holding at 750 ◦C for 5 min, there is no

intensity change for MgO and CaO. This indicates, as with Mg20CaO and Mg30CaO,

MgO is more stable than the CaO in the Mg rich corner of the ternary Mg-Ca-O system

and it is possible the CaO dissociate up to a certain amount in Mg alloys. A small

amount of CaO remain after melting during solidification. However, the main oxide

observed during solidification is MgO, as indicated by the higher intensity of the MgO

peaks compared with CaO. However, significant intensity decrease was not observed for
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CaO peak in Mg16Ca+6CaO as for Mg6Ca+6CaO. A phase transition from CaO to

MgO during the solidification under equilibrium conditions is a possible reaction, but a

slow solid-state diffusion can resulted in non-equilibrium condition with a major fraction

of MgO. As the samples were rotated during the measurement the information is not

limited to single view of the sample but provide better statistics of the amount of various

phases.

The Tab. 6.5 lists the solidification sequence of the Mg6Ca+6CaO and Mg16Ca+6CaO

samples with the start and end temperatures for various phase formation and is illustrated

in Fig. 6.4. In the case of Mg6Ca+6CaO and Mg16Ca+6CaO the solidification begins

with Mg and ends with the eutectic solidification of Mg and Mg2Ca, which was detected

with in situ synchrotron measurements. This is in agreement with the measurements for

Mg20CaO and Mg30CaO. The final solidification is an eutectic reaction, related to the

disappearance of the background from the molten metal and the appearance of Mg2Ca.

The solidification of Mg6Ca+6CaO starts at 581 ◦C with Mg and ends with the formation

of Mg2Ca at 504 ◦C, and for Mg16Ca+6CaO at 533 ◦C and ends between 510 to 507 ◦C.

The literature report the eutectic temperature on the Mg rich side of the Mg-Ca system

to be approximately 516 ◦C (Tab. 3.2) [31,33,35,36]). In case of Mg16Ca+6CaO the first

formation of the Mg2Ca occurs with in the range of temperature error (±5 ◦C). However,

the temperature at which Mg2Ca forms is likely to be associated with non equilibrium

cooling. The eutectic transformation of Mg and Mg2Ca should not show a solidification

range according to the phase diagram, but due to energy barriers associated with nucle-

ation and growth of Mg and Mg2Ca phases this is observed. As result the solidification

need more time, which resulted in a lower temperature for the full solidification. Accord-

ing to the results from Mg6Ca+6CaO and Mg16Ca+6CaO and also from Mg20CaO the

eutectic formation temperature is assumed to be the same and that O only has a negli-

gible effect on the formation temperature. The Ca content in the melt in relation to Mg

is higher due to formation of MgO, which will lower the temperature for the formation

of α-Mg, and the rest of the melt has a composition closer to the eutectic composition of

the binary Mg-Ca system.
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The start of the solidification of Mg6Ca+6CaO occurs at 32 ◦C lower than the liquidus at

602 ◦C. This temperature difference is outside of the temperature accuracy (±5 ◦C), but

could be explained by the ongoing reduction of CaO after melting. If we assume, that the

oxides did not effect the solidification temperature in the Mg-Ca system, it is possible to

determine the amount of Ca from the binary Mg-Ca system, as described in Section 6.2.

The start of the solidification of Mg of Mg6Ca+6CaO was measured at 570 ◦C, Ca content

in the melt is approximately 11.1 wt.%. The accuracy of the temperature measurement

is ±5 ◦C, resulting in an inaccuracy in the Ca content of −0.6/+0.5 wt.%. This indicates

a increment of the Ca content in the melt by 5.1 wt.%.

In the case of Mg16Ca+6CaO first solidification was measured at 533 ◦C, corresponding

to a Ca content in the melt of approximately 14.8 wt.%. The temperature accuracy of

±5 ◦C the accuracy of the Ca content is ±0.5 wt.%. This indicates a decrease in the Ca

content in the melt by 1.2 wt.%. This can not be explained by the ongoing reduction of

CaO and CaO2 after melting, but the start of the solidification occurs at a lower liquidus

temperature during cooling compared with melting. This difference is approximatively

41 ◦C. The decrease in the solidification temperature indicates a higher content of Ca

in the liquid, compared with that present during the melting.

Tab. 6.5: Phase formation temperatures during cooling for Mg6Ca+6CaO and
Mg16+6CaO.

Mg6Ca+6CaO Mg16Ca+6CaO
Mg Solidification start 581 533

Solidification end 504 507
Mg2Ca Solidification start 504 510

Solidification end 504 507
± 5 [◦C] ± 5 [◦C]

The nominal composition of the samples deviate from that measured using SEM-EDXS.

The nominal composition is the composition of alloy chips (Tab. 5.1) and of CaO. The

measurement with EDXS is inaccurate O, as mention in a previous Section. However,

the nominal and measured (Tab. 6.6) Ca and O contents for Mg6Ca+6CaO sample is

in a good agreement. In the Mg16Ca+6CaO sample the content of Ca measured was

lower, than the nominal composition. The deviation between nominal and measured O
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Fig. 6.4: Detected phase formation temperatures during cooling of Mg6Ca+6CaO and
Mg16+6CaO. Values from Tab. 6.5.

content higher than that expected from the nominal composition. This deviation from the

nominal composition is related to the formation of Ca[OH]2 and the loss of CaO during

the sample production, as explain in Section 6.3.1.

Tab. 6.6: The nominal and measured compositions for the Mg6Ca+6CaO and
Mg16Ca+6CaO samples. Deviations between nominal and measured compositions are
also indicated.

Sample Composition Ca [wt.%] O [wt.%] Mg [wt.%]

nominal 9.9 1.7 88.4
Mg6Ca+6CaO measured 8.2 ± 1.6 4.8 ± 1.0 87.0

deviation -1.7 3.1 -1.4
nominal 19.3 1.7 79.0

Mg16Ca+6CaO measured 15.3 ± 3.1 6.1 ± 1.2 78.6
deviation -4.0 4.4 -0.4

As described for the Mg20CaO and Mg30CaO samples, Ca[OH]2 was present from the

beginning of the in situ experiment. The presence of Ca[OH]2 decrease the amount of

Ca and increased the amount of O in the sample. However, this can not fully explain the

lower content of Ca, but the slight increase in O through a small amount of Ca[OH]2. The

ratio between Ca and O can not be used as with the MgxCaO samples, to determine the

amount of CaO and Ca(OH)2 found, as the samples contain Ca from the beginning. This
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make the calculation of the O source impossible. The higher O concentration could be

also related to a oxidation of the Mg-Ca chips during the production and storage of these

samples, as measured by EDXS. The lower amount of Ca in the measured composition

can be explained by the loss of CaO during the preparation of these samples (described

in Section 6.3.1).

However, the Ca content of Mg6Ca+6CaO is approximately 11.1 wt.% (at the liquidus

temperature) in the melt. If the values form the Tab. 6.6 are used, the total concen-

tration of Ca is 8.2 wt.%, O is 4.8 wt.% and balance Mg. With the same correction

as before (Section 6.3.1), the concentration of the metallic Mg and Ca are calculated

to Mg 90.7 wt.% and Ca 9.3 wt.%. Compared with the composition from the binary

Mg-Ca system to the Ca concentration in Mg from Mg6Ca+6CaO is lower according to

the second method. The actual concentration of O was higher in Mg6Ca+6CaO sample

than that measured with EDXS, the Ca content is higher in the metallic region. This is

the case, if the O content is approximately 10.3 wt.% the Ca content in metallic region

is 11.1 wt.%.

In case of Mg16Ca+6CaO the first Mg solidification was measured at 533 ◦C, a Ca content

in the melt is 14.8 wt.% and relatively close to measured composition. The accuracy of the

temperature measurement with ±5 ◦C resulted in an accuracy of Ca content at ±0.5 wt.%

in this case. This indicates a decrease in the Ca content by 1.2 wt.%. This can not explain

the reduction of CaO and CaO2 after melting, but the start of the solidification occurs

at a temperature 41 ◦C lower than the liquidus during heating. The decrease in the

solidification temperature indicate a higher content of Ca in the liquid, compared with

that during melting. With the same a correction as before, the concentrations of Mg and

Ca in the metallic region are calculated to be Mg 81.9 wt.% and Ca 18.1 wt.%. Compared

with the composition from the binary Mg-Ca system the Ca concentration in the metallic

region of Mg16Ca+6Ca is higher with the second method. The actual concentration of O

is lower in the Mg16Ca+6CaO sample than that measured with EDXS, the Ca content

is lower than the concentration in the metallic region. The methods used to calculate the

Ca content using the liquidus temperature or with the correction of concentration by the
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formation of only MgO using a fixed value for Ca in the metallic region can not be used

to evaluate each other, due to the higher deviation as described for Mg20CaO.

The in situ results from the MgxCa+6CaO samples are in agreement with the SEM

investigations. The microstructure of MgxCa+6CaO samples show globular formation

of Mg and the eutectic lamellar structure of Mg and Mg2Ca. This microstructure is

characteristic of the Mg rich side of the binary Mg-Ca system [16,21,36]. In each sample

O agglomerates in the eutectic region in a form of clusters of oxide particles. The EDXS

maps show a higher concentration of Mg in the O rich region of Mg6Ca+6CaO compared

with the O free region in the eutectic structures. Together with the synchrotron X-ray

radiation diffraction results, these oxide rich regions are identified as mainly MgO and a

minor fraction of CaO. However, the O rich region of Mg16Ca+6CaO show also a high

amount of Ca and Mg in the same region. Also the decrease in the intensity of CaO peaks

decrease is not as strong as with the other samples. This make the identification difficult.

It is not clear whether only MgO, CaO or both was observed in the microstructure. As

illustrated in the results section (Fig. 5.10) the Mg rich regions have a concentration of

50 wt.% Mg and 35 wt.% Ca, so that the main oxide is MgO. One O rich region has

a Ca content between 40 to 75 wt.% and a Mg content of approximately 10 wt.% with

a high O content. This indicates that a higher amount of CaO can not fully dissociated

in the Mg melt and explain the compact CaO agglomerations after the melting in the

Mg16Ca+6CaO sample. The location of oxides is in the eutectic regions resulted from

the primary solidification of Mg, as described previously.

6.4 Thermodynamic calculations

6.4.1 Calculations in comparison with experimental results

Thermodynamic databases are developed by the Institute of Metallurgy - Thermochem-

istry & microkinetics group in TU Clausthal based only on the thermodynamic data for

CaO and MgO from Hillert and Xizhen [54] and Gourishankar et al. [2]. The first ther-
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modynamic calculation is based on the thermodynamic data for CaO and MgO from

Hillert and Xizhen [54] (DB1) and the second thermodynamic calculation is based on the

thermodynamic data for CaO and MgO from Gourishankar et al. [2] (DB2). In the case

of Gourishankar et al. [2] CaO is measured to be thermodynamically less stable than

MgO (Fig. 3.3).

Due to the experimental set-up two different O2 partial pressure are possible depending

on whether the crucible is sealed or not. If the crucible is sealed the O2 pressure increases

up to 4 bar during heating but if the crucible is not sealed the O2 pressure remains at

1 bar. The calculations are performed at 1 bar. However, the results obtained for an O2

pressure of 4 bar are same as that at 1 bar.

The Fig. 6.5 shows the calculated isothermal phase diagram sections based on DB1 and

DB2 for the Mg rich corner of the Mg-Ca-O system at 700, 600 and 500 ◦C. During

the solidification at a given composition the solidification sequence is different in the

two data bases used. The calculation based on DB1 shows a solidification sequences for

the compositions in the Mg rich corner of the Mg-Ca-O system. This thermodynamic

calculation of Mg-Ca-O system shows that CaO and MgO are stable in the melt. In the

Mg rich corner of the Mg-Ca-O system the CaO is unstable and only MgO could be

found in the liquid. This thermodynamic calculation indicates that at low concentrations

of Ca and O, MgO forms in the liquid, so that MgO is more stable than CaO in the Mg

rich corner. However, DB1 propose that MgO is more stable than the CaO in the melt.

The equilibrium calculation of solidification sequence with DB2 is in agreement with the

experimental solidification results from the in situ measurements. The thermodynamic

calculations based on DB1 illustrate the solidification of the Mg rich end of the Mg-Ca-O

system by a non-equilibrium solidification. According to the experimental results from

the solidification the peak intensity due to MgO does not change, which indicates that

in the solid state MgO is more stable than CaO or cannot react to CaO due to a slow

solid state diffusion. The above thermodynamic calculations propose a transformation of

CaO to MgO. However, the microstructure investigation and the in situ measurements

of the solidification show that the solidification ends with a eutectic reaction (L −→
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Mg +Mg2Ca+ (MgO)) at much higher temperatures. The thermodynamic calculations

based on DB1 illustrate the solidification of the Mg rich end of the Mg-Ca-O system

by a non-equilibrium solidification. However, this may result when microstructures with

a region with mainly CaO in the samples exists (higher content of Ca and O e.g. in

Mg30CaO, Mg50CaO and Mg16Ca+CaO). This indicates that CaO can only dissociated

up to a certain amount in molten Mg. The calculations are in agreement with the SEM

investigations of the samples Mg30CaO, Mg50CaO and Mg16Ca+CaO with compact

CaO agglomerations after the melting and solidification. In the beginning of experimental

solidification primary Mg forms and at the end of the solidification eutectic Mg + Mg2Ca

Laves phase forms at 516.5 ◦C. This is similar to the solidification in the binary Mg-Ca

system, except for the presence of MgO. As proposed, Mg react with O to MgO, this is

in agreement with the thermodynamic calculations. This will increase the Ca content in

the melt in relation to Mg, which will lower the temperature for the formation of α-Mg,

as the melt has a composition closer to the eutectic composition of the binary Mg-Ca

system.

The formation temperatures during the solidification, from thermodynamic calculations

based on DB2 (using equilibrium conditions) are shown in comparison with the experi-

mental results for Mg20CaO, Mg6Ca+6CaO and Mg16Ca+6CaO in Tab. 6.7. The com-

positions for this calculations are taken from the compositions measured with EDXS as

plotted in Tab. 6.4 and 6.6. The data calculated for Mg30CaO and Mg50CaO samples are

not listed, as experimental temperatures for the formation of various phases are unknown.

The comparison between the phase transformation temperatures from the in situ exper-

iment and the thermodynamic calculations based on DB2 for Mg20CaO, Mg6Ca+6CaO

and Mg16Ca+6CaO shows good agreement. For the Mg20CaO sample the primary Mg

formation were calculated at 591 ◦C, which is 21 ◦C higher than that detected in the ex-

periment. The eutectic temperature for the Mg20CaO and Mg6Ca+6CaO samples were

detect at a lower temperature than that calculated. The lower formation temperatures

detected with in situ experiment are attributed to non-equilibrium nature of solidifica-

tion, especially associated with the initial energy barrier for nucleation of primary Mg.
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Fig. 6.5: Calculated isothermal sections of the ternary Mg-Ca-O system, based on the
thermodynamic data for CaO and MgO from (a, c, e) Hillert [54] (DB1) and from (b, d,
f) Gourishankar et al. [2] (DB2). At (a, b) 700 ◦C, (c, d) 600 ◦C and (e, f) 500 ◦C. The
measured composition of the samples indicated. All calculations are at P = 1 bar. The
database DB1 and DB2 are developed by Institute of Metallurgy - Thermochemistry &
microkinetics group in TU Clausthal.
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B. Wiese 6.4 Thermodynamic calculations

Tab. 6.7: The nominal and measured compositions for the Mg20CaO, Mg6Ca+6CaO and
Mg16Ca+6CaO with the phase transformation temperatures from the in situ experiment
(exp.) and the thermodynamic calculation (calc.) based on DB2. The accuracy of the
temperature measurement for the in situ experiment is ± 5 ◦C.

Nominal Mg20CaO Mg6Ca+6CaO Mg16Ca+6CaO
Measured Mg6.8Ca8.7O Mg8.2Ca4.8O Mg15.3Ca6.1O

calc. exp. calc. exp. calc. exp.
MgO + L
−→ 591.0 570.0 585.7 581.0 - 530.0

Mg +MgO + L
Mg +MgO + L

−→ 516.5 509.0 516.5 504.0 - 507.0
Mg2Ca+Mg +MgO

MgO + L
−→ - - - - 541.2 -

Mg2Ca+MgO + L
Mg2Ca+MgO + L

−→ - - - - 516.5 -
Mg +Mg2Ca+MgO

T [◦C]

Additional factor that may contribute include the possible thermal gradients in the spec-

imen. Liquidus temperature is detected, within in the accuracy of the measurements at

approximately 581 ◦C for the Mg6Ca+6CaO. The measured liquidus temperature and

the eutectic temperature of the Mg20CaO and Mg6Ca+6CaO samples validated the cal-

culations, as there is good agreement between the calculated values and measured values.

In case of Mg16Ca+6CaO the calculated solidification (based on DB2) starts with Mg2Ca

and the eutectic formation of Mg2Ca + Mg occurs at a temperature of 516.5 ◦C. This

is because of the composition of Ca is above the eutectic composition of Mg-Ca system,

with a Ca content of 16.3 wt.%. A deviation in the solidification sequence is mainly

related to composition measured with EDXS, where there is some inaccuracy with the

measurement due to light elements, e.g. O. A higher O or Ca content as measured by

EDXS is related to a higher Ca content in the liquid, which change the solidification

and the primary formation of Mg2Ca. These results show that the measurement of the

composition with EDXS is inaccurate for a sample composition close to the tie line. With

a lower content of O or Ca the solidification path becomes similar to the experimental

results observed for Mg16Ca+6CaO.
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The thermodynamic calculation for the Mg30CaO and Mg50CaO samples show primary

Mg formation and eutectic Mg2Ca + Mg formation. This is in agreement with the mi-

crostructural investigations of these samples and with the solidification sequence observed.

The investigation shows that the theory of Kondoh et al. [1] for the CaO dissociation

in Mg-Al alloys by the formation of the Laves phase Al2Ca cannot be applied to an Al

free system. They proposed that the formation of the Laves phase is the reason for the

dissociation of CaO. The experiments and the calculations show that the formation of

Mg2Ca is not a prerequisite for the dissociation of CaO, but the Laves phase occurs

above the solid solution limit of Ca in Mg. The thermodynamic calculations explain the

solid state formation of Mg2Ca in the investigations of Wiese et al. [158]. The conclusion

from Kondoh et al. [1] is that the formation of Laves phases did not reduce the energy of

the system, but the enthalpy of mixtures affected the actual phase formation as well the

dissociation of CaO.

Using the cross section of Mg-Ca-O phase diagram at 0.1 wt.% O, the role of MgO can be

explained. Fig. 6.6(a) illustrates the binary Mg-Ca system (PanMagnesium 8) and cross

section of Mg-Ca-O phase diagram at 0.1 wt.% O, based on the thermodynamic data for

CaO and MgO from b) Hillert [54] (DB1) and from c) Gourishankar et al. [2] (DB2).

There are some similarities between the cross sections of Mg-Ca-O at 0.1 wt.% O and

the binary Mg-Ca system. As proposed, the MgO reduced the amount of metallic Mg

in the melt, which lead to a higher Ca concentration in the liquid. The thermodynamic

calculation using DB2, shows that MgO is more stable than CaO up to a Ca content of

93 wt.% (Fig. 6.6(c)). This tie line moves to lower concentration of approximately 12 wt.%

Ca with the thermodynamic data based on DB1 (Fig. 6.6(b)). These calculations shows

that CaO is not stable at high Mg concentrations.

In the case of the DB1 calculations of the Mg rich side of the Mg-Ca-O system all

MgO react with the Ca to CaO during the solidification. This react from MgO to

CaO during the solidification was not determined in the in situ experiment. However, a

phase transition from CaO to MgO during the solidification under equilibrium conditions

is a possible reaction, but a slow solid state diffusion can resulted in non-equilibrium
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condition with a major fraction of MgO. This results in a similar solidification as in the

binary Mg-Ca system in a non-equilibrium condition, except for the presence of MgO and

CaO. The position of the tie line also indicates a residue of CaO after the melting and

solidification process with a high content of Ca, e.g. in the samples Mg30CaO, Mg50CaO

and Mg16Ca+CaO.

The calculations based on DB1 and DB2 are both in agreement with the experimental

results. The calculations based on DB1 are in a agreement with a non-equilibrium con-

dition during the solidification, as described previously. The calculations based on DB2

are in a agreement with a equilibrium condition during the solidification. However, the

experimental results are until now not sufficient to decide which database is more reliable.
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Fig. 6.6: Calculated a) binary Mg-Ca system (PanMagnesium 8) and phase diagram
section Mg-Ca-O with 0.1 wt.% O, based on the thermodynamic data for CaO and MgO
from b) DB1 [54] (DB1) and from c) Gourishankar et al. [2] (DB2). The databases DB1
and DB2 were developed by Institute of Metallurgy - Thermochemistry & microkinetics
group in TU Clausthal.
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6.4.2 The proposed effect on the oxide layer formation of Mg-Ca

alloys

The theory on oxide layer formation on alloys at high temperature propose the formation

of a mixed oxide [72, 73], in the case of a oxide system as MgO-CaO with a no solid

solution of the oxides. This system will form a sequence of MgO and CaO in a layered

structure [46, 54, 67–71] in Mg-Ca alloys. The oxide layer structure is not been fully

investigated previously.

The thermodynamic calculations based on DB1 and DB2 at 500 ◦C, Fig. 6.5, shows that in

the solid-state a layer of MgO and CaO form at high O concentrations. During oxidation

of Mg rich Mg-Ca alloys, this is the condition near the surface. As a result the top layer

should contain MgO and CaO for the calculation based on DB1 and DB2.

According to the literature [58,65,102] only MgO and CaO are involved in the oxide layer

formation. The calculation based on DB1 and DB2 shows the same oxide layer formation.

It is now possible to formulate a theory on how CaO improve the oxidation resistance on

Mg-Ca alloys.

The theory proposes the formation of a MgO and CaO side by side on Mg-Ca alloys.

The PBR of Mg/MgO is 0.81 which is < 1 and Ca/CaO is 0.64, which can not applied

to explain the protective effect on Mg. However, if we propose the formation of pure

CaO on Mg as well Mg-Ca alloys, it will result in a PBR of Mg/CaO of 1.20. Based

on this idea the Eq. 3.7 was modified to Eq. 6.1. This calculation is for PBR ≥ 1, which

should protect Mg-Ca alloys in the presence of O from the atmosphere [72, 76]. When

the oxide layer consists of a mixture of MgO and CaO (Fig. 6.7) the large volume of

CaO will compensate for the shrinkage due to MgO formation. The volume fraction of

CaO and MgO required for the PBR to be 1, to a provide protective oxide layer. If the

Eq. 6.2 was used the volume fraction of CaO should be approximately 0.49 in the oxide

layer for PBR ≈ 1. The calculation for the CaO content in this oxide layer is 47.3 wt.%

CaO which require 33.8 wt.% (19.5 at.%) Ca and 31.8 wt.% (30.4 at.%) Mg.
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Fig. 6.7: Evolution of the oxide layer for PBR of Mg/MgO 0.81, Mg/CaO 1.20 and the
combination of Mg/MgO and Mg/CaO ≥ 1.

PBRMg/CaO =
VCaO

VMg

=
MCaO · ρMg

nCaO ·MMg · ρCaO

= 1.20 (6.1)

PBRcombination = Mg/MgO ∗ x+Mg/CaO ∗ y = 0.81 ∗ x+ 1.2 ∗ y (6.2)

This is partly in agreement with the investigation of You et al. [65], who show a combi-

nation of Mg/MgO and Mg/CaO for Mg-Ca alloys. The phases and elements detected

with XRD and Auger electron spectroscopy (AES) in the oxide layer are only MgO and

CaO at 440, 480 and 500 ◦C for Mg1.5Ca and Mg5Ca alloys [65]. The AES results for

the oxidation at 500 ◦C are illustrated in Fig. 6.8 [65]. In contrast to the oxide layer

formation on pure Mg with a constant concentration of Mg and O in Mg-Ca contending

alloys a layered structure contending Ca and Mg was detected. The top layer composed

of Ca and O followed by a layer with a average content of 39 wt.% Mg, 26 wt.% Ca

and balance O. The last layer is composed of in average 10 wt.% Mg, 45 wt.% Ca and

balance O, after which Mg-Ca alloys was detected.

The O diffuse through the MgO and CaO layer according to Wagner [78]. However, the

reason for the CaO top layer could be the higher ∆G compared with MgO during the

initial stage of the oxidation. The second oxide layer can be explained by impoverishment

of Ca in the early stage of the oxidation. If the oxidation speed slows, due to the formation

of an oxide layer, Ca has more time to diffuse to the oxide/metal interface. The results

of You et al. [65] are not entirely in a agreement to the proposed combination of the PBR
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Fig. 6.8: The oxide layer for the oxidation at 500 ◦C, adopted from You et al. [65].

from Mg/MgO and Mg/CaO, but indicate a mixture of the Mg and Ca oxide in the

oxide layer. With a PBR 1.20 of Mg/CaO it should form a protective layer followed

by a oxide layer with 39 wt.% Mg, 26 wt.% Ca and balance O, which resulted in a

combined PBR of 1.05. In the oxide layer at the oxide/metal interface with 10 wt.% Mg,

45 wt.% Ca has a PBR of 1.06. For all these combinations the PBR between Mg/CaO

and Mg/MgO is > 1, which is protective as proposed by Pilling and Bedworth [76]. This

PBR can explain the protective effect of Ca on Mg-Ca alloys. However, this theory could

not be proved in this work, but should be the focus of the research on the oxidation of

solid Mg-Ca alloys.
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Conclusions

Mg is able to reduce CaO which is the opposite of the commonly ascribed view, and

this reduction occurs already in the solid state. The solidification results from the in situ

synchrotron radiation diffraction experiments agree with microstructure investigations in

the as-solidified samples. The previous investigations show that CaO is reduced by Mg

or Mg-Al alloys, but do not explain the exact mechanisms behind this reduction. This

thesis show that CaO is not stable compared to MgO for alloys in the in the Mg-rich

corner of the Mg-Ca-O system. The common Ellingham diagram cannot be applied to

explain the dissociation of CaO in the ternary system because liquid solution phases are

not considered in any calculation based on stoichiometric phases only.

The in situ synchrotron radiation diffraction experiments on Mg-xCaO and Mg-xCa-

yCaO determined the temperature range and the state (whether liquid or solid) in which

the dissociation of CaO will occur and which phases form during this process. It was

possible to follow the dissociation of the phases and the phase formation during the

solidification.

The experimental results from the solidification sequence were used to validated thermody-

namic calculations of Prof. R. Schmid-Fetzer and Dr. A. Kozlov (Institute of Metallurgy

form Thermochemistry & microkinetics in TU Clausthal). In this calculation number of

different literature values for the thermodynamic data of CaO and MgO were used to

calculate the ternary phase diagram Mg-Ca-O. The common Ellingham diagrams are not

reliable, as shown by the thermodynamic calculations based on different thermodynamic
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data for CaO and MgO (Chase 1985 [52], Hillert and Xizhen [54] and Gourishankar et

al. [2]) and with experimental results. This work shows the interaction between Mg and

Ca and their oxides, when it forms and its role during melting and solidification. The re-

sult from the calculations is that the change in standard Gibbs free energy (∆G) for CaO

and MgO of Gourishankar et al. [2] is not a prerequisite for the dissociation of CaO. The

MgO form through a reaction between Mg with O and reduce the amount of metallic Mg

according to the oxygen content in the melt, which leads to a higher Ca concentration in

the liquid. In the end the melt solidifies in a manner similar to the binary Mg-Ca system.

Kondoh et al. [1] theory for the CaO dissociation in Mg-Al alloys by the formation of the

Laves phase Al2Ca can not be applied to Al free systems. This is because they proposed

that the formation of the Laves phases is the reason for the dissociation of CaO. The

experiments and the calculations show that the formation of Mg2Ca is not a prerequisite

for the dissociation of CaO, but the Laves phase occurs above the maximum solubility

of Ca in Mg. However, the enthalpy of mixing play an important role together with the

change in standard Gibbs free energy (∆G) of the phase formation. The thermodynamic

calculations are able to explain the solid state formation of Mg2Ca in the investigations

by Wiese et al. [158].

We propose the formation of pure CaO on Mg as well Mg-Ca alloys, it will resulted in

a PBR of Mg/CaO of 1.20. If the oxide layer composed of a mixture of MgO and CaO

the expansion during the formation of CaO will compensated by the shrinkage due to

MgO formation. At a volume fraction of CaO of approximately 0.49 in the oxide layer

when the PBR is ≈ 1. This is in agreement with the investigations of You et al. [65], who

shows a PBR > 1 at 500 ◦C for Mg1.5Ca and Mg5Ca alloys by calculating the PBR from

the measured concentration. The proposed theory for the protective effect of Ca on Mg

alloys are compensation of the volume change in the formation of MgO and CaO.
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CHAPTER 8

Future work

8.1 Investigation of the oxide layer structure

Ongoing investigations on the oxide layer structure on Mg-Ca alloys should be a focus of

Mg research to understand detail in the protective nature of Ca on Mg. The protective

nature Ca on Mg melt can lead to the possible substitution of protection gas, that have

a high Global Warming Potential (GWP) e.g. SF6 or harmful by products e.g. SO2;

with Ca or CaO. The understanding of the interactions between Ca and Mg will show

the amount of Ca required and the temperature range for effective protection. If the

results show mechanism by which the Ca change the oxide layer formation, it is possible

to transfer this knowledge to other Mg alloy systems e.g. rare earth (RE) elements, Zn,

Sn etc.

This investigation did not indicate that alloying elements can fully substitute the pro-

tection gas, however it will improve the knowledge of oxidation of Mg alloys. This can

be a useful tool for the development of new Mg alloys for high temperature applica-

tions. Understanding the role of Ca in protecting Mg alloys is useful for the design of

high temperature applications where oxidation of the component may be a problem, e.g.

combustion engines.
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8.2 Expansion of the thermodynamic calculations to

Mg-X-O system

The expansion of the thermodynamic calculations of Mg-X-O system for commercial

alloying elements, can improve the knowledge of the oxidation resistance of Mg-X alloys

from thermodynamic knowledge. This research topic can be a useful tool in designing

new Mg alloys for high temperatures application. Together with the investigations, on

the oxide layer formation on Mg alloys, the thermodynamic calculations have the ability

to do provide explanation of the protective nature of the alloying addition.

102



Bibliography

[1] K. Kondoh, J. Fujit, J. Umeda, H. Imai, K. Enami, M. Ohara, and T. Igarashi.
Thermo-dynamic analysis on solid-state reduction of CaO particles dispersed in
Mg–Al alloy. Materials Chemistry and Physics, 129:631–640, 2011.

[2] K. V. Gourishankar, M. K. Ranjbar, and G. R. St. Pierre. Revision of the enthalpies
and gibbs energies of formation of calcium oxide and magnesium oxide. Journal of
Phase Equilibria, 14(5):601–611, 1993.

[3] H. E. Friedrich and B. L. Mordike. Magnesium Technology / Metallurgy, Design
Data, Applications. 1. Springer-Verlag, Berlin, Heidelberg, Germany, 2006.

[4] E. F. Emley. Principles of magnesium technology. 1. Pergamon Press / Oxford,
New York, 1966.

[5] A. Beck. Magnesium und seine Legierungen. 2. Springer-Verlag / Berlin, 1939/2001.

[6] R. v. Mises. Mechanik der plastischen Formänderung von Kristallen. ZAMM -
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Math-
ematik und Mechanik, 8(3):161–185, 1928.
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und des Calciums mit Magnesium, Thallium, Blei, Kupfer und Silber. Zeitschrift
für anorganische Chemie, 70:352–394, 1911.
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APPENDIX E

Scripts to integrate the in situ 2D
pattern by FIT2D V12.077

BEGINNING OF GUI MACRO FILE:

EXIT
POWDER DIFFRACTION (2-D)
INPUT
#IN
O.K.
O.K.
MASK
THRESHOLD MASK
YES
1
EXIT
INTEGRATE
X-PIXEL SIZE
200
Y-PIXEL SIZE
200
DISTANCE
1162.717
WAVELENGTH
0.124
X-BEAM CENTRE
1023.471
Y-BEAM CENTRE
1035.056
O.K.
O.K.
OUTPUT
CHIPLOT
FILE NAME
#OUT
O.K.
EXIT
MACROS / LOG FILE

124



APPENDIX F

Scripts to convert the ASCII files of
EDXS maps into PNG files

The compositional maps a recalculated with the software Iridium in wt.%. After the
recalculation the maps are saved as a ASCII files and converted with ImageJ in to PNG
files. The scripts change the picture size and include the scale bare depending on the
pixel size of the maps.

F.1 512 pixel wide map

dir1 = getDirectory(”Choose Source Directory ”);
dir2 = getDirectory(”Choose Destination Directory ”);
list = getFileList(dir1);
setBatchMode(true);
for (i=0; i¡list.length; i++) {
file = dir1 + list[i];
run(”Text Image... ”, ”open=&file”);
run(”Canvas Size...”, ”width=572 height=383 position=Top-Left”);
run(”royal”); // Color Code
run(”Calibration Bar...”, ”location=[Upper Right] fill=None label=Black number=5 dec-
imal=0 font=12 zoom=1”);
};
run(”Images to Stack”, ”use”);
run(”Image Sequence... ”, ”format=PNG name=Stack start=1 digits=4 use save=[dir2]”);
setBatchMode(false);

F.2 1024 pixel wide map

dir1 = getDirectory(”Choose Source Directory ”);
dir2 = getDirectory(”Choose Destination Directory ”);
list = getFileList(dir1);
setBatchMode(true);
for (i=0; i¡list.length; i++) {
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B. Wiese F.2 1024 pixel wide map

file = dir1 + list[i];
run(”Text Image... ”, ”open=&file”);
run(”Canvas Size...”, ”width=1122 height=766 position=Top-Left”);
run(”royal”);
run(”Calibration Bar...”, ”location=[Upper Right] fill=None label=Black number=5 dec-
imal=0 font=12 zoom=2”);
};
run(”Images to Stack”, ”use”);
run(”Image Sequence... ”, ”format=PNG name=Stack start=1 digits=4 use save=[dir2]”);
setBatchMode(false);
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