TU Clausthal

Ergebnis experimenteller Untersuchungen für Druckkammlager im Mischreibungsgebiet

Bereitgestellte Daten

Bereitgestellt werden tabellarisch aufbereitete Versuchsergebnisse sowie der zugehörige Versuchsplan und diese pdf-Datei mit begleitenden Erläuterungen. Die Versuchsplantabelle mit den erreichten Ergebnissen findet sich in folgender ASCII-Datei: Erg_Tab_DK_MR.txt

Einordnung des Datenmaterials

Als Teil des Schwerpunktprogrammes 1551 "Ressourceneffiziente Konstruktionselemente" der Deutschen Forschungsgemeinschaft (DFG) erfolgen am Fritz-Süchting-Institut für Maschinenwesen (IMW) der Technischen Universität Clausthal im Rahmen des Forschungsprojektes "Einsatz von Druckkämmen zur Effizienzsteigerung von schrägverzahnten Getrieben" Untersuchungen zum Verhalten von Druckkammlagern unter Mischreibungsbedingungen. Hierfür wurden auf einem Spezialprüfstand [1] mit unterschiedlich gestalteten Druckkammprüfkörpern die in [2] beschrieben Verschleißversuche durchgeführt, um Hinweise auf den Einfluss verschiedener Gestaltungsparameter auf die Verschleißresistenz von Druckkammlagern zu ermitteln.

Einflussparameter und Zielgrößen

Untersucht wurden fünf Einflussparameter mittels eines zweistufigen, vollfaktoriellen Versuchsplanes. Die folgende Aufzählung nennt die Parameter mit ihren beiden Stufen und gibt eine Kurze Beschreibung:

• Neigungswinkel: 0,5 ° und 1,0 °

Druckkammlager sollen einen hydrodynamischen Schmierfilm zur Übertragung axialer Lasten zwischen parallelen, rotierenden Wellen aufbauen. Eine Voraussetzung hierfür ist ein konvergenter Spalt zwischen den Kontaktflächen des Lagers, in den an den Laufflächen anhaftender Schmierstoff gezogen werden und dort komprimiert werden kann. In einer einfachen Gestaltungsvariante wird der konvergente Spalt zwischen zwei Kegelflächen gebildet, wobei hier der Winkel zwischen der Kegelfläche und einer normal zu deren Rotationsachse ausgerichteten Ebene als Neigungswinkel bezeichnet wird.

• Laufbahnbreite: 10 mm und 15 mm

Die Laufbahnbreite beeinflusst die für die Axialkraftübertragung zur Verfügung stehende Fläche. Eine Vergrößerung senkt tendentiell die flächenbezogene Beanspruchung, kann jedoch auch zu größeren Abständen von Laufflächenbereichen zum Wälzkreis des Getriebes und damit zu ungünstigeren kinematischen Bedingungen führen, da mit dem Abstand Differenzgeschwindigkeit und örtlicher Verschleißweg ansteigen.

- Werkstoff: 34CrMo4 und 30CrNiMo8 Der Einfluss des Grundwerkstoffs auf das Verschleißverhalten wurde betrachtet.
- Schlupfverhältnis: 5% und 10%

Als Schlupfverhältnis wird der Quotient aus Differenz- und Summengeschwindigkeit bezeichnet. Im realen Getriebe ergibt sich dieses in Abhängigkeit vom Abstand des betrachteten Auswertepunktes zum Wälzkreis, es variiert somit über der Kontaktbreite. In den Versuchen wird das Schlupfverhältnis in der Kontaktmitte als Parameter eingestellt. Die Variation des Schlupfes wird in den Versuchen durch eine Anpassung der Rotationsgeschwindigkeiten der separat angetriebenen Prüfwellen erreicht.

 Oberflächenbehandlung: unbehandelt und nitriert Als exemplarisches Beispiel für den Einfluss einer Oberflächenbehandlung wurde das Gasnitrieren betrachtet. Für die Herstellung der nitrierten Laufflächen wurde NHT 0,3 mm bei einer Härte von 650 HV gefordert.

Als Zielgrößen werden einerseits die bei Feststellung des Laufflächenversagens aufgebrachte Axiallast und andererseits die sich aus dieser und der Kontaktgeometrie ergebende Vergleichspressung¹ für den HERTZ'schen Kontakt zweier Zylinder betrachtet.

Untersuchungsmethodik

Die zu untersuchenden Druckkammprüflinge werden paarweise auf den parallelen Prüfwellen des Spezialprüfstandes montiert und zunächst in einem 30 minütigen Einlaufprogramm unter moderaten Lasten konditioniert.

Für die Untersuchung wird eine mittlere Umfangsgeschwindigkeit der Druckkammlauffläche gewählt, für die bereits bei relativ geringen Axiallasten Mischreibung eintritt. Die Bahngeschwindigkeit der Anlaufringfläche ergibt sich aus dem durch den Versuchsplan vorgegebenen Schlupfverhältnis. Die Untersuchung beginnt mit einer axialen Belastung von 2 kN und wird alle 50000 Druckkammumdrehungen um 2 kN gesteigert, bis entweder ein Laufflächenversagen detektiert oder die höchste Prüflast von 100 kN schadensfrei überstanden wurde.

Zur Vermeidung von Schmierstoffbeschädigungen wird die Kontaktflächentemperatur überwacht und beim Überschreiten eines Grenzwertes der Versuch für eine Abkühlphase unterbrochen. Die Erkennung von Laufflächenversagen erfolgt mit Hilfe eines Beschleunigungsaufnehmers, der die axiale Anregung der Prüfwellen erfasst und bei Überschreitung eines Grenzwertes den Versuchslauf beendet.

Darstellung der Versuchsergebnisse

Der Versuchsplan sowie die in der Datei: Erg_Tab_DK_MR.txt bereitgestellten Versuchsergebnisse sind in Tab. 1 zusammengefasst. Eine Präsentation eines Teils dieser Ergebnisse sowie deren Interpretation im Rahmen der Auswertung eines teilfaktoriellen Versuchsplanes erfolgte bereits in [4]. Durch den Abschluss weiterer Untersuchungen gelingt die Vervollständigung zum vollfaktoriellen Versuchsplan und somit eine Verbesserung der Aussagekraft, da eine Vermischung von Wechselwirkungen höherer Ordnung verhindert werden kann. Die grundlegenden Erkenntnisse aus [4] können jedoch bestätigt werden und behalten ihre Gültigkeit.

In den Abb. 1 und Abb. 2 sind Haupteffekt- und Wechselwirkungsdiagramme für die Zielgröße der Axiallast sowie in den Abb. 3 und Abb. 4 für die Zielgröße der Vergleichspressung dargestellt.

¹Zur Berechnung der Vergleichspressung siehe GI. (7) aus [3]

Lineare Regression

Mit Hilfe einer multiplen linearen Regression lässt sich eine Näherungsgleichung zur Beschreibung des Zusammenhanges einer Zielgröße von den Untersuchungsparametern erstellen. Zur Vorbereitung der Regression werden die Werte des Parameters Werkstoff durch die Elastizitätsgrenzen der Grundwerkstoffe ersetzt, sodass sich für 34CrMo4 $R_{p02} = 450 \text{ MPa}^2$ und für 30CrNiMo8 $R_{p02} = 700 \text{ MPa}^3$ ergibt.

Mit Hilfe einer VICKERS-Härteprüfung wurden für alle untersuchten Laufflächen Härtewerte bestimmt, deren Mittelwerte in Tab. 2 angegeben sind. Diese Werte werden an entsprechenden Stellen in den Versuchsplan für den Parameter "Nitriert" eingetragen.

Aus der Regression ergeben sich Gleichungen zur Berechnung einer Zielgröße in Abhängigkeit von den gewählten Parametern. Für die kalkulatorische Axialkraft $F_{Ax,C}$ gilt:

$$F_{Ax,C} (\delta, B_{C}, R_{p02}, S_{P}, H_{HV}) = q_{F0} + q_{F1} \cdot \delta + q_{F2} \cdot B_{C} + q_{F3} \cdot R_{p02} + q_{F4} \cdot S_{P} + q_{F5} \cdot H_{HV} + q_{F12} \cdot \delta \cdot B_{C} + q_{F13} \cdot \delta \cdot R_{p02} + q_{F14} \cdot \delta \cdot S_{P} + q_{F15} \cdot \delta \cdot H_{HV} + q_{F23} \cdot B_{C} \cdot R_{p02} + q_{F24} \cdot B_{C} \cdot S_{P} + q_{F25} \cdot B_{C} \cdot H_{HV} + q_{F34} \cdot R_{p02} \cdot S_{P} + q_{F35} \cdot R_{p02} \cdot H_{HV} + q_{F45} \cdot S_{P} \cdot H_{HV} + q_{F123} \cdot \delta \cdot B_{C} \cdot R_{p02} + q_{F124} \cdot \delta \cdot B_{C} \cdot S_{P} + q_{F125} \cdot \delta \cdot B_{C} \cdot H_{HV} + q_{F134} \cdot \delta \cdot R_{p02} \cdot S_{P} + q_{F135} \cdot \delta \cdot R_{p02} \cdot H_{HV} + q_{F145} \cdot \delta \cdot S_{P} \cdot H_{HV} + q_{F234} \cdot B_{C} \cdot R_{p02} \cdot S_{P} + q_{F235} \cdot B_{C} \cdot R_{p02} \cdot H_{HV} + q_{F245} \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1235} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} + q_{F1235} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1345} \cdot \delta \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1345} \cdot \delta \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1345} \cdot \delta \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{F1345} \cdot \delta \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{P02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{P02} \cdot S_{P} \cdot H_{HV} + q_{F12345} \cdot \delta \cdot B_{C} \cdot R_{P02} \cdot S_{P}$$

Hierin sind δ der Laufflächenneigungswinkel in °, $B_{\rm C}$ die Breite des Kontaktbereiches in mm, $R_{\rm p02}$ die Streckgrenze des Grundwerkstoffes in MPa, $S_{\rm P}$ das Schlupfverhältnis in Prozent und $H_{\rm HV}$ der nach VICKERS bestimmte Härtewert der Kontaktflächen. Die kalkulatorische Axialkraft ergibt sich in kN. Zahlenwerte für die Koeffizienten $q_{\rm F0}$ bis $q_{\rm F12345}$ finden sich im oberen Teil der Tab. 3.

²Mindeststreckgrenze für Rohteildurchmesser zwischen 160 mm und 250 mm gem. [5].

³Streckgrenzenangabe für Rohteildurchmesser zwischen 160 mm und 250 mm gem. [6].

Für die Vergleichspressung $p_{eq,C}$ ergibt sich durch die Regression:

$$p_{eq,C} (\delta, B_{C}, R_{p02}, S_{P}, H_{HV}) = q_{p0} + q_{p1} \cdot \delta + q_{p2} \cdot B_{C} + q_{p3} \cdot R_{p02} + q_{p4} \cdot S_{P} + q_{p5} \cdot H_{HV} + q_{p12} \cdot \delta \cdot B_{C} + q_{p13} \cdot \delta \cdot R_{p02} + q_{p14} \cdot \delta \cdot S_{P} + q_{p15} \cdot \delta \cdot H_{HV} + q_{p23} \cdot B_{C} \cdot R_{p02} + q_{p24} \cdot B_{C} \cdot S_{P} + q_{p25} \cdot B_{C} \cdot H_{HV} + q_{p34} \cdot R_{p02} \cdot S_{P} + q_{p35} \cdot R_{p02} \cdot H_{HV} + q_{p45} \cdot S_{P} \cdot H_{HV} + q_{p123} \cdot \delta \cdot B_{C} \cdot R_{p02} + q_{p124} \cdot \delta \cdot B_{C} \cdot S_{P} + q_{p125} \cdot \delta \cdot B_{C} \cdot H_{HV} + q_{p134} \cdot \delta \cdot R_{p02} \cdot S_{P} + q_{p135} \cdot \delta \cdot R_{p02} \cdot H_{HV} + q_{p134} \cdot \delta \cdot S_{P} \cdot H_{HV} + q_{p234} \cdot B_{C} \cdot R_{p02} \cdot S_{P} + q_{p135} \cdot \delta \cdot R_{p02} \cdot H_{HV} + q_{p245} \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p245} \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1234} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1234} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot R_{p02} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot B_{C} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot S_{P} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot S_{P} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot S_{P} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot S_{P} \cdot S_{P} \cdot H_{HV} + q_{p1245} \cdot \delta \cdot S$$

Die Parameterwerte sind entsprechend Gl. (1) einzusetzen, wobei Zahlenwerte für die Koeffizienten q_{p0} bis q_{p12345} aus dem unteren Teil von Tab. 3 entnommen werden können.

Für die Erstellung der Modelle wurden alle Parameter als lineare Haupteffekte sowie sämtliche linear abbildbaren Wechselwirkungen berücksichtigt. Das Bestimmtheitsmaß nimmt für beide Zielgrößen den Wert 1 an. Aus Abb. 5 wird ersichtlich, dass die gemessenen Werte der Zielgrößen sehr gut mit den Regressionswerten übereinstimmen. Dennoch gilt es bei der Anwendung der durch die Gleichungen (1) und (2) beschriebenen Modelle folgendes zu beachten:

- Die ermittelten Zielgrößen geben den Eintritt des Versagens entsprechender Laufflächen im Versuch wieder. Die Lasten stellen somit keine zumutbaren Belastungen für die Auslegung von Druckkammlagern dar.
- Ziel der Untersuchung war die Betrachtung von Mischreibungssituationen, deren Auftreten im Lebenszyklus eines Produktes, etwa während Anfahr- und Bremsmanövern, unvermeidbar sind. Für Aussagen hinsichtlich ertragbarer Beanspruchungen bei dauerhafter Mischreibung genügen diese Versuche nicht, da im Vergleich hierzu die Intervalle konstanter Axialbelastung mit "nur" 50000 Überrollungen zu gering sind.
- Der Umfang der Versuche ist nicht geeignet, um eine Abschätzung eventuell auftretender Streueffekte abzubilden. Hierfür sind weitere, wiederholende Versuche erforderlich.
- Der zweistufige Versuchsplan dient dem Aufbau eines linearen Wechselwirkungsmodells. Quadratische oder höherwertige Abhängigkeiten lassen sich aus den vorliegenden Untersuchungspunkten nicht ableiten und sind daher im vorgestellten Modell nicht abgebildet.
- Das Modell ist nur innerhalb des untersuchten Parameterbereichs anzuwenden. Es ist davon auszugehen, dass weitreichende Extrapolationen über den Untersuchungsbereich hinaus falsche Werte ergeben. So ergibt beispielsweise die Steigerung des Neigungswinkels auf 90 ° rechnerisch sehr hohe Axiallasten, obwohl technisch kein Druckkammlager mehr existiert, da sich aufgrund der geometrischen Verhältnisse parallele Walzen ergeben.
- Bei der Modellerstellung wurde auch für die Durchläufer, bei denen kein Laufflächenversagen detektiert wurde ein Versagen bei maximaler Versuchslast unterstellt.

• Weitere Einflussparameter, wie beispielsweise die Schmierstoffmenge oder Mikrostrukturierungen der Laufflächen, wurden bei den Untersuchungen nicht beachtet und können daher nicht abgebildet werden.

Verfasser

Institut für Maschinenwesen der TU-Clausthal	Telefon:	05323/722270
Robert-Koch-Straße 32	Fax:	05323/723501
38678 Clausthal-Zellerfeld	E-Mail:	info@imw.tu-clausthal.de
Sachbearbeiter:		
DiplIng. Marcel Heß	Telefon:	05323/723506
	E-Mail:	hess@imw.tu-clausthal.de

Literatur

- [1] Thoden, D.: Neuer Prüfstand für Verschleißuntersuchungen Druckkäman men; Mitteilungen dem Institut für Maschinenwesen Techni-In: aus der Universität Clausthal, Nr. 34. ISSN 0947-2274, S. 115-118 (2009),schen http://www.gbv.de/dms/clausthal/H_BIB/IMW/mitteilungen/34-2009/imw-34-15.pdf
- Untersuchung an Laufflächen von Druckkammlagern Mischrei-[2] Heß, M.: im bungsgebiet; In: Mitteilungen aus dem Institut für Maschinenwesen der Tech-Universität Clausthal, 41, ISSN 0947-2274, nischen Nr. S. 47-60 (2016),https://www.imw.tu-clausthal.de/fileadmin/Forschung/InstMitt/2016/Konstruktion und Berechnung_von_Maschinenelementen/Untersuchung_an_Laufflaechen_von_ Druckkammlagern_im_Mischreibungsgebiet.pdf
- [3] Lohrengel, A., Heß, M.: Druckkammlagerungen zum Einsatz in effizienten schrägverzahnten Getrieben; In: Technical report series // Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of technology, ISSN 1869-8018, 01 (2014), http://www.gbv.de/dms/clausthal/H_BIB/FAK3/TechRep/FAK3-14-01.pdf
- [4] Heß, M., Lohrengel, A.: Thrust cone bearings provide increased efficiency for helical gear units at moderate speed levels: Indications for possible energy saving potential in an expanded field of application; In: Forschung im Ingenieurwesen DOI: 10.1007/s10010-017-0229-x
- [5] Deutsche Edelstahlwerke GmbH: Fimodur 7220 / Fimodur 7226 Werkstoffdatenblatt 34CrMo4/ 34CrMoS4 1.7220/1.7226. Witten (2016),https://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/ Werkstoffdatenblaetter/Baustahl/1.7220_1.7226_de.pdf
- [6] Deutsche Edelstahlwerke GmbH: 1.6580 : 30CrNiMo8, Witten (2011), https://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/ Werkstoffdatenblaetter/Baustahl/1.6580_de.pdf

Anhang

Versuch			Parameter				Ergebnis			
Nr.	D-Prüfling	Z-Prüfling	Neigungswinkel	Breite	Werkstoff	Schlupf	Nitriert	Durchläufer	Axialkraft	Pressung
			in °	in mm		in %			in kN	in MPa
18	W05-10u-035	W05-10u-036	0,5	10	34CrMo4	5	Nein	Nein	72	212,2
7	W05-10n-013	W05-10n-014	0,5	10	34CrMo4	5	Ja	Nein	82	226,5
1	W05-10u-002	W05-10u-035	0,5	10	34CrMo4	10	Nein	Nein	40	158,2
19	W05-10n-014	W05-10n-013	0,5	10	34CrMo4	10	Ja	Nein	60	193,7
8	H05-10u-015	H05-10u-016	0,5	10	30CrNiMo8	5	Nein	Nein	10	79,1
20	H05-10n-018	H05-10n-017	0,5	10	30CrNiMo8	5	Ja	Nein	72	212,2
21	H05-10u-016	H05-10u-015	0,5	10	30CrNiMo8	10	Nein	Nein	46	169,6
9	H05-10n-017	H05-10n-018	0,5	10	30CrNiMo8	10	Ja	Nein	70	209,2
2	W05-15u-006	W05-15u-005	0,5	15	34CrMo4	5	Nein	Nein	92	195,9
22	W05-15n-040	W05-15n-039	0,5	15	34CrMo4	5	Ja	Nein	74	175,7
3	W05-15u-005	W05-15u-006	0,5	15	34CrMo4	10	Nein	Nein	26	104,1
4	W05-15n-007	W05-15n-008	0,5	15	34CrMo4	10	Ja	Nein	60	158,2
23	H05-15u-042	H05-15u-041	0,5	15	30CrNiMo8	5	Nein	Nein	56	152,8
10	H05-15n-019	H05-15n-020	0,5	15	30CrNiMo8	5	Ja	Ja	100	204,2
5	H05-15u-041	H05-15u-009	0,5	15	30CrNiMo8	10	Nein	Nein	78	180,3
24	H05-15n-020	H05-15n-019	0,5	15	30CrNiMo8	10	Ja	Nein	82	184,9
11	W10-10u-021	W10-10u-022	1,0	10	34CrMo4	5	Nein	Nein	76	308,3
25	W10-10n-024	W10-10n-023	1,0	10	34CrMo4	5	Ja	Nein	84	324,1
26	W10-10u-022	W10-10u-021	1,0	10	34CrMo4	10	Nein	Nein	44	234,6
12	W10-10n-023	W10-10n-024	1,0	10	34CrMo4	10	Ja	Nein	64	282,9
27	H10-10u-028	H10-10u-027	1,0	10	30CrNiMo8	5	Nein	Nein	54	259,9
13	H10-10n-025	H10-10n-026	1,0	10	30CrNiMo8	5	Ja	Ja	100	353,7
14	H10-10u-027	H10-10u-028	1,0	10	30CrNiMo8	10	Nein	Nein	54	259,9
	Fortsetzung auf Folgeseite								ortsetzung au	If Folgeseite

Tab. 1: Versuchsplan und Ergebnisse: der Untersuchungen zum Mischreibungsverhalten von Druckkammlagern im Rahmen des DFG-SPP 1551

Versuch			Parameter				Ergebnis			
Nr.	D-Prüfling	Z-Prüfling	Neigungswinkel	Breite	Werkstoff	Schlupf	Nitriert	Durchläufer	Axialkraft	Pressung
			in °	in mm	in %				in kN	in MPa
28	H10-10n-026	H10-10n-025	1,0	10	30CrNiMo8	10	Ja	Nein	88	331,8
29	W10-15u-043	W10-15u-044	1,0	15	34CrMo4	5	Nein	Nein	72	245,0
15	W10-15n-029	W10-15n-030	1,0	15	34CrMo4	5	Ja	Ja	100	288,8
6	W10-15u-012	W10-15u-043	1,0	15	34CrMo4	10	Nein	Nein	70	241,6
30	W10-15n-030	W10-15n-029	1,0	15	34CrMo4	10	Ja	Nein	74	248,4
16	H10-15u-031	H10-15u-032	1,0	15	30CrNiMo8	5	Nein	Nein	100	288,8
31	H10-15n-034	H10-15n-033	1,0	15	30CrNiMo8	5	Ja	Ja	100	288,8
32	H10-15u-032	H10-15u-031	1,0	15	30CrNiMo8	10	Nein	Ja	100	288,8
17	H10-15n-033	H10-15n-034	1,0	15	30CrNiMo8	10	Ja	Ja	100	288,8

Tab. 1: Fortsetzung: Versuchsplan und Ergebnisse

Im Bereich "Versuch" sind neben einer den Versuchen zugeordneten Identifikationsnummer auch identifizierende Kennungen der auf der Druckwelle (D) und auf der Zugwelle (Z) montierten Prüflinge angegeben.

Abb. 1: Haupteffektediagramm für die Zielgröße Axialkraft: Abgeleitet aus dem vollfaktoriellen Versuchsplan aus Tab. 1.

vollfaktorielles Wechselwirkungsdiagramm für die Zielgröße Axialkraft in kN

Abb. 2: Wechselwirkungsdiagramm für die Zielgröße Axialkraft: Abgeleitet aus dem vollfaktoriellen Versuchsplan aus Tab. 1.

vollfaktorielles Haupteffektediagramm für die Zielgröße Vergleichspressung in MPa

Abb. 3: Haupteffektediagramm für die Zielgröße Vergleichspressung: Abgeleitet aus dem vollfaktoriellen Versuchsplan aus Tab. 1.

vollfaktorielles Wechselwirkungsdiagramm für die Zielgröße Vergleichspressung in MPa

Abb. 4: Wechselwirkungsdiagramm für die Zielgröße Vergleichspressung: Abgeleitet aus dem vollfaktoriellen Versuchsplan aus Tab. 1.

Tab. 2: Gemittelte, gemessene Härtewerte für untersuchte Laufflächen: gegliedert nach Grundwerkstoff und Oberflächenbehandlung.

Werkstoff	unnitriert	nitriert
34CrMo4	229 HV	685 HV
30CrNiMo8	300 HV	747 HV

Abb. 5: Anwendung des Regressionsmodells für Versuchspunkte: Vergleich gemessener und errechneter Werte für die Zielgröße der Axiallast (links) und der Vergleichspressung (rechts) in Absolutwerten (oben) und als relative Abweichung (unten).

Konstante	Haupteffekte		Wechs	Wechselwirkung			
		zweifach	dreifach	vierfach	fünffach		
Für die Berechnung	der Axialkraft:						
$q_{\rm F0}$ -5,0611 · 10 ⁺²	$\begin{array}{rrrr} q_{\rm F1} & 1,4406\cdot10^{+3} \\ q_{\rm F2} & 1,1428\cdot10^{+2} \\ q_{\rm F3} & 2,7386\cdot10^{-1} \\ q_{\rm F4} & 1,0327\cdot10^{+2} \\ q_{\rm F5} & 2,0692\cdot10^{+0} \end{array}$	$\begin{array}{rrrrr} q_{\rm F12} & -1,7964\cdot 10^{+2} \\ q_{\rm F13} & -1,8300\cdot 10^{+0} \\ q_{\rm F14} & -1,8711\cdot 10^{+2} \\ q_{\rm F15} & -3,4821\cdot 10^{+0} \\ q_{\rm F23} & -1,4710\cdot 10^{-1} \\ q_{\rm F24} & -1,6483\cdot 10^{+1} \\ q_{\rm F25} & -2,6164\cdot 10^{-1} \\ q_{\rm F34} & -1,0483\cdot 10^{-1} \\ q_{\rm F35} & -2,6683\cdot 10^{-3} \\ q_{\rm F45} & -2,5914\cdot 10^{-1} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} q_{\rm F1234} & -3,1541\cdot 10^{-2} \\ q_{\rm F1235} & -5,9244\cdot 10^{-4} \\ q_{\rm F1245} & -4,2826\cdot 10^{-2} \\ q_{\rm F1345} & -5,6154\cdot 10^{-4} \\ q_{\rm F2345} & -4,7832\cdot 10^{-5} \end{array}$	$q_{\rm F12345}$ 6,4759 \cdot 10 ⁻⁵		
Für die Berechnung	der äquivalenten Pres	sung:					
$q_{\rm p0}$ 7,9886 · 10 ⁺²	$\begin{array}{rrrr} q_{\rm p1} & 1,3721\cdot 10^{+3} \\ q_{\rm p2} & 5,3476\cdot 10^{+1} \\ q_{\rm p3} & -2,8378\cdot 10^{+0} \\ q_{\rm p4} & 9,9191\cdot 10^{+0} \\ q_{\rm p5} & 8,7132\cdot 10^{-1} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} q_{\rm p1234} & -2,8808\cdot 10^{-2} \\ q_{\rm p1235} & -6,0402\cdot 10^{-4} \\ q_{\rm p1245} & -5,2235\cdot 10^{-2} \\ q_{\rm p1345} & -4,6617\cdot 10^{-4} \\ q_{\rm p2345} & -3,6056\cdot 10^{-5} \end{array}$	$q_{\rm p12345}$ 6,8281 · 10 ⁻⁵		

Tab. 3: Koeffizienten des linearen Regressionsmodells: für die Zielgröße Axialkraft nach Gleichung (1) und für die Zielgröße der äquivalenten Pressung nach Gleichung (2).

Koeffizienten zur Bestimmung der Axialkraft in kN bzw. der äquivalenten Pressung in MPa bei Angabe des Neigungswinkels in °, der Kontaktbreite in mm, der Streckgrenze des Grundwerkstoffs in MPa, des Schlupfverhältnisses in % und des nach VICKERS bestimmten Härtewertes der Laufflächen