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ABSTRACT 

 

Spatial and Temporal Study of Heat Transport of Hydrothermal Features in Norris 

Geyser Basin, Yellowstone National Park 

by 

Ruba A. M. Mohamed, Doctor of Philosophy 

Utah State University, 2017 

Major Professor: Dr. Christopher M. U. Neale 

Department: Civil and Environmental Engineering 

Division: Water Resources Engineering 

 

 

 Monitoring the dynamic thermal activity in Yellowstone National Park is required 

by the United States Congress. The continuous monitoring is important to maintain the 

safety of the visitors and park service personnel, plan and relocate infrastructure, and 

study potential impact from nearby geothermal development including oil and gas 

industry. This dissertation is part of a study initiated in the early 2000s to monitor the 

thermal activity of dynamic areas within the Park, using airborne remote sensing 

imagery. This study was focused in Norris Geyser Basin, the hottest geyser basin in the 

park, located near the northwestern rim of the Yellowstone’s caldera. The study is 

considered the first long-term comprehensive airborne remote sensing study in the basin 

which took place between August 2008 and October 2013. In this study, at least one 1-

meter resolution thermal infrared image and three-band images (multispectral) were 

acquired and used to estimate year-to-year changes in radiant temperature, radiant flux, 

and radiant power from the thermal source in Norris.  
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 Presence of residual radiant flux in the ground from absorbed solar radiation and 

atmospheric longwave radiation was the main challenge to compere year-to-year changes 

in the thermal activity. This residual flux is included in the total radiant flux calculated 

through the remote sensing images which gives false estimates of the flux generated from 

the underling thermal source. Two methods were suggested in Chapters 2 and 4 of this 

dissertation to estimate the residual radiant flux. A method was developed in Chapter 2 to 

estimate the residual radiant flux in a bare ground area covered with hydrothermal 

siliceous sinter deposit. The method compared ground-based measurements with high 

spatial resolution airborne remote sensing measurements to estimate the residual radiant 

flux. In Chapter 4, a method was developed to estimate the residual radiant flux in the six 

surface classes in Norris, including bare ground, bare ground with siliceous sinter 

deposit, lakes and pools, river, forest, and grass. The assumptions and implications of 

each method were discussed to suggest a reliable method to estimate the geothermal 

radiant flux after subtracting the absorbed residual radiant flux. Chapter 3 provides an 

analysis of the four components of heat flux in the ground surface, including conduction 

of sensible heat, convection of sensible heat by liquid water and water vapor, and 

convection of latent heat by water vapor. The main purpose from the analysis was to 

assess the hypothesis that the convection and latent heat flux are negligible which 

therefore supported the results obtained from the analysis in Chapters 2 and 4. 

(200 pages) 

 

 



v 
 

PUBLIC ABSTRACT 

 

Ruba A. M. Mohamed, Doctor of Philosophy 

 Monitoring thermal activity in Yellowstone National Park is required by the 

United States Congress to maintain the safety of the visitors and park service personnel 

and to protect the integrity of the park. This dissertation is part of a study initiated in the 

early 2000s to monitor the thermal activity in the park with focus on Norris Geyser Basin, 

the hottest geyser basin in the park. The study is considered the first multiple-year study 

in the basin which took place between August 2008 and October 2013. In this study, at 

least one thermal infrared image was acquired every year using airborne remote sensing 

tools to estimate the surface radiant temperature. The images were used to estimate and 

compare changes in surface radiant temperature and other radiant components including 

radiant flux and radiant power, which were estimated from the radiant temperature 

images over Norris.  

 To compare yearly changes in the radiant flux due to the thermal source alone, the 

stored solar flux was estimated and subtracted from the total radiant flux image. Two 

methods were suggested in this dissertation to estimate the stored solar flux which were 

addressed in Chapters 2 and 4. The assumptions and implications of each method were 

discuss to suggest a reliable method to estimate the geothermal heat flux. 
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CHAPTER 1 
 

INTRODUCTION 

1.1. Background 

Geothermal heat is generated from an underlying reservoir of high temperatures, 

steam, and hot water beneath the earth surface. The underlying heat and the existing 

ground water and surface water lead to the formation of different hydrothermal features 

including hot springs, geysers, mud pools, and fumaroles (Haselwimmer and Prakash, 

2013). Frequent monitoring of the hydrothermal features and the surrounding heated 

ground in Yellowstone National Park (YNP) will help (1) update the existing information 

about the size and temperature of the features, (2) maintain the safety of the visitors and 

park service personnel, (3) plan new infrastructure and relocate existing ones, (4) foster 

research activities, and (4) study potential impact from nearby geothermal development 

including oil and gas industry (Heasler et al., 2009).  

 

Different methods have been used to model the spatial and temporal changes of 

the geothermal system in YNP. In-depth studies include changes of the structural 

framework of the geothermal system including the size of the plume and the temporal 

distribution of the seismic activity (Shervais and Hanan, 2008). Some studies used 

surrogates of heat rate to study the temporal changes in the heat rate. For example, 

Fournier et al. (1976) were the first to use the chloride inventory method of Ellis and 

Wilson (1955). The method stated that thermal chloride is mainly generated from deep 

parent water of known heat content. It was applied through real-time measurement of 
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stream discharge and grab sampling of chloride to determine the chloride load as an 

indicative of the convective heat from the main rivers draining Yellowstone’s caldera. 

The chloride load was found strongly correlated with the levels of groundwater that had 

dropped significantly during the past ten years due to inflation of the ground surface in 

some areas of the caldera (Friedman and Norton, 2007). Increased ground-water head 

generated by snowmelt releases the chloride stored in shallow groundwater systems. 

Thermal chloride has a steady flux that leaches from deep thermal aquifers that are not 

greatly affected by changes in the height of the water table. Other limitations related to 

the method include the installation and maintenance of the real-time instruments, and the 

frequent need to access the gauging stations (Heasler et al., 2009).  

 

The use of remote sensing in YNP started as early as the 1960s with major 

limitations on technologies and methodologies at that time (McLerran and Morgan, 1900; 

White and Miller, 1969). With the latest developments of that technology, remote sensing 

has been frequently used to map the thermal anomalies in YNP. Examples of recent 

satellite remote sensing studies include Watson et al. (2008) and Vaughan et al. (2012) 

and of airborne remote sensing, Neale and Sivarajan (2011b); Jaworowski et al. (2013); 

and Neale et al. (2016). The goal of these studies was to estimate the infrared radiometric 

temperature of the surface through the thermal infrared radiometric images (TIR). 

Satellite remote sensing has the advantage of providing frequent coverage and relatively 

lower cost per unit area compared to airborne remote sensing (Franklin, 2001). However, 

satellite remote sensing provides relatively course pixel resolution and suffers from cloud 
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interference. Also the size of most of the hottest hydrothermal features in YNP are within 

a range of a few square meters which encouraged the use of airborne remote sensing 

methods to obtain high-resolution images of the features.  

1.2. Problem Statement 

In geothermal areas, three main heat sources contribute to the ground heat flux at 

and near the surface including the geothermal heat flux, the absorbed solar shortwave 

radiation (residual from the direct solar shortwave radiation and the reflected shortwave 

radiation by the ground surface), and the emitted atmospheric longwave radiation 

(emitted by clouds and greenhouse gases) absorbed by the surface. Latent heat flux and 

sensible heat flux are usually lost from the ground as ground temperatures are mostly 

greater than the surrounding atmosphere. Therefore the radiant temperature estimated 

through atmospherically corrected TIR images includes the three former heat fluxes. The 

main technical challenge in order to compare changes in the heat rate over time from the 

geothermal source is removing the radiant flux due to absorption of solar shortwave 

radiation and atmospheric longwave radiation. The incident solar radiation is a function 

of the atmospheric transmissivity and the geographic position of the study area. Whereas 

the atmospheric longwave radiation is a function of the atmospheric emissivity, which is 

influenced by the amount of atmospheric water vapor, carbon dioxide, oxygen, and by air 

temperature. Generally, TIR images are acquired during nighttime hours, under clear sky 

conditions, to minimize heat flux due to the latter two sources. However, quantifying the 

remaining heat flux from the two sources remained a challenge facing the recent remote 

sensing studies. Some methods were suggested to quantify the heat flux. However, most 
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of the suggested methods were approximate and based on general assumptions. For 

example, Vaughan et al. (2012) used ASTER and MODIS satellite data and subtracted 

the background solar radiant emittance from a nearby non-geothermal area with similar 

topographic and surface cover. Their method although conceptually simple, it can be 

uncertain due to the selection of the background area. Practically, it is not possible to 

select a background area that is perfectly suitable to remove the residual heat effect. 

Geothermal areas are characterized by unique mineral compositions and vegetation cover 

that are specific to these areas. Watson et al. (2008) used Landsat Enhanced Thematic 

Mapper to estimate the radiant geothermal heat flux in YNP. They used an empirical 

model to detect the heat flux due to solar radiation using a variable proportional to the 

absorbed solar radiation accounting for the exoatmospheric solar irradiance in bands 1-7, 

incidence angle of the sun, at-satellite spectral, and band width. However, their model did 

not account for atmospheric transmission of incoming radiation or diffuses sky irradiance 

of the surface. 

1.3. Study Area 

The focus of this study was in Norris Geyser Basin (NGB) which is known for the 

hottest and most dynamic hydrothermal features in YNP (White et al., 1988). The basin is 

located in the northwestern part of YNP centered at latitude 44.728546300 and longitude 

-110.7043754000, with an approximate area of 5.5 km2. It was selected to conduct the 

thermal monitoring plan because the basin is a closed hydrological system. The Tantalus 

Creek, a tributary of the Gibbon River, drains the basin. The creek is monitored by USGS 

for water temperature, discharge, and gage height. Two towers were installed in bare 
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heated grounds southwest and northeast of an explosion crater pool in the gap area in 

NGB to monitor the radiation energy balance components of this particular area.  

1.4. Objectives 

This study was developed in 2005 as part of the CESU Task Agreement between 

Utah State University and the National Park Service. The main goal from the agreement 

was to explore the use of high resolution airborne remote sensing imagery to fulfill the 

need for accurate and continuous monitoring of the thermal activity in YNP (Neale and 

Sivarajan, 2011a). The study is considered the first in NGB to monitor the heat transport 

over multiple years using a consistent method. The agreement included acquisition of 

annual, and in some years, biannual TIR images, and multispectral and LiDar images of 

the hydrothermal areas in the park. The first three years of the monitoring program have 

resulted in improvements in image acquisition, processing and calibration methods that 

have led to the production of highly accurate and precise images (Neale et al., 2016). 

  In addition to the remote sensing campaign, the agreement included ground-based 

measurement of weather and soil parameters to help estimate the heat flux due to solar 

radiation and atmospheric longwave radiation. Accordingly, two towers were installed 

close to an explosion crater pool in the Gap area in Norris Geyser Basin (NGB), to 

provide real-time measurements of different weather and soil parameters. The measured 

parameters included air temperature, relative humidity, four-way radiations, wind speed 

and direction, besides soil parameters that included soil heat flux, soil temperature and 

water content.  
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In Chapter 2 of the dissertation an approach was used to estimate order-of-

magnitude radiant geothermal heat flux for a bare ground covered with thermal siliceous 

sinter deposit, using the ground-based measurements and three TIR images acquired for 

NGB. The ground-based parameters used on that approach included surface radiation 

fluxes, ground heat flux, and ground skin temperature and the temperature measured at 

0.05 m depth. The approach was based on a simple comparison of the average conductive 

ground heat flux measured on sunny summer days and overcast winter days. The 

conductive ground heat flux used for the comparison was measured during times with 

expected minimal solar heat effect (i.e. net radiation flux was lost from the ground and 

the temperature gradient of the top soil layer was from the subsurface to the ground 

surface). To account for the heat loss due to snow melt during the winter days, the Utah 

Energy Balance Snow Accumulation and Melt Model developed by Tarboton and Luce 

(1996) was used. The radiant flux due to solar radiation was estimated using the assumed 

proportionality between the conductive heat flux due to solar radiation and radiant flux 

due to solar radiation with the total measured conductive heat flux and total radiant flux. 

Since the conductive heat flux was measured on a bare ground soil covered siliceous 

sinter deposit, the approach can be spatially applied on areas cover with that type of 

deposit, which represent the majority of the soil in NGB. To validate the estimated 

residual heat the results were compared to values estimated in areas with non-geothermal 

background under similar conditions. 

  

Chapter 3 of the dissertation addresses the contribution of four heat flux 
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mechanisms, including conduction, convection of sensible heat by liquid water and water 

vapor, and convection of latent heat by water vapor, on the top layer of the soil and at the 

ground surface. The chapter also estimated and compared the rate of heat transport from 

each of the mechanisms. The study was done to test the hypothesis that latent heat flux 

and sensible heat flux were of least significance to the overall heat flux and that heat 

conduction was dominant. The numerical model HYDRUS-1D, developed by Šimunek et 

al. (1998) was used to simulate the coupled movement of heat transport, and water and 

water vapor flow in the soil. HYDRUS-1D implements an inverse solution to estimate 

soil hydraulic and thermal parameters from measured transient flow and transport data 

including water content, pressure head, and temperature (Deb et al., 2011; Saio et al., 

2006). Kool et al. (1985) applied the inverse approach by numerical solution of the 

Richards equation for a one-step outflow experiment and concluded that variation of the 

estimated parameters can be minimized if the experiment is designed to cover a wide 

water content range. In this study, days with variable water content were used for model 

calibration and validation to optimize the estimates of soil hydraulic parameters that were 

not measured on site.  

 

Chapter 4 addresses the study of the spatial and temporal changes in radiant flux 

and changes in the extent of the geothermal region within NGB using the high resolution 

remote sensing imagery obtained in five consecutive years between 2009 and 2013. The 

chapter also addressed year-to-year comparison of the geothermal radiant flux after 

removing the heat flux due to solar radiation from the radiant flux images.  The surface in 
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NGB is comprised of seven different classes, including bare soil, soil covered with 

siliceous sinter deposit, lakes and pools, river, forest (pine trees), grass, and mud pools. 

For bare soil and siliceous sinter soil, the heat flux from solar radiation is a function of 

elevation, slope, and aspect (Chen et al., 2013). In this study, the surface was classified 

into groups of aspects (north, northeast, east, southeast, south, southwest, west, and 

northwest) for six ranges of slopes from 0° to 61° using 10° increment. The heat flux due 

to solar radiation was estimated for each group assuming that ratios of beam solar 

irradiance received at each group and beam irradiance of a background area with flat 

aspect and 0° slope was similar to the ratio between the radiant temperatures of these 

groups and the radiant temperature of the background area. That background area was 

chosen outside of the identified geothermal polygon in NGB. The beam solar irradiance 

for NGB was estimated using the Solar Irradiance and Irradiation Model available in 

Grass GIS 7.2 software (Team, 2016). The model accounts for surface elevation, terrain 

aspect and slope, atmospheric turbidity, ground albedo, and clouds and haze effect 

(Hofierka and Suri, 2002; Šúri and Hofierka, 2004). The radiant flux due to solar 

radiation was removed from the other five classes by subtracting the radian heat flux of a 

background area out of the hydrothermal polygon. Subtracting the heat flux from a 

background non-geothermal area is commonly used in areas with geothermal heat source 

(Seielstad and Queen, 2009; Vaughan et al., 2012).  
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CHAPTER 2 

 

USING HIGH RESOLUTION THERMAL INFRARED IMAGES TO ESTIMATE 

RADIANT GEOTHERMAL FLUX FROM MEASUREMENT OF CONDUCTIVE 

HEAT FLUX AT NORRIS GEYSER BASIN, YELLOWSTONE NATIONAL PARK 

Abstract 

 In geothermal areas, the ground heat flux at and near the surface is mainly a 

combination of near-surface geothermal heat flux and the heat flux from absorbed solar 

shortwave radiation and atmospheric longwave radiation. In these areas, latent heat flux 

and sensible heat flux are mostly lost to the atmosphere as the ground temperature was 

mostly much higher than the surrounding atmosphere. Challenges still remain in 

removing the radiant flux due to absorbed solar radiation from thermal infrared remote 

sensing imagery that are mostly acquired during nights of mostly sunny days to avoid the 

effect of clouds. Removing the absorbed solar radiant effect from the images will allow 

for a more precise spatial estimate of radiant output due to the geothermal source 

allowing for temporal monitoring of the geothermal system. In this study a simple 

method based on a comparison of continuous measurement of conductive soil heat flux, 

surface four-way radiations, and ground temperature at and near the ground surface is 

propose to estimate the conductive heat flux due to solar radiation in a daily and seasonal 

basis. The heat flux due to solar radiation was estimated by comparing the average 

conductive heat flux at the surface when net radiation values (Rn) were negative and the 

ground temperature gradient values (ΔT) were positive (heat flows from the subsurface 

towards the surface), among selected overcast winter days and sunny summer days after 
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accounting for the heat lost by snow melt during the winter days. To results were 

validated through comparison with literature values estimated in non-geothermal grounds 

with similar surface albedo and atmospheric conditions, where the ground heat flux is 

mainly from solar and atmospheric longwave radiations.  The estimated conductive heat 

flux from solar radiation was used to estimate the radiant geothermal flux assuming that 

the ratio between the estimated conductive heat flux and radiant flux from absorbed solar 

and atmospheric radiations equals the ration between the estimated total conductive heat 

flux and radiant flux estimated from high resolution thermal infrared imagery acquired 

for Norris Geyser Basin. This assumption assumes that the ratio between the conductive 

ground heat flux at the surface and the radiant flux at the same location is constant.  

2.1. Introduction 

Yellowstone National Park (YNP) is characterized with increased heat rate from 

the underline active magmatic system (Allaby, 2013). The heat is transferred to the 

ground surface through different mechanisms including conduction, convection, and 

radiation. From the earth interior, the heat transfers by conduction through molten rocks 

and by convection through hot water and steam. From the ground surface-atmosphere 

interface, heat transfers through convection as sensible flux and latent heat flux to the 

atmosphere. Heat also radiates from the ground surface to the cool atmosphere in the 

thermal region of the electromagnetic spectrum (Lombardo and Buongiorno, 2013).  

Studying the heat transport rate from hydrothermal areas and surrounding heated 

ground in YNP has been continuously conducted to determine possible changes due to 

natural or anthropogenic sources (Sorey, 2000). Different methods have been used to 
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directly measure the heat transport rate using surface and near-surface temperature 

measurements (Stein, 1995). These methods measure surface temperature and the 

temperature gradient near the surface to estimate near-surface geothermal heat flux. 

Recently; Hurwitz et al. (2012a) used manual data loggers to measure the temperature 

gradient in more than 600 locations at a vapor dominated area with low permeable 

bedrock in YNP. Fournier et al. (1976) and Friedman and Norton (2007) used an indirect 

method to estimate the geothermal heat flux rate from thermal chloride load on rivers and 

streams draining YNP. In geothermal areas, thermal chloride is mainly generated from 

deep parent water of known heat content (Lowenstern and Hurwitz, 2008). The method 

was applied through real-time measurement of stream discharge and grab-sampling of 

chloride to estimate the chloride load and the subsequence convective heat power. The 

previous methods, although they can be mostly accurate, require frequent physical access 

to potential remote hydrothermal grounds which makes it almost impossible to cover 

large areas. 

Remote sensing imagery are increasingly used in YNP to provide large spatial 

estimate of radiant flux with less need to access the remote hydrothermal areas in the 

park. Watson et al. (2008); Vaughan et al. (2012); Neale et al. (2011); and Jaworowski et 

al. (2013) reported recent satellite and airborne remote sensing studies in YNP. One of 

the main technical challenges to estimate the radiant flux from the geothermal source 

through thermal infrared images (TIR) is the presence of radiant flux from absorbed solar 

shortwave radiation and atmospheric longwave radiation at the surface. The term 

‘residual heat flux’ is used in this study to refer to the conductive heat flux in the ground 

surface from absorbed solar shortwave radiation and atmospheric longwave radiation. 
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Generally, airborne TIR images are acquired at late night hours on days with mostly clear 

skies, to maintain minimal effect from the residual heat flux. However, the quantity of the 

remaining residual heat flux remains unknown. Researchers used different methods to 

estimate the radiant residual flux using remote sensing platforms. For example, Vaughan 

et al. (2012) subtracted the radiant flux of a nearby non-geothermal area using ASTER 

and MODIS satellite TIR images. Their method although conceptually simple, may be 

uncertain in relation to the selection of a non-geothermal background area. Practically, it 

is not possible to select background area that is perfectly suitable to remove the residual 

heat flux. Geothermal areas are characterized by unique mineral deposits and vegetation. 

Watson et al. (2008) used Landsat Enhanced Thematic Mapper to estimate the radiant 

geothermal heat flux. They used an empirical model to estimate the residual solar flux 

using a variable proportional to the absorbed solar radiation. However, their model 

ignored the atmospheric transmission of incoming radiation or diffused sky irradiance of 

the surface. Seielstad and Queen (2009) conducted an airborne remote sensing study in 

NGB in 2005 and 2006. They estimated a background radiant flux from solar radiation as 

200 W·m-2 and a range of radiant geothermal heat flux between 150 W·m-2 and 300 

W·m-2 for the entire basin. The authors classified the basin into five land-cover types 

(forest, water, sinter soil, and road) and then estimated weighted mean flux within each 

land-cover class, outside a defined hydrothermal polygon in NGB. Our observation of the 

radiant temperature outside the previously defined geothermal polygon indicated 

presence of areas with high temperatures that matches the temperature of some of the 

areas within the geothermal polygon and cooler areas adjacent to the Gibbon River plain . 

Using the weighted mean flux to estimate the heat flux out of the background areas raised 



15 
 

 
 

a question about the bias associated with the presence of the hot and cool areas within the 

defined background areas. 

In this study, the conductive heat flux due to solar radiation was estimated using 

continuous measurement of soil heat flux, soil temperature, ground skin temperature, and 

weather data, measured at a bare ground area, covered with hydrothermal siliceous sinter 

deposits, near the explosion crater pool in Norris Geyser Basin (NGB). The continuous 

measurement was part of airborne remote sensing cooperative agreement between Utah 

State University and the National Park Service (Neale and Sivarajan, 2011a). The 

agreement included acquisition of high resolution (approximately 1 m * 1m) airborne 

TIR images of NGB (Neale et al., 2011). The ground-based measurement was established 

in the summer of 2009 to 1) obtain information about weather and atmospheric 

conditions during the time of TIR image acquisition, 2) estimate the conductive heat flux 

due to solar radiation from measurement of four-way radiations, weather parameters, soil 

heat flux, and soil temperature at multiple depths. The estimates of conductive heat flux 

due to solar radiation was validated by comparing the results with previous studies that 

measured or estimated soil heat flux in non-geothermal grounds with similar soil albedo 

and weather conditions. This study proposes a method to estimate the radiant flux due to 

solar radiation by assuming that the ratio between the estimated conductive heat flux due 

to solar radiation and the estimated total ground heat flux at the surface equals the ratio 

between the radiant flux due to solar radiation and total radiant flux estimated from the 

TIR images.  
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2.2. Study Area 

Norris Geyser Basin is located in the northwestern part of YNP covering an area 

of about 5.5 km2 (Fig. 2.1). The basin includes zones of faults and volcanic vents and 

encompasses one of the most dynamic hydrothermal areas in the park (White et al., 

1988). The study area is located close to the explosion crater pool in the Gap area. Two 

ground-based measurement towers were mounted northeast and southwest of the pool 

(Fig. 2.2). The collected ground-based data included surface radiation fluxes, 

meteorological and soil data, which are described in details in the next paragraph (Neale, 

2014).  

2.3. Methods 

2.3.1. Data  

The two ground-based towers were installed within approximately 20 m northeast 

(44.729567° N/110.715756° W) and southwest (44.728975° N/110.716011° W) of the 

crater pool. The data used for this study were collected between August 15, 2009 and 

July 2, 2012. Data acquisition and storage were managed by two Campbell Scientific data 

loggers (CR1000 and CR3000). The data were collected at five-minute intervals (Figs. A-

1 to A-8 in appendix A) using the sensors and probes described in Table (2.1). The two 

sites are herein referred to as CR3000 site and CR1000 site according to the associated 

data logger. 

Variables measured at the CR3000 site included air temperature (Ta), relative 

humidity (RH), precipitation, and wind speed (WS) and direction. These measurements 
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were collected over bare ground surface that had a daily average summer surface 

temperature of 25 ºC. The four components of radiation (i.e. downwelling solar radiation 

(RS), upwelling solar radiation (𝑅𝑠
,
), downwelling longwave radiation (Rl), and upwelling 

longwave radiation (𝑅𝑙
,
), were also measured at about 2 m above the ground surface. Net 

radiation (Rn) was determined from the four components of radiation. Soil parameters 

including ground heat flux at 0.1 m depth (GZ), and soil temperature (TZ) and volumetric 

water content (θZ) at 0.05 m depth, were also measured. The data collected at the CR1000 

site were from a relatively cooler area, compared to the CR3000 site. With a daily 

average surface temperature as 20 ºC in summer months. Similar to the CR3000 site, Ta, 

RH, and Rn were also measured at approximately 2 m above the ground surface, GZ was 

measured at 0.1 m depth, and TZ and θZ were measured at 0.05 m depth. The data 

collected at CR1000 site were used in this study for comparison purpose, to observe 

inconsistencies in the trend of the data collected at the CR3000 site (Fig. A-5 to Fig. A-8 

in Appendix A). The instrument and sensors used for data collection, accuracy of the 

measurement, and the manufacturers are summarized in Table (2.1).  

The three hourly precipitation data used to estimate the heat loss from snow 

meltwater was obtained from SNOTEL station located at west Yellowstone operated by 

the National Water and Climate Center from the US Department of Agriculture (USDA) 

(U.S. Department of Agriculture and Service, 2016) 

2.3.2. Estimation of Ground Skin Temperature (Ts) 

In this study, the difference (ΔT) between ground skin temperature (TS) and the 

subsurface temperature measured at 0.05 m depth (TZ) was used to determine the 
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Fig. 2.1. Norris Geyser Basin (NGB) in northwestern Yellowstone National Park and the 

TIR image by USU showing the radiant temperature of NGB on April 2013. 

 

direction of the heat flow in the soil. Understanding the direction of heat flow can 

help determine the time with possible effect from absorbed solar radiation, as heat flows 

in the direction of decreased temperature. The ground skin temperature was estimated 

using the measured upwelling longwave radiation, (𝑅𝑙
,
) using Stefan-Boltzmann equation 

4'

sl TR                                                                (1) 

where ε is the surface emissivity for bare soil, σ is Stefan-Boltzmann constant (5.67*10-8 

W·m-2·K-4), and Ts (K) is the ground skin temperature (K). Surface emissivity, ε, was 

obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global Emissivity Dataset (GED) Product by the National Aeronautics and 

Space Administration (NASA) (Abrams, 2000). The dataset is available on 1º×1º tiles at 

100-meter resolution. ASTER GED was created by processing millions of ASTER data 
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during cloud free times between 2000 and 2008.  The average emissivity of the surface 

was then calculated at the five ASTER TIR wavelengths (Bands 10, 11, 12, 13, and 14). 

The average emissivity value at the CR3000 tower for all wavelengths was 0.89 with 

0.001 standard deviation.  An uncertainty in emissivity value is expected due to the 

coarse spatial resolution of ASTER GED image. A sensitivity analysis for the typical 

range of siliceous sinter soils (0.86-0.89) revealed that the maximum difference in TS was 

about 2.67 °C for ɛ = 0.86 and ɛ = 0.89. 

2.3.3. Correction of Measured Ground Heat Flux (Gz) 

The ground heat flux, Gz, was measured at 0.1 m depth, using a model HFT3 

REBS soil heat flux plate (Fig. 2.3). The heat flux plate contains a thermopile that 

measures the temperature at the two sides of the plate (Scientific, 2003). With a known 

thermal conductivity of the plate (1.22 W·m-1·K-1), the heat flux through the plate is 

calculated by multiplying the temperature gradient by the plate thermal conductivity. The 

heat flux plate method is widely used due to its simplicity; however, heat flow distortion 

may be introduced due to unmatched thermal conductivities of the plate and the 

surrounding soil (Mayocchi and Bristow, 1995; and Sauer et al., 2003). Soil thermal 

conductivity varies with physical soil properties (i.e. particle size, soil minerals, density, 

and water content); however, the thermal conductivity of the plate is fixed for a known 

design ranges. The method developed by Philip (1961) was used to correct the heat flux 

values for heat flow distortion given the plate dimensions and thermal conductivity. A 

correction factor (f) for the measured heat flux and the ground heat flux in the 

surrounding soil media is given by 
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where kp (W·m-1·K-1) is the thermal conductivity of the plate, ks (W·m-1·K-1) is the 

thermal conductivity of the surrounding soil, H is a factor depends on the shape and 

geometry of the heat flux plate, t is the plate thickness (3.91 mm), and D is the plate 

diameter (38.2 mm). In this study the correction factor, f, used to correct soil heat flux 

measurements varied between 0.91 and 0.79. The variability of f was controlled by the 

variability of the soil water content between the residual water content (0.15 gm·gm-1) 

and the saturation water content (0.38 gm·gm-1). 

2.3.4. Estimation of Ground Heat Flux at the Surface (Gs) 

The ground heat flux estimated at the surface (Gs) is often underestimated due to 

ignoring the heat flux stored in the soil above the heat flux sensor (Mayocchi and 

Bristow, 1995). Potential effect of latent heat flux on the soil heat flux measurements is 

not expected to be significant in this study since the plate was buried in a relatively deep 

depth (Gentine et al., 2012). To estimate the conductive heat flux at the soil surface, heat 

storage in the soil layer above the plate, ΔS, and ground surface heat flux, Gs, were 

estimated using the calorimetric heat storage method (Fuchs and Tanner, 1968; Ochsner 

et al., 2007).  

   tStGtG sz )(                                                         (4) 

    tTztCtS zs                                                       (5) 
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where z is the depth above the plate (0.1 m); ΔT is the change in temperature at depth z 

over time, Cs (J·m-3·ºC-1) is the heat capacity of moist soil, ρb (g·cm-3) is the bulk density 

of dry soil; Cd (J·g-1·ºC-1) is the specific heat of dry soil, Cw (J·g-1·ºC-1) is the specific 

heat of water calculated using a numerical equation (eq. 7) described in Millero, Perron, 

and Desnoyers (1973), and ρw (g·cm-3) is the density of water calculated using eq. (8) as 

in Gill (1982). The parameter Cs is generally a function of the water content of the soil; 

however, ρb and Cd are assumed specific to the type of soil. The average ρb for soil 

samples collected on site at depth ranged between 5 and 13 cm was 1.31 g·cm-3. The 

average CS measured on site using KD2 probe at the same depth range was 2.43*106 J·m-

3·ºC-1 and the average θ was 0.15 g·g-1. Using eq. (6), the average Cd was calculated as 

1.24 J·g-1·ºC-1 by substituting the values of CS, ρb, θ and Cw.  Given that Cd does not vary 

greatly for the soil type, Cs(t) was estimated as a function of θ(t), ρw(t), and Cw(t) for the 

period of measurement. 

2.3.5. Estimation of Advective Heat Flux from Snow Melt (Qm) 

 The advective heat removed by meltwater of snow (Qm) was numerically 

estimated using the Utah Energy Balance Snow Accumulation and Melt Model (UEB) 



22 

 

 
 

        
 

 

                
 

 

Fig. 2.2. The explosion crater pool in Norris Geyser Basin and the energy balance 

experiment towers CR3000 and CR1000. 

a. TIR image acquired by USU for 
NGB in September 2010 showing the 
radiant temperature and location of 
the CR3000 tower 

c. CR1000 site at the northeast side 

of the explosion crater pool in 

NGB Photo date May 2009 

b. Google map for the explosion 
crater pool and the location of the 
two towers CR1000 and CR3000 
(1 inch =30.48 m)  

d. CR3000 at the southwest side of the 

explosion crater pool in NGB Photo 

date May 2009 



23 

 

 
 

Table 2.1.  

Summary of parameters and instruments used for data collection. 

Variable Sensor Model Accuracy Manufacturer/Warranty 

Ground Heat 

Flux, ,Gz (W·m-2) 

HFT3 Soil Heat 

Flux Plate 

Better than 5% of 

reading 
REBS Inc., Seattle, WA 

Soil Water 

Content, θz (wfv) 

Steven Hydra 

Probe II 
± 0.03 wfv (m3·m-3) 

Stevens Water 

Monitoring System Inc. 

Portland, OR 

Ground 

Temperature, Tz 

(°C) 

Steven Hydra 

Probe II 

± 0.6 Degrees Celsius 

(From -10o C to 36o C) 

Stevens Water 

Monitoring System Inc. 

Portland, OR 

Air Temperature, 

Ta (ºC) 

HMP45C 

Temperature and 

Relative 

Humidity Sensor 

0.8º C @ -40º C 

0.6º C @ 60º C 

Vaisala Company, 

Finland 

Relative 

Humidity, RH 

(%) 

HMP45C 

Temperature and 

Relative 

Humidity Sensor 

± 2% RH (0 to 90% 

RH) 

± 3% RH (90 to 100% 

RH) 

Vaisala Company, 

Finland 

Short Wave 

Radiation (Rs and 

𝑅𝑠
,
), long wave 

radiation (Rl and 

𝑅𝑙
′) (W·m-2) 

NR01 Four-

Component Net 

Radiation Sensor 

± 10% for 12 hours 

totals, day and night 

Hukseflux Thermal 

Sensors B.V., Delft, 

Netherlands 

Net Radiation, Rn 

(W·m-2) 

NR-Lite Net 

Radiometer 

0.001 ºC for the 

thermopile which is 

proportional to Rn 

Kipp & Zonen, 

Bohemia, NY 

Wind Speed  

(m·s-1) 

RM Young 

Wind Sentry Set 
± 0.5 m·s-1 

R. M. Young Company, 

Traverse City, MI 

Wind Direction 
RM Young 

Wind Sentry Set 
± 5º 

R. M. Young Company. 

Traverse City, MI 

Rain (mm) 

TE525 Tipping 

Bucket Rain 

Gauge 

Up to 1 in·hr-1: ± 1% 

1 to 2 in·hr-1: +0, -3% 

2 to 3 in·hr-1: +0, -5% 

Texas Electronics Inc. 

Huston, TX 

Thermal 

conductivity 

(W·m-1·K-1), 

diffusivity 

(mm2·s-1), and 

heat capacity 

(MJ·m-3·K-1) 

KD2 Pro 

Thermal 

Properties 

Analyzer 

±5 to ±10% Thermal 

Conductivity/Resistivi

ty 

±10% Specific Heat 

±10% Thermal 

Diffusivity 

Decagon Devices Inc. 

Pullman, WA 
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developed by Tarboton and Luce (1996). The model assumes that the snowpack is 

characterized by water equivalence W (m), energy content U (kJ·m-2), and snow age at 

the surface. The model numerically solves the energy balance equation (eq. 9) and mass 

balance equation (eq. 10) using inputs of air temperature, wind speed, relative humidity, 

precipitation, incoming solar radiation and longwave radiation, and ground heat flux, 

which were all measured on site.   

mehgPlisn QQQQQQQ
dt

dU
                                     (9) 

EMPP
dt

dW
rsr                                                  (10) 

The energy balance terms are in units of energy per horizontal area (i.e. kJ·m-2·hr-1); 

where, Qsn is net shortwave radiation; Qli net incoming longwave radiation; Qp is 

advected heat from precipitation; Qg is ground heat flux; Qh is sensible heat flux; Qe is 

latent heat flux due to sublimation/condensation; and Qm is advected heat removed by 

meltwater. In the mass balance equation all terms are in m·hr-1 of water equivalence; 

where, Pr is rainfall rate; Ps is snowfall rate; Mr is meltwater outflow from snowpack; and 

E is sublimation from the snowpack. Many of these fluxes depend functionally on the 

state and input driving variables. In this study the model was applied from the beginning 

of the snow season on October 1st for each year from 2009 to 2012. The initial condition 

of snow age, energy content, and snow water equivalent were assumed to be zero. The 

model estimated Qm as 

Ifwm MhQ        (11) 

where ρw is water density (1000 kg·m-3) and hf is heat of fusion (333.5 kJ.kg-1). 
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  Sublimation is defined as vapor transport away from the surface and is described 

as  

 qqKM saee                                                      (12) 









0

2

ln
z

h

Vk
K e

                                                      (13) 

where qs is the surface specific humidity, Ke the vapor conductance (m·hr-1), ρa is air 

density (kg·m-3), k is van Karman’s constant (0.4), V is wind speed (m·hr-1) at height h 

(m), and z0 is height at which the velocity is zero (assumed 0.1 h for bare ground). The 

water equivalence depth of sublimation is described as  

w

eM
E


                                                       (14) 

2.3.6. Estimation of Average Diurnal and Seasonal Heat Flux from Solar  Radiation 

To estimate the conductive heat flux due to solar radiation, the time with potential 

minimum heat flux due to solar radiation was determined using the direction of net 

radiation (Rn) and the temperature gradient in the soil. The temperature difference (ΔT) 

between the temperature measured at 0.05 m depth (Tz) and ground skin temperature (Ts), 

was used to determine the direction of the heat flow in the soil (Fig. 2.3). Generally, when 

ΔT is negative (Ts > Tz), heat flowing downward from the ground surface towards the 

cooler subsurface indicates heat gain from solar radiation and/or atmospheric longwave 

radiation. This scenario generally peaks during the day on clear and sunny days. When 

ΔT is positive (Ts < Tz), heat flowing upward from the subsurface towards the cooler 

atmosphere indicates heat loss from the soil which generally occurs under clear skies 
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shortly after sunset due to the radiation cooling effect.  

The sign of net radiation, Rn, determines the direction of the radiative energy at 

the ground surface with positive values indicate that the incoming radiative energy 

exceeds the reflected and emission losses at the surface and negative values indicate that 

the energy loss exceeds the gain  ''

lsls RRRR  . At the time when Rn is negative and 

∆T is positive, the heat from the subsurface is a combination of the heat flux due to solar 

radiation and atmospheric radiations stored in the ground and the near-surface geothermal 

heat.  

A diurnal cycle of Rn and ∆T were compared among a set of overcast winter days 

and mostly clear and sunny days. Overcast winter days with notably low measured 

incoming shortwave radiation and mostly negative Rn were observed during winter 

months of December 2009 and January 2011. On these days, air temperature was below 

freezing and Rn was negative during the entire day indicating that the heat flux due to 

solar radiation was minimal. However, during these days the ground temperature was 

predominantly greater that air temperature. For that latent and sensible heat fluxes were 

lost from the ground to balance the energy input from the geothermal source. The average 

ground heat flux relative to -Rn and +ΔT during the previous days was compared with 

that of mostly sunny summer days, where the heat flux from solar radiation was expected 

to be high. The difference between the averages represent the lower bound of the 

conductive heat flux in the soil due to solar radiation effect. The method does not 

separate the effect of solar radiation from the atmospheric radiation. The night-time 

remote sensing TIR imagery are usually acquired on mostly clear and sunny days to 
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Fig. 2.3. Simulation shows the HUKSEFLUX plate at 0.1 m measuring Gz, Gs estimated 

at the surface, Ts estimated at the surface, and Tz measured at 0.05 m. 

 

minimize the radiative effect due to clouds. This method represent a simplified method to 

estimate the average heat flux due to solar radiation. However, the heat from solar 

radiation varies greatly with the intensity and duration of solar radiation and with the 

cloud condition and time of the day. 

2.4. Results 

2.4.1. Observed Variability 

The 5-minute measurements collected at the CR3000 site and the CR1000 site 

between August 15, 2009 and July 2, 2012 are presented in Figs. A-1 to A-4 and A-5 to 

A-8 in appendix A, respectively. The observed ground heat flux measured at 0.1 m depth, 

Gz, was mostly negative in the two sites indicating that the geothermal heat was dominant 

over the heat stored from solar and atmospheric longwave radiation. The largest Gz 

values occurred mostly during the night (low negative values). During the day, Gz 

changed gradually and became less negative as Rs increased. On sunny days with clear 

skies, Gz values were either low positive or large negative due to the increase in solar 

∆S 

GS 

GZ 

TS 

TZ 

∆T = TZ – TS 

HFT3 

REBS Plate 

0.1 m 
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heating. For example, 22 September 2009 was mostly sunny with maximum Gz value as -

77.6 W·m-2 around noon and minimum value during the night as -223.2 W·m-2 around 11 

pm. As the HTF3 heat flux plate thermopile measures the differential temperature across 

the ceramics-plastic body of the plate and generates a voltage proportional to the heat 

flux, Gz negative reading suggested that the differential temperature was lower during the 

day when solar radiation was present, which explains the low positive or high negative Gz 

values close to noontime on sunny days. Positive Gz values indicate that the temperature 

above the ceramics-plastic composite body was greater than the temperature below the 

body. The condition which occurred few times during the course of the study, on mostly 

clear sunny days. 

The heat loss from snow meltwater during snow season explains some of the 

seasonal variability in Gz between summer and winter months. Fig. (2.4) shows the 

results from the UEB model including the cumulative precipitation (m), cumulative total 

outflow (m), cumulative snow sublimation (m), and cumulative melt energy (W·m-2). The 

total outflow represented more than 60% of the snow loss compared to less than 40% for 

sublimation.  

Anomalous spikes in Gz (up to -400 W·m-2) were observed at the CR3000 site 

after precipitation, mainly during summer months where the form of precipitation was 

rain (Figs. A-1 to A-4 in Appendix A). This phenomena was clearly observed in 2009 

between September 30th and October 31st when more than 50 mm of rain was recorded 

(Fig. A-1 in Appendix A). Similar increase in Gz after precipitation was also observed at 

the CR1000 site; however, the increase was less compared to that at CR3000 site.  Also, 



29 
 

 
 

an anomalous increase in Gz occurred at the CR3000 site between January 11 and 

February 1, 2010, and September 6 and 20, 2010. During these days were also anomalous 

increase in the ground temperature, Tz, and the upwelling longwave radiation, Rl, were 

observed. This parallel increase in Gz, Tz, and Rl at CR3000 site, was neither observed at 

CR1000 site nor in the temperature of the nearby explosion crater pool.  

2.4.2. Variability during Selected Summer and Winter Days 

In this study, selected mostly sunny summer days and overcast winter days were 

used to demonstrate the diurnal variation of the heat flux due to solar radiation. The 

diurnal variability of some of the parameters measured at the CR3000 site for three 

consecutive sunny days of September 22-24, 2009, mostly cloudy winter days of January 

10-12, 2010, and overcast winter days of December 29-31, 2009, and January 4-6, 2011, 

is observed in Figs. 2.5 and 2.6. The days of September 22-24, 2009 were mostly sunny 

(maximum Rs ≈ 720 W·m-2) (Fig. 2.5.a). On these days, net radiation (Rn) was positive 

during the day and negative shortly before sunrise and after sunset. Ground skin 

temperature (Ts) gradually increased at sunrise and was greater than the temperature 

measured at 0.5 m depth (Tz) at about an hour after sunrise. At about an hour after sunset 

Ts decreased and became lower than Tz resulting in negative temperature gradient (-ΔT) 

until sunrise of the following day. Maximum Ts and Tz values during these days ranged 

between 34 and 37 °C and between 28 and 32 °C, respectively, and minimum values 

ranged between 12 and 16 °C and between 17 and 19 °C, respectively.  Maximum and 

minimum Ta values ranged between 19 and 24 °C and between -3 and 10 °C, 

respectively. 



30 
 

 
 

Sunshine hours on January 10-12, 2010 was about nine hours compared to 12 

hours on September 22-24, 2009 (Fig. 2.5.b).  Fluctuations in Rs and Rn during January 

10-12, 2010, were partly due to presence of snow clouds. About 0.2 inches of snow 

precipitated on each of the three days. Maximum heat loss due to snow meltwater was 

estimated at 48.7 W·m-2. Maximum and minimum Ts values were about 15 °C cooler 

during January 10-12, 2010 compared to September 22-24, 2009, and Ta was below 

freezing. Similar to September 22-24, 2009, Ta and Ts continued to gradually decrease 

after sunset until the following sunrise.  

Weather conditions were similar during 29-31 December 2009 and 04-06 January 

2011, generally cloudy with low Rs values and freezing air temperatures. About 0.2 

inches of snow precipitated on 31 December 2009, and about a similar amount 

precipitated on each of the days of 04-06 January 2011. The radiant energy loss was 

mostly greater than the gain as indicated by the negative sign of Rn. Due to the cloudy 

condition during December 2009 and January 2011 days, the maximum Rs values at the 

ground surface were less than 200 W·m-2. On 30 and 31 December, and 04 and 05 

January, Rn was negative throughout the day; and maximum Rn was noticeably low in 

December 29th and January 06th (Fig. 2.5.d). 

2.4.3. Snowmelt and Advective Heat Loss 

 Snow water equivalent was zero during December 29 and 30, 2009 (Fig. 2.7). 

Maximum heat loss of 31.4 W·m-2 occurred on December 31, 2009, following a snow 

storm in the afternoon of that day. Increased surface temperature during that time resulted 

in almost immediate meltdown increasing the heat loss from the ground. During January 
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Fig. 2.4. results from the UEB Model showing accumulated snow outflow (m), 

accumulated sublimation (m), and accumulated melt energy (W·m-2) during a) 2009-2010 

winter, b) 2010-2011 winter, and c) 2011-2012 winter. 

(a) 

(b) 

(c) 
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Fig. 2.5. Observed Rs, Rn, Gs and Gz values on the selected consecutive days (a) 

September 22-24, 2009 (b) January 10-12, 2010 (c) December 29-31, 2009 (d) January 4-

6, 2011. 

(a) 

(c) 

(b) 
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Fig. 2.5. (continued). 

 

   
Fig. 2.6. Observed Ta (°C), Ts (°C), ΔT (°C), and WS (m·s-1) values on the selected 

consecutive days (a) September 22-24, 2009 (b) January 10-12, 2010 (c) December 29-

31, 2009 (d) January 4-6, 2011. 

(d) 

(a) 

(b) 
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Fig. 2.6. (continued).  

 

10-2, 2010, maximum heat loss of 47.1 W·m-2 occurred on January 11 following two 

events of precipitation. Precipitation depth during January 04-06, 2011, was similar as the 

former January 2010 days. Maximum heat loos occurred during January 06 as ground 

temperature was relatively high compared to the previous two days and heat loss through 

sublimation was notably lower compared to the former days (Fig. 2.7). 

2.5. Discussion 

 The ground heat flux, Gz, measured at the CR3000 and CR1000 sites was 

generally consistent (Figs. A-1 to A-8 in Appendix A). The heat flux values had similar 

(d) 

(c) 
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Fig. 2.6. results from the Utah Energy Balance Snow Accumulation and Melt Model 

showing precipitation (m), outflow, sublimation (m), and melt energy (W·m-2) during a) 

29-31 December, 2009, b) 10-12 January, 2010, and c) 04-06 January, 2011. 

(a) 

(b) 

(c) 
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trend and seasonal patterns except for the anomalous spikes observed at the CR3000 site 

after precipitation (up to -400 W·m-2 on some days). The abrupt increase in water content 

and/or change in soil temperature after precipitation may explain the spikes in Gz. Several 

soil characteristics may affect the movement of water in the soil, including soil texture 

and soil aggregation. The soil at the CR3000 site was a hydrothermally altered siliceous 

sinter rock and contained relatively large rocks. The grain size distribution of that soil 

was 52.4% sand, 30.7% silt, and 16.9% clay and was classified as loam. The soil at the 

CR1000 site was a formation of sediment with visibly finer particles compared to that at 

the CR3000 site. The grain size distribution of that soil was 35.4% sand, 34.2% clay, and 

30.4% silt, and was classified as clay loam. The presence of rocks in the soil at the 

CR3000 site and the increased percentage of sand particles may have enabled abrupt 

increase in water content and decrease in soil temperature above the impervious plate that 

may be related to the spikes in Gz values. On the other hand, the parallel anomalous 

increase in Gz, Tz and Rl observed on the days between January 11 and February 1, 2010 

and on the days between September 6 and 20, 2010, occurred only at the CR3000 site. 

The parallel increase of these three parameters indicate a local increase in the thermal 

heat at the CR3000 site. An increase in thermal activity may be related to the swarm of 

small earthquakes of magnitude 2.7 occurred on the evening of January 17 and morning 

of January 18, 2010, at west Yellowstone as reported by Utah Seismograph Stations 

(Utah, 2007). The swarm was located about 10 miles northwest of Old Faithful, 9 miles 

southeast of West Yellowstone. This swarm continued until February 3, 2010. The 

anomalous increase of Gz, Tz, and Rl at only the CR3000 site observed between the weeks 



37 
 

 
 

of January 11, 2010 and February 1, 2010 may relate to the increase thermal activity 

during this period. However, no major increase in seismic activity was observed between 

September 6 and 20, 2010.   

2.5.1. Diurnal Heat Flux from Solar and Atmospheric Radiations during Selected 

Summer and Winter Days  

  

 The average value of the conductive heat flux due to solar and atmospheric 

longwave radiation was estimated by comparing the ground surface heat flux, Gs, on 

selected summer and winter days during times with no or low energy gain through the 

surface (-Rn and +ΔT). In this case, Gs flowing from the subsurface to the ground surface 

was comprised of the conductive heat stored in the ground from solar and atmospheric 

radiation and the near-surface geothermal heat flux. In Fig. (2.8), the blue dots represent 

Gs during times with -Rn and +ΔT, the red dots represent Gs during times with +Rn and -

ΔT, and the green dots represent Gs during times when both Rn and ΔT were positive or 

negative. For example, when Rn and ΔT were both positive on 22-24 September 2009, 

temperature at 0.05 m depth was higher than the surface temperature although the ground 

surface gained heat. This condition occurred during the time lag needed for the soil layer 

above the temperature probe to warm up after sunrise and to cool down after sunset.  

 On September 22-24, 2009, the average Gs values during times with +Rn and -∆T 

(red dots) were -62.0 ± 97.8 W·m-2, -52.7 ± 93.9 W·m-2, and -60.0 ± 99.6 W·m-2, 

respectively (Fig. 2.8.a). The large variability is explained by the variability of the 

incoming solar radiation during these days. After sunset, the average Gs during times 

with -Rn and +∆T (blue dots) were -230.3 ± 30.9 W·m-2, -229.2 ± 26.3 W·m-2, and -237.5 
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± 24 W·m-2, respectively. The standard deviation values were low compared to those 

observed during the day, indicating that the heat loss through the ground surface to the 

atmosphere was relatively stable.  

 The conductive heat flux stored in the soil from solar radiation was expected to be 

low during the overcast days of January 10-12, 2010 compared to the former sunny 

summer days due to low Rs values (maximum was about 500 W·m-2), and short sunshine 

hours. After adding the heat loss from meltwater (Qm) to Gs values, the difference 

between the averages of the new Gs during times with -Rn and +∆T was about 48 W·m-2. 

This difference can be related to the difference in the heat flux stored in the ground from 

solar and atmospheric radiation since both latent heat and sensible heat are lost to the 

atmosphere.  

 On December 30, 2009 and January 4-5, 2011, maximum Rs values were less than 

200 W·m-2, and Rn was negative and ΔT was positive for the entire day. Average Gs 

during times with -Rn and +ΔT were -150.5 ± 22.1 W·m-2 on December 30, 2009; and -

139.1 ± 19.3 W·m-2 and -146.1 ± 18.4 W·m-2, on January 4 and 5, 2011, respectively (Fig. 

2.9). These values were statistically similar and fell within the same interquartile range. 

Since Rn was continuously negative during these days and air temperature was below 

freezing, the increased subsurface temperature was attributed to the geothermal gradient. 

Given the previous weather and surface radiation conditions on December 30, 2009 and 

January 4-5, 2011, the stored heat flux from solar and atmospheric radiation was 

expected to be a negligible fraction of the measured ground heat flux. The average of Gs 

values during times with -Rn and +ΔT on the former days was 142.7 ± 25.2 W·m-2. The 
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result from this study reveal a difference between the averages of Gs values during times 

with -Rn and +∆T on the sunny clear summer days of September 22-24, 2009 and on 

December 30, 2009 and January 04-06, 2011, as -89.2 ± 21.0  W·m-2. This range was 

assumed representative of the average heat flux stored at the ground surface due to solar 

and/or atmospheric radiation, during the former sunny summer days. The standard 

deviation associated with this value (21.0 W m-2) was calculated as the average of the two 

standard deviations associated with average Gs values estimated for the sunny and 

overcast days (20.7 W m-2 and 25.2 W m-2). If the standard deviation is calculated as the 

square root of the two variances, the average Gs is -89.2 ± 32.6 W·m-2. 

2.5.2. Seasonal Heat Flux from Solar and Atmospheric Radiation  

 Seasonal analysis of Gs during times with potential low heat flux from solar and 

atmospheric radiation (-Rn and +∆T), after adding Qm values was estimated for the period 

between August 15, 2009 and July 2, 2012. The values were classified into 

meteorological seasons of northern hemisphere (i.e. spring between March 1 and May 31, 

summer between June 1 and August 31, fall between September 1 and November 30, and 

winter between December 1 and February 28). The average values of Qm, estimated from 

the hourly outflow values, was assumed uniformly distributed during that hour. These 

values were added to the values of Gs to compensate for the heat loss from snowmelt. The 

histograms of the averages showing the frequencies of the Gs values with -Rn and + ΔT, 

after adding Qm, are displayed in Fig. (2.10). The breakpoints in the histograms were set 

to a range of 100 W·m-2. Lower ranges generally represent values during times with 

cloudy conditions when incident solar radiation was likely low. Alternatively, higher 
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ranges are equivalent to sunny days with clear skies or to times with anomalous increase 

in Gs. For summer months, the range between -200 and -300 W·m-2 had the highest 

frequency with approximately 52 ̶ 84% of the observations fell within that range. In 

winter months, the range between -100 and -200 W·m-2 had approximately 72 ̶ 89% of 

the observations. The range between -200 and -300 W·m-2 had lower frequencies with 

approximately 8 to 16% of the observations fell in that range. In the fall months of 2009 

and 2011, more than 50% of the observations fell between -200 and -300 W·m-2. In Fall 

of 2010, more than 15% of the values were greater than 300 W·m-2 which is explained by 

the anomalous increase in Gz, Ts, and Rl’ between September 6 and 20, 2010. The 

seasonal analysis suggests that the difference between the values during summer months 

and winter months was in the range of 100 W·m-2. This difference was consistent with 

the diurnal average of the values (-89.2 ± 21.0 W·m-2) suggesting that the seasonal 

difference was due to effect from solar radiation.  

2.5.3. Comparison of Ground Heat Flux with Previous Studies  

 To validate the estimated average heat flux due to solar radiation (-89.2 ± 21.0 

W·m-2), this average was compared to the average of values measured or estimated on 

previous studies on non-geothermal grounds. Studies on soil heat flux in non-geothermal 

grounds are available in the literature for different types of soil, climate and topography. 

Soil temperature and energy exchanges between the soil and the atmosphere are affected 

by soil physical, thermal, and hydraulic properties and meteorological conditions. Surface 

albedo is an important parameter in the energy balance at the ground-atmosphere 

boundary as it controls the fraction of solar energy reflected from the ground surface back  
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Fig. 2.7.  Plots show Gs corresponding to +Rn and -∆T (blue), Gs corresponding to -Rn 

and +∆T (red), and Gs corresponding to +Rn and +∆T or -Rn and -∆T (green), (a) 22-24 

Sep 2009, (b) 10-12 Jan 2010, (c) 29-31 Dec 2009, (d) 04-06 Jan 2011. The black line 

represent Gs before adding the energy loss by snowmelt.  

(a) 
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Fig. 2.8. (continued). 

(b) 
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 Fig. 2.8. (continued).   

(c) 
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Fig. 2.8. (continued).  

(d) 
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Fig. 2.8. The average ground heat flux (Gs) during times with -Rn and +∆T (circle) and 

+Rn and -∆T (triangle). The error bar represents the standard deviation. 

to the atmosphere. Cellier et al. (1996) measured soil heat flux in bare ground near Laon, 

France. The albedo of the chalky soil in their study site was similar to the albedo of the 

siliceous sinter soil at the CR3000 site (Table 2.2). Maximum solar radiation on the 

sunny day of measurement on April 28, 1991, was approximately 805 W·m-2. The 

Minimum soil heat flux measured during the night at the ground surface was 

approximately -75 W·m-2. Another study of soil heat flux on non-vegetated area was 
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conducted by Heusinkveld et al. (2004) in Negev, Israel. Maximum solar radiation on the 

mostly sunny day of October 16, 2000, was about 770 W·m-2. The soil had high albedo 

similar to the soil at the CR3000 site. The minimum soil heat flux values during the night 

of that day was approximately -70 W·m-2. The soil from Santanello Jr and Friedl (2003) 

had relatively lower albedo compared to the soil at  

 

Fig. 2.9. Seasonal histogram showing the frequencies of Gs corresponding to -Rn and +∆T 

after adding Qm. Seasons were classified according to the meteorological seasons for the 

northern hemisphere from August 2009 to July 2012. 
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CR3000 (Table 2.2). Maximum incoming solar radiation during the time of measurement 

on August 9, 1991 was ~1000 W·m-2. The minimum soil heat flux during the night of that 

day was approximately -90 W·m-2. Although the previous studies were conducted in 

different geographic areas with different climate and altitude and in different months, the 

ground heat flux had a range of minimum soil heat flux between -70 and -90 W·m-2 for a 

range of surface albedo between 0.4 and 0.22; and a range of incoming solar radiation 

between 770 and 1000 W·m-2.  In non-geothermal grounds, soil heat flux measured 

during the night is solely due to the effect of solar and atmospheric radiation. The later 

range (~70-90 W·m-2) fell within the average of Gs during -Rn and +∆T (-89.2 ± 21.0 

W·m-2) estimated from the comparison between the sunny summer days and the overcast 

winter days as discussed previously.  

2.5.4. Estimation of Average Radiant Geothermal Heat Flux using Thermal Infrared 

Remote Sensing Images 

 

 The main purpose of this study was to develop a method to estimate the 

conductive heat flux stored in the ground due to solar and atmospheric radiations using 

surface and near-surface measurements. The ground-based experiment was conducted to 

help remove the radiant effect due to solar and atmospheric radiations from the remote 

sensing TIR images in NGB. The TIR images are usually acquired during night time 

hours of mostly sunny days to avoid the effect from clouds and atmospheric longwave 

radiation. The total radiant flux estimated from the TIR images is a combination of the 

radiant flux due to solar and atmospheric radiations and the radiant geothermal flux. 

Estimation of the radiant geothermal flux may be achieved assuming that the ratio 

between the estimated conductive heat flux and radiant flux due to solar and atmospheric  
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Table 2.2.  

Soil thermal properties and albedo from different previous studies 

Reference Site Date of 

Measurement 

Elevation 

ASL (m) 

Maximum 

Rs  

(W·m-2) 

Maximum 

Albedo 

Minimum  

Gs  

(W·m-2) 

This Study Norris, 

WY 

September 

22, 2009 

2279.3 770 0.36 ~ -230.1 

Cellier et al. 

(1996) 

Laon, 

France 

April 28, 

1991 

104.2 ~805 0.31 ~ -75 

Heusinkveld 

et al. (2004) 

Negev, 

Israel 

October 16, 

2000 

198.7 ~770 0.4 ~ -70 

Santanello Jr 

and Friedl 

(2003) 

Walnut 

Gulch, 

Arizona 

August 09, 

1991 

1179.6 ~1000 0.22 ~ -90 

 

radiation equals the ratio between the estimated conductive heat flux at the ground 

surface and the total radiant flux estimated from the TIR images. 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

 𝑅𝑎𝑑𝑖𝑎𝑛𝑡 𝐹𝑙𝑢𝑥 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 
=

𝐺𝑟𝑜𝑢𝑛𝑑  𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝐺𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑡 𝐹𝑙𝑢𝑥 𝑓𝑟𝑜𝑚 𝑇𝐼𝑅 𝐼𝑚𝑎𝑔𝑒𝑠
       (15) 

And 

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐺𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 𝑅𝑎𝑑𝑖𝑎𝑛𝑡 𝐺𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝐹𝑙𝑢𝑥 
=

𝐺𝑟𝑜𝑢𝑛𝑑  𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝐺𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑡 𝐹𝑙𝑢𝑥 𝑓𝑟𝑜𝑚 𝑇𝐼𝑅 𝐼𝑚𝑎𝑔𝑒𝑠
 (16) 

The ratio between the estimated conductive heat flux at the ground surface (Gs) and the 

radiant flux estimated from the TIR image (G) at and around the pixel where the heat flux 

plate was installed was approximately consistent (Table 2.3). However, in this study the 

radiant flux in the ground from stored solar radiation was estimated for soil with siliceous 

sinter characteristics, therefore this method is suggested for bare sinter soil areas with 

similar albedo as the siliceous sinter in the study site. In general, areas covered with 

siliceous sinter soil surround hot hydrothermal features in YNP. Therefore, study of the 

temporal changes in the radiant temperature and/or radiant flux on areas covered with 
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siliceous sinter, after removing the radiant effect from stored solar and atmospheric 

radiations, can provide an indication of changes within the adjacent hydrothermal 

systems. Multispectral images in multiple wavelengths of the visible and near infrared 

spectrum can be used to classify the surface into different classes with similar reflectance 

values including the siliceous sinter (Yuan and Bauer, 2006). Estimating the radiant 

geothermal flux is essential to study possible temporal and/or spatial changes within the 

geothermal system after removing the radiant flux from solar and atmospheric radiations.  

 Two examples of TIR images were used to estimate the average value of the 

radiant geothermal flux. The images were acquired in NGB on September 10, 2009, after 

midnight, and on March 9, 2012, at around 9 pm. The TIR images had a spatial resolution 

of approximately 1 m*1 m. To account for the spatial error within the image, the average 

radiant flux (G) was calculated for the six pixels around the location of the heat flux 

plate.  

 The ground-based measurements were collected during the day prior to image 

acquisition, on September 9, 2009, and on March 9, 2012, as displayed in Fig. (2.11) and 

Table (2.3). September 9, 2009, was mostly sunny. On the night of the TIR image 

acquisition on September 10, 2009, the average Gs during -Rn and +ΔT was -234.1 ± 20.6 

W·m-2.  This value was statistically similar to the average value estimated during 

September 22-24, 2009 (-231.8 ± 20.7 W·m-2). Therefore, the residual conductive heat 

from stored solar and atmospheric radiations was expected to be in the same range of the 

former days (89.2 ± 21.0 W·m-2). The average radiant flux (G) from 2009 image was 

estimated as 425.3 ± 0.4 W·m-2. The ratio between the average Gs and G was 
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approximately 0.55. Using eq. (15), the average residual radiant flux is estimated at 162.1 

W·m-2 (with range between 124 W·m-2 and 200.2 W·m-2). This range is larger (i.e. 

between 102.8 W·m-2 and 221.4 W·m-2) if the standard deviation was calculated as the 

square root of the two variances of Gs values corresponds to –Rn and +ΔT, estimated for 

the sunny and overcast days as explained in the previous section. The maximum radiant 

residual flux value in this case is 221.4 W·m-2. The minimum radiant geothermal flux 

was estimated as approximately 203.8 W·m-2 after subtracting the maximum radiant flux 

value (221.4 W·m-2) from the total radiant flux (425.3 W·m-2). Using eq. (16), the 

minimum conductive geothermal heat flux was then estimated as 112.1 W·m-2 which is in 

the lower range of Gs value during -Rn and + ΔT estimated on December 30, 2009, and 

January 4 and 5, 2011 (142.7 ± 25.2 W·m-2). 

 On March 9, 2012, the difference between the average Gs during –Rn and +ΔT (-

169.2 ± 15.5 W·m-2) and the average estimated on December 30, 2009 and January 4 and 

5, 2011 (142.7 ± 25.2 W·m-2) was (approximately 26.5 ± 23.9 W·m-2). According to the 

comparison method this difference represents the average heat flux due to solar and 

atmospheric radiation. Using this average value and the ratio between Gs and G in eq. 

(15), the average radiant flux due to solar and atmospheric radiation was 46.6 W·m-2. The 

range of the radiant flux due to solar and atmospheric radiation was 4.7 W·m-2 and 88.5 

W·m-2. Subtracting the maximum radiant flux value (88.5 W·m-2) from the total radiant 

flux (297.6 W·m-2) gives an estimate of the minimum radiant geothermal heat flux as 

approximately 209.1 W·m-2. Using eq. (16), the minimum conductive geothermal heat 

flux was then estimated as 119.2 W·m-2 which is in the lower range of Gs value during -
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Rn and +ΔT estimated on December 30, 2009, and January 4 and 5, 2011 (142.65 ± 25.21 

W·m-2). Given the variability of weather conditions and the between-acquisitions 

difference, the estimated values of minimum conductive geothermal heat flux during the 

two flight periods (112.1 W·m-2 and 119.2 W·m-2) and radiant geothermal heat flux 

(203.8 W·m-2 and 209.1 W·m-2), are considered fairly similar.  

2.5.5. Possible Sources of Uncertainty 

 The comparison method suggested in this study to estimate the heat stored in the 

soil due to solar radiation assumed that the geothermal heat flux was constant and the 

bulk of the change in ground heat flux was due to surface energy. The seasonal 

comparison of ground heat flux during times with -Rn and +ΔT suggested that this 

assumption might be true as the seasonal difference in the ground heat flux values was 

mostly consistent. However, in Norris Geyser Basin, change in geothermal heat can be 

rabid and unpredictable.  

 In this study, uncertainty in the data can be related to, first, the ground-based 

experiment and, second, the remote sensing method. The uncertainty related to the 

ground-based experiment includes using the calorimetric heat storage method to estimate 

soil heat storage above the heat flux plate. This method integrates the ground temperature 

over the depth overlaying the heat flux plate to estimate the heat storage above the plate. 

The accuracy of the estimates of the ground heat storage increases when soil temperature 

is measured at multiple depths. Massman (1992) stated that the standard calorimetric 

correction may have ±3% to 10% errors when assuming the change in temperature of the 

soil layer above the plate is approximated by the average temperature at the midpoint. In 
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Table 2.3.  

Average of ground-based data (Ta, Ts, and Gs) during the night before the flight overpass, during -Rn and +ΔT; and radiant flux 

(G) estimated using the TIR images 

Date of Flight 

Overpass 

Time of Flight 

Overpass 

Ta (°C) Ts (°C) Gs (W·m-2) G (W·m-2) Gs/ G 

Sep 10, 2009 3:36-3:53 am 11.51 ± 6.23 25.62 ± 3.41  -234.12 ± 20.57 425.25 ± 0.35 0.55 

Mar 9, 2012 21:23-21:44 pm -4.35 ± 8.81 8.93 ± 4.05 -169.19 ± 15.46 297.55 ±1.79 0.57 
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Fig. 2.11. Temperature and flux data for the days of airborne TIR remote sensing image 

acquisition over NGB 

 

this study, the temperature measured at 0.05 m depth is assumed representative of the 

average temperature between the heat flux location at 0.1 m depth and the ground 

surface. More accurate results of heat storage and surface ground heat flux surface can be 

obtained by incorporating temperature at multiple depths in the heat storage calculation 

(Weber, 2006).  

 Uncertainty can be introduced, when surface skin temperature is estimated using 

estimates of surface emissivity from ASTER GED database. An uncertainty is expected 
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from using the emissivity images which had a course resolution of approximately 100 m 

compared to the relatively small area represented by the heat flux plate. The sensitivity 

analysis for a range of surface emissivity between 0.86 and 0.89 showed about 2.67 °C 

difference in the estimated skin temperature. This error may have implication on 

determining the temperature gradient in the soil and therefore Gs values during time with 

+ΔT. 

 Uncertainty related to the remote sensing TIR images includes spatial accuracy of 

the features, temporal consistency of the TIR images, and relevance of the estimated 

radiometric temperatures to the measured kinetic temperatures. Neale et al. (2016) 

explained the methods used to produce consistent and accurate TIR images including the 

methods used for image processing and correction for atmospheric disturbance and 

emissivity. The spatial accuracy of the TIR images varied in year to year with maximum 

spatial displacement of 5 m (Neale et al., 2016). To reduce this uncertainty, the radiant 

flux (G) was calculated for six pixels around the pixel that theoretically overlay the heat 

flux plate. 

2.6. Summary and Conclusions 

 Frequent monitoring of the thermal activity in active geothermal areas, like 

Yellowstone National Park, is required to determine possible temporal and/or spatial 

changes within the system. Airborne remote sensing images have recently been used in 

YNP to estimate and compare the surface radiant temperature and radiant flux. The 

challenge remained in comparing year-to year changes in the radiant temperature and 

radiant flux due to the geothermal source and removing the stored radiant flux resulting 
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from solar shortwave radiation and atmospheric longwave radiation in the top layer of the 

ground. In this study, a simple approach was proposed to estimate and remove the stored 

radiant flux which enabled the estimation of the radiant geothermal flux allowing for 

comparison among several years of monitoring. Previous methods that were used to 

estimate the absorbed residual radiant flux, used remote sensing images to estimate the 

radiant flux from a non-geothermally active area, assuming the source of the radiant flux 

is solely from stored solar radiation and atmospheric longwave radiation. This method, if 

applied through airborne remote sensing, will require additional images outside the area 

of interest, which will add to the overall project cost. Selection of the background non-

geothermal area has also been an area of research as it is somewhat challenging to select 

a background area with surface characteristics similar to the geothermal area which is 

typically composed of sintered soils. The method used in this chapter was based on a 

simple comparison between estimates of surface and near-surface conductive heat flux 

and radiant flux estimated through airborne remote sensing remote sensing. Although the 

proposed method was based on comparison of average values, the results of the estimated 

radiant geothermal flux were statistically close. The radiant geothermal flux was 

estimated using the remote sensing TIR image acquired on 09 September 2009 as 203.8 

W·m-2 and on 09 March 2011 image as 209.1 W·m-2.  Given the variability of season and 

overall weather conditions in between-acquisitions, the difference between the two 

former values is negligible. The ratio between the conductive heat flux measured by the 

plate and the radiant flux over the same area surrounding the plate is consistent among 

the years.  So future remote sensing studies can assume that this ratio will hold allowing 
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the estimates of the solar contributed fluxes to be removed without need for ground 

measurements. The standard deviation values associated with the conductive heat flux 

measurements were generally high due to variability in weather conditions. This 

variability suggested that measurement of the ground heat flux and/or the temperature 

profile below the diurnal radiant flux zone is important to better quantify changes related 

to the geothermal source, and to test the proposed method in this chapter to separate 

surface geothermal heat flux and the residual heat flux. The estimated radiant residual 

flux values were specific to the days in the analysis and not to all sunny and clear days, as 

different weather condition (i.e. air temperature and clouds) may have different effect on 

the ground heat flux.  

 The results revealed an average of 89.16 ± 21.0 W·m-2 as the conductive heat flux 

due to solar radiation on mostly clear sunny days of 22-24 September 2009. This range 

was close to the range estimated in previous studies on non-geothermal grounds with 

similar surface albedo. However, the effect of solar radiation and atmospheric longwave 

radiation varies according to solar intensity and duration as well as cloud cover. In 

addition, increase in underlying geothermal heat flux can represent a challenge to 

distinguish the flux due to solar and atmospheric radiations and the signal from 

geothermal heat flux.  

  The continuous monitoring of the ground heat flux and surrogate parameters of 

heat like surface temperature and upwelling longwave radiation can indicate anomalies in 

the thermal activity if they occur in a measurable level. Reported seismic activity may be 

tied to the hydrothermal activity between January 11, 2010 and February 1, 2010. 
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However, between September 6, 2010 and September 20, 2010 the potential increase in 

thermal activity was not tied with reported seismic activity and this reasoning might need 

extra investigation. 
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CHAPTER 3 

 

NUMERICAL SIMULATION OF SOIL WATER AND HEAT TRANSPORT WITH 

VAPOR FLOW IN BARE GROUND IN NORRIS GEYSER BASIN, YELLOWSTONE 

NATIONAL PARK 

 

Abstract 

 Studies about heat transport mechanisms and rates in the subsurface of 

geothermally heated grounds in Yellowstone National Park (YNP) are limited. Such 

studies are important to determine the contribution of each mechanism in the overall heat 

transport in these areas as it can related to the magmatic activity in the area. In this study 

HYDRUS-1D numerical model was used to evaluate the four heat transport mechanisms 

including conduction of sensible heat, convection of sensible heat by liquid water and 

water vapor, and convection of latent heat by water vapor in the top 15 cm of siliceous 

sinter deposit in Norris Geyser Basin (NGB). The model was calibrated to optimize soil 

hydraulic parameters including the empirical parameters n and α, and saturated hydraulic 

conductivity (Ks) used in the van Genuchten hydraulic model (Van Genuchten, 1980). 

The model was calibrated using measured soil water content and soil temperature at 5 cm 

depth during a 10-days in September 2009 and validated during 10-days in September 

2010 and 2011. The results showed that the conductive heat flux dominated the 

convective heat flux by liquid water and water vapor and latent heat flux by water vapor. 

The results of the conductive heat flux estimated at the surface matched the results 

obtained using the calorimetric heat storage method used in Chapter 2. This results 
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allowed us to better understand the relative importance of the four heat transport 

mechanisms in the study site. This understanding has implications for the heat budget of 

Yellowstone’s magmatic system and for monitoring the unique hydrothermal activity in 

YNP. 

3.1. Introduction 

 Understanding the magmatic activity in YNP requires knowledge of the 

mechanisms and rates of heat transport between the magma and the ground surface. This 

study provides an evaluation of the heat transport in the top 15 cm of a bare ground 

covered by thermal siliceous sinter deposit near the explosion crater pool in NGB. The 

mechanisms of heat transport include, conduction of sensible heat, convection of sensible 

heat by liquid water and water vapor, and convection of latent heat by water vapor (De 

Vries, 1958). This study defines these mechanisms and estimate the rates of heat 

transport below the ground surface resulted partly from the magmatic activity in NGB 

and from the sun as another source of energy at the ground surface. Also this study 

provides estimates of the conductive heat flux at multiple depth of the soil profile as part 

of the total heat flux simulation. Comparison of these results with the estimated ground 

surface heat flux using the calorimetric heat storage method from Chapter 2, provides an 

assessment of the two methods. The combined results enable us to better understand the 

relative significance of each heat transport mechanism in the study site at NGB. 

 Previous studies on heat transport in YNP estimated the rate of heat transport 

through a particular mechanism. For example the chloride inventory method has long 

been used to estimate the rate of heat transport through convection (Fournier et al., 1976; 
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Friedman and Norton, 2007) . In this method the load of thermal chloride in rivers 

draining YNP is used as a surrogate of the convective heat power. Remote sensing based 

studies were successfully implemented to estimate the heat transport through radiation 

from estimates of radiant surface temperature and surface albedo (Haselwimmer et al., 

2011; Neale et al., 2011). Fewer studies estimated the rate of heat transport through 

multiple mechanisms, as these studies require additional financial and technical 

arrangements. Recently Hurwitz et al. (2012b) conducted a study in Obsidian Pool 

Thermal Area and Solfatara Plateau Thermal Area in YNP, to estimate the conductive 

and advective heat flux trough a low permeability layer capping large vapor reservoir. 

Their method was implemented by measuring soil temperature profile down to 1 m and 

analyzing soil samples for different thermal and hydraulic properties along the soil 

profile, including soil thermal conductivity, porosity, and water saturation. Their method 

also required measurement of water and water vapor flux through the soil using a 

weighing and heating method. Collecting the soil core samples for laboratory analysis 

required extra care to preserve the samples and extra time for the analysis.  

Numerical models have been continuously modified to simulate the coupled water 

flow and heat transport in the vadose zone (Šimůnek and van Genuchten, 2008; Simunek 

et al., 2005a; Simunek et al., 2005b). In this study the HYDRUS-1D numerical model 

version 4.16, originally developed by Šimunek et al. (1998), was used to simulate the 

coupled movement of heat transport, and water and water vapor flow in the top 15 cm of 

a soil covered with siliceous sinter soil in NGB. Surface energy balance is influenced by 

liquid water flow and water vapor flow which are strongly coupled with the temperature 
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of the soil. The heat transport model considers movement of soil heat by conduction, 

convection of sensible heat by liquid water flow, convection of latent heat by diffusion of 

water vapor, and convection of sensible heat by diffusion of water vapor as described by 

De Vries (1958). The model uses various types of meteorological data to evaluate surface 

and near-surface water and energy balance.  

The HYDRUS-1D provides solutions to both direct and inverse problems. Direct 

problems describe the condition where the initial and boundary conditions and 

corresponding model hydraulic and/or thermal parameters are known; whereas inverse 

problems represent the condition where some of the parameters were not determined 

experimentally (Hopmans et al., 2002; Simunek and Van Genuchten, 1999). HYDRUS-

1D implements the Marquardt-Levenberg type parameter estimation technique for 

inverse estimation of selected soil hydraulic and thermal parameters from measured 

transient flow and transport data including water content, pressure head, and temperature. 

The Levenberg-Marquardt function expresses the difference between the observed and 

predicted parameters and iteratively improve the predicted parameters during a 

minimization process until a desired degree of precision is obtained (Marquardt, 1963). It 

was used successfully to optimize hydraulic and thermal parameters when the initial 

parameters were close to the actual parameters of the soil (Schelle et al., 2012; 

Wildenschild et al., 2001). Kool et al. (1985) applied the inverse approach by numerical 

solution of the Richards equation for a one-step outflow experiment. They concluded that 

uniqueness of the estimated parameters can be lowered if the experiment was designed to 

cover a wide range of water content. They recommended that initial parameter estimates 



64 
 

 
 

must be reasonably close to their true values and that outflow measurement errors must 

be small. HYDRUS-1D additionally calculates statistical information about the fitted 

parameters such as the mean, standard error, T-value, and the lower and upper confidence 

limits 

In this study HYDRUS-1D provided a method to optimize several hydraulic 

parameters including the empirical parameters (n) and (α), and the saturated hydraulic 

conductivity (Ks) used in van Genuchten model. Initial inputs of hydraulic parameters, 

thermal parameters estimated from field observations, and meteorological information 

were used in the model. The results of the optimization have increased our understanding 

of the hydraulic characteristics of the siliceous sinter deposit at different conditions. The 

simulated temperature and water content results were evaluated against field soil 

temperature and water content measurements collected near the explosion crater pool in 

NGB.  

3.1.1. Objectives  

 This study has three main objectives including 1) optimize and estimate soil 

hydraulic parameters under different meteorological conditions, 2) estimate the 

contribution of the different heat transport mechanisms in the overall heat transport in 

that soil layer, 3) evaluate the calorimetric heat storage method used in Chapter 2 by 

comparing the conductive heat flux at the ground surface estimated using that method 

with that estimated using the output parameters from HYDRUS-1D. 
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3.2. Methods 

3.2.1. Study Area 

 NGB is located in the northwest side of YNP. The explosion crater pool in NGB 

is located in the western part of the basin near the gap area. The basin is characterized 

with variable surficial geology and heterogeneous bedrock (Ball et al., 2002a).  Lava 

Creek Tuff accumulates at the ground surface at some location and other locations are 

covered by clay minerals, siliceous sinter, and ice-contact deposits. The explosion crater 

pool has a blue-green color which characterizes acid-sulfate waters (Livo et al., 2007; 

White et al., 1988). The temperature of the pool varies between 30 °C and 43 °C in the 

summer and between 22 °C and 35 °C in the winter. The soil at and around the study site 

in the southwest side of the pool is covered by whitish-color siliceous sinter deposits. The 

siliceous sinter is a deposit of opaline or amorphous silica that occurs around hot springs 

and geysers as a result of incrustation processes (Campbell et al., 2015). The siliceous 

sinter is deposited due to the action of algae and other forms of vegetation around the 

hydrothermal features including fumaroles and hot springs. The maximum soil 

temperature measured at 5 cm depth in the summer was about 56 °C and in the winter 

was about 2 °C. The difference in elevation between the bare soil surface and the water 

surface in the pool was estimated at approximately 1 m during summer months. 

3.2.2. Data and Spatial Discretization  

 Continuous soil and weather data was collected at 5-minute interval at the bare 

ground located at about 20 m southwest the explosion crater pool (Fig. 3.1). Soil 

temperature and water content were measured at 5 cm depth and soil heat flux was 
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measured at 10 cm depth. Soil surface temperature was estimated using 5-minute 

measurement of upwelling longwave radiation and estimated average surface albedo from 

ASTER GED database (Abrams, 2000). Air temperature, relative humidity, precipitation, 

and 4-way radiation, were measured at about 2 m above the location where the soil heat 

flux and soil temperature and water content were measured. The sensors were mounted 

on a tripod controlled by a CR3000 data logger manufactured by Campbell Scientific Inc. 

Soil thermal conductivity, diffusivity, and heat capacity were measured at 9 and 13 cm 

depth during a site visit in October 2010 using a hand-held KD2 probe. During the same 

visit, core soil samples were collected at 9 and 13 cm to measure soil water content, 

porosity, and bulk density. As the siliceous sinter deposit was very dense, it was very 

hard to collect core soil samples at multiple depth to enable further measurements. The 

grain size distribution of the soil showed that the soil was loam with percent fractions of 

52.4% sand, 30.7% silt, and 16.9% clay. Information about the sensors used for the 

measurements and their accuracy is given in Table (3.1).  

 Soil profile was discretized into 101 nodes with 0.15 cm each from the ground 

surface to the depth of water table at about 1 m (Fig. 3.1). The nodal density was 

decreased at the top of the profile by a factor of 0.5 to increase the accuracy of the 

simulation. Four nodes were added to the profile at 0 cm, 5 cm, 10, cm, and 15 cm, to 

represent the locations where soil temperature and/or water content were measured or 

estimated (Fig. 12). The profile module in HYDRUS-1D was used to define the spatial 

distribution of parameters characterizing the flow domain including the initial and 

boundary conditions.  
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3.2.3. Numerical Model for Water Flow and Heat Transport 

 The model solve for the movement of liquid water, water vapor, and heat 

transport in the subsurface by simultaneously solving the modified Richards equation (eq. 

1) for one-dimensional uniform water movement in a partially saturated rigid porous 

medium, and the one-dimensional heat transfer equation with vapor transfer (eq. 2). The 

modified Richards equation in partially saturated soil was described by Saito et al. (2006) 

as   
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Fig. 3.1. (a) A tripod with weather and radiation sensors installed above a bare ground 

where soil heat flux is measured at 10 cm depth and soil content and temperature were 

measured at 5 cm depth, (b) HYDRUS-1D soil profile showing the nodes and water table, 

(c) simulation of the depth of the four nodes and soil heat flux plate. 
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where θT (m3/m3) is total volumetric water content (the sum of the volumetric liquid 

water content, θ, and the volumetric water vapor content, θv), h (m) is pressure head, K 

(m/s) is unsaturated soil hydraulic conductivity, Kvh (m/s) is isothermal vapor hydraulic 

conductivity, β is the angle between the flow direction and the vertical axis (equals 0° for 

vertical flow), KLT (W/m/K) is thermal hydraulic conductivity of the liquid phase, KvT 

(W/m/K) is thermal vapor hydraulic conductivity. The overall water flow in eq. (1) is 

given as the sum of isothermal liquid flow, isothermal vapor flow, gravitational liquid 

flow, thermal liquid flow, and thermal vapor flow. Since the thermal terms in eq. (1) are a 

function of temperature, the modified Richards equation is solved numerically with the 

heat transport equation (eq. 2) to account for temporal and spatial changes in water 

content as related to soil temperature. The governing equation for heat transport with 

water vapor diffusion is given by Saito et al. (2006)  
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where Cp (J/m3/K) is the volumetric heat capacity of soil; L0 (J/m3) is volumetric latent 

heat of vaporization of liquid water; q and qv (m/s) are liquid water and water vapor flux 

densities, λ(θ) (W/m/K) is coefficient of the apparent thermal conductivity of the soil; Cw 

and Cv (W/m2/K) are volumetric heat capacity of liquid and vapor. 

The volumetric heat capacity of the soil is defined by DeVries (1963) as 

  vawOOnnp aCCCCC       (3) 
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Table 3.1.  

Summary of the parameters and instruments used for data collection 

Variable Sensor Model Accuracy Manufacturer 

Ground Heat Flux, 

Gz (W/m2) 

HFT3 Soil Heat 

Flux Plate 

Better than 5% of 

reading 

REBS Inc., Seattle, 

WA 

Soil Water 

Content, θz 

(m3/m3) 

Steven Hydra Probe 

II 
± 0.03 (m3/m3) 

Stevens Water 

Monitoring System 

Inc. Portland, OR 

Soil Temperature, 

Tz (°C) 

Steven Hydra Probe 

II 

± 0.6 Degrees Celsius 

(From -10o C to 36o 

C) 

Stevens Water 

Monitoring System 

Inc. Portland, OR 

Air Temperature, 

Ta (ºC) 

HMP45C 

Temperature and 

Relative Humidity 

Sensor 

0.8 ºC @ -40 ºC 

0.6 ºC @ 60 ºC 

Vaisala Company, 

Finland 

Relative 

Humidity, RH (%) 

HMP45C 

Temperature and 

Relative Humidity 

Sensor 

± 2% RH (0 to 90% 

RH) 

± 3% RH (90 to 

100% RH) 

Vaisala Company, 

Finland 

Short Wave 

Radiation (Rs and 

𝑅𝑠
,
), long wave 

radiation (Rl and 

𝑅𝑙
′) (W/m2) 

NR01 Four-

Component Net 

Radiation Sensor 

± 10% for 12 hours 

totals, day and night 

Hukseflux Thermal 

Sensors B.V., Delft, 

Netherlands 

Wind Speed (m/s) 
RM Young Wind 

Sentry Set 
± 0.5 m/s 

R. M. Young 

Company, Traverse 

City, MI 

Rain (mm) 
TE525 Tipping 

Bucket Rain Gauge 

Up to 1 in/hr: ± 1% 

1 to 2 in/hr: +0, -3% 

2 to 3 in/hr: +0, -5% 

Texas Electronics 

Inc. Huston, TX 

Thermal 

conductivity 

(W/m/K), 

diffusivity 

(mm2/s), and heat 

capacity 

(MJ/m3/K) 

KD2 Pro Thermal 

Properties Analyzer 

±5 to ±10% Thermal 

Conductivity/Resistiv

ity 

±10% Specific Heat 

±10% Thermal 

Diffusivity 

Decagon Devices 

Inc. Pullman, WA 

 

where Cn, Co, Cw and Ca (J/m3/K) are volumetric heat capacity of solid phase, organic 

matter, water and air, and θn, θo, θ are volumetric fraction of solid phase, organic matter, 
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and liquid phase. The volumetric heat capacity of air represents a small fraction of the 

total volumetric heat capacity of soil and was ignored by HYDRUS-1D. The organic 

matter constituent in the siliceous sinter was ignored as the deposit was formed at 

temperatures above 70 °C (Cady and Farmer, 1996). Therefore eq. (3) can be rewritten as  

   wnp CCC  1      (4) 

where Φ (m3/m3) is porosity.  On October 30th, 2014, soil core samples were taken at 9 

cm and 13 cm depths to measure soil water content (θ) and porosity (φ).  The average 

water content and porosity values were 0.15 ± 0.05 m3/m3 and 0.2 ± 0.05 m3/m3, 

respectively. Using eq. (4), the average fraction of the solid phase was estimated as 0.8 ± 

0.05 m3/m3. The volumetric heat capacity of water vapor (Cv) was estimated by 

multiplying the specific heat capacity of water vapor (1996 J/kg/K) by the density of the 

water vapor (ρv) which is a function of soil temperature and the saturated vapor density as  
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where T (K) is the soil temperature. The relative humidity (Hr) can be calculated from the 

pressure head, h (cm), using a thermodynamic relationship between liquid water and 

water vapor in soil pores as described by Philip and De Vries (1957) 











RT

hMg
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where M is the molecular weight of water (0.018 kg/mol), g is the gravitational 

acceleration (9.81 m/s2), and R is the universal gas constant (8.314 J/mole/K) 



71 
 

 
 

 The liquid water and water vapor fluxes in the vertical profile are described as  
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where K and KlT (m/s) are isothermal water hydraulic conductivity and thermal water 

hydraulic conductivity, and Kvh and KvT (m/s) are isothermal vapor hydraulic conductivity 

and thermal vapor hydraulic conductivity. The apparent thermal conductivity and thermal 

conductivity of the porous medium are defined as 

qCwt  )()( 0      (10) 

5.0

3210 )(  bbb    (11) 

where β (m) is the thermal dispersivity, and b1, b2, and b3 (W/m3/K) are empirical 

parameters. The total heat transport equation is defined as the sum of the conduction of 

sensible heat as described by Fourier’s law (first term in the right side), convection of 

sensible heat by liquid water and water vapor (second and third terms), and convection of 

latent heat by vapor flow (fourth term).  

3.2.3.1. Initial Conditions  

 The initial conditions were provided by specifying the soil pressure head and soil 

temperature along the profile at time 0-minute. The initial condition for pressure head 

was not directly measured on site. Since the simulation started with a dry day, the initial 

pressure head in the profile was assumed to linearly decrease with depth to the depth of 

the water table at 1 m. The initial condition for temperature was determined by linearly 
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connecting the temperature estimated at 0 cm, temperature measured at 5 cm, and 

temperature estimated at 15 cm, at 0-minute of the simulation. Connecting these three 

temperature values revealed a linear increased in soil temperature with depth at the top 15 

cm of the soil.  

3.2.3.2. Boundary Conditions for Water Flow  

The upper boundary condition for water flow in the experiment site in NGB was a 

system dependent boundary that was controlled by the atmospheric conditions, with a 

surface runoff characteristics. HYDRUS-1D specifying the boundary condition as a 

surface runoff as the model does not allow water to accumulate at the surface after 

precipitation. The boundary condition was obtained by limiting the absolute value of the 

flux by the following two conditions described in (Neuman et al., 1974) as  

EK
x

h
K 



   at x = L   (12) 

          SA hhh            at x = L   (13) 

where E (m/s) is the maximum potential rate of infiltration or evapotranspiration under 

the current atmospheric conditions, h (m) is the pressure head at the soil surface, and hA 

and hS (m) are minimum and maximum pressure heads allowed under the prevailing soil 

conditions. When one of the end points of eq. (12) and (13) is reached, a prescribed head 

boundary condition is used to calculate the actual surface flux. The bottom boundary 

condition for water flow was set as a variable pressure head to account for the effect of 

water table at approximately 1 m depth at bottom of the profile.  
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3.2.3.3. Boundary Conditions for Heat Transport 

The upper and lower boundary conditions for heat transport were set as a time-

dependent temperature boundary conditions. The temperature in the upper boundary 

represents the skin temperature of the ground surface estimated from the measured 

incoming longwave radiation (Rl) and estimated average surface emissivity (ε) using 

Stefan Boltzmann equation as 

𝑅𝑙 = 𝜀𝜎𝑇𝑠
4     (14) 

where σ is Stefan-Boltzmann constant (5.681*10-8 W/m2/K4), and Ts (K) is the ground 

skin temperature. The temperature in the lower boundary at 15 cm was estimated using 

the measured conductive heat flux at 10 cm (Gz) through the heat flux plate and soil 

temperature measured at 5 cm using Fourier law as follows 

x

T
GZ




       (15) 

where 𝜕T is the difference between the temperature measured at 5 cm and the 

temperature estimated at 15 cm, 𝜕x is the depth between the two points (i.e. 10 cm), λ is 

average thermal conductivity at 10 cm depth estimated as the average of the thermal 

conductivities measured at site at 9 cm and 13 cm using the KD2 thermal analyzer as 

explained before.  

3.2.3.4. Soil Hydraulic Parameters  

In this study van Genuchten-Mualem single porosity model was used to define 

soil hydraulic parameters θ(h) and K(h) (Van Genuchten, 1980). This model assumes that 

the 15 cm soil layer has single porosity charechteristics. Van Genuchten-Mualem model 
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is defined with water content and soil hydraulic conductivity models as 

 
 mn
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where θs (m
3/m3) is saturated water content, θr (m

3/m3) is residual water content; α, n, and 

m (m = 1/n+1), are empirical parameters; Se is effective saturation; and Ks (m/s) is 

saturated hydraulic conductivity. The saturated water content and residual water content 

were determine from 5-minute measurements of water content at 5 cm as the maximum 

and minimum water contents as 0.3 m3/m3 and 0.13 m3/m3, respectively. HYDRUS-1D 

was used to optimize the parameters α, n, and Ks using the Levenberg-Marquardt 

function, which expresses the difference between the observed parameter and the 

predicted system response (Marquardt, 1963). The initial values for these parameters 

were selected according to the specifications for loam soil given in the model catalog as n 

= 3.6, α = 1.56 1/m and Ks = 2.89*10-6 m/s. However, these parameters do not necessarily 

represent the actual parameters of the soil in the study area. Because the range of thermal 

properties of the siliceous sinter is unknown, the maximum and minimum ranges for α, n, 

and Ks were set to cover the maximum values of sand soils and minimum values of silty 

clay soils. For sand soils, the values α, n, and Ks are given in Simunek et al. (2005b) as 

14.5, 2.68, and 8.3*10-5 m/s, respectively, and for silty clay soil, these values are given 

as 0.5, 1.09, and 5.6*10-8 m/s, respectively.       



75 
 

 
 

3.2.3.5. Heat Transport Parameters 

On 30 October 2014, we measured thermal conductivity (λ0) on site at 9 cm and 

13 cm depths using KD2 thermal analyzer probe. Soil samples were collected at the same 

depths to measure water content using the gravimetric method. The measured thermal 

conductivities and water contents were used in  the thermal conductivity equation defined 

by Chung and Horton (1987) to estimate the parameters b1, b2, and b3, as 

  5.0

3210  bbb 
  (18) 

where b1, b2, and b3 (W/m/K) are empirical parameters. Fig. (3.2) shows the fitting of the 

two measurement points relative to sand, clay, and peat soils, developed in Chung and 

Horton (1987). 

3.3. Results and Discussion 

3.3.1. Soil Hydraulic and Thermal Characteristics 

 The inverse solution in Hydrus-1D was performed by optimizing the hydraulic 

parameters n, α, and Ks. The model converged after 10 iterations with minimum objective 

function as 0.353 and n, α, and Ks optimized values as 6.44, 1.41, and 4.21*10-7 m/s, 

respectively. The standard error and lower and upper 95% confidence levels are 

presented in Table (3.3). The correlation coefficients between the estimated parameters 

shows strong linear correlation (R2 > 0.9) (Table 3.3). Simunek et al. (2005a) explained 

that the correlation matrix shows the nonorthogonality between the estimated parameters 

and that the correlation matrix can be used to select the parameters to be kept constant in 

the model based on the high correlation. The soil water retention and unsaturated 
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hydraulic conductivity function for the siliceous sinter soil were developed from the 

optimized parameters as in Fig. (3.3). 

 The confidence limit on parameters estimates using HYDRUS 1-D were not well 

defined mainly because the theory used by the model to calculate the parameters are 

linear models. The results concluded that the parameters were accurately estimated given 

the narrow confidence level (Table 3.2) and high coefficient of correlation (Table 3.3). 

However, HYDRUS-1D estimates these as a combination of unknown parameters rather 

than an independent parameter. Statistically, many combinations of these parameters can 

result in the same objective function making estimates of an individual value of the 

parameter challenging given the data obtained for the study in this chapter. 

3.3.2. Model Calibration 

Model calibration is generally done by adjusting the input parameters and/or the initial or 

boundary conditions to closely match the simulated results and measured variables. The 

calibration was done for ten consecutive days in 2009 from September 23rd to October 

2nd, to optimize the hydraulic parameters n, α, and Ks as explained in the method section. 

The model was then validated using two data sets from 2010 and 2011. The days from 23 

to 29 September 2009 were mostly sunny with clear skies (Fig. 3.4). A total of 3.81 mm 

of rain was recorded on September 30th, 2009, resulted in increase in water content to 

about 0.3 m3/m3. Air and surface temperatures were notably lower during that day 

compared to the former dry days. The data used for the validation from 2010 was chosen 

from a period with notably high soil and ground surface temperatures, possibly related to 

increase in subsurface thermal heat flow. Surface 
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Fig. 3.2. Plot of thermal conductivity for different porous media (porosities shown in 

parenthesis) as a function of volumetric water content presented in Chug and Horton 

(1987). Measurements of thermal conductivity made at the research site from depths of 9 

cm and 13 cm were used to fit the thermal conductivity model presented in Eq. (18) to the 

data points. 

    

Fig. 3.3. Plot of soil retention curve and unsaturated hydraulic conductivity function. 
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Table 3.2.  

The standard error and lower and upper 95% confidence level of the optimized hydraulic 

parameters α, n, and Ks 

Variable Value Standard 

Error 

Lower 95% 

Confidence 

Limit 

Upper 95% 

Confidence 

Limit 

α 6.44 0.32 5.82 7.06 

n 1.41 0.01 1.39 1.44 

Ks (m/s) 4.21*10-7 0.27*10-7 3.67*10-7 4.74*10-7 

Table 3.3. 

 The correlation coefficient (R2) between each two estimated parameters 

Variables α and n α and Ks n and Ks 

R2 -0.9947 0.9854 -0.9841 

 

temperature during that period was about 10 °C higher than the calibration days of 2009. 

Soil and surface temperatures during the validation days from 13-22 September 2011 

were generally similar to 2009. About 0.5 mm of rain was recorder during September 

14th, 2011, and another 2.85 mm was recorded during September 16th, 2011. Maximum 

water content measured at 5 cm on September 16th, 2011 was approximately 0.28 m3/m3.  

The results of model calibration show the 5-minute measurements of soil 

temperature and water content at 5 cm and the simulated soil temperatures and water 

contents at 0 cm, 5 cm, and 10 cm (Fig. 3.5). In the dry and mostly sunny days from 23 to 

29 September 2009, the estimated soil temperature was about 5 °C warmer than 

measurement at 5 cm in the maximum and minimum ends. That difference increased to 

about 7 °C from September 30th to October 2nd.  The simulated water content was 

generally consistent during the dry days when average measured water content at 5 cm 
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was about 0.21 ± 0.04 m3/m3. As water content increased during September 30th, the 

simulated water content was lower than the measurement with a time lag between the two 

of about 3 hours.  

The validation results for modeled and measured soil temperate at 5 cm was 

mostly consistent with about 5° C bias. The consistent temperature bias suggested that 

either the model simulation is biased or the temperature probe may have been dislocated 

to a shallower depth, most likely due to natural processes in the soil.  Temperature probes 

are prone to dislocation during installation and/or soil shrink/swell after rain. The 

regression analysis had high R2 values for modeled and measured soil temperature at 5 

cm in the calibration and validation days (Fig. 3.8.a to Fig. 3.8.c). Modeled and measured 

water content was less accurate compared to soil temperature with lower R2 values; 

however, was consistent (Fig. 3.8.d to Fig. 3.8.f). 

3.3.3. Comparison of Two Conductive Heat Flux Simulations  

Estimation of the conductive heat flux at the surface was one of the objectives of 

this study to evaluate the calorimetric heat storage method used in Chapter 2 to estimate 

the ground heat flux at the surface. In that study, the conductive heat flux at the surface 

was estimated, using the same data used in this study, by adding the soil heat flux 

measurement at 10 cm to the estimated soil heat storage above the heat flux plate. Some 

assumptions were made to apply that method including that the temperature measured at 

the mid-depth between the heat flux plate and the ground surface (5 cm) was 

representative of the average temperature of the 10-cm soil layer. This assumption was 

denied by several studies including Massman (1993) who expected that the error in 
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estimating the heat storage due to using one-depth temperature measurement  is about 3-

10% .  

HYDRUS-1D estimates the temperature and water content profiles by 

numerically solving the modified Richards equation for water flow and the heat transport 

equation. In this study, to estimate the conductive heat flux at the surface, the temperature 

gradient between the surface and 0.1 cm depth (top node in the soil profile) was 

multiplied by the average thermal conductivity of that node using Fourier law (eq. 15). 

Fig. (3.9) shows the 6-hours conductive heat flux estimated at the ground surface from 

HYDRUS-1D temperature simulation from 23 September to 2 October 2009, and the 5-

minute conductive heat flux at the surface estimated in Chapter 2. The simulation agreed 

well with the average conductive heat flux estimated from the heat storage method. The 

noise of the estimated soil surface heat flux using the calorimetric method was notably 

high especially at sunrise and sun set when soil temperature changed rapidly. 

3.3.4. Liquid Water Flux and Water Vapor Flux 

The modeled liquid water flux and water vapor flux were used to estimate the 

convective heat flux of liquid water and water vapor and latent heat flux of water vapor 

using the heat transport equation (eq. 2). Fig. (3.10) shows the vertical liquid water flux 

and water vapor flux estimated at 12 am and 12 pm on 23 September to 2 October, 2009. 

The sign of the liquid water flux and water vapor flux determines the direction of the flux 

in the profile (i.e. negative indicates downward flux and positive indicates upward flux). 

During the dry days between 23 and 29 September, 2009, the liquid water flux through 

the profile was approaching 0 mm/day at 12 am. On October 1st, the liquid water flux 
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after the precipitation on September 30th was approximately -4 mm/day at the bottom of 

the profile and decreased to -2 mm/day at 12 am on October 2nd (Fig. 3.10.a). At noon on 

September 30th, the liquid water flux was approximately -25 mm/day at 2 cm depth 

following the rain, and was 0 mm/day at approximately 11 cm depth.  At noon on 

October 1st, the maximum liquid water flux was approximately -6 mm/day at 3 cm depth 

and was almost constant below 8 cm depth. On October 2nd the liquid water flux was +6  

 

Fig. 3.4. The 5-minute measurement of weather and soil water content data for 23 

September to 2 October, 2009. 
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Fig. 3.5. Model calibration results showing (a) soil temperature measured at 5 cm and 

simulation of soil temperature at 0 cm, 5 cm, and 10 cm, (b) water content measured at 5 

cm and simulation of water content at 0 cm, 5 cm, and 10 cm, from 23 September to 2 

October, 2009. 
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Fig. 3.6. Model validation results showing the measured soil temperature at 5 cm and 

simulated soil temperatures at 0 cm, 5 cm, and 10 cm, from (a) 22-30 September 2010, 

and (b) 13-22 September 2011. 
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Fig. 3.7. Model validation results show the measured water content at 5 cm and simulated 

water content at 0 cm, 5 cm, and 10 cm, from (a) 22-30 September 2010, and (b) 13-22 

September 2011. 
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Fig. 3.8. Regression plots for 5-minute measured soil temperature at 5 cm (top) and simulated water content at 0 cm, 5 cm, and 

10 cm, from (a) 22-30 September 2010, and (b) 13-22 September 2011.
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Fig. 3.9. 5-minute conductive heat flux estimated in Chapter 2 and the 6-hours conductive 

heat flux estimated using HYDRUS-1D simulation. 

mm/day at the top of the profile, as water moved upwards due to increase evaporation.  

At 12 am, water vapor flux was always positive flowing upwards in the soil profile. On 

23-29 September 2009, the water vapor flux increased exponentially at approximately 6 

cm to reach maximum values just few millimeters below the surface (Fig. 3.10.e). The 

water vapor flux decreased few millimeters below the surface due to the effect of the 

diffuse cool air through the surface. At 12 am on October 1st, the water vapor flux was 

approaching 0 mm/day in the top of the profile as water content increased after the 

precipitation on September 30th. At 12 pm, the water vapor flux was negative above a 

certain depth and then became positive towards the bottom of the profile. For example, 

on September 24th the water flux was positive above approximately 11 cm  reaching a 

maximum value of 0.103 mm/day at the surface. The water vapor flux decreased below 

11 cm to a minimum value of 0.013 mm/day at 15 cm. On September 30th and October 
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1st, the water vapor flux was very close to 0 mm/day above approximately 7 cm and was 

positive below that depth.  

Fig. (3.11) shows the 6-hourly time series of the liquid water flux and water vapor 

flux at the specified nodes in the soil profile at 0 cm (surface), 5 cm, 10 cm, and 15 cm, 

estimated at 12 am, 6 am, 12 pm, and 6 pm, on 23 September to 2 October 2009. The 

liquid water flux at 0 cm was always positive at noon and was close to 0 mm/day at 6 am, 

6 pm and 12 am (Fig. 3.11.a). During the dry days of 23-29 September, the liquid water 

flux at the 5 cm, 10 cm, and 15 cm, was close to 0 mm/day. The effect of rain on the 

liquid water flux can be seen on September 30th and October 1st. The maximum liquid 

water flux at 5 cm, at noon, on September 30th, was about -12 mm/day, and decreased to -

5 mm/day at the same time on October 1st. The liquid water fluxes at 10 cm and 15 cm 

were higher during the later days compared to the precedent dry days. 

During the dry days, the water vapor flux at 0 cm was negative at noon as the 

surface was warmed up by the sun, and was positive at 6 pm, 12 am, and 6 am (Fig. 

3.11.b). The water vapor flux at 5 cm was notably lower than the surface vapor flux and 

was flowing downward the soil profile at noon during the dry days. On September 30th 

and October 1st, the water vapor flux was about 0 mm/day at 0 cm, 5 cm, and 10 cm due 

to increase soil water content. The water vapor flux at 15 cm was generally greater than 

that estimated at 5 cm and 10 cm and was mainly flowing upwards the profile. 

3.3.5. Convective Heat Flux and Latent Heat Flux 

The convective heat flux of the liquid water and the convective heat flux of water 

vapor through the specified nodes of the soil profile were calculated using the second and 
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third terms of the heat transport equation as [𝐶𝑊 𝑞
𝜕𝑇

𝜕𝑥
] and[𝐶𝑣 𝑞𝑣

𝜕𝑇

𝜕𝑥
], respectively. Fig. 

(3.12) shows the time series of these two fluxes estimated at 0 cm (surface), 5 cm, 10 cm, 

and 15 cm, using the liquid water flux and vapor flux densities in Fig. (3.11). The 

convective heat flux by liquid water was generally low (close to 0 W/m2) in the four 

nodes during the dry days of 23-29 September, 2009. On September 30th and October 1st, 

the heat flux increased with the maximum value occurred at 5 cm on September 30th at 

noon and was approximately 0.1 W/m2. Maximum value at 10 cm on the same day was 

about 0.05 W/m2 and occurred at 6 pm. 

The convective heat flux by water vapor was more than nine orders of magnitude 

less that that by liquid water. The maximum value occurred at the surface on September 

26th at noon and was about 1.1*10-8 W/m2. At 5 cm and 10 cm, the heat flux increased 

during the evening and night and was minimum at 12 pm approaching 0 W/m2.  

The latent heat of water vapor was calculated using the third term of the heat 

transport equation as[𝐿0
𝜕𝑞𝑣

𝜕𝑥
]. At the surface on 23- 29 September, the latent heat was 

mostly flowing downward in the profile at noon and upwards to the surface at 6 pm 

following the direction of the water vapor flux. The range of the latent heat in the surface 

varied according to the water vapor gradient. The maximum value at noon and 6 pm 

occurred on September 24th as -0.38 W/m2 and 0.5 W/m2. The latent heat flux in the 

nodes at 5 cm, 10 cm, and 15 cm was notably lower compared to the surface, due to low 

vapor flux gradient, with a range varied between -0.5 W/m2 and 0.5 W/m2. During 

September 30th and October 1st, the latent heat flux was close to 0 W/m2 as the water 

vapor flux approached 0 mm/day during these days. 



89 
 

 
 

3.3.6. Comparison of the Different Rates of Heat Transport  

The contribution of the heat transport mechanisms in the total heat flux in the 

surface of bare ground area in NGB are presented in Fig. (3.14). Generally, the 

convective heat flux and latent heat flux were orders of magnitude lower than the 

conductive heat flux. The conductive heat flux contributed to more than 99% of the total 

heat flux in the study area. During the dry days of 23-29 September 2009, the 

contribution of the conductive heat flux varied diurnally with a percentage close to 100% 

at 12 am and 6 am and lower percentages at 12 pm and 6 pm.  On September 30th and 

October 1st, the conductive heat flux contributed to about 100% of total heat flux 

throughout the entire day. The contribution of the latent heat flux contravened the 

contribution of the conductive heat flux, with values close to 0% at 12 am and 6 am, and 

maximum values at 12 pm and 6 pm.  The contribution of the convective heat flux of 

liquid water and water vapor was less than 0.05% of the total heat flux. 

3.4. Summary and Conclusions  

Studies about heat transport mechanisms and rates in the subsurface of 

geothermally heated grounds in Yellowstone National Park are limited. In Chapter 2, it 

was assumed that the ground heat flux at and near the surface, in geothermally heated 

grounds, is mainly a combination of near-surface geothermal heat flux and the heat flux 

from absorbed solar shortwave radiation and atmospheric longwave radiation, neglecting 

the effect of latent heat flux and sensible heat flux due to increased ground temperatures. 

This study was conducted to test that hypothesis by estimating the rates of heat 

transport on an near the ground surface through different mechanisms including 
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conduction of convection of latent heat by water vapor in the top 15 cm of siliceous sinter 

deposit in Norris Geyser Basin. HYDRUS-1D was used to estimate the rates of heat  

     

    

 

Fig. 3.10. Vertical profiles of (a) liquid water flux (mm/day) at 12 am, (b) liquid water 

flux (mm/day) at 12 pm, (c) water vapor flux (mm/day) at 12 am, (d) water vapor flux 

(mm/day) at 12 pm.  
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Fig. 3.11. (a) Liquid water flux, and (b) water vapor flux, modeled at the surface (0 cm) 

at 12 am, 6 am, 12 pm, and 6 pm for days from 23 September 2009 to 2 October 2009. 
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Fig. 3.12. Convection heat flux of (a) liquid water, and (b) water vapor, modeled at the 

surface (0 cm), 5 cm, 10 cm, and 15 cm, at 12 am, 6 am, 12 pm, and 6 pm for days from 

23 September 2009 to 2 October 2009. 
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transport using estimated values of soil temperature, water content, liquid water flux, and 

water vapor flux, estimated along the soil profile.  Modeling the heat transport rate in the 

siliceous sinter deposit required optimization solution to estimate the hydraulic and 

thermal properties for that deposit. The results of parameters optimization suggested 

acceptable parameterization and high correlation between the estimated parameters.  

Model calibration was carried out, using data from 10 days in September and October of 

2009, to optimize the soil hydraulic parameters α, n, and Ks, for different water content 

conditions. The model was validated using water content and soil temperature 

measurements from September 2010 and September 2011. The simulated temperature at 

5 cm showed consistent offset error of about 5° C. 

 The flux of liquid water was generally greater than that of water vapor after 

precipitation flowing mostly downwards in the soil profile. The flux of water vapor; 

however, was greater during dry days and either flowed upward or downward in the 

profile depending on the time of the day.  The results of the heat transport rates showed 

that the conductive heat flux dominated the area with more than 99 % contribution to the 

total heat flux. The convective heat flux; however, represented only a small percent of the 

total heat flux. The latent heat of water vapor was about an order of magnitude greater 

than the convective heat flux of liquid water; however; represented less than 0.5% of the 

total heat flux. These results support the hypothesis that was suggested in chapter 2 that 

the latent heat flux and advective heat flux were negligible in the study site in Norris 

compared to conductive heat flux resulted from the stored solar radiation and atmospheric 

longwave radiation and the geothermal heat flux. 
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Fig. 3.13. Latent heat of water vapor, modeled at the surface (0 cm) at 12 am, 6 am, 12 

pm, and 6 pm for days from 23 September 2009 to 2 October 2009. 

 

 

Fig. 3.14. Percent contribution of the conductive heat flux, convective heat flux by liquid 

water, convective heat flux by water vapor, and latent heat flux, to the total heat flux. 
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CHAPTER 4 

 

MONITORING SPATIAL AND TEMPORAL CHANGES IN HYDROTHERMAL 

FEATURES AT NORRIS GEYSER BASIN 

Abstract 

 Continuous monitoring of the dynamic thermal activity in Yellowstone National 

Park is required and funded by the United States Congress. This study is part of the 

monitoring program initiated in the early 2000s to monitor changes over Yellowstone 

National Park’s thermal activity. In this study, high-spatial-resolution thermal infrared 

imagery acquired through airborne remote sensing setup, were used to estimate year-to-

year changes in radiant temperature, radiant flux, and radiant power over Norris Geyser 

Basin. A method was developed to remove the residual heat flux resulting from stored 

solar shortwave radiation in the ground, from the total radiant flux images enabling year-

to-year comparison of changes due to mainly the geothermal heat source. The results 

showed that year-to-year monitoring of Norris Geyser Basin could depict changes in the 

radiant temperature and radiant flux before they were visually observed by the park 

service personnel. The repeated high-spatial-resolution monitoring may help resolve the 

concerns about public and property safety and the safety of the park service personnel 

and researchers, who come into a close contact with the hydrothermal areas in the park. 

4.1. Introduction 

4.1.1. History of Norris Geyser Basin and Previous Remote Sensing Studies  

 Norris Geyser Basin (NGB) of Yellowstone National Park (YNP) is known as the  
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most unrest thermal area in the park (Fournier et al., 2002; White et al., 1988). The 

highest temperatures in the park were recorded in the geysers of NGB that are distributed 

around Back Basin, Porcelain Basin, Ragged Hill, and Hundred Springs Plain (Fig. 4.1). 

NGB is also known for the frequent hydrothermal disturbances that involve relatively 

rapid changes in water and surface temperatures, renewed thermal activity of dormant 

features, and development of new features. Changes in the extent and/or temperatures of 

the hydrothermal features in the basin may indicate signs of change in the underlying 

magmatic system (Heasler et al., 2009). Therefore, geospatial data describing the 

temperature and other thermal characteristics of the hydrothermal features and the 

surrounding heated ground, is frequently needed to maintain public safety, design and 

relocate infrastructure facilities and install safety signs. Such data could eventually be 

integrated into Yellowstone’s baseline information system and incorporated in the 

research program at YNP.  

 Geothermal heat flux (W/m2) represents the heat coming from below the surface 

without accumulated heat from convection of warm air and/or conduction of solar energy 

in the soil. It can be measured directly from bore holes using thermocouples (Hurwitz et 

al., 2012b) or indirectly estimated from thermal chloride flux (Fournier et al. (1976); 

Friedman and Norton (2007)). Most of the active thermal areas in YNP are inaccessible 

either due to the extremely high kinetic temperatures or acidic nature or both. Remote 

sensing of hydrothermal features is being used to monitor spatial and temporal changes of 

radiant flux within and between geyser basins (Haselwimmer et al., 2011;  Neale et al., 

2011; Neale et al., 2016; Savage et al., 2010; Vaughan et al., 2012; Watson et al., 2008).  
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 In the early 2000’s, YNP implemented a scientific geothermal monitoring 

program that involved using remote sensing imagery to monitor geothermal features in 

the park following a noticeable deployment within NGB. The deployment included 

formation of new mud pots, changes in geyser eruptions, and significant increase in 

ground temperatures (Heasler et al., 2009). The remote sensing portion of the monitoring 

program included acquisition of repeated airborne thermal infrared (TIR) imagery of 

dynamic hydrothermal areas in the park, including NGB. The hottest hydrothermal 

features in NGB are typically a few square meters large which encouraged the use of 

high-resolution airborne remote sensing imagery.  

 The first airborne remote sensing study in NGB was initiated by the University of 

Montana-Missoula in 2002 (Hardy, 2005; Seielstad and Queen, 2009). Hardy (2005) 

acquired two sets of airborne remote sensing imagery in NGB using a single channel 

thermal sensor. His work represents the initiation of airborne remote sensing monitoring 

in YNP and provide a baseline for additional research using multi-sensor platform. His 

method demonstrated that a geothermal anomaly could be classified and mapped using 

high-spatial-resolution TIR imagery. Seielstad and Queen (2009) adopted Hardy’s 

method and experimented the use of multi-channel imaging system. In our study we 

utilized the best of Hardy and Seielstad and Queen’s technical advances and addressed 

some of the technical gaps. For example Hardy (2005) ignored the correction of the TIR 

images for atmospheric attenuation (the reduction in the intensity of the electromagnetic 

radiation in the earth’s atmosphere) which may have significantly overestimated the final 

radiant temperature values. Given that the study area has a massive heat output at the 
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surface, the atmosphere between the ground surface and sensor elevation at ~ 1200 m 

AGL, is highly stratified. Hardy also neglected to adjust the radiant flux estimations from 

effects of background heat flux stored in the ground due to incoming solar radiation, 

which was found to be a large fraction of the total radiant flux (approximately 88% of the 

total radiant flux in the area) (Seielstad and Queen, 2009). Seielstad and Queen (2009) 

improved Hardy’s method by developing an approach to estimate the radiant flux due to 

solar radiation (background heat flux). They assumed that the heat flux of areas adjacent 

to, but outside of a previously defined geothermal areas, is representative of background 

flux in the basin. They classified the basin to five land-cover types (forest, water, sinter 

soil, and road) and sampled them for background flux outside the geothermal areas. Then 

they estimated weighted mean flux within each land-cover class to produce total flux by a 

class. Our observation of the radiant temperature outside the previously defined 

geothermal polygon indicated presence of areas with high temperatures that matches the 

temperature of some of the areas within the geothermal polygon. Using the weighted 

mean flux to estimate the heat flux out of the background areas raised a question about 

the bias associated with the presence of hot areas within the defined background areas. In 

our study we followed an recommendation by Vaughan et al. (2012) to define the 

background areas in NGB.  They used ASTER and MODIS thermal satellite infrared 

imagery to quantify the radiant flux in YNP. They defined a background area with similar 

topographic and land surface cover characteristics, similar elevation and topographic 

characteristics as the thermal area (to minimize the effects of differential elevation, slope 

and aspect), and similar surface cover types as the thermal area (to minimize the effects 
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of variable surface emissivity and transpiration in vegetation).  The authors then 

estimated the radiant geothermal heat flux by subtracting the radiant flux of the 

background areas from the total radiant flux.  

4.1.2. The CESU Agreement between the National Park Service Ecological Unit and 

Utah State University  

  

 After Hardy and Seielstad and Queens’s studies, a long-term study of the 

hydrothermal features in NGB was needed to continue the monitoring program and to 

monitor any changes in the radiant temperature and heat flux of the hydrothermal 

features. Accordingly, the CESU Task Agreement between Utah State University (USU) 

and the National Park Service was initiated in 2005. The goal from the agreement was to 

continue exploring the use of high-resolution airborne remote sensing imagery to develop 

a consistent and repeatable method for image acquisition and processing to enable year-

to-year comparison among the remote sensing images, and to gather accurate and 

continuous information about the thermal activity in NGB (Neale et al., 2011). The 

agreement included acquisition of annual, and in some years, biannual TIR and 

multispectral images of the hydrothermal areas in YNP between 2005 and 2013. The first 

three years of the monitoring program have resulted in improvement in image processing 

and calibration techniques that have led to high quality systematically reproducible 

images (Neale et al., 2016). 

4.1.3. Objectives of Study 

 This study represents the second phase of the airborne remote sensing campaign 

study in NGB. The first phase focused in building the digital system by selecting the 

imaging sensors and filters, correcting the images for lens vignetting effects and radial 
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distortion, setting the specifications for flight lines and data acquisition protocols, testing 

different software for image strip formation and georeferencing, correcting the thermal 

infrared images for atmospheric effects and surface emissivity, and general modification 

of the remote sensing system along the course of the project. Description of this phase of 

the project was given in Neale et al. (2016).  

 In this context, the objectives of the present study includes 1) using the previously 

created, georeferenced and corrected TIR and emissivity images to calculate the pixel 

radiant flux for NGB, 2) determine and compare year-to-year radiant flux values, 3) 

compare the relevance of the results to previous studies that used similar methods, 4) 

define background areas suitable for estimating the radiant flux due to solar radiation, 5) 

estimate the radiant flux corrected for solar effect and determine and compare the radiant 

flux of high-priority thermal areas in NGB, 6) draw a conclusion about the effectiveness 

of the method and set recommendation for future application of airborne remote sensing 

technology in thermally active areas. 

4.2. Methods 

 The methods section of this study is divided into two parts, 1) image acquisition 

and processing, and 2) image analysis. Image acquisition and processing is described 

briefly to generally explain the method used to acquire the images including description 

of the spectral range, spatial resolution, correction of TIR images for atmospheric 

radiation and surface emissivity, and the accuracy and precision of the method. More 

details about these processes are discussed in Neale et al. (2016). In the methods section, 
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Fig. 4.1. The sub basins comprising Norris Geyser Basin (created by Hutchinson (1997) 

(unpublished data available from the Yellowstone Center for Resources GIS 

geodatabase)). 

more focus is given to the image analysis part of the method, including surface 

classification, estimation of the heat flux due to solar radiation effect, identification of 

geothermal regions within NGB, and estimation of the radiant flux and heat power from 

the selected geothermal region. 
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4.2.1. Image Acquisition and Processing 

 The two types of airborne remote sensing images used for the analysis in this 

study were the thermal infrared images (TIR) and multispectral images (MS). The TIR 

images cover the thermal range between 8-12 µm of the electromagnetic spectrum and 

provide information about the surface radiometric temperature. The MS images include 

the spectral bands green (0.545-0.56 μm), red (0.665-0.68 μm), and near infrared (0.795-

0.806 μm) and are typically used as a base map for map-to-map rectification of the TIR 

images, and to correct the TIR images for surface emissivity as explained below. At least 

one TIR image was acquired annually between 2008 and 2013 in NGB using USU 

airborne remote sensing digital system (Fig. 4.2). TIR images were typically acquired 

during nighttime hours, under clear skies to maximize radiative heat loss and minimize 

warming effect from clouds. The images were acquired from an average elevation of 

1800 m AGL to maintain an approximate spatial resolution of 1 m. One image comprised 

of approximately 640 x 480 pixels covering an approximate area of 0.64 x 0.48 km2. 

Single TIR tiff images were georeferenced using the MS orthorectified image base map 

by identifying common control points within the images. The root-mean-square error 

(RMSE) for image rectification was kept to less than 1 m to maintain high positional 

accuracy. The georeferenced single TIR tiffs were assembled into image strips along the 

flight lines and then the strips were stitched into uncalibrated TIR mosaics, covering the 

NGB area.  

 The georeferenced uncalibrated TIR mosaics were then corrected for atmospheric 

effects. The radiation energy received at the sensor, located in the airplane, generally 
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includes the terrestrial emission transmitted through the atmosphere, the upwelling 

atmospheric emission transmitted through the atmosphere, and the downwelling 

atmospheric emission reflected by the surface and transmitted through the atmosphere. 

The correction of the images for these atmospheric effects was done to isolate the latter 

two components and yield an estimate of the terrestrial emission. To calculate the 

transmissivity and atmospheric emission terms, Moderate Spectral Atmospheric 

Transmittance Algorithm Model (Modtran 4) was used in conjunction with a local 

radiosonde profile data obtained from the University of Wyoming station in Riverton, 

WY (Berk et al., 1999). The Modtran 4 is iterated over the range of scan angles (𝜃) 

observed over the scene. Following surface emission, the atmospheric effects 

(transmission and emission) are determined by the path length through the atmosphere, 

which can be approximated as a function of the scan angle of the sensor. The upwelled 

atmospheric emission is calculated as the sum over the thermal band after taking the 

sensor response into account. A modified form of the Planck equation is used to estimate 

the actual surface emission (Brunsell and Gillies, 2002).   

 Besides the correction for atmospheric disturbances, the TIR images were 

corrected for surface emissivity (the ratio of the energy radiated from the surface to that 

radiated from a blackbody at the same temperature and wavelength, under the same 

viewing conditions). When the images were acquired, a value of 1 was assigned for 

emissivity of the surface. This assumption considers the surface as a perfect emitter or a 

black body. Typical surface emissivity values vary with surface cover (i.e. soil, water, or 

vegetation). Ignoring the correction for surface emissivity can result in overestimation of 
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the radiometric surface temperature by a number of degrees Celsius. The pixel emissivity 

was determined based on the relationship with the amount of vegetation present within a 

pixel following Brunsell and Gillies (2002). The vegetation cover represented by the 

normalized difference vegetation index (NDVI) is the function of the surface derived 

reflectance in the red and near infrared bands. The fraction of vegetation (Fr) within a 

pixel is a function of the NDVI of the minimum emissivity (0.9) estimated for bare soil 

and NDVI of the maximum emissivity (0.98) for a dense vegetation canopy. The 

emissivity of the different classes is determined by linearly relating the fraction of 

vegetation to a bare sinter soil emissivity and a full vegetation emissivity. The effective 

emissivity of the pixel can be written as a function of the fractional vegetation cover.  

 The final mosaic of surface emissivity was created using the model builder in 

ERDAS Imagine software (Guide, 2008). The model maker in ERDAS Imagine uses the 

emissivity layer, the MS image, and the at-aircraft temperature image corrected using 

Modtran 4 to obtain the corrected surface temperature image. In general, the corrections 

for atmospheric disturbances and emissivity decreased the values of the at-aircraft 

temperatures by several degrees. 

4.2.2. Potential Bias in the TIR Images 

  The accuracy and precision of the method to create the final atmospherically                

adjusted and emissivity corrected TIR images can be discussed from three different 

perspectives i.e. relevance of the estimated radiometric temperatures to the measured 

kinetic temperatures, spatial accuracy of the features, temporal consistency of the TIR 

images.  
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4.2.2.1. Accuracy of Radiant Temperatures  

 The radiometric temperature measured at the sensor level in the airplane should 

ideally match of the surface kinetic temperature. However, atmospheric effects may 

result in erroneous radiometric temperatures estimates. The atmospheric correction 

explained in an earlier section can improve the accuracy of the radiometric temperature; 

however, it might not completely overcome the bias. Bias in the radiometric temperature 

can also occur if the initial assumptions of surface emissivity that were input into 

Modtran of sinter soil and vegetation were inaccurate. Typical range of emissivity of the 

whitish-colored siliceous sinter soils in the thermal wavelength range between (8-12 µm) 

is 0.86-0.92 (Vaughan et al., 2005). A sensitivity analysis for the typical range of sinter 

soil emissivity revealed maximum difference in temperature is 7.13 °C for ɛ = 0.86 and ɛ 

= 0.94.  

 Neale et al. (2016) compared the radiometric temperature from 2008-2012 

acquisitions and the relevant kinetic temperature measured with thermistors of six ground 

control points within NGB including Cinder Pool, explosion crater pool, an unnamed 

pool, Nuphar Lake, the reservoir, and two bare ground locations, after accounting for 

positional inaccuracy (5-6 m). Their result showed an agreement between the radiometric 

temperature and relevant kinetic temperature for temperature values less than 35 °C with 

RMSD value of 3.3 °C and mean bias error of -1.8 °C. However, the RMSD for kinetic 

temperatures greater than 35 °C was 19.1 °C with a mean bias error of -16.8 °C. Neale et 

al. (2016) explained the possible reason from the mismatch at higher temperatures was 

due to the cloud of water vapor developed above hydrothermal pools with high 
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temperatures.  Water vapor, generally, absorbs the thermal energy at 8-12 µm wave 

length resulting in lower radiant temperature estimates (Haselwimmer and Prakash, 2013; 

Seielstad and Queen, 2009). 

4.2.2.2. Accuracy of Spatial Referencing 

 Qualification of the spatial accuracy of the method is generally a challenging 

process that is done through assessment of the location of easily identified control points 

within the TIR image compared to their location in the MS base map. Difference between 

the two locations defines the spatial bias within the TIR image. Neale et al. (2016) 

reported an offset of approximately 1-7 m between the visually rectified TIR night 

mosaics acquired in 2008-2012 and the same control point on the orthorectified visible 

mosaic. We measured the distance between Norris Museum building that appeared in 

April 2013 and October 2013 TIR images and the MS base image from 2010 and found 

the offset was about 5-3 m in the X-direction and 3-1 m in the Y-direction, respectively.   

4.2.2.3. Accuracy of Temporal Representation 

 Maintaining an acceptable temporal accuracy is significant for year-to-year 

comparison of the hydrothermal features in NGB. The method used to acquire, process, 

georeferenced, and correct the radiometric TIR images was consistent throughout the 

project as explained in the method section. Neale et al. (2016) used the maximum 

temperature values in the images as an indicator of the temporal accuracy of the method. 

The maximum temperature in the image is relevant to hydrothermal feature with high 

kinetic temperature approaching the boiling temperature at Norris elevation (~ 90 °C). 

The temperature of these features is unlikely to be affected by weather and 
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meteorological conditions. The average of maximum temperature in all TIR images, 

acquired between 2008 and 2013, was 70.82 °C with 3.95 °C standard deviation. The 

small standard deviation gives an insight of the temporal accuracy of the method.  

4.2.3. Image Analysis 

 The purpose of this study was to continue exploring the technical effectiveness of 

using airborne remote sensing to monitor the hydrothermal features in NGB and to 

observe possible temporal and/or spatial changes that may indicate signs of increased 

subsurface activity. In the first part of the analysis, the radiant flux (W/m2) and radiant 

power (Watts) were estimated for all seven surface classes in NGB including bare soil, 

bare soil with siliceous sinter deposits, lakes and pools, river, grass, forest (bine trees), 

and mud pools, without removing the heat flux due to solar radiation. The pixel radiant 

flux (q) was calculated using Stefan-Boltzmann equation as  

   
4

STq                                                         (1) 

where ε is pixel emissivity, σ is Stefan-Boltzmann constant (5.67E-8 W/m2/K4), and Ts is 

pixel radiant temperature from the TIR image. 

 To test for the technical effectiveness of the method, the results of radiant flux 

and radiant power were compared to the results from Hardy (2005) and Seielstad and 

Queen (2009), which were strongly consistent. Weather conditions during the images 

acquisitions were also investigated to determine possible discrepancy in the results due to 

differences in weather conditions. 

 The second part of the analysis evaluated year-to year changes in the geothermal 

heat flux and heat power in NGB. To estimate year-to-year changes in the geothermal 
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heat, the heat flux due to solar radiation was estimated and removed from the total radiant 

flux images. Removing the heat flux naturally stored in the soil from solar radiation is 

essential to enable the year-to-year comparison of the heat flux from subsurface changes 

related to tectonic, hydrothermal or impending volcanic processes. Therefore, the 

background heat flux was estimated for the seven surface classes following the 

recommendation by Vaughan et al. (2012). That heat flux was subtracted from the total 

radiant flux to enable further year-to-year comparison of the heat power from mainly the 

geothermal source.  

4.2.3.1. Classification of Surface Cover 

 Prior to estimation of background heat flux, classification of land cover was 

conducted using the multispectral imagery. The surface classes were obtained using the 

unsupervised classification method within the ERDAS Imagine software (Guide, 2008). 

This method classifies the pixels of the multispectral image into a finite number of 

individual classes which were grouped to seven different classes including bare soil, bare 

soil with chemical deposits (sinter), forest (pine trees), grass, river, lakes and pools, and 

an un classified class. The unclassified class includes all pixels that were no classified as 

one of the six first classes (i.e. asphalt roads, paved roads, etc.). The unsupervised 

classification approach uses the ISODATA (Iterative Self Organizing Data Analysis 

Technique) algorithm available in ERDAS Imagine as one of the options. The 

classification was initially based on 100 classes with 12 maximum number of iterations 

and convergence threshold of 0.97. These classes were then grouped into the seven major 

surface classes mentioned above (Fig. 4.4). 
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Fig. 4.2. The USU LASSI LiDAR and airborne multispectral remote sensing system 

including FLIR SC640 thermal IR camera installed in the Cessna TP206 remote sensing 

aircraft. 

4.2.3.2. Estimation of Background Heat Flux 

  Different methods were used to estimate the effect of the absorbed solar radiation 

on each of the seven surface classes during summer and winter acquisitions. 

4.2.3.2.1. Bare Soil and Sinter Soil Classes 

 The effect of solar heat in bare ground is a function of many factors including 

elevation, slope, and aspect (Vaughan et al., 2012). To account for these factors on the 

estimate of the background heat flux, areas with bare soil and sinter deposits were 

classified into nine aspects (i.e. north, northeast, southeast, east, south, northwest, 

southwest, west, and flat) and six ranges of slope with 10 degrees increments from 0° to 

60°.  Two flat areas were selected for each of the two classes out of the hydrothermal 

polygon, defined by Hutchinson (1997), at the northwest side of NGB. The skin 

temperature of that area was within the lowest seventh percentile of the radiant 

temperature of NGB. The coordinates of the center of the background areas are centered 

at -110° 43' 23.174'' W and 44° 43' 30.756'' N for sinter soil and at -110° 43' 22.819'' W



 
 

 
 

1
1
3
 

 

Fig. 4.3. USU LiDAR image showing the elevation of NGB (a), and the aspects layer calculated for NGB from 2012 

Acquisition.

(a) (b) 
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Fig. 4.4. Land cover classification image for the 2012 multispectral acquisition, defines 

seven different surface cover classes. 

and 44° 43' 35.416'' N for bare soil. The aspect and slope raster maps for every TIR 

image were calculated using the LiDAR image created by Utah State University with the 

LASSI LiDAR system (Fig. 4.3.a). A raster map was created for solar beam irradiance 

(Wh/m2/day) for the different months of image acquisition (September, October, March, 
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and April) using the Solar Irradiance and Irradiation Model available in Grass GIS 7.2 

software (Team, 2016). Grass GIS model requires information about elevation, slope, and 

aspect of the area, surface albedo, atmospheric turgidity coefficient, and clouds and haze 

coefficients. The Linke atmospheric turbidity coefficient for a mild climate in the 

northern hemisphere was estimated for the month of September as 2.1 for mountain areas 

and 2.9 for rural areas (Kasten, 1996). A sensitivity analysis showed that the difference in 

solar beam irradiance using these two values was about 50 Wh/m2/day compared to the 

total solar beam irradiance of 7816.28 Wh/m2/day. Clouds and haze coefficients were 

assumed zero since the TIR images were usually acquired during clear days. 

 The beam solar irradiance was estimated for each aspect in different ranges of 

slopes which resulted in total number of 54 raster maps for each of the four months. The 

average of the beam irradiance for each raster was calculated and the ratio between the 

averages and the average beam irradiance of the flat aspect was calculated (Fig. 4.5).  

To estimate the heat flux due to solar radiation for each raster map, it was assumed that 

the ratio between the beam irradiance of that raster map and the beam irradiance of the 

flat background area equals the ratio between the temperature of that raster map and the 

temperature of the flat background area as 

𝐵𝑒𝑎𝑚 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑟𝑎𝑠𝑡𝑒𝑟 𝑚𝑎𝑝

𝐵𝑒𝑎𝑚 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑙𝑎𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎 
=

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑎 𝑟𝑎𝑠𝑡𝑒𝑟 𝑚𝑎𝑝

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑓𝑙𝑎𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎
   (2) 

The background temperature for each pixel was then estimated given the temperature of 

the background flat area which was determined from the TIR images (Table 4.1).   

 This method was applied only for September and October imagery. During March 

and April flights, the average temperature of the background areas was far below zero 
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degrees Celsius (Table 4.1). The data of the SNOTEL station in west Yellowstone 

indicated considerable amount of snow accumulation at the time of the latter two 

acquisitions. To avoid the error from snow accumulation in estimating the background 

heat flux, the ratio between the radiant flux raster map during September acquisition and 

the solar raster map was factored using the ratios in Fig. (4.5) for each aspect and slope 

range, to estimate the ratio during March and April. The estimated ratio was used to back 

calculate the solar rater map for March and April images 

 The effect of elevation on solar effect was neglected in this study. It was 

extremely difficult to find background areas for the sinter class outside the geothermal 

polygon that had low radiant temperature values. Incorporating additional factor such as 

elevation to select the background areas would make it rather impossible to define a 

background area for sinter class. However, the elevation range in NGB ranges between 

2258.97 m and 2268.16 m. So, variability in solar effect due to difference in elevation is 

expected to be non-significant. 

4.2.3.2.2. Lakes and Pools Class 

 Norris Geyser Basin carries a number of thermal and non-thermal lakes and water 

pools including the reservoir, Explosion Crater Pool, Hebgen Lake, Sieve Lake, Congress 

Pool, Lava Pool, Gray Lakes, Cinder Pool, and Nuphar Lake besides a number of 

unnamed pools. Nuphar Lake is considered the cooled lake in NGB with measured 

kinetic temperature of 9.4 °C. White et al. (1988) described the lake as a cool lake that is 

fed with rain water and small thermal springs and has no outlet. The Nuphar Lake was 

considered as a background lake to estimate the background heat flux. This assumption 
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does not take into consideration the differences in elevation, lake’s surface area, or depth.  

4.2.3.2.3. River Class 

 Two major rivers flow in the NGB, the Tantalus Creek and the Gibbon River. The 

Tantalus creek, the tributary of the Gibbon River, drains the entire basin to the influence 

with the Gibbon River at the north side of the basin. The Gibbon River rises in the center 

of the park at Grebe Lake. It flows west through mostly Lodgepole Pine forest and open 

meadows and cross Norris Canyon Road and Grand Loop Road to enter NGB through the 

east border. The Gibbon River collects thermal water from the Tantalus Creek at the 

confluence north Hundred Spring Plains. The temperature of the river at the east entrance 

of NGB was assumed to represent the background solar temperature. The radiant flux 

estimated using that background temperature was subtracted from the radiant flux from 

the river to remove the solar heat effect. 

4.2.3.2.4. Forest and Grass Classes 

 Different types of trees including Douglas-fir and pine trees and of small trees and 

grass comprise more than 50% of the area of the basin. To remove the background heat 

flux from these two classes from September and October images, one area for each class 

was chosen outside the geothermal polygon, in the northwest side of NGB, close to the 

background areas of sinter and bare soil. The center of these background areas is at -110° 

43' 29.731'' W and 44° 43' 38.267'' N for forest class and -110° 43' 25.323'' W and 44° 43' 

34.893'' N for grass class.   
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4.2.3.2.5. Unclassified Class 

 The unclassified class includes pixels that were not identified as one of the latter 

six main classes. The unclassified class represent a less than 0.2% of the total area of 

NGB. Therefore the background heat flux was ignored as the total radiant flux. 

4.3. Results and Discussion 

4.3.1. Thermal Infrared Radiometric Images 

 The deployment of the airborne remote sensing project in NGB started in 

September of 2008. The TIR images acquired from 2008 to 2013 are shown in Fig. (4.6) 

with the black polygon overlaying the images defining the boundary of the hydrothermal 

areas in the basin created by Hutchinson (1997) (unpublished data available from the 

Yellowstone Center for Resources GIS geodatabase). The date, start time and end time of 

image acquisition and the area covered by each image are summarizes in Table (4.2). The 

TIR images covered most of NGB, and some parts of the Norris-Mammoth corridor, 

Gibbon Hill thermal area, Frying Ban Springs, Elk Park, and Roadside Springs. The TIR 

images from 2008 to 2011 acquisitions were acquired in late summer during September, 

on days and nights with clear skies, to minimize the interference from clouds. Air 

temperature during the nighttime acquisitions was close to freezing and therefore the 

surface cooled down rapidly after sunset due to radiative cooling. Images acquired in 

early fall (October 2013) and spring (March 2012 and April 2014) were used to compare 

the potential changes in radiant flux due to seasonal conditions and air temperature. The 

temperature range in the TIR image suggests large distinction among the thermal areas 
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that may include difference in locations of fractures/faults and/or permeability of the 

underline bedrock in the area. The differences are mostly noticeable in 2012 and 2013 

winter images where the minimum temperatures are likely related to areas covered by 

snow. Some of the hot thermal features in NGB have kinetic temperatures approaching 

the boiling temperature at Norris elevation (~90 °C). The maximum radiant temperature 

for these features on the calibrated images were about 40 °C less than the kinetic 

temperatures. For example, in TIR image from 2008 acquisition, the maximum radiant 

 

 

Fig. 4.5. Ratio of solar beam irradiance between different aspects and ranges of slopes 

and flat aspect during September, October, March, and April acquisitions.   
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Fig. 4.5. (continued).  

 

temperature at and around Steamboat Geyser was about 57.5 °C compared to the 

recorded kinetic temperature of about 93.0 °C (Ball et al., 2002b). Seielstad and Queen 

(2009) observed reduction in radiant temperature of hot features at night such as Gray 

Lakes, Frying Pan Spring, and Cistern Geyser, while the temperature of cold pools, such 

as Nuphar Lake, remained fairly similar. They attributed this phenomena to presence of 

steam cloud above the hot features. Neale et al. (2016) and Haselwimmer et al. (2013) 

also discussed the cooling effect of water vapor cloud above hot pools due to absorption  
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Table 4.1.  

Temperature of the background area for all surface classes 

Date of 

Flight 

Time of Flight Sinter 

Soil (°C) 

Bare 

Soil (°C) 

Forest 

(°C) 

Grass 

(°C) 

Lakes and 

Pools (°C) 

River 

(°C) 

12 Sept 2008 1:31 – 1:56 -3.6  -1.4 -1.1  -2.5  9.0  7.8 

10 Sept 2009 3:36 – 3:53  -2.5  -1.2 -1.3  -0.9  10.0  7.2 

25 Sept 2010 00:33 – 00:49 -4.5  -3.0 -2.4  -4.3 7.3  7.0 

09 Sept 2011 00:08 – 00:31 0.3  1.4 0.8  0.6  11.8  9.9 

09 Mar 2012 21:23 – 21:44  -8.8  -8.5 -5.3  -8.8  -4.8  6.3 

25 Apr 2013 23:08 – 23:33 -9.9 -8.3 -6.0  -9.7  -2.6  5.9 

25 Oct 2013 20:40 – 21:02 -2.4  -4.4 -4.0  -8.4  4.1  6.4 
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Table 4.2. 

 Dates and area covered by the TIR images and the radiant temperature range. 

Image Date Area Covered by 

Image (*106 m2) 

Radiant 

Temperature (°C) 

12 Sept 2008 9.38 Min Temp: -3.2 

Max Temp: 69.5 

10 Sept 2009 9.09 Min Temp: -5.5 

Max Temp: 73.8 

25 Sept 2010 14.42 Min Temp: -5.6 

Max Temp: 75.1 

09 Sept 2011 12.57 Min Temp: -1.6 

Max Temp: 71.3 

09 Mar 2012 14.05 Min Temp: -12.6 

Max Temp: 64.1 

25 Apr 2013 16.64 Min Temp: -15.5 

Max Temp: 74.1 

25 Oct 2013 16.89 Min Temp: -11.3 

Max Temp: 68.0 

 

of the TIR thermal energy by water vapor in high temperatures. This observation suggests 

that the radiant temperature of the hot pools, fumaroles, and thermal springs was greatly 

underestimated. 

4.3.2. Weather Conditions 

 Differences in weather conditions may explain some of the inconsistency among 

the TIR images due to differences in air temperature, wind speed, and changes in heat 

flow from precipitation or snow melt. The TIR images from 2008-2011 acquisitions were 

acquired during the month of September under mostly clear skies to maintain similar 

weather conditions. However, some differences in weather conditions prior to image 

acquisition were observed. A cool front passed through Yellowstone prior to the date of 

image acquisition on 12 September 2008. Average air temperature during the acquisition  
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Fig. 4.6. The TIR images from the acquisition on 12 September 2008 (a), 10 September 

2009 (b), 25 September 2010 (c), 09 September 2011 (d), 09 March 2012 (e), 25 April 

2013 (f), and 25 October 2013 (g). 

 

(a) 12 September 2008 
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Fig. 4.6. (continued).  

 

 

 

(b) 10 September 2009 
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Fig. 4.6. (continued). 

 

 

(c) 25 September 2010 
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Fig. 4.6. (continued).  

(d) 09 September 2011 
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Fig. 4.6. (continued).  

(e) 09 March 2012 
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Fig. 4.6. (continued).  

(f) 25 April 2013 



129 
 

 
 

 

Fig. 4.6. (continued).  

 

 

 

 

(g) 25 October 2013 
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as measured by the Geology Program Onset temperature logger at the Norris Museum, 

was – 0.2 °C. Reduced maximum solar radiation (564 W/m2) was recorded on 10 

September 2008 at the YNP Lake meteorological station (Approximately 20 miles away 

from Norris) (Jaworowski et al., 2013). The maximum solar radiation recorded on 11 

September 2008 was approximately 800 W/m2 near noon with no precipitation recorded 

on either date. 

 The day prior to the time of image acquisition on 10 September 2009 had mostly 

clear skies with maximum solar radiation of approximately 807 W/m2. Three days before 

the image acquisition, on 7 September 2009, the USU weather station in the explosion 

crater in Norris recorded about 0.5 mm of rain, cooling air temperatures by about 7 °C 

during the days of 7 and 8 September compared to the following two days. At the time of 

the image acquisition, wind speed was less than 1 m/s, average air temperature was 2.5 

°C, and average relative humidity was about 90.1%.  

 A cool front passed through the area during the two days before 25 September 

2010. Image acquisition took place on September 25 between 00:33 am and 00:49 am. 

The day before image acquisition was mostly cloudy and had maximum air temperature 

of 17.1 °C. During acquisition, air temperature was about 4.2 °C, average wind speed was 

less than 1 m/s, and relative humidity was about 86%.  

The days preceding the acquisition in 09 September 2011 were mostly sunny with no 

recorded precipitation for the week preceding acquisition. Maximum solar radiation on 

08 September 2011 was about 796 W/m2.  Average air temperature during the acquisition 

was about 5.8 °C 
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 In 2012, average air temperature during acquisition was – 3.1 °C, average RH was 

65%, and average wind speed was less than 1 m/s. SNOTEL station west Yellowstone 

reported 2 inches of precipitation on March 5 and March 7. On March 8, air temperature 

increased above zero degree Celsius during the day indicating snow melt. Maximum air 

temperature on March 9 was about 8 °C. 

 SNOTEL at west Yellowstone did not report precipitation on the week before the 

acquisitions on 25 April 2013 or 25 October 2013. Accumulated snow water equivalent 

decreased significantly during the week of 25 April indicating snowmelt due to the warm 

air temperatures during that week. Maximum air temperature on the day of image 

acquisition on 25 April was 10.3 °C and average air temperature during the hour of image 

acquisition was -2.5 °C. For the acquisition on 25 October, maximum air temperature on 

the day before image acquisition was 18.1 °C and average air temperature during the hour 

of image acquisition was -0.7 °C. 

4.3.3. Total Radiant Flux and Heat Power 

 For this part of the study, radiant flux (W/m2) and radiant power (watts) for the 

seven land cover classes in NGB were estimated to compare the results with Hardy 

(2005) and Seielstad and Queen (2009), who estimated the total radiant power over NGB 

in previous years. First, the effect from solar heating was not removed from of the total 

radiant flux image. The results of heat power for the entire basin ranged between 0.73 

gigawatt in the 25 April 2013 to 0.85 gigawatt in 09 September 2011, with highest 

radiant power recorded during 2011, 2010, and 2009 acquisitions, respectively (Table 

4.3).  
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 Many factors should be considered when comparing the total heat power 

estimated from this study with Hardy (2005) and Seielstad and Queen (2009). Hardy 

(2005) estimated the heat power from NGB from the 09 October 2002 night acquisition 

as 1.5 gigawatt. This value is about 0.65 gigawatt higher than the highest heat power 

estimated in this study for 2011. The area covered by Hardy (2005) was 3,502,800 m2. In 

this study, two hydrothermal features west of Hundred Springs Plain and a portion of the 

south east part of NGB were not covered by 2011 acquisition. Since all TIR images were 

cropped to a unified area suitable for the spatial and temporal comparison of heat power, 

excluding some area during 2011 acquisition has resulted in a smaller subset area (i.e., 

2,486,823 m2).  Another important factor to consider is that Hardy (2005) ignored the 

atmospheric effect on the radiant flux values assuming that such corrections were not 

needed because the data were collected with a low-elevation airborne flight (~1200 m 

AGL). Average airborne flight elevation in our study was about 1800 m AGL. However, 

atmospheric disturbance was incorporated in the correction of the TIR images. Our 

comparison between corrected TIR images and uncorrected raw images reveled a 

maximum apparent temperature difference of about 8 °C. This observation suggests the 

importance of the atmospheric correction of imagery even at lower flight elevation given 

that the atmosphere is highly stratified between the ground surface and the remote 

sensing sensors at the airplane elevation. For Hardy (2005), ignoring the atmospheric 

correction could have resulted in an over estimation of the final radiant flux by 

approximately 37 W/m2 which is equivalent to 0.13 gigawatt of heat power. Lastly, 

Hardy (2005) acquired their TIR images on a cooler day with maximum/minimum air 
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temperatures of 6.7/-2.8 °C. However, cooler air temperatures were expected to cool the 

ground surface resulting in a lower radiant flux output. This suggests that weather 

condition might not have been a significant factor for the discrepancy between heat 

power in Hardy (2005) and our study. A simple linear interpolation using the area and 

heat power from Hardy (2005) and the area covered by this study showed that the heat 

power equivalent to 2,486,823 m2 is 1.06 gigawatt, which is 0.21 gigawatt higher than the 

highest heat power estimated in this study. 

 Seielstad and Queen (2009) estimated the total heat power from NGB using their 

nighttime TIR acquisitions on 11 and 12 October 2006, as 0.988 gigawatt and 0.919 

gigawatt, respectively. The area covered by their study was similar to that covered by 

Hardy (2005). Weather conditions during and before the acquisition days were similar to 

the acquisition day in 2008, generally dry with clear skies and no precipitation records at 

least two days before the acquisition. Seielstad and Queen (2009) considered correcting 

the TIR images for atmospheric disturbances, which may contribute to the lower heat 

power values compared to Hardy (2005). A simple linear interpolation showed the heat 

output from 2,486,823 m2 was 0.701 gigawatt for 11 October 2006 and 0.652 gigawatt 

for 12 October 2006, which was relatively lower than the lowest heat power estimated in 

our study on April 2013. Given the uncertainties in background heat flux and the noise 

from calibration and emissivity estimation, we conclude that the differences in heat 

power, from our study and Hardy (2005) and Seielstad and Queen (2009) studies, might 

not be significant.  

 Thermal chloride flux has also been used as a surrogate for convective heat flux in 
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YNP since 1976 (Fournier et al. 1976). The method is based on calculating the 

instantaneous chloride fluxes by multiplying the chloride concentrations by the river 

discharges recorded at the time of sample collection and calculating the equivalent heat 

power. The Tantalus creek is the primary drainage of NGB and carries a very high 

proportion of the thermal water derived directly from the hot springs in the basin. The 

creek was continuously monitored for water temperature and stream flow by USGS since 

summer 2010. Generally, the discharge and chloride flux from Norris Geyser Basin, as 

measured in Tantalus Creek, varies greatly with time. The average chloride load 

measured by USGS between 3 and 5 September 2010 was about 1,032,887 tons/year 

(Clor et al., 2012). This load is equivalent to 3.1 gigawatt convective heat power drained 

from the entire area of NGB. Comparing the 0.79 gigawatt radiant flux on 25 September 

2010 to the 3.1 gigawatt convective heat flux suggests considerable amount of heat loss 

through sensible and latent heat fluxes. Future studies might consider estimating these 

two components of heat transfer to estimate an overall heat budget for NGB. 

 Fig. (4.7) shows the radiant flux images estimated from 2008-2013 acquisitions. 

The distribution of heat flux was generally consistent during 2008 and 2009 acquisitions. 

The cold area (<300 W/m2) during 2010 acquisition was more than the double of 2008 

and 2009. Weather conditions before the day of image acquisition (mostly cloudy with 

lower air temperatures) may explain this discrepancy.  However, the hot area (>500 

W/m2) was greater than those of 2008 and 2009 acquisitions. This observation indicated 

that the increase in heat flux associated with hot thermal features was not greatly affected 

by the increase in soil moisture during 2009 acquisition nor by the cooler weather prior to 
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2010 acquisition. Effect of weather can be clearly seen in the pixels with low or no 

thermal heat source. The cool area (<300 W/m2) during 2011 acquisition was less than 

4% of the number during 2008 acquisition. Notice the increase in heat power over the 

entire basin in 2011 represented by fewer cool pixels (dark grey) in the northeast and 

northwest sides of NGB (Fig. 4.7. d). The National Park Service did not report any 

significant increase in thermal activity over NGB during that time. However, in summer 

2011, the National Park geologists reported increased hydrothermal activity around Back 

Basin in NGB (Neale at al. 2016). The increase in heat flux over the entire basin in 2011 

raises a question about possible basin-wide increase in thermal activity, especially that air 

temperature during image acquisition was similar to that of 2010.   

 Notable increase in the cooler area was observed in the radiant flux images of 25 

April 2013 and 25 October 2013 (Fig. 4.7.f and Fig. 4.7.g and Table 4.4). However, the 

area of the hot pixels remained similar to that of 2008 despite the colder weather 

conditions. For example the heat flux of the reservoir and the explosion crater in NGB 

remained fairly similar during all acquisitions. Heat flux from hot hydrothermal features 

such as Whirligig Geyser and Valentine Geyser in Porcelain Basin, Steamboat Geyser, 

Echinus Geyser, and Veteran Geyser in Back Basin, and Cinder Pool in Hundred Springs 

Plain, remained above 600 W/m2 during 2008 to 2013 acquisitions. 

4.3.4. Radiant Flux Corrected for Effect of Solar Radiation (Geothermal Radiant Flux) 

 The heat flux from the background areas, outside of the thermal polygon, was 

subtracted from the total heat flux to compare year-to-year changes in the distribution of 

radiant flux due to the geothermal heat flux. Selection of the background areas was 
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challenging due to the large spatial heterogeneity of the ground skin temperature and the 

presence of hot pixels adjacent to cold pixels in the TIR images. Vaughan et al. (2012) 

explained the challenge to select background areas in geothermal grounds. Practically, it 

is not possible to select a background area that is perfectly suitable to remove the residual 

solar heat effect as such areas are characterized by unique mineral deposits and 

vegetation cover. Therefore the selected background areas may possibly still have 

unpredictable heat output from a geothermal source. 

 The output heat power values from each class after removing the solar effect are 

displayed in Table (4.5). These values ranged between 0.086 watts and 0.113 watts. 

Compared to previous study, Seielstad and Queen (2009) estimated the geothermal heat 

power from their October 11th 2006 night imagery as 0.081 gigawatt and from the 

following night image as 0.043 gigawatt. Our study provides a narrower range of radiant 

geothermal heat power although the TIR images were acquired in different seasons and 

weather conditions. Geothermal heat should be fairly be constant if no anomalous change 

was indicated by one of the six vital signs that include gas emissions from the 

hydrothermal systems, changes in seismic activity, and/or changes in Earth’s magnetic, 

electrical, and gravity fields. 

Fig. (4.8) compares the total uncorrected radiant power and the estimated radiant 

geothermal heat flux at the time of image acquisition. Sinter class encompassed the least 

reduction in radiant flux compared to the other classes. The high albedo of the whitish 

siliceous sinter explains why that class absorbed less solar energy. Forest class had 

alternatively large background heat flux. The background temperature of that class was 
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larger than bare soil and sinter deposit likely due to evapotranspiration processes.    

4.3.5. Temporal Changes in Major Hydrothermal Features in NGB 

 After removing the heat flux due to stored solar radiation, the pixel radiant flux 

values were grouped into four ranges i.e. low (0-100 W/m2), medium (100-200 W/m2), 

medium high (200-300 W/m2) and high (>300 W/m2) (Table 4.6). The areas with high 

radiant flux >300 W/m2 were mostly distributed around Porcelain Basin, the neutral high 

chloride area in the Back Basin, the southern part of the acid area in Back Basin, the Gap 

area, the mid-section of the Hundred Springs Plain, and the east side of Ragged Hill (Fig 

4.9 and Fig. 4.10). Inconsistent changes in heat flux were observed in areas around 

Colloidal pools and Sunday Geysers, Congress pool, Whirligig Geyser, unnamed pool 

east of Whirligig Geyser, and north Crackling Lake. Changes were also observed in the 

mid-section of Back Basin, west of Tantalus Creek and around Grey Lakes (Fig 4.10). 

The number of hot pixels in these two areas was higher in 2010 and April 2013 and was 

lower in the rest of the years (Fig 4.10.c and Fig 4.10.f). Some smaller inconsistent 

changes occurred around other areas in the basin including Minute Geyser, Emerald 

Spring close to the walking trail between Emerald Spring and Cistern Spring, Steamboat 

Geyser, and Cistern and Echinus Geysers. High heat flux areas were also observed 

around Collapsed Crater Spring below Tantalus Creek and an unnamed feature west of 

Echinus Geyser. 

 The changes around the walking trails in Porcelain Basin and Back Basin, 

between 2008 and 2013, are shown in Fig (4.11.) and Fig. (4.12). Increase in the number 

of the hot pixels was observed in the east side of Porcelain Basin near the trail to Norris  
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Table 4.3. 

Total radiant power calculated by multiplying pixel radiant flux by the pixel area 

Time of Flight Sinter Soil 

(gigawatt) 

Bare Soil 

(gigawatt) 

Forest     

(gigawatt) 

Grass        

(gigawatt) 

Lakes and Pools 

(gigawatt) 

River  

(gigawatt) 

Total Heat Power 

(gigawatt) 

12 Sept 2008 0.234   0.188 0.223   0.146   0.012  0.046 0.807  

10 Sept 2009 0.232   0.187  0.221   0.146   0.012  0.046  0.802  

25 Sept 2010 0.230   0.183  0.219   0.143  0.012  0.046  0.792 

09 Sept 2011 0.244   0.197  0.238  0.152   0.013  0.050 0.849  

09 Mar 2012 0.222  0.178  0.218  0.137  0.011  0.045 0.771  

25 Apr 2013 0.211  0.168  0.201   0.131   0.011 0.045 0.727  

25 Oct 2013 0.272  0.173  0.207  0.135   0.012  0.046 0.803  

 

Table 4.4.  

The area (m2) relevant to each range of radiant flux as shown in Fig. (4.7). Total radiant power (gigawatt) calculated by 

multiplying pixel radiant flux by the pixel area 

Heat Flux 

Range 

(W/m2) 

12 Sept 

2008 

10 Sept 

2009 

25 Sept 

2010 

09 Sept 

2011 

09 March 

2012 

25 Apr 

2013 

25 Oct 

2013 

<300  139,977 182,861 421,676 6,948 679,383 1,981,330 1,721,689 

300 - 400  2,274,812 2,232,167 2,001,334 2,382,287 1,766,051 463,676 718,564 

400 - 500  66,828 68,223 58,288 91,704 40,352 39,659 46,000 

500 - 600  4,632 5,867 7,052 7,007 3,679 4,689 3,340 

>600  574 842 1,611 1,317 495 610 336 
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Fig. 4.7. Radiant flux (W/m2) over NGB on 12 September 2008 (a), 10 September 2009 

(b), 25 September 2010 (c), 09 September 2011 (d), 09 March 2012 (e), 25 April 2013 

(f), and 25 October 2013 (g), without correction for solar effect.  

12 September 2008  

10 September 2009  
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Fig. 4.7. (continued).  

25 September 2010  

09 September 2011  
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Fig. 4.7. (continued).  

09 March 2012  

25 April 2013  
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Fig. 4.7. (continued). 

 campground and museum in 2010 and 2011 images. The area of the hot pixels decreased 

in 2012 and April 2013 images and increased again in October 2013 image (Fig 4.11). 

Similarly, hot pixels were observed to be formed in 2009 image in the southern side of 

the paved trail in Back Basin. The area of the hot pixels was continued to slightly 

increase until October 2013. Some of the changes observed around the trails in Porcelain 

Basin and Back Basin have not been aligned with any field observation or official reports 

from the National Park service about unusual thermal activity around Norris Geyser 

Basin. However, in mid-June 2011, NGB geologists reported new thermal activity along 

the Back Basin trail between Yellow Funnel Spring and Porkchop Geyser. They observed 

burning trees in that area and the change of the color of the ground. The area where the 

new thermal features were observed in Back Basin is shown in Fig (4.12).

25 October 2013 
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Table 4.5.  

Geothermal radiant power estimated for each class after subtracting the radiant power due to stored solar radiation. 

Time of Flight Sinter Soil 

(gigawatt) 

Bare Soil 

(gigawatt) 

Forest     

(gigawatt) 

Grass        

(gigawatt) 

Lakes and 

Pools 

(gigawatt) 

River      

(gigawatt) 

Total 

Radiant 

Heat Power 

(gigawatt) 

12 Sept 2008 0.048  0.019 0.012  0.021  0.002  0.0002  0.1024   

10 Sept 2009 0.042  0.017 0.010  0.018  0.002  0.0001 0.0883  

25 Sept 2010 0.047  0.019 0.012  0.021  0.002  0.0001 0.1011  

09 Sept 2011 0.048 0.021 0.021  0.022  0.002    0.0003 0.1133  

09 Mar 2012 0.045  0.018 0.013  0.019  0.003  0.0001 0.0988  

25 Apr 2013 0.043  0.017 0.005  0.018  0.003  0.0002 0.0861  

25 Oct 2013 0.045  0.017 0.004  0.019  0.002  0.0001 0.0876  
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Fig. 4.8. Total radiant power (top) before removing solar effect, and geothermal radiant 

power (bottom) after removing the radiant power from stored solar radiation. 

4.4. Summary and Conclusions 

 Norris Geyser Basin in Yellowstone National Park is the most dynamic and unrest 

geyser basin in the Park. The goal of this study was to evaluate and compare the spatial 

and temporal changes of the geothermal radiant temperature, radiant flux, and radiant 
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power, at Norris Geyser Basin over several years. The study was supported by high 

resolution TIR images acquired annually over the basin using consistent processing 

methods to enable year-to-year comparison of the radiant components. One challenge 

when temporally comparing the radiant components, was the presence of stored radiant 

flux from solar shortwave radiation and atmospheric longwave radiation. This flux is 

variable depending on the season, cloud conditions, and soil moisture. Previous remote 

sensing studies used the radiant flux from a non-geothermal area as a surrogate for the 

absorbed radiant flux in the geothermal area. This method required additional remotely 

sensed images outside the geothermal area, which added to the overall project cost. 

Selection of a suitable background non-geothermal area is somewhat challenging to 

select a background area with surface characteristics similar to the geothermal area.  

Seielstad and Queen (2009) assumed that the heat flux of areas adjacent to, but outside 

Norris, is representative of background flux in the basin. They estimated weighted mean 

flux within each land-cover class to produce total flux by a class. However, their method 

ignored the areas outside Norris with high temperatures that matches or exceeded the 

temperature of some areas within Norris. 

 In this chapter, a new method was developed to estimate the stored radiant flux 

based on solar irradiation estimated for the days of image acquisition. This method 

assumed clear skies condition given that TIR images were acquired during nights of 

mostly sunny days. An improvement to the method used by Seielstad and Queen (2009) 

was suggested by including recommendation by Vaughan et al. (2012) to define the 

background areas in NGB based on the terrain elevation, aspect, and slope. The radiant 
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temperature and radiant flux images were consistent and showed that areas covered with 

siliceous sinter deposit absorbed less heat from the sun due to their high albedo, while 

areas covered with evergreen Pine and Douglas fir trees had the highest background 

radiant flux likely due to higher emissivity and storage in these pixels. Results of total 

radiant power were consistent with previous remote sensing studies before subtracting the 

solar effect. The study estimated a range of total radiant flux between 0.73 GW estimated 

from the TIR image acquired on 25 April 2013 and 0.85 GW estimated from the TIR 

image acquired on 09 September 2011. The radiant geothermal heat flux, after 

subtracting the radiant effects of solar radiation ranged between 0.086 gigawatts and 

0.113 GW. Given the between-acquisition differences in boundary layer moisture, air 

temperature, and wind speed, on and prior to the acquisitions, the geothermal radiant 

power values were consistent. This similarity suggests consistency of the methods used 

for image acquisition and correction and the method suggested in this chapter to estimate 

the background radiant flux. The observed increase in radiant flux near back Basin trail 

and close to Porcelain trail during 2009-2011 flights suggested that  the methods used for 

image acquisition and analysis were suitable to study and assess individual hydrothermal 

features as well as to monitor changes over the entire basin.  
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Table 4.6.  

The area of bare ground and sinter soil (m2) relevant to different range of radiant flux after removing the stored solar radiant 

flux. 

Radiant 

Flux 

(W/m2) 

12 Sept 2008 10 Sept 2009 25 Sept 2010 09 Sept 2011 09 Mar 2012 25 Apr 2013 25 Oct 2013 

0-100  1,535,322 1,551,573 1,473,978 1,281,518 1,247,931 1,220,314 1,218,982 

100-200 88,428 78,268 87,049 79,013 89,427 86,595 81,990 

200-300  5,815 6,451 9,285 6,163 6,506 8,954 6,523 

>300  572 881 1,909 1,023 876 1,476 636 
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Fig. 4.9. Change in the radiant flux in the east side of Porcelain Basin from 2008 (a), 

2009 (b), 2010 (c), 2011 (d), 2012 (e), April 2013 (f), October 2013 (g), Heat flux image 

overlay an MS image in the red range of spectrum, acquired in 2010.  

(a) 12 September 2008 

(b) 10 September 2009 
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Fig. 4.9. (continued).  

(d) 09 September 2011 

(c) 25 September 2010 
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Fig. 4.9. (continued). 

(e) 09 March 2012 

(f) 25 April 2013 
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Fig. 4.9. (continued).  

 

 

 

 

 

 

 

 

 

 

 

 

(g) 25 October 2013 
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Fig. 4.10. Change in the radiant flux in Back Basin from 2008 (a), 2009 (b), 2010 (c), 

2011 (d), 2012 (e), April 2013 (f), October 2013 (g), Heat flux image overlay an MS 

image in the red range of spectrum, acquired in 2010.  

(a) 12 September 2008 

(b) 10 September 2009 
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Fig. 4.10. (continued). 

(c) 25 September 2010 

(d) 09 September 2011 
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Fig. 4.10. (continued).  

(e) 09 March 2012 

(f) 25 April 2013 
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Fig. 4.10. (continued).  

 

(g) 25 October 2013 
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 Fig. 4.11. Changes in the radiant flux in the east side of Porcelain Basin on 2008 (a), 

2009 (b), 2010 (c), 2011 (d), 2012 (e), April 2013 (f), October 2013 (g), Heat flux image 

overlay an MS image in the red range of spectrum, acquired in 2010. 

(a) 12 September 2008  

(b) 10 September 2009  
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Fig. 4.11. (continued).  

(c) 25 September 2010  

(d) 09 September 2011  
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Fig. 4.11. (continued).  

(e) 09 March 2012  

(f) 25 April 2013 
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Fig. 4.11. (continued). 

 

 

(g) 25 October 2013 
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Fig. 4.12. Changes in the radiant flux in Back Basin from 2008 (a), 2009 (b), 2010 (c), 

2011 (d), 2012 (e), April 2013 (f), October 2013 (g), Heat flux image overlay an MS 

image in the red range of spectrum, acquired in 2010.  

(a) 12 September 2008  

(b) 10 September 2009  
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Fig. 4.12. (continued). 

(c) 25 September 2010  

(d) 09 September 2011  
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Fig. 4.12. (continued). 

(e) 09 March 2012  

(f) 25 April 2013 
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Fig. 4.12. (continued). 
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CHAPTER 5 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary and Conclusions 

 This dissertation described research conducted towards estimating geothermal 

heat flux from airborne thermal infrared remote sensing in Norris Geyser Basin, 

Yellowstone National Park. Similar previous studies including Jaworowski et al. (2013) 

and Haselwimmer and Prakash (2013), stated the importance of subtracting the residual 

heat flux stored in the ground from solar shortwave and/or atmospheric longwave 

radiations from the total radiant flux to estimate the geothermal heat flux. In Chapter 2, a 

comparison method was suggested to compare ground heat flux measured during selected 

sunny summer days and overcast winter days with low incoming solar radiation, to 

estimate the solar radiation absorption effects. This method assumed that the geothermal 

heat flux was constant during the days used for the comparison. The method also 

assumed that latent heat and sensible heat were not significant heat sources in the study 

area and that the main sources of heat in the ground were solar radiation and geothermal 

heat, neglecting the contribution from atmospheric longwave radiation during sunny and 

clear conditions. However, the results suggested a minimum value of radiant geothermal 

heat flux for 09 September 2009 acquisition as 255.03 W·m-2 and for 09 March 2011 

acquisition as 209.08 W·m-2. Given the variability of weather conditions on and prior to 

image acquisition, these values were considered fairly similar. It was not possible to 

decide if the difference in these values were due to only differences in weather conditions 
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or if the underling geothermal heat source contributed to some differences.  The 

variability of the estimated fluxes suggested further measurements of the ground heat flux 

and/or the temperature profile below the diurnal zone to better quantify changes related to 

the geothermal source. 

 

 A one dimensional numerical model was used in Chapter 3 of this dissertation to 

estimate the contribution of the four different heat flux mechanisms (i.e. conduction of 

sensible heat, convection of sensible heat by liquid water and water vapor, and 

convection of latent heat by water vapor) in the study site in NGB. The study was done to 

test the null hypothesis assumed in Chapter 2 that latent heat and sensible heat were 

neglected in the study site due to high ground temperatures compared to air temperatures. 

The results failed to reject that null hypothesis and concluded that the conductive heat 

flux contributed to more than 99% of the total heat flux in the ground. The chapter also 

presented the optimization results of some hydraulic and thermal properties of the 

siliceous sinter deposit, which were poorly understood. The grain size distribution 

analysis of a sample of siliceous sinter from the study side classified the deposit as sandy 

clay loam. The results from the inverse solution conducted through HYDRUS-1D 

matched the grain size distribution and estimated values of n, α, and Ks that were in 

between the literature range of sandy clay loam and sandy loam (Simunek et al., 2005). 

However, the measured thermal conductivity of the deposit was higher than sand with 0.4 

porosity as estimated by Chung and Horton (1987) due to the presence of silica in the 

deposit. The results of the optimization have increased our understanding of the hydraulic 
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characteristics of the siliceous sinter deposit at different water content and temperature 

conditions. 

  

 In Chapter 4 of the dissertation, the acquired high-resolution TIR images were 

used to study the spatial and temporal radiant flux in NGB. The accuracy and precision of 

the TIR images ensured reliable estimates of radiant flux compared to the previous 

Seielstad and Queen (2009) study. The chapter a method was suggested to estimate the 

contributions to the radiant flux resulting from absorbed solar radiation based on the 

surface class and the time of image acquisition (summer versus winter and spring). For 

areas that were covered by bare soil or siliceous sinter deposit, the method assumed that 

the solar effect is a function of the aspect and slope of the area. The method suggested 

using the solar beam irradiance at each aspect and slope to estimate the temperature of 

that area by comparison with the temperature of a flat background area, with minimum or 

no geothermal heat contribution. The resulting total radiant power ranged between 0.73 

gigawatts and 0.85 gigawatts. The 0.85 gigawatts was consistent with the value estimated 

by Seielstad and Queen (2009). The range of radiant geothermal heat flux, after 

subtracting the radiant effects of solar radiation varied between 0.086 gigawatts and 

0.113 gigawatts. This range is considered consistent given the differences in weather 

conditions on and prior to the acquisition date.  

 

 The study showed that the methods used for image acquisition and analysis were 

suitable to study and assess individual hydrothermal features as well as monitor changes 
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over the entire basin. Most thermal disturbances in volcanic systems inhere signs of 

change long before the change occur. Example to that is increase in seismic signals 

preceding an earthquake. Year-to year monitoring of the area may depict some of these 

signs giving the chance for decision makers to take informative reactions. The repeated 

high-spatial-resolution monitoring may solve the major concern about public and 

property safety and the safety of the park service personnel and researchers, who come 

into a close contact with hydrothermal areas in the park. 

 

Recommendations 

 In Chapter 2 of the dissertation, the calorimetric heat storage method was used to 

estimate the ground heat flux at the surface from measurements the soil heat flux at 15 

cm and the heat storage in the soil above the measurement point. The error expected from 

using values of temperature and thermal conductivity only at the middle of the soil layer 

above the plate can range between 3% and 10%. This error can have implications on the 

estimated ground heat flux at the surface and in the final estimate of residual heat flux. 

To improve the results from the calorimetric method, multiple measurements of soil 

temperature and thermal properties at different depths of the soil profile are suggested.   

 

 To better quantify changes related to the geothermal source, and to test the 

proposed method to estimated the geothermal heat flux at the surface, it is recommended 

to install the heat flux plate and thermocouples at a depth below the diurnal surface 

radiant flux zone to measure geothermal heat flux. Given the objectives of the study, it 
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would also seem desirable to have multiple measurements of heat flux plates to help 

understand some of the observed anomalies following precipitation events and to avoid 

loss of data possible due to a single plate dysfunction. Perhaps more data on temperature 

and water content vertical profile in deeper layers and hydraulic properties above and 

below the plate in periods after precipitation are important to make further discussion 

about this issue.  

  

 An uncertainty is expected from using ASTER emissivity image with 

approximately 100-meter spatial resolution, to estimate ground emissivity. The error in 

ground skin temperature for a range of surface emissivity between 0.86 and 0.89 was 

about 2.67 °C. This error may have implication on determining the temperature gradient 

in the soil and therefore Gs values during time with +ΔT. Alternatively, measuring 

ground emissivity is recommended for accurate estimate the ground skin temperature.  

 

 The suggested atmospheric correction method explained in Chapter 4 has 

improved the accuracy of the radiometric temperature of cooler water systems. However, 

the bias remained still in the radiometric temperature of hot water systems due to the 

cloud of water vapor above these hot systems. The results from Neale et al. (2016) 

showed the relevant kinetic temperature of six pools in YNP had agreed well with the 

radiometric temperature for water pools with temperatures less than 35 °C (mean bias 

error of -1.8 °C and RMSD value of 3.3 °C); however, the mean bias error for water 

pools with kinetic temperatures greater than 35 °C was 16.8 °C and RMSD was -19.1 °C. 
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More research studies on removing the vapor effect from the radiometric thermal infrared 

imagery is encouraged. 
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APPENDIX A – Raw Data 

Fig. A.1 Plot showing raw data collected at CR3000 site during 2009, including ground 

heat flux (Gz), incoming solar radiation (Rs), net radiation (Rn), soil temperature at 0.05 m 

(Tz), air temperature (Ta), rain, and wind speed (WS). 
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Fig. A.2 Plot showing raw data collected at CR3000 site during 2010, including ground 

heat flux (Gz), incoming solar radiation (Rs), net radiation (Rn), soil temperature at 0.05 m 

(Tz), air temperature (Ta), rain, and wind speed (WS). 
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Fig. A.3 Plot showing the raw data collected at CR3000 site during 2011, including 

ground heat flux (Gz), incoming solar radiation (Rs), net radiation (Rn), soil temperature at 

0.05 m (Tz), air temperature (Ta), rain, and wind speed (WS). 
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Fig. A.4 Plot showing the raw data collected at CR3000 site during 2012, including 

ground heat flux (Gz), incoming solar radiation (Rs), net radiation (Rn), soil temperature at 

0.05 m (Tz), air temperature (Ta), rain, and wind speed (WS).  

 
Fig. A.5 Plot showing raw data collected at CR1000 Side in 2009, including ground heat 

flux (Gz), net radiation (Rn), soil temperature at 0.05 m (Tz), and air temperature (Ta). 
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Fig. A.6 Plot showing raw data collected at CR1000 Side in 2010, including ground heat 

flux (Gz), net radiation (Rn), soil temperature at 0.05 m (Tz), and air temperature (Ta). 

 

Fig. A.7 Plot showing raw data collected at CR1000 Side in 2011, including ground heat 

flux (Gz), net radiation (Rn), soil temperature at 0.05 m (Tz), and air temperature (Ta). 
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Fig. A.8 Plot showing raw data collected at CR1000 Side in 2012, including ground heat 

flux (Gz), net radiation (Rn), soil temperature at 0.05 m (Tz), and air temperature (Ta). 
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