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Identification of image artifacts from internal multiples
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ABSTRACT

First-order internal multiples are a source of coherent noise in
seismic images because they do not satisfy the single-scattering
assumption fundamental to most seismic processing. There are a
number of techniques to estimate internal multiples in data; in
many cases, these algorithms leave some residual multiple ener-
gy in the data. This energy produces artifacts in the image, and
the location of these artifacts is unknown because the multiples
were estimated in the data before the image was formed. To avoid
this problem, we propose a method by which the artifacts caused
by internal multiples are estimated directly in the image. We use
ideas from the generalized Bremmer series and the Lippmann-
Schwinger scattering series to create a forward-scattering series
to model multiples and an inverse-scattering series to describe

the impact these multiples have on the common-image gather
and the image. We present an algorithm that implements the third
term of this series, responsible for the formation of first-order in-
ternal multiples. The algorithm works as part of a wave-equation
migration; the multiple estimation is made at each depth using a
technique related to one used to estimate surface-related multi-
ples. This method requires knowledge of the velocity model to
the depth of the shallowest reflector involved in the generation of
the multiple of interest. This information allows us to estimate in-
ternal multiples without assumptions inherent to other methods.
In particular, we account for the formation of caustics. Results of
the techniques on synthetic data illustrate the kinematic accuracy
of predicted multiples, and results on field data illustrate the po-
tential of estimating artifacts caused by internal multiples in the
image rather than in the data.

INTRODUCTION

That internal multiples are present in seismic experiments has
been acknowledged for a long time (Sloat, 1948). At present, signifi-
cantly more is known about attenuation of surface-related multiples
(Anstey and Newman, 1966; Kennett, 1974; Aminzadeh and Men-
del, 1980; Fokkema and van den Berg, 1993; Berkhout and Vers-
chuur, 1997; Verschuur and Berkhout, 1997; Weglein et al., 1997,
2003) than is known about attenuation of internal multiples (Fokke-
ma et al., 1994; Weglein et al., 1997; Jakubowicz, 1998; Kelamis et
al., 2002; ten Kroode, 2002; van Borselen, 2002; Weglein et al.,
2003; Berkhout and Verschuur, 2005; Verschuur and Berkhout,
2005). With the exception of techniques such as the angle-domain
filtering proposed by Sava and Guitton (2005) and the image-do-
main surface-related multiple prediction technique of Artman and
Matson (2006), the current state of the art in multiple attenuation in-
volves estimating multiples in the data. We propose an algorithm for
estimating imaging artifacts caused by internal multiples directly on

image gathers and images, as part of a wave-equation imaging pro-
cedure of the downward continuation type.

Fokkema and van den Berg (1993) used reciprocity, along with
the representation theorem, to show that it is possible to predict sur-
face-related multiples from seismic reflection data and that this pre-
diction can be carried out through a Neumann series expansion. This
idea is fundamental to surface-related (SRME) and internal multiple
estimation techniques of Berkhout and Verschuur (Berkhout and
Verschuur, 1997,2005; Verschuur and Berkhout, 1997,2005); other
authors have also built upon these ideas (Fokkema et al., 1994; Kela-
mis et al., 2002; van Borselen, 2002). The technique discussed here
has its roots in these ideas but differs from other methods because we
propose estimating, directly in the image, artifacts caused by internal
multiples (IM). This approach is in contrast to previous methods that
estimate IM and subtract them from the data before an image is
formed. We develop and test our method specifically for first- or
leading-order internal multiples, but the extension to higher orders is
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straightforward. The series used to estimate image artifacts caused
by IM is a hybrid between the Lippmann-Schwinger scattering se-
ries used by Weglein et al. (1997) and the generalized Bremmer cou-
pling series, a Neumann series, introduced by de Hoop (1996).

The Lippmann-Schwinger series was introduced by Lippmann
(1956) to model particle scattering. In the development of this series,
the problem is first solved in a known background model, giving an
incorrect solution. A series is then developed to better approximate
the correct solution, with terms in the series being of successively
higher order in a contrast operator. (The contrast operator is the dif-
ference between the operator in the known background model and
the same operator in the true model.) This idea was developed fur-
ther by Moses (1956) and Prosser (1969) for the quantum scattering
problem and by Razavy (1975) for the wave equation. Weglein et al.
(1997) use this series for the exploration seismic problem to develop
techniques for surface and internal-multiple attenuation; they
choose water velocity as the known reference model. Ten Kroode
(2002) gives a detailed asymptotic description of a closely related
approach to attenuate internal multiples and notes that his method
correctly estimates internal multiples when two (sufficient) assump-
tions are satisfied. The first assumption is that there are no caustics in
the wavefield, and the second is the so-called total traveltime mono-
tonicity condition. This condition is illustrated in Figure 1 and shows
that a wave excited at s and scattered at depth z; will arrive at the sur-
face in less time than a wave following the same path from s to z;, but
continuing on to scatter at the deeper depth z,. Nita and Weglein
(personal communication) show that the total traveltime monotonic-
ity assumption is not necessary for the method proposed by Weglein
etal. (1997) and discuss further the assumptions behind this method.

The Bremmer series was introduced for planarly layered (1D)
models by Bremmer (1951). The convergence of this series is dis-
cussed by Atkinson (1960) and Gray (1983). An extension to 2D
configurations is given by Corones (1975); the convergence of this
extension is discussed by McMaken (1986). De Hoop (1996) gener-
alizes this series to laterally heterogeneous models in higher dimen-
sions and shows that this generalization is convergent. In the Brem-
mer series, the wavefield is split into up- and downgoing constitu-
ents; these constituents are then coupled through reflection and
transmission operators. Each term involves one more reflection/
transmission and propagation step than the previous term. The first
term of the series models direct waves, the second models singly
scattered waves (where scattering may be reflection or transmis-
sion), and so on. This series has been applied in many problems (see
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Figure 1. Illustration of the traveltime monotonicity assumption.
The assumption states that if z; <z, then #, <t,, provided the two
scattering points lie on the same path.

van Stralen, 1997, for an overview). Aminzadeh and Mendel (1980,
1981) were the first to propose a method using the Bremmer series to
attenuate surface-related multiples in a horizontally layered medi-
um. More recently, a method proposed by Jakubowicz (1998) uses
implicitly a form of the generalized Bremmer series. Although the
generalized Bremmer series can be extended to account for turning-
ray waves, we keep the standard assumption that rays are nowhere
horizontal.

We use the generalized Bremmer coupling series to model inter-
nal multiples because its behavior and convergence are known (de
Hoop, 1996). We replace reflection and transmission operators in
this series, which depend on the full velocity model, with contrast
operators that distinguish the smooth background-velocity model
from the reflectors. This approach leads to the construction of a hy-
brid series, using the contrast-source formulation from the Lipp-
mann-Schwinger scattering equation (Lippmann, 1956; Weglein et
al., 1997). By constructing jointly a forward (modeling) series and
an inverse (imaging) series and combining them, we can estimate ar-
tifacts caused by IM directly in the image. The method requires
knowledge of the velocity model to form the image; however, errors
in this model deeper than the depth of the shallowest reflector in-
volved in the generation of internal multiples (the depth of the up-to-
down reflection) do not influence the estimation of the artifacts. We
do not require the traveltime monotonicity assumption (ten Kroode,
2002) and admit the formation of caustics. The construction of the
hybrid series is discussed in Malcolm and de Hoop (2005); a summa-
ry is given in the appendices to this paper.

We discuss an algorithm to implement the third term of this hybrid
series that combines ideas from wave-equation migration and
SRME. Our technique is related to the technique recently developed
by Artman and Matson (2006) that predicts surface-related multi-
ples as part of a shot-record migration algorithm. Here, common-
midpoint wave-equation migration techniques are used to down-
ward continue the recorded data into the subsurface, where an esti-
mate of the multiples generated at each depth is made. These esti-
mated multiples are then added to a second data wavefield, from
which an estimate of image artifacts is formed. The work of Artman
and Matson avoids propagation of this second wavefield, requiring
only a second imaging condition. Their technique requires shot-
record migration, however, and is currently limited to the surface-re-
lated multiples case.

PROCEDURE TO ESTIMATE ARTIFACTS

Multiples cause artifacts in images because they do not satisfy the
single-scattering assumption. We propose a method for estimating
these artifacts that can be performed as part of a downward-contin-
uation migration as formulated by Stolk and de Hoop (2006). We
give some details on how the theory of the method is developed in
Appendices A and B. We describe here the algorithm used to esti-
mate artifacts caused by multiples, following the flowchart shown in
Figure 2.

In the first step of this procedure, labeled (a) in Figure 2, the data d
recorded at the surface are downward continued to depth z, yielding
d(z). This step is part of standard downward-continuation or survey-
sinking migration (Claerbout, 1970, 1985), using the double square-
root (DSR) equation. The depth z is not necessarily the depth of a
multiple-generating layer. It is because we use the data downward
continued to z to estimate the multiples that we do not require the
traveltime monotonicity assumption of ten Kroode (2002); caustics
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are dealt with naturally in downward-continuation migration.

The algorithm used to estimate the data at depth z from the data at
the surface is not of particular importance. The propagator used to
generate examples shown here falls into the category of a general-
ized screen propagator. It is implemented as a split-step propagator
along with an implicit finite-difference residual wide-angle correc-
tion. This particular algorithm was proposed by Jin et al. (1998). By
using this algorithm, we expect to have kinematically accurate esti-
mates of the artifacts from internal multiples. Theoretically, the am-
plitudes are also dealt with accurately within the framework present-
ed for single scattering by Stolk and de Hoop (2005, 2006) along
with extension to multiples given in Malcolm and de Hoop (2005). A
discussion of the implementation of these amplitude factors is be-
yond the scope of this work.

In the next step of the algorithm, (b) in Figure 2, the multiples ds,
also downward continued to depth z, are estimated by

;jS(Z’S’r’t) == 612 f JQix/(Z)(Elal)(Z’s,’rl)

XQ ()d(z.s".r, ) * d(z,s.r', - )ds'dr'.
(1)

In this paper we implement an approximation to this equation, leav-
ing out the Q factors.

Equation 1 describes a procedure that is divided into three parts.
The first step is to convolve the two downward-continued d data sets.
This step is reminiscent of the SRME procedure of Fokkema and van
den Berg (1993), Berkhout and Verschuur (1997), and as well as the
works of Weglein et al. (1997). This step estimates multiples that
could be generated at the depth z. The second step, labeled (d) in Fig-
ure 2, involves synthesizing a true-amplitude image, a,, from the
downward-continued data d. For the description given here, the im-
aging operator in Stolk and de Hoop (2006, equation 2.26) should be
applied. This imaging operator correctly accounts for the Q opera-
tors and contains the standard 2 = 0 and ¢ = 0 imaging condition.
This step gives an estimate @, of a; it is only an estimate because it
uses all of the data, whereas the true image a uses only the primaries.
Itis here that we make an approximation in the numerical examples,
by using only the standard # = 0 and /& = 0 imaging condition and
not accounting for the Q operators. The third step, labeled (e) in Fig-
ure 2, is the multiplication of the convolved data by this estimate a,
atthe s’ = r' point (see Figure 3 for a diagram of the location of these
points). The E;:a;(z,x) — 8(s' = r')a(z, % operator is an exten-
sion from image to data coordinates, used to transform a,, which is a
function of the spatial position (z,x) into a function dependent on the

d (e)
(@) ]
(d) - (b) - (f)
a,(z,.) d(Z) — ds(z) — as (%)
© ] l©
)

d(z +Az) = dy(z +Az2)

Figure 2. Flowchart illustrating the algorithm used to estimate arti-
facts directly in the image.

source and receiver positions s’ and r'. Multiplying by a; implicitly
ensures that only the multiples that would be truly generated at this
depth are included in the estimation. To remove the approximation
inequation 1, primaries-only data d, would have to be substituted for
thed and a primaries-only image a would have to be used in place of
a;. These replacements are justified in Appendix B.

Although, in the examples, we do not make true-amplitude imag-
es, for either the all-data image or the estimated artifacts, it is worth
noting that the only amplitude factors missing in the estimation of
the multiples in equation 1 are the operators Q” , and O~ .. The Q op-
erators decompose the wavefield into its up- and downgoing constit-
uents, a necessary step in the development of downward-continua-
tion migration detailed in Stolk and de Hoop (2005, equation 1.8).
The minus subscript indicates that these operators are responsible
for extracting the downgoing rather than upgoing constituents, the
subscripts s’ or 7' determine whether the operator is applied in
source or receiver coordinates, and the * indicates that these opera-
tors in fact recompose the wavefield into the total wavefield rather
than decomposing. Including both these Q" operators and using a
true-amplitude image for a; are necessary to obtain consistent am-
plitudes between the estimated artifacts and the artifacts in the im-
age. Omitting these operators can result in a large difference in abso-
lute amplitude between the image and estimated artifacts. As shown
in the numerical examples given in this paper, the influence on the
shape of the estimated multiples is much smaller, as is discussed fur-
ther in Appendix A.

When data are downward continued from the surface to depth z,
energy from depths shallower than z will remain in the downward-
continued data, appearing at negative times. This effect is not a prob-
lem for imaging because typical imaging procedures use the down-
ward-continued data only at time # = 0. Our technique of estimating
multiples uses all of the downward-continued data, however. For
equation 1 to be valid, negative times must be removed from the
downward-continued data. When the reflectors are separated by
enough time, the negative times can be removed with a simple time-
windowing procedure. In some situations, we find a 7-p filter to be
more effective because there are typically tails at small positive and
negative times caused by the band-limitation/restricted illumination
of the data.

Figure 3. Illustration of equation 1, the estimation of the multiple at
depth z. The lines represent wavepaths rather than rays and do not
connect because the imaging condition has not been applied. In the
algorithm, the downward-continued, singly scattered data d, are es-
timated with the downward-continued data, d.
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To compare the artifacts in the image with estimated artifacts, an
image must also be formed with the estimated multiples; this is (f) in
Figure 2. This image, denoted a3, is formed in the manner discussed
in (b) of Figure 2. It is interesting to note that the agreement between
the image artifacts and the estimated artifacts does not depend on the
choice of velocity model below the depth of the up-to-down reflec-
tion (z in Figure 3) because the true and estimated multiples will see
the same error.

This procedure completes one depth step of the algorithm. After
the above tasks are complete, both the wavefield and the estimate
multiples are downward continued to the next depth level, z + Az,
which is step (c) in Figure 2. At this depth step, the entire procedure
is repeated with the multiples estimated at this new depth added to
the downward-continued multiples from the previous depth.

In equation 1, two data sets, each containing a source wavelet, are
convolved together to estimate the multiples. As in other techniques
in which multiples are estimated through such a convolution, an ac-
curate estimate requires that one copy of this wavelet be decon-
volved from the estimated multiples. In addition, as the data are
downward continued into the subsurface, the range of data offsets
containing significant energy will become narrower. That narrow
offsets will be available is advantageous for multiple prediction, but

a) b)

Offset (km) Offset (km)
-0.8 0 0.8

-0.8 0 0.8

Time (s)
Time (s)

4

4

Figure 4. (a) Data downward continued to 1.5 km, the depth of the
firstreflector. The curve shows the expected moveout for the (prima-
ry) reflection from the bottom of the layer, and the vertical lines de-
lineate the expected illumination of this reflection. (b) The estimated
multiple, in the data, at a depth of 1.5 km; note the agreement with
the true multiple in (a).

the lack of larger offsets may be detrimental in some situations.
Further, to obtain accurate amplitude estimates, corrections should
be made for differences in illumination between multiples and
primaries.

EXAMPLES

In this section, we describe the results of applying the technique to
data. Three different synthetic models are presented. A flat-layered
model illustrates the steps of the algorithm. Following this descrip-
tion, a more complicated model is used to test the ability of the meth-
od to estimate imaging artifacts caused by IM in the presence of
caustics and to test the sensitivity of the method to the velocity mod-
el. We also present a field-data example, consisting of a 2D line ex-
tracted from a 3D survey in the Gulf of Mexico.

The displayed images, for both a; and a;, have had automatic gain
control (AGC) applied to enhance the multiple contribution. Com-
putational artifacts such as Fourier wrap-around and computational
boundary effects were suppressed, but not fully eliminated, in the
downward continuation by padding with zeros and tapering the data
in both midpoint and offset. In most figures, the true reflectors are
clipped to show artifacts more clearly. Although the wavelet has not
been deconvolved, the data have been shifted in time so that the peak
of the source wavelet is at zero time and bandpass filtered to match
the frequency content of the two images. The synthetic examples in
Figures 4-11 are shown with an aspect ratio of 1/4.

Flat model

The model in the first example consists of a single layer, extending
from 1.5 to 2.5 km, with a velocity of 2 km/s; the layer is embedded
in a homogeneous model with velocity 6 km/s. Synthetic data were
computed in this model with finite-difference modeling; 101 mid-
points were generated with 101 offsets at each midpoint and a spac-
ing of 15 m in both midpoint and offset (we define offset as
(r = 5)/2);4 s of data were computed at 4-ms sampling, with a peak
frequency of 10 Hz and a maximum frequency of 20 Hz. To image
these data, a depth step of 10 m was used.

In our method, the data are first downward continued as part of a
standard wave-equation migration technique, i.e., (a) in Figure 2. In
Figure 4a, we show d(z = 1.5 km), a downward-continued CMP
gather at the depth z = 1.5 km from the top of the layer. The primary
reflected from the top of the layer is located around ¢ = 0, the reflec-

a
) Midpoint (km) Midpoint (km)

0.5 1.0 1.5 0 0.5 1.0 1.5

—_ —_
€ £
= =
3 <
< c4
=} £
o o
© o}
o a
—

o))
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Figure 5. (a) The image with an artifact from a first-order internal
multiple at about 5.7-km depth. (b) The estimated artifact.
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tion from the bottom of the layer is at about # = 1 s, and the first-or-
der internal multiple is atabout s = 2 s.

We now estimate the multiples at depth by using equation 1. This
estimation requires restricting d to time ¢ > 0. The procedure re-
moves the primary reflection from the current depth (which theoreti-
cally arrives at # = 0), in this case 1.5 km, before doing the convolu-
tion. If this process is not done correctly and energy remains at ¢
= 0, all primary reflections from deeper depths will be duplicated in
the estimated-multiples section. In this model, a simple time-win-
dowing procedure is sufficient because the reflections are far apart in
time. Once the negative time contributions to the data have been re-
moved, the data are convolved to estimate the multiple. The result-
ing wavefield is multiplied by an estimate of the image at the current
depth (this is the (E,a;)(z,s',r") term appearing in equation 1) to
give the estimate in Figure 4b. The event at about? = 3 s is asecond-
order internal multiple. This event is formed from the convolution of
a primary with a first-order internal multiple. It is not present in the
data panel because later arrivals were muted. These calculations
complete step (b) in Figure 2.

We now proceed to (c) of the flowchart in Figure 2 and downward
continue both the data and the estimated multiples to the next depth.
From the data, an image at the current depth is formed containing
both primaries and multiples, i.e., (d) in Figure 2. Another image is
also computed at the current depth, containing an estimate of the arti-
facts caused by leading-order IM, i.e., (f) in Figure 2. The image con-
taining both primaries and multiples gives the estimate a,(z,x)
that feeds back into the estimation of the multiples through (e) of
Figure 2.

Figure 5 compares the estimated artifact a; (Figure 5b) with the
imaged data a, (Figure 5a). The estimated artifact overlays the arti-
factin the primary image.

Lens model

To illustrate the ability of the method to estimate multiples in
more complicated velocity models, we add a low-velocity lens to the
model. The resulting velocity model is shown in Figure 6. The lens is
located in the center of the model; it is circular with Gaussian veloci-
ty variations, a diameter of 600 m, and a maximum contrast of
—2 km/s. The addition of the lens has a large influence on the record-
ed data. The data from a midpoint of 9.8 km are shown in Figure 7.
The first arrival is enlarged in Figure 7b to show the caustics caused
by the lens more clearly. The estimated multiples in the image are
shown in Figure 8. Once again, the multiple is relatively weak in the
estimated image, because of the residual moveout on the common-
image gathers, which are also shown in Figure 8. The image gathers
were computed by using the method of Prucha et al. (1999).

To illustrate the dependence of this method on the background-
velocity model, we now test the sensitivity of the estimated multiple
artifact to errors in the velocity. In theory, knowledge of the velocity
is necessary only to the depth of the shallowest reflection; in this
case, the top of the layer at 2-km depth. To test this concept, we per-
turb the model by adding a second lens, with properties identical to
the first lens, below the layer. The estimated artifact, shown in Figure
9, still matches the image artifact quite well. The tail on the far left of
the image is likely the result of Fourier wrap-around in the propaga-
tor; other differences likely come from differences in illumination
between estimated and true multiples.

To test the sensitivity of the method to errors in the velocity above
the layer, we remove the lens and estimate the image and the multi-

ple in this incorrect velocity model. The results are shown in Figure
10. Although the estimated artifact remains at roughly the correct
depth, the variation in the image with midpoint is not accurately esti-
mated. Removing the lens entirely is a large change in the model;
thus, we expect a large change in the image. In Figure 11, we demon-
strate that we can still estimate the multiple with reasonable accura-
cy when the velocity perturbation is less dramatic. In this case, the
lens has been moved 0.2 km shallower than in the true-velocity
model, and the result is still acceptable.

Midpoint (km)
9.0 9.5 10.0 10.5

Depth (km)
S

Figure 6. Velocity model, similar to the flat-layered example dis-
cussed previously, with the addition of a low-velocity lens to dem-
onstrate that the method works in laterally heterogeneous velocity
models.

a) Offset (km) b)

Offset (km)
-1 0 1

0.5

Time (s)

4

Figure 7. Common-midpoint gather at 9.8 km and zero depth, with
only the offsets used to compute the images shown later. Note the
triplications caused by the lens. (a) Full gather. (b) Zoom of the pri-
mary reflection from the top layer.
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Figure 8. (a) Common-image gather for midpoint 9.8 km. (b) Image with an artifact from the first-order internal multiple at approximately
6 km depth. (c) Image of estimated artifacts from first-order internal multiples. (d) Image gather of estimated artifact. The label p-horizontal

stands for the horizontal slowness.

a) b)
Midpoint (km)

9.0 9.5 10.0
0

Midpoint (km)

10.5 9.0 9.5 10.0 10.5

Depth (km)

Figure 9. In these images, a second lens has been added beneath the
layer to introduce a laterally varying velocity perturbation; this
should not influence the accuracy of the estimated artifact. (a) Image
with artifacts from internal multiples. (b) Estimated artifacts from
first-order internal multiples.

a) b)

Midpoint (km) Midpoint (km)
9.5 10.0 10.5 ol 9.5 10.0 10.5

D D ——

Depth (km)
N
Depth (km)
N

1

8 8

Figure 10. The lens was removed from the velocity model before
generating these images. Because this perturbation is above the top
of the layer, we expect this to have an impact on the estimated multi-
ple. Note the change in the accuracy of the estimate beneath the lens.
(a) Image with artifacts from first-order internal multiples. (b) Esti-
mated artifacts from first-order internal multiples.

a) b)
Midpoint (km)

9.0 9.5 10.0

Midpoint (km)

10.5 9.5 10.0 10.5

9.0
0

Depth (km)
N
Depth (km)
N

I

8 8

Figure 11. In this model, the lens was moved 0.2 km deeper than in
the correct velocity model. Because this perturbation is above the
top of the layer, we expect an effect on the estimated multiple. (a)
Image with artifacts from first-order internal multiples. (b) Estimat-
ed artifacts from first-order internal multiples.

Field data

We present an example of the application of this method to field
data. The data are from the Gulf of Mexico in a region with a large
salt body. Estimating internal multiples in such an area is difficult
because of multipathing introduced by the salt. The data have had
standard preprocessing applied, including surface-related multiple
elimination and a Radon demultiple; they have also been regularized
to a uniform grid in the midpoint-offset coordinates. We show re-
sults from a single 2D line extracted from a 3D survey. Because the
salt has a complicated 3D geometry, performing 2D imaging on this
line is likely to introduce errors. Comparison with the image from a
full 3D migration indicates that these effects are not overwhelming.
Despite this, the estimated artifacts are likely to contain errors result-
ing from applying a 2D multiple-estimation algorithm in an area
where the geology is 3D.

An image of the line is shown in Figure 12; the base of salt is indi-
cated with the white arrows. The circled regions contain events,
marked by black arrows, that are suspected to be artifacts caused by
internal multiples. To compare the estimated artifacts with the arti-
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Midpoint (km)
300 400 500

Depth (km)

? ?

Figure 12. Image for the field-data example. The base of salt is
marked with white arrows, and the circles mark three areas of inter-
est, two of which contain artifacts from internal multiples (left and
top right) and one of which does not (bottom right). The locations of
the CIGs shown in Figures 13 and 14 are marked with the black ar-
rows below the image. The depth could not be displayed on this im-
age; to tie the depth in Figure 13, the black arrow on the left image
marks the artifact that arrow 4 points to in Figure 13 and the black ar-
row on the right of the image points to the position marked by arrow
3in Figure 14.

p-horizontal (s/km)
0.15 0.10 0.05

p-horizontal (s/km)
0.05 0.10 0.15

Figure 13. Field-data example, common-image gather at CMP 150
(left black arrow in Figure 12). (a) The standard image gather. (b)
The estimated artifacts from internal multiples. The five arrows indi-
cate the locations of accurately estimated artifacts. Arrow 4 is the ar-
tifact marked with an arrow in the highlighted region on the image
shown in Figure 12. The label p-horizontal stands for the horizontal
slowness. The depth could not be displayed on these images.

facts seen in the image space, we show common-image gathers from
two points in the model, marked by the black arrows beneath the im-
age, covering the three highlighted areas.

The firstimage gather, shown in Figure 13, is approximately in the
middle of the left highlighted region in Figure 12. There are five ar-
eas marked on this image gather at which artifacts are estimated and
also occur in the imaged data. Arrow 4 marks the artifact in the left
highlighted region of the image in Figure 12, indicating that this
event is indeed an artifact caused by first-order internal multiples
within the salt body. Arrow 1 marks a number of estimated artifacts
mixed with primaries within and above the salt. It is possible that
these artifacts are in fact residual energy from ¢ = 0 that was incom-
pletely removed. Arrow numbers 2, 3, and 5 indicate plausible inter-
nal multiples.

The second image gather, shown in Figure 14, is at CMP 600, in
Figure 12 within the two highlighted regions on the right. First, note

p-horizontal (s/km) p-horizontal (s/km)

0.10 0.05 0.05 0.10

Figure 14. Field-data example, common-image gather at CMP 600
(right black arrow in Figure 12). (a) The standard image gather. (b)
The estimated artifacts from internal multiples. Arrows 1 and 2 indi-
cate the locations of accurately estimated artifacts. Arrow 2 is within
the upper-right highlighted region of the image. Arrow 3 marks the
artifact in the lower-right highlighted region, marked with an arrow,
on the image shown in Figure 12. That this artifact does not appear in
the estimated artifacts indicates that this energy most likely does not
come from an internal multiple. The label p-horizontal stands for the
horizontal slowness. The depth could not be displayed on these im-
ages.

that arrow 3 indicates a strong event in the image gather that does not
correspond to an estimated artifact. This is the event in the lower-
right highlighted region of Figure 12 (marked by a black arrow). The
absence of an estimated artifact at this position indicates that this en-
ergy is not an imaging artifact caused by internal multiples. It could
be, for example, a primary that is migrated poorly resulting from in-
accuracies in the velocity model, or residual energy from a surface-
related multiple, or an out-of-plane effect. Arrows 1 and 2 mark oth-
er estimated artifacts in this image gather. Arrow 2 is in the second,
shallower highlighted region of Figure 12, indicating that in this
area, some of the energy does come from internal multiples.

In the common-image gathers, there are many estimated artifacts
(Figure 14b) that are not easily correlated with events in the image
gather made from the full data set (Figure 14a). Some of these esti-
mated artifacts could have been attenuated by the Radon demultiple
that has been applied to the data. Other sources of error include 3D
effects, both in the image and in the estimation of the multiples, as
well as amplitude errors in the estimated artifacts resulting in stron-
ger amplitudes on the estimated artifacts than on the artifacts actual-
ly seen in the migration. This example is only intended to demon-
strate the potential of the method.

CONCLUSION

We have described a method of estimating imaging artifacts
caused by first-order internal multiples. This method requires
knowledge of the velocity model down to the top of the layer that
generates the multiple (the depth of the up-to-down reflection). The
main computational cost of the algorithm comes from the downward
continuation of the data and the internal multiples. Because two data
sets are downward continued (the data themselves and the estimated
multiples), the cost of the algorithm described here is about twice
that of a usual prestack depth migration, plus the cost of the removal
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of negative times. By estimating the multiples on downward-contin-
ued data, rather than in surface data, we avoid difficulties that may
arise from caustics in the wavefield or the failure of the traveltime
monotonicity assumption. In addition, estimating artifacts in the im-
age rather than estimating multiples in the data shows clearly which
part of the image has been contaminated by internal multiples, even
if those multiples are poorly estimated or incompletely subtracted.

Although the method remains useful when multiples are poorly
estimated or incompletely subtracted, reliable estimates of the am-
plitudes are important and remain a subject of future work. In addi-
tion, the dependence of this method on the velocity model could, in
principle, be cast into a velocity-analysis procedure based on the
move-out of multiples in the image gathers.
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APPENDIX A

THE SCATTERING SERIES

The purpose of this and the following appendix is to give the theo-
retical background of the procedure described in the main text. This
procedure has its roots in a hybrid series based on the Lippmann-
Schwinger series, discussed in the seismic context by Weglein et al.
(1997), and the generalized Bremmer series introduced by de Hoop
(1996). The appendices highlight primarily how the Lippmann-
Schwinger series enters our method; further details can be found in
Malcolm and de Hoop (2005).

Constructing the hybrid series begins by decomposing the acous-
tic wavefield, u, into its up- and downgoing constituents u., as is
done in the Bremmer series and in the development of the DSR equa-
tion (Claerbout, 1985). We first write the wave equation

c(z,x)_zﬂtzu - r?fu - &Zzu =f, (A-1)

(in 3D, x = (x,x,)) as a first-order system,

A

) =Lt o))+ L5}
% du)  \ezx)297— > 0/\du " -f/)

(A-2)

where ¢(z,x) is the isotropic velocity function and f is the source. In
the Bremmer series, the wavefield is then split into its up- and down-
going constituents through

o, o
Q_1=<HQ'1 —HQ'1> e

Q

=y _
) 1((Q+> HQ+), A3

2\(@) Ho.

where H denotes the Hilbert transform in time and * denotes adjoint.
The component operators Q_ and Q, are pseudodifferential op-
erators, which are a generalization of Fourier multipliers. In a con-
stant-velocity medium, they simplify to a multiplication by ?—22
— NlkJI? "*in the Fourier domain. The form of the Q matrix in gener-
al, including the difference between the + and — operators, is dis-
cussed in Stolk and de Hoop (2005); for a short introduction to
pseudodifferential operators, see de Hoop et al. (2003). The particu-
lar form used here is in the vertical acoustic-power-flux normaliza-
tion. We choose this normalization because the transmission opera-
tors are of lower order than the reflection operators; see de Hoop
(1996) for details on why this is the case and for other possible nor-
malizations.

The Q matrix and its inverse complete the decomposition of the
field into its up- and downgoing constituents, u, and «_, so that

(auu) - 0_1<Zi)

el

Applying the Q operators diagonalizes the system given in equation

A-2, giving
Lo D)
Uy 0 B,/ \u, S+

where the subscript + indicates an upgoing quantity and the sub-
script — indicates downgoing; B is the single square-root operator.

We will denote by
G, 0)
Ly = , A-6
0 (0 G (A-6)

and

the matrix of one-way propagators (Green’s functions) that solve the
square-root equations for both up- and downgoing waves.

We have now set up the propagation of the wavefield through the
square-root equation, but have yet to discuss the coupling of these
components. It is here that we deviate from the formulation of the
generalized Bremmer series. We couple the decomposed wavefield
constituents to form a scattering series describing different orders of
scattering using a contrast source formulation as in the Lippmann-
Schwinger series (Weglein et al., 1997). This approach involves
splitting the medium into a known background and an unknown con-
trast (difference between true and background) V, which for the hy-
brid series is given by

1 H( 0.a0, Q+an)
2 \-0.aQ0. -0aQ )

where a = 2¢3> 8¢ is the velocity contrast, ¢, denotes the (known)
smooth background velocity, and dc denotes the nonsmooth veloci-
ty contrast. We use a subscript O to indicate the field in the back-
ground model and & to represent a contrast; thus, the field U in the
unknown true medium is related to that in the known background

V= (A-7)
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medium by U = U, + 6U. We denote by 6U; the matrix of up- and
downgoing wave constituents scattered (transmitted or reflected) j
times. From the Lippmann-Schwinger equation for the diagonalized
system,

(I = 9*LyV)8U = 9L VU,, (A-8)

we find that the terms in the hybrid forward-scattering series are re-
lated by

8UL(V) = = PLo(VU,)

and

8U, (V) = = 3*Lo[VOU,_;(V)], m=273, ...
(A-9)

Equations A-9 describes the coupling of terms to form the scattered
wavefield. Because L, and Uj are in the diagonal system, the up- and
downgoing wavefields are separated. The coupling operator Visa
matrix that combines the up- and downgoing constituents of the
wavefield to form the reflected or transmitted wavefield. The scat-
tered field is the sum of these terms constituents

SU = 2, SUV). (A-10)

melN

The operator L, introduced in equation A-6 solves the wave equa-
tion in the known background model. Equation A-10is in the diago-
nal system and assumes that data can be collected at any point. We
denote by R the restriction of the wavefield to the acquisition surface
(depth z = 0), and define M, = RQ"'L,; the Q' matrix maps back to
the observable quantities. The data are then modeled as

d
D=\gal= &?Mo{V[UO + EN (- 1)’”“5(],,,(‘7)]}.

(A-11)

The first term on the right side of equation A-11 is the singly scat-
tered data. The m = 2 term of the summation models triply scattered
data, including first-order internal multiples. Malcolm and de Hoop
(2005) show how an equation of the type given in equation 1 in the
main text is derived from the third term of this series, meaning that
internal multiples are third order in the contrast V.

APPENDIX B

INVERSE SCATTERING

We have now constructed a forward series from which we can
model data, given the contrast V. In inverse scattering, the goal is to
solve for V in terms of the data d. To this end, we rewrite equation
A-8as

- PL[V(Uy + 8U)] = - 8U, (B-1)

to motivate the expansion of 1%

V=2 V,d). (B-2)

meN

where ‘7”, is of order m in the data. Substituting this expression into
equation A-11 leads to the following relationship between the
Va(d):

— FM(V,,Up) = = MV, Lo(ViUp)], m =2, (B-3)

along with the initiation of \71 in terms of the data D = ({9 d):

FMo(V,U) = 8D. (B-4)

Estimating V, from equation B-4 is the standard seismic imaging
problem. Stolk and de Hoop (2006) show that an image of the sub-
surface free of artifacts Vis formed when a wave-equation migration
is applied to the singly scattered data, ?M( VU,) = D,. Applying
such a migration to 8D rather than to 8D, gives XA/,, a first-order esti-
mate of V.

The recursion in equation B-3 shows that estimating higher-order
contributions to the image (e.g., V, or V3) does not require a separate
imaging operator as each ‘A/j can be estimated from \A/,-_l; in fact, by
continuing this argument, each term can be estimated from V. For
example, \73 is estimated from ‘71 by applying a migration operator to
both sides of the expression

- ‘9t2M0(‘A/3U0) =- a?Mo{‘AllLo[‘A/lLo(‘A/l Upl. (B-5)

The right side of equation B-5 is third order in V,, the linearized
estimate of the contrast. In the previous section, we found that first-
order internal multiples are third order in the true contrast V. The
right side of equation B-5 is an estimate (using V,in place of \7) of the
triply scattered data, of which first-order internal multiples form
part. This result shows that multiples can be estimated from only Vi
justifying the replacement of a with a; and the replacement of d,
withd in equation 1.

Equation B-5, along with equation B-2, shows that a higher-order
estimate of V, namely, v, + ‘73, is obtained by applying the standard
wave-equation migration operator to an estimate of the multiples. In
other words, two images are formed, one from all the data (a stan-
dard image) that will contain artifacts caused by multiples and an-
other that estimates the subset of those artifacts that are caused by
first-order internal multiples. The algorithm described in the main
text comes from this observation.

REFERENCES

Aminzadeh, F., and J. M. Mendel, 1980, On the Bremmer series decomposi-
tion: Equivalence between two different approaches: Geophysical Pros-
pecting, 28, 71-84.

, 1981, Filter design for suppression of surface multiples in a non-nor-
mal incidence seismogram: Geophysical Prospecting, 29, 835-852.

Anstey, N. A., and P. Newman, 1966, The sectional auto-correlogram and the
sectional retro-correlogram: Geophysical Prospecting, 14, 389-426.

Artman, B., and K. Matson, 2007, Image-space surface-related multiple pre-
diction: Geophysics, this issue.

Atkinson, F. V., 1960, Wave propagation and the Bremmer series: Journal of
Mathematical Analysis and Applications, 1,225-276.

Berkhout, A.J., and D. J. Verschuur, 1997, Estimation of multiple scattering
by iterative inversion, Part I: Theoretical considerations: Geophysics, 62,
1586-1595.

——, 2005, Removal of internal multiples with the common-focus-point
(CFP) approach: Part I — Explanation of the theory: Geophysics, 70, no.
3,V45-V60.




Downloaded 07/24/17 to 134.153.188.68. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

S132 Malcolmetal.

Bremmer, H., 1951, The W. K. B. approximation as the first term of a geo-
metric-optical series: Communications on Pure and Applied Mathematics,
4,105-115.

Claerbout, J. F., 1970, Coarse grid calculations of waves in inhomogeneous
media with application to delineation of complicated seismic structure:
Geophysics, 35,407-418.

, 1985, Imaging the earth’s interior: Blackwell Scientific Publications,
Inc.

Corones, J. P., 1975, Bremmer series that correct parabolic approximations:
Journal of Mathematical Analysis and Applications, 50,361-372.

de Hoop, M. V., 1996, Generalization of the Bremmer coupling series: Jour-
nal of Mathematical Physics, 37, 3246-3282.

de Hoop, M. V., J. H. Le Rousseau, and B. Biondi, 2003, Symplectic struc-
ture of wave-equation imaging: A path-integral approach based on the
double-square-root equation: Geophysical Journal International, 153,
52-74.

Fokkema, J., R. G. Van Borselen, and P. Van den Berg, 1994, Removal of in-
homogeneous internal multiples: S6th Annual Conference and Exhibition,
EAGE, Extended Abstracts, Session HO39.

Fokkema, J. T., and P. M. van den Berg, 1993, Seismic applications of acous-
tic reciprocity: Elsevier Science Publ. Co., Inc.

Gray, S. H., 1983, On the convergence of the time domain Bremmer series:
Wave Motion, 5, 249-255.

Jakubowicz, H., 1998, Wave equation prediction and removal of interbed
multiples: 68th Annual International Meeting, SEG, Expanded Abstracts,
1527-1530.

Jin, S.,R.-S. Wu, and C. Peng, 1998, Prestack depth migration using a hybrid
pseudo-screen propagator: 68th Annual International Meeting, SEG, Ex-
panded Abstracts, 1819-1822.

Kelamis, P., K. Erickson, R. Burnstad, R. Clark, and D. Verschuur, 2002, Da-
ta-driven internal multiple attenuation — Applications and issues on land
data: 72nd Annual International Meeting, SEG, Expanded Abstracts,
2035-2038.

Kennett, B. L. N., 1974, Reflections, rays and reverberations: Bulletin of the
Seismological Society of America, 64, 1685-1696.

Lippmann, B. A., 1956, Rearrangement collisions: Physics Review, 102,
264-268.

Malcolm, A. E., and M. V. de Hoop, 2005, A method for inverse scattering
based on the generalized Bremmer coupling series: Inverse Problems, 21,
1137-1167.

McMaken, H., 1986, On the convergence of the Bremmer series for the
Helmholtz equation in 2D: Wave Motion, 8, 277-283.

Moses, H. E., 1956, Calculation of scattering potential from reflection coeffi-
cients: Physics Review, 102, 559-567.

Prosser, R. T., 1969, Formal solutions of inverse scattering problems: Jour-
nal of Mathematical Physics, 10, 1819-1822.

Prucha, M. L., B. Biondi, and W. W. Symes, 1999, Angle common image
gathers by wave equation migration: 69th Annual International Meeting,
SEG, Expanded Abstracts, 824—827.

Razavy, M., 1975, Determination of the wave velocity in an inhomogeneous
medium from reflection data: Journal of the Acoustical Society of Ameri-
ca, 58,956-963.

Sava, P., and A. Guitton, 2005, Multiple attenuation in the image space: Geo-
physics, 70, no. 1, V10-V20.

Sloat, J., 1948, Identification of echo reflections: Geophysics, 13, 27-35.

Stolk, C. C.,and M. V. de Hoop, 2005, Modeling of seismic data in the down-
ward continuation approach: SIAM Journal of Applied Mathematics, 65,
1388-1406.

, 2006, Seismic inverse scattering in the downward continuation ap-
proach: Wave Motion, 43, 579-598.

ten Kroode, A. P. E., 2002, Prediction of internal multiples: Wave Motion,
35,315-338.

van Borselen, R., 2002, Data-driven interbed multiple removal: Strategies
and examples: 72nd Annual International Meeting, SEG, Expanded Ab-
stracts, 2106-2109.

van Stralen, M. J. N., 1997, Directional decomposition of electromagnetic
and acoustic wave-fields: Ph.D. thesis, Delft University of Technology.

Verschuur, D.J., and A. Berkhout, 1997, Estimation of multiple scattering by
iterative inversion: Part Il — Practical aspects and examples: Geophysics,
62, 1596-1611.

, 2005, Removal of internal multiples with the common-focus-point
(CFP) approach: Part 2 — Application strategies and data examples: Geo-
physics, 70,n0.3, V61-V72.

Weglein, A., F. B. Aratjo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T.
Coates, D. Corrigan, D. J. Foster, S. A. Shaw, and H. Zhang, 2003, Inverse
scattering series and seismic exploration: Inverse Problems, 19, R27-R83.

Weglein, A., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt, 1997, An in-
verse-scattering series method for attenuating multiples in seismic reflec-
tion data: Geophysics, 62, 1975-1989.




