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ABSTRACT

We have considered the problem of using microseismic
data to characterize the flow of injected fluid during hy-
draulic fracturing. We have developed a simple probabilistic
physical model that directly ties the fluid pressure in the sub-
surface during the injection to observations of induced mi-
croseismicity. This tractable model includes key physical
parameters that affect fluid pressure, rock failure, and seis-
mic wave propagation. It is also amenable to a rigorous un-
certainty quantification analysis of the forward model and
the inversion. We have used this probabilistic rock failure
model to invert for fluid pressure during injection from syn-
thetically generated microseismicity and to quantify the un-
certainty of this inversion. The results of our analysis can be
used to assess the effectiveness of microseismic monitoring
in a given experiment and even to suggest ways to improve
the quality and value of monitoring.

INTRODUCTION

Hydraulic fracturing is the primary tool used to increase produc-
tivity of unconventional reservoirs (Ground Water Protection Coun-
cil; ALL Consulting, 2009; Jones and Britt, 2009). A mixture of
water and various additives is pumped under high pressure into the
subsurface, fracturing the rock, and creating a network of fractures
that provide pathways for hydrocarbons into the well (Charlez,
1997). Despite the ubiquitous use of hydraulic fracturing, the proc-
ess often remains inefficient and costly due to the lack of compre-
hensive diagnostics to characterize the fracture network created.

With no better alternative at hand, companies have no choice but
to excessively fracture (and refracture) the rock at great cost to
themselves (Vincent, 2010, 2012; LaFollette et al., 2013). Just a few
important components contributing to the total cost of fracturing are
as follows: water and proppant usage, pump trucks, water disposal,
and public concern about triggered seismicity. All of these costs
would be partially mitigated by a better understanding of the
relationship between the fluid flow during the injection and the ob-
served microseismic data. This understanding would also increase
the value of microseismic monitoring and would likely lead to more
efficient fracturing operations.
In this paper, we develop a probabilistic model that ties fluid pres-

sure during injection to observed microseismicity. Our goal is two-
fold: to predict general patterns of microseismicity induced by the
injected fluid and to invert for the pressure diffusivity of the subsur-
face from the observed microseismicity. The model we seek should
therefore contain key components that control flow and rock failure,
and it should also be computationally efficient to allow for inversion
and uncertainty quantification. Presently, microseismicity is used in
a somewhat simplistic way, in which estimated deterministic event
locations are used to semiautomatically constrain fracture locations
and geometry without any direct physical connection from the
seismic events to flow (Maxwell, 2014). This fracture network may
be further characterized by using past production data (history
matching), and then it is used to predict production in the future.
The success of models so obtained has been mixed, often yielding a
large mismatch between model predictions and the actual field data
(Cherian et al., 2011).
Shapiro and his collaborators (Shapiro et al., 2002, 2005a,

2005b) propose a physical model that directly ties fluid flow during
injection with observed microseismic data. Theirs is a simple physi-
cal model that is based on the concept of linking the increasing
pore pressure from fluid injection to the triggering of microseismic
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events using the Mohr-Coulomb theory of rock fracturing. As the
pore pressure increases, the effective stress decreases, inducing
microseismic triggering fronts. This theory predicts that the first
event time t for microseismic events occurring a distance r from
the injection well will lie on the level sets of r2∕t. They demonstrate
that this prediction is born out in the field for microseismic obser-
vations in crystalline rock for geothermal stimulation (Shapiro et al.,
2002, 2005a, 2005b) and in virtually impermeable shales for uncon-
ventional hydrocarbon stimulation (Hummel and Shapiro, 2013).
This theory may be extended to predict not only the microseismic
triggering fronts (the first events at a given distance), but also the
statistics of events that occur after this front, including predictions
of moment magnitude.
We propose a Bayesian reformulation of this model that accounts

for the (typically large) uncertainties associated with rock cohesion,
rock friction, and the maximum and minimum stresses of the for-
mation, which are dominant factors controlling induced rock failure
and the associated microseismicity. The probabilistic nature of the
new model coupled with its relative simplicity is key for solving
inverse problems and quantifying the uncertainty of the solution. By
design, this model allows better use of microseismicity, going far
beyond approximating fracture locations and geometry.

The uncertainty analysis provides insight into the relationship
between the observed microseismicity and the hydraulic diffusivity,
and it is likely to prove useful in many practical situations. When a
large uncertainty is found in the inverted flow parameters (likely
due to poorly known subsurface parameters), this both quantifies
the confidence we have in the results and may hint at ways to im-
prove that confidence.
This paper is organized as follows” In the “Rock failure model

background” section, we describe the model for the distribution of
fluid pressure during the injection and review the Mohr-Coulomb
theory of rock failure and induced seismicity. The “Probabilistic
rock failure model” section presents our new probabilistic model
that can be used to predict microseismicity accounting for uncer-
tainty in parameters that control rock failure. In the “Probabilistic
inversion” section, we use our probabilistic model to show how to
invert observed microseismic locations and origin times for the fluid
pressure and quantify the uncertainty of the inversion. In the “Event
location uncertainty” section, we discuss how to account for the
uncertainty in the locations and times of a microseismic event,
which is always present in field applications. In the “Discussion”
section, we examine the applicability of the proposed approach and
the remaining limitations. Finally, we summarize our work in the
“Conclusions” section. For clarity, all notation used in this paper

is summarized in Table 1, including the units
used in all examples and figures.

ROCK FAILURE MODEL
BACKGROUND

Fluid pressure

Our model for hydraulic fracturing starts with
the borehole fluid injection. We consider a radi-
ally symmetric medium with a source at the ori-
gin (Figure 1) (Shapiro et al., 2005a). We model
the fluid pressure in the formation as an effective
(upscaled) diffusion. Even when the rock matrix
is virtually impermeable, fluid pressure may still
diffuse at a larger scale through many connecting
fractures (Shapiro et al., 2000). The upscaled
effective diffusivity therefore accounts for pos-
sible fractures and fracture networks on the large
scale, which is sufficient for a variety of field
settings.
We assume that the fluid is injected into a

medium with a nonhomogeneous diffusivity αðrÞ
at a rate of Rðr; tÞ. The pressure field pðr; tÞ at
distance r and time t is governed by the initial-
value boundary-value problem (Shapiro et al.,
2002, 2005a):8<
:

∂pðr;tÞ
∂t ¼∇ · ½αðrÞ∇pðr;tÞ�þRðr;tÞ;

pðr;0Þ¼0;
∂
∂rpð0;tÞ¼0;pð∞;tÞ¼0:

(1)

Shapiro et al. (2002) propose that anisotropic
diffusivity provides a better fit to effective flow
through fractures, requiring a tensor-valued αðrÞ
in equation 1, but for simplicity in this exposi-
tion, we use a scalar diffusivity.

Table 1. Table of symbols.

Symbol Description Units

As Injection rate magnitude for constant rate injection Pa∕s
Fpfail

ðpÞ Cumulative distribution function of pressure at failure pfail None

Ftfailðri jαÞðtÞ Cumulative distribution function of failure time tfailðrijαÞ None

fpfail
ðpÞ Probability density function of pressure at failure pfail None

ftfailðrijαÞðtÞ Probability density function of failure time tfailðrijαÞ,
given that this time is finite

None

P½A� Probability of event A None

P½AjB� Probability of event A given event B None

PfailðrjαÞ Probability of rock failure at distance r given diffusivity α None

pðr; tÞ Fluid pressure at distance r from the injection point, at time t Pa

pfail Pressure necessary to affect rock failure Pa

pmaxðrjαÞ Maximal fluid pressure at distance r given diffusivity α Pa

r Radial distance from the injection well m

Rðr; tÞ Injection rate as a function of distance r and time t Pa∕s
t Time s

s Locations and origin times of all observed events N/A

tfailðrjαÞ Time of rock failure at distance r given diffusivity α s

tmaxðrjαÞ Predicted time at which the fluid pressure at distance
r is maximal

s

ts End of injection time s

αðrÞ Fluid pressure diffusivity at distance r from
the injection point

m2∕s

κ Rock friction None

σ1 Maximum principal stress Pa

σ3 Minimum principal stress Pa

σc Rock cohesion Pa

M44 Poliannikov et al.
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We assume, for simplicity, that the injection is performed at the
origin r ¼ 0 with a constant rate of As from time t ¼ 0 to t ¼ ts as
shown in Figure 2. The specific numbers used in the numerical ex-
periments below are chosen for illustration purposes only. The prob-
lem defined by equation 1 can be solved analytically for a constant
diffusivity, or numerically using a fast finite-difference code, for a
general diffusivity, αðrÞ. Because we are focusing here on the mod-
eling of microseismic triggering fronts, we are interested in the
maximum pressure as a function of distance r, pmaxðrjαÞ, which
can be attained at any time for a given diffusivity, αðrÞ. We use
the conditional notation from the probability theory here to empha-
size the dependence on diffusivity αðrÞ. This notation is convenient
because the diffusivity will become a random variable later.
As a result of the injection, the fluid pressure within the medium

pðr; tÞ increases from t ¼ 0 until it reaches its maximum value at
some time tmaxðrjαÞ ≥ ts, which depends on the location and the

diffusivity, and then it drops and decays to zero as t → ∞ as shown
in Figure 3.
To find tmaxðrjαÞ, we numerically solve for the extremum of the

solution to the diffusion equation:

∂
∂t
pðr; tjαÞ

����
t¼tmaxðrjαÞ

¼ 0: (2)

The maximum pressure pmaxðrjαÞ attained at a distance r is calcu-
lated by plugging tmaxðrjαÞ into the solution to equation 1; i.e.,

pmaxðrjαÞ ≡ pðr; tmaxðrjαÞjαÞ: (3)

Pressure at rock failure

Fluid injected as described above diffuses into a medium that can
be characterized by a set of four model parameters. Specifically,
consider a spatial grid frigNi¼1. At each location ri, the medium
can be described with four parameters that control rock failure:
mi ¼ fσcðiÞ; κðiÞ; σ1ðiÞ; σ3ðiÞg, where σc is the rock cohesion, κ is
the rock friction, σ1 is the maximum principal stress, and σ3 is the
minimum principal stress (Ottosen and Ristinmaa, 2005). Here, we
will assume that all four parameters at all locations are statistically
independent.

Time of failure

Let us first assume that the medium, including all four parameters
mentioned above, is known, and we consider a location at distance r
from the injection point. We will examine if there will be a failure at
this location, and, if so, when.
According to the classical Mohr-Coulomb theory (Von Terzaghi,

1943), increasing the fluid pressure reduces the effective stress and,
upon reaching a critical level, causes failure. This corresponds to the
Mohr circle touching the Coulomb failure envelope at one point
(Figure 4). The pressure level that is necessary to cause a rock fail-
ure at distance ri will be called the pressure at failure and denoted
pfailðiÞ. From the requirement that the Mohr circle intersects the
Coulomb envelope at exactly one point, after a bit of algebra we
find that

P
re
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e 
ra

te
, R

 (0
,t 

)

Time, t

ts

As

0

0

Source term

Figure 2. Injection rate at the location r ¼ 0 that is the source term
in equation 1. For expository simplicity, in all of our numerical ex-
amples we use ts ¼ 1 and As ¼ 1.

P
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ur

e,
 p

Time, t

Pore pressure at different distances

Figure 3. Sample pressure profiles that are solutions to equation 1,
for a fixed diffusivity αðrÞ ≡ 1 and different locations r.

Radially symmetric medium

Injection point

r

Figure 1. A radially symmetric medium is centered around the
point of injection.
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pfailðiÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðiÞ2þ1

p
ðσ3ðiÞ−σ1ðiÞÞþκðσ3ðiÞþσ1ðiÞÞþ2σcðiÞ

2κðiÞ : (4)

Because the fluid pressure in the medium is predicted by equa-
tion 1 at all times, we can check if the failure will occur at r ¼ ri. A
failure at distance ri will only occur if the pressure reaches the fail-
ure pressure, pfailðiÞ, at some time t; i.e.,

ðfailure at r ¼ riÞ ⇔ ð∃t > 0 pðri; tjαÞ ¼ pfailðiÞÞ: (5)

Because the maximum pressure attained at a fixed location is by
definition no less than the pressure at this location at any given time,

we can rewrite the failure condition in equation 5 as follows (see
Figure 5a):

ðfailure at r ¼ riÞ ⇔ ðpmaxðrijαÞ ≥ pfailðiÞÞ: (6)

If the inequality in the right side of equation 6 is not satisfied be-
cause the pressure never rises to the required level, then no failure
will occur (see Figure 5b). If the failure occurs at r ¼ ri, the time of
failure will be

tfailðrijαÞ ¼ infft > 0jpðri; tjαÞ ¼ pfailðiÞg: (7)

Because the pressure at each location monotonously and contin-
uously rises before reaching its peak and dropping off, it follows in
the homogeneous case that failures occur in the r-t space along the
curve

Lα ¼ fðr; tÞjpðr; tjαÞ ¼ pfailg; (8)

where the pressure at failure pfail is known.
This formulation immediately allows one to invert for the value

of constant diffusivity from observed microseismicity by optimiz-
ing over α to fit a given failure curve Lα. Figure 6 shows the con-
tours of the diffused pressure field (gray lines) and the associated
induced microseismicity (black dots). We used a simple least-
squares fit of the failure curve to recover the true diffusivity to al-
most machine precision.

PROBABILISTIC ROCK FAILURE MODEL

If the four parameters fσc; κ; σ1; σ3g of the model and fluid pres-
sure are deterministically known, then rock failure is directly linked
to diffusivity, as is shown in the previous section. However, when
the four parameters carry uncertainty and hence are described by

probability distributions, a failure may or may
not occur depending on a particular realization
of these parameters. The probability distributions
of the model parameters, called prior distribu-
tions (or priors) in Bayesian statistics, reflect
our “prior” knowledge (with uncertainty) about
the model, i.e., knowledge obtained from other
measurements without any use of the observed
microseismicity.
The inverted diffusivity is thus also an uncer-

tain quantity with an associated probability
density function. Given the prior distributions
(priors) of the four model parameters, we can
compute the distribution of the pressure at fail-
ure, pfail, using Monte Carlo sampling and equa-
tion 4. In the numerical examples below, we
use normal distributions with prescribed means
and variances for the priors on the parameters,
assuming independence between different loca-
tions ri. The probability density function
fpfailðiÞ × ðpÞ of pfailðiÞ is then immediately com-
puted from these assumptions and assumed
known henceforth.
Denote the probability of failure at distance

ri as PfailðrijαÞ. The probability PfailðrijαÞ is

Time, t

P
re

ss
ur

e,
 p

Time, t

Failure No failure

Figure 5. (a) A failure occurs if the pressure pðr; tÞ at a given location r reaches the
required level pfail. The maximum pressure then by definition equals or exceeds this
level. (b) If the pressure pðr; tÞ never reaches the level pfail, then no failure occurs
at this location.

Normal stress, 

Mohr-Coulomb failure

S
he

ar
 s

tr
es

s,
 τ

σn

Figure 4. The pressure p rises until it reaches the level p ¼ pfail
when Mohr’s circle touches the Coulomb failure envelope (straight
line) and a failure occurs.
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specific to each given distance and diffusivity. It is computed as
follows:

PfailðrijαÞ ¼ P½pmaxðrijαÞ ≥ pfailðiÞ�
¼ FpfailðiÞðpmaxðrijαÞÞ; (9)

where P½·� denotes probability and FpfailðiÞðpÞ ≡ P½pfailðiÞ ≤ p� ¼
∫ p
−∞fpfailðiÞðp 0Þdp 0 is the cumulative distribution function for

pfailðiÞ.
The time of failure tfailðrijαÞ can either be finite, with probability

PfailðrijαÞ, or it can be undefined (infinite), with probability 1−
PfailðrijαÞ if failure never occurs at this distance. When this time
is finite, it is a random variable whose distribution is described
by a probability density function ftfailðri jαÞðtÞ. These distribution
functions are computed as follows:

FtfailðrijαÞðtÞ ¼ P½tfailðrijαÞ ≤ t�
¼ P

h
pfailðiÞ ≤ max

t 0∈½0;t�
pðr; t 0jαÞ

i
¼ FpfailðiÞ

�
max
t 0∈½0;t�

pðr; t 0jαÞ
�
: (10)

Recall that the diffused pressure, pðri; tjαÞ, increases for
t ≤ tmaxðrjαÞ and decreases afterward. Therefore,

max
t 0∈½0;t�

pðr; t 0jαÞ ¼
(

pðr; tjαÞ; t ≤ tmaxðrjαÞ;
pmaxðrjαÞ; t > tmaxðrjαÞ.

(11)

Thus, we have for the cumulative distribution function Ftfailðri jαÞðtÞ
for the time of failure,

FtfailðrijαÞðtÞ¼

8>><
>>:
FpfailðiÞðpðr;tjαÞÞ; t≤tmaxðrjαÞ;

PfailðrijαÞ; tmaxðrjαÞ<t<∞;

1; t¼∞.

(12)

The conditional probability density function of the failure time
given that failure can occur is

ftfailðrijαÞðtÞ ¼
1

PfailðrijαÞ
d

dt
FtfailðrijαÞðtÞ

¼ 1

PfailðrijαÞ
∂
∂p

Fpfail
½ðiÞ�ðpðri; tjαÞÞ

∂
∂t
pðri; tjαÞ

¼ fpfailðiÞðpðri; tjαÞÞ ∂
∂t pðri; tjαÞ

FpfailðiÞðpmaxðrijαÞÞ
; (13)

when t ∈ ½0; tmaxðrijαÞ�, and it is zero otherwise. In practice, many
microseismic events are observed after tmaxðrijαÞ, but because our
focus here is on microseismic triggering fronts, these later events
are not considered.
This framework allows us to forecast a probability distribution for

microseismic events given the uncertain parameters fσc; κ; σ1; σ3g in
the subsurface. For each distance ri across some a priori chosen
grid, we can determine the probability of a failure PfailðrijαÞ at

the location ri and, if applicable, the probability distribution of
its time ftfailðrijαÞðtÞ. At each location, we first use the probability
of failure to decide if there is a microseismic event; if there is
an event, then we use the probability distribution of the time of fail-
ure to generate a random event time. By following this sampling
procedure, we can obtain individual realizations of microseismicity
(Figure 7).

PROBABILISTIC INVERSION

We formulate the inverse problem as follows: Given observed
microseismicity,

s ¼ fðri; tiÞjti ∈ R ∪ f∞gg; (14)

and a prior joint distribution of model parametersm ¼ ðσ1; σ3; σc; κÞ
at all locations frigNi¼1, we would like to estimate the diffusivity
αðrÞ in the medium. The observation ti ¼ ∞ corresponds to no
event at distance ri. We note that we could consider a more general
problem of simultaneously inverting for all subsurface parameters
ðσ1; σ3; σc; κ; αÞ and examining the resulting trade-offs. However, in
what follows, we concentrate on inverting for diffusivity α only
while treating other parameters as known with some uncertainty.
To quantify the uncertainty of the inverted diffusivity, we will

treat α as a random variable and attempt to recover its distribution
given the observations and the priors. We will continue to assume
that the subsurface parameters at different locations are statistically
independent, and therefore, data points within s are independent,
too.

Time, t

D
is

ta
nc

e,
 r

Fluid pressure and induced microseismicity

Figure 6. In a homogeneous medium, microseismic events (red
dots) occur along the curve fðr; tÞjpðr; tÞ ¼ pfailg. Various isobars
are shown as thin gray lines. Given the observed microseismicity
and the parameters controlling rock failure, the diffusivity can be
estimated by fitting a curve given by equation 8 to the solution
of the diffusion equation over a range of constant values of diffu-
sivity α.
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Applying Bayes’ rule (Laplace, 1814), we get

P½α ∈ Ajt ∈ T� ¼ P½t ∈ Tjα ∈ A�P½α ∈ A�
P½t ∈ T� ; (15)

where P½· j ·� denotes the conditional probability.
The likelihood function includes cases in which failure has oc-

curred, and hence ti < ∞, as well as cases where there has been no
failure, and hence, ti ¼ ∞. More specifically,

P½a ≤ ti ≤ bjα� ¼ P½a ≤ ti ≤ b; ti < ∞jα�
¼ P½a ≤ ti ≤ bjti < ∞; α�P½ti < ∞jα�

¼
Z

b

a
ftfailðrijαÞðtiÞdtiPfailðrijαÞ; (16)

and

P½ti ¼ ∞jα� ¼ 1 − PfailðrijαÞ: (17)

Treating the observations and nonobservations as measurements,
the posterior density function for diffusivity is given by

fðαjt1; : : : ; tNÞ ∝
YNevents

i 0¼1

ftfailðrijαÞðti 0 ÞPfailðri 0 jαÞ

×
YN

i 0¼Neventsþ1

ð1 − Pfailðri 0 jαÞÞ

× fðαÞ; (18)

where fðαÞ is the prior and the index i 0 is chosen for convenience
so that locations with events are counted first, and then locations

without events are counted. We assume in the above derivation that
all events have been registered at the receivers. Accounting for the
probability of missing an event, e.g., due to its low magnitude, is left
to future work.
In Figure 8, in thick line we show the posterior density function

of the diffusivity α given the microseismicity shown in Figure 7.
The true diffusivity α ¼ 1 has a high probability in this distribution.
This posterior distribution has an apparent “bias” because it is

computed from a single random realization of induced microseismic-
ity. If we consider multiple random realizations of microseismicity
created using the forward model with the same parameters and com-
pute posteriors for each realization (the thin gray curves in Figure 8),
we can see that the peaks of these posterior distributions are scattered
symmetrically around the true diffusivity value, α ¼ 1, suggesting no
bias in the estimate.

Robustness of the posterior against various injections

We demonstrate the robustness of the proposed methodology by
demonstrating the results of inversion for varying injection rates and
durations of the injection. Figure 9 shows calculated posteriors for
different choices of the injection duration. For each duration ts, we
generate a single realization of induced microseismicity and use it to
invert for diffusivity. We see from the plot that the true diffusivity
value has a high probability for all durations and the shapes of the
distributions are very similar. This shows that the diffusivity and
the associated uncertainty do not depend too much on the injection
duration.
A similar test is performed by varying the injection rate As and

computing the corresponding posterior distributions of the diffusiv-
ity. The results are shown in Figure 10. The true diffusivity is again
recovered with a high probability, and the shapes of the posteriors
appear quite similar. Note that when the injection rate is relatively
low, the number of induced events is smaller. This results in a less
constrained diffusivity inverse problem, which leads to a larger
variance (width) of the diffusivity posterior.

Time, t

D
is

ta
nc

e,
 r

Fluid pressure and induced microseismicity

Figure 7. In a medium with uncertain parameters, microseismic
events may or may not occur at given locations. The time of a mi-
croseismic event is also uncertain and governed by a probability
distribution.

Diffusivity, 

Diffusivity posterior distribution 
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Figure 8. The posterior distribution of the diffusivity α given the ob-
served microseismicity in Figure 7, the flat (completely uninformed)
prior, and assumptions about the physical parameters of the medium
are shown in the thick blue curve. Posteriors computed from other
realizations of observed microseismicity are shown in the thin gray
curves. The true diffusivity α ¼ 1 always remains inside the 3σ con-
fidence interval, and the uncertainty is explicitly quantified.

M48 Poliannikov et al.

D
ow

nl
oa

de
d 

07
/2

4/
17

 to
 1

34
.1

53
.1

88
.6

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Nonhomogeneous diffusivity

Now consider a nonhomogeneous example in which the diffusiv-
ity assumes one value α1 near the borehole and another value α2
away from the borehole. This is similar to a situation described
by Suarez-Rivera et al. (2013a, 2013b). More precisely,

αðrÞ ¼
�
α1; r ≤ R;
α2; r > R;

(19)

where R ¼ 0.5 is assumed to be known. Figure 11 shows this setup.
The water is pumped in the borehole centered at r ¼ 0, resulting in
induced microseismicity. For illustration purposes, we will assume
no uncertainty in all parameters except the minimum stress σ3. We
will vary the uncertainty in σ3 to show its effect on forecast micro-
seismicity as well as on the uncertainty in the inverted diffusivities.
Although σ2 is typically the most uncertain of the principle stresses,
it is σ3 that controls the fracture orientation, and as such it is a
parameter of great interest in a fracturing problem, which is why
we chose it for this synthetic example.
Because the diffusivity α is no longer spatially homogeneous, we

set α ¼ ðα1; α2Þ to be a vector of unknown diffusivities. We con-

tinue to assume flat (uninformed) priors on this diffusivity field.
The analysis presented above for a homogeneous (scalar) diffusivity
then continues to hold.
The posterior distributions fðα1; α2jt1; : : : ; tNÞ of the diffusivity

field given observed microseismicity for uncertainties in the
minimum principal stress of 5%, 10%, and 20% are shown in
Figures 12–14, respectively. We see in the left panels of these fig-
ures how a larger uncertainty in the minimum stress results in a
larger variation of locations and occurrence times of microseismic
events due to a larger variation in the effective stress. Inverting these
microseismic data produces estimates of near- and far-well diffusiv-
ities α1 and α2 that carry uncertainties that increase with increasing
uncertainty in σ3.

EVENT LOCATION UNCERTAINTY

In this section, we complete our model by including the uncer-
tainty in microseismic event locations that is always present in mon-
itoring applications. Microseismic event locations and origin times
are not observed directly. Instead, they are estimated with some un-
certainty from recorded microseismic data (Michaud et al., 2004;
Bennett et al., 2005; Huang et al., 2006; Poliannikov et al., 2013,
2014).
We denote by T the observed traveltime data, α the unknown

diffusivity, and s the true microseismic event locations and origin
times. Then we have

fðαjTÞ ¼
Z

fðα; sjTÞds

¼ f−1ðTÞ
Z

fðTjα; sÞfðα; sÞds: (20)

It follows from the physics of the problem that α → s → T; i.e.,
the diffusivity affects the observed traveltimes only through micro-
seismic events that are triggered by diffusing pressure. Therefore,

fðTjα; sÞ ¼ fðTjsÞ: (21)

Diffusivity field

r =
 0

.5

α1 = 1

α2 = 0.5

Figure 11. A nonhomogeneous diffusivity that assumes one value
near the borehole and another value away from the borehole.
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Figure 9. The posterior distribution of the diffusivity α for a varying
total injection time ts. Refer to Figure 2 for the definition of ts.
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Figure 10. The posterior distribution of the diffusivity α for a vary-
ing injection rate As. Refer to Figure 2 for the definition of As.
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Substituting equation 21 into equation 20, we get

fðαjTÞ ¼ f−1ðTÞ
Z

fðTjsÞfðα; sÞds

¼ f−1ðTÞ
Z �

fðsjTÞfðTÞ
fðsÞ

�
½fðαjsÞfðsÞ�ds

¼
Z

fðsjTÞfðαjsÞds; (22)

where fðsjTÞ is the probability density function of event locations
and times, given the observed traveltimes, and fðαjsÞ is the pos-
terior of diffusivity given microseismic events as computed in the
previous section.
Studying the practical effects of uncertainty in the locations of

microseismic events is deferred to future papers. It is clear that large
uncertainty or biases in locations of individual events may adversely
affect the uncertainty in the reconstructed diffusivity. Careful loca-
tion uncertainty analysis that takes into account the experiment
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Figure 12. (a) Microseismicity realization for the diffusivity model shown in Figure 11 generated assuming known cohesion, friction, and
maximum stress and allowing a 5% error in the minimum stress σ3. The thin lines are isobars. (b) Uncertainty regions for the inverted dif-
fusivity from the microseismicity shown in panel (a). The red diamond shows the true values of diffusivity.
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Figure 13. The same as Figure 12 but the uncertainty in σ3 is 10%.
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geometry, quality of the velocity model and other factors is neces-
sary before a judgment can be made about whether or not micro-
seismicity contains any reliable information about the flow in the
subsurface.

DISCUSSION

This paper outlines a framework that includes several compo-
nents. Each component of this framework could be considered and
has been implemented as a separate module that could be modified
at will depending on computational capability.
In this section, we touch upon several issues that are important for

future theoretical work on this topic as well as for applying the pro-
posed methodology in the field. One of the main limitations of the
proposed probabilistic framework is that all events are assumed to
be detected by the monitoring array. In practice, many events are not
recorded due to low magnitude, a large source-receiver distance, or
an unfavorable radiation pattern. Properly accounting for unde-
tected events is an important topic for future research.
Another theoretical limitation is the assumption of the statistical

independence of the geomechanical model parameters at different
spatial locations. Including the spatial correlation between these
model parameters is also a topic for future work. Note that including
the correlation between model parameters at the same location in-
duced by a known covariance matrix is completely straightforward.
Although we used a simple radially symmetric diffusive flow

model and a simple Mohr-Coulomb failure model to build the for-
ward model for predicting induced microseismicity, the probabilis-
tic framework is much more general. This work elucidates the
fundamental principles of determining flow parameters from in-
duced microseismicity. Our flow model could be replaced with a
full-scale reservoir simulator, and our fracture model could be en-
hanced by adding more parameters with the associated uncertainty.
The basic principles of constructing a forward model and inversion

would then remain unchanged, although the computational cost
would rise quite significantly.
Our microseismicity prediction model concerns the fluid injec-

tion phase. To account for the back front (Parotidis et al., 2004), we
would need to include repeated events at the same location.
The main value of this work is in the all-important risk assess-

ment in microseismic monitoring (Djikpesse, 2015; O. V. Polian-
nikov and H. Djikpesse, personal communication, 2015). Fluid
flow during the injection is ultimately tied to production, and
any uncertainty at this stage will propagate forward in the produc-
tion forecast. Quantifying uncertainty propagation between fluid
flow and induced microseismicity, as well as in the inversion, is
necessary for risk assessment in fracture design, survey design,
and financial outcomes.

CONCLUSIONS

In this paper, we have shown that the fluid pressure during in-
jection can be directly and physically related to the observed micro-
seismic data. We have presented a relatively simple probabilistic
model that captures the essential parameters that control fluid pres-
sure, rock failure, and seismic wave propagation, and it can be used
for forward predictions and inversions.
We also presented a probabilistic framework that allows rigorous

uncertainty analysis. This analysis quantifies prediction and inver-
sion errors, and it helps us find ways to improve the quality of pre-
dictions by identifying dependencies between uncertainties at
different stages of the model.
We inverted for the effective diffusivity of the fracture system

during injection, but it is unlikely that this diffusivity, inferred from
microseismic data alone, will be adequate to forecast the fluid pro-
duction capacity of the fracture system after the stimulation is com-
plete. However, if a model of this type is used in conjunction with
other types of data, such as pressure, temperature, production
history, moment tensors, amplitudes, etc., then we may have a better
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Figure 14. The same as Figure 12 but the uncertainty in σ3 is 20%.
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chance to forecast production and the associated quantities, such as
fracture conductivity and stimulated volume.
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