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ABSTRACT 

Use of Multispectral Aerial Videography 

for Jurisdictional Delineation 

of Wetland Areas 

by 

James A. Shoemaker, Master of Science 

Utah State University, 1994 

Major Professor: Dr. Thomas B. Hardy 
Iepartment: Civil and Environmental Engineering 

Multispectral aerial videography was used to reproduce the 

jrrisdictional delineation of wetland area of approximately 50 hectares in 

Iavis County, Utah. Imagery from the system consisted of three-band 

Vlll 

c1mposite with wavelengths covering 550 nm (±10 nm), 650 nm (±10 nm), 

aid 850 nm (±10 nm). The site was overflown at three different flight dates 

ruring the 1992 growing season (June 2, July 22, October 1). Imagery 

nsolution varied from 0.56 m to 0.81 m. Mosaiced images were analyzed 

"ith a Supervised clustering/maximum likelihood classifier, ISODATA 

custering/Euclidean classifier, statistical clustering/maximum likelihood 

cassifier, and fuzzy c-means clustering. Overall accuracies for 

\:etland/upland designation as compared to ground truth data varied from 



IX 

60% to 75%. The ISODATA method was the poorest performer for all dates 

and both of two accuracy testing techniques. Supervised clustering and 

statistical clustering were comparable with a slight edge in accuracy to the 

supervised clustering. The best all-round performer was the fuzzy c-means 

algorithm in terms of time spent and accuracy. (123 pages) 



INTRODUCTION 

In 1972, the first of a series of Land Satellite (Landsat) remote 

sensing systems was launched. This system is unique in that it was the 

first system to provide "systematic, repetitive, observation of the earth's 

land areas" (Campbell, 1987, p. 6 ). This ushered in the era of easily 

accessible multispectral data for analysis of the earth's surface in digital 

form. This resource has helped managers in a number of fields including 

agriculture and natural resource management (Everitt, Escobar, and Nixon, 

1987; Jackson, 1982; Lyon and Khuwaiter, 1988; Bukata et al ., 1978; 

Bukata, Bruton, and Jerome, 1983; Bukata, Jerome, and Bruton, 1988; 

Kuchler and Zonnveld, 1988). Some researchers have also measured water 

quality in coastal and fresh water systems (Johnson and Harriss, 1980; 

Klemas et al ., 1974; Lathrop and Lillesand, 1986; Lyon and Khuwaiter, 

1988; Scherz and Domelen, 1975). Though the satellite systems provide 

useful data, there are some disadvantages inherent in their configuration . 

For example, with two Landsats in orbit, a geographic area is overflown 

only once every 9 days. Though the French imaging satellite SPOT 

increases this rate to once every 2 1/2 days through its pointable sensor 

array (Campbell, 1987), coverage is still hampered by cloud cover. 

Approximately 50% of the earth's surface is covered by clouds at any one 

time. This means that a Landsat overpass, on average, acquires a scene 

with only 1/8 of the sky obscured only twice a year (Rees, 1990). 
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Another problem is the necessary correction for atmospheric effects 

such as attenuation, scattering, and absorption (Rees, 1990). Strong 

absorption bands in the near-infrared (IR) range also restrict the use of 

sensors in this range. The altitude of a satellite also reduces the strength of 

the received signal by 200,000 times when compared to a platform at an 

altitude of 1 km. However, by far, the greatest problem is that of 

resolution. The pixel sizes of Landsat thematic mapper (30 meters) or 

SPOT (10 meters, panchromatic) imagery are too large to allow sufficient 

characterization of smaller features. The heterogeneity and small size of 

many natural features does not allow their monitoring using conventional 

satellite techniques. 

Aerial-based videography presents a solution to the spatial resolution 

problem (0.25 to 3.0 meters per pixel) due to higher resolution sensors and 

its lower altitude of image acquisition . In addition, its rapid turnaround 

time (in comparison to satellite data acquisition) and ease of digitization (in 

comparison to higher resolution aerial photography) make it a useful data 

input for geographical information systems (GIS). The lower altitude also 

allows selection of monitoring frequencies that are absorbed by the upper 

atmosphere for use in plant species identification and determination of soil 

conditions (Everitt et al., 1987). 

Researchers have developed a variety of single and multi-camera 

systems (Mausel et al., 1992). These systems have been successfully applied 
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in agricultural land-use classifications and assessments (Everitt et al., 1991; 

King and Vlcek, 1988; Marsh, Walsh, and Hutchinson, 1990), soil surface 

conditions (Everitt et al., 1988, 1989), determination of plant species 

(Blazquez, 1988; Everitt et al., 1987, 1988; Lulla et al., 1987; Nixon, 

Escobar, and Menges, 1985; Richardson, Menges, and Nixon, 1985), and 

natural resource management (Everitt, Escobar, and Nixon, 1987; Everitt 

and Nixon, 1985; King and Vlcek, 1990; Yuan, King, and Vlcek, 1991). 

Wetlands 

One area of interest to natural resource managers and engineers is 

the determination and monitoring of wetlands. To the lay person, a wetland 

can encompass a wide variety of qualitative descriptions: bog, marsh, 

swamp, mudflat. One researcher categorized 50 different terms in use to 

describe wetlands (Kusler, 1992). Part of the difficulty in precisely defining 

a wetland occurs because of its relationship as a transition zone between 

aquatic and terrestrial environments . In general, wetlands are "areas that 

are inundated or saturated by surface or ground water at a frequency and 

duration sufficient to support, and that under normal circumstances do 

support , a prevalence of vegetation typically adapted for life in saturated 

soil conditions" (Environmental Laboratory, 1987, p.13). These areas fulfill 

many functions such as floodwater storage and desynchronization, water 

quality improvement, erosion control, groundwater recharge, fish and 
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wildlife habitat, and heritage values (aesthetics, educational, recreation) 

(Grah and Crane, 1991; Want, 1989; Hook, 1986). Currently, only about 

45% of the 221 million acres of wetland estimated to be present in 1780 

remain in the conterminous United States (Want, 1989; Dahl and Johnson, 

1991). Loss of these areas has led to a renewed interest in quantification of 

status, monitoring of trends, and protection of wetlands. 

Le~al Histozy 

The legislative history of wetlands in the U.S. began with the Rivers 

and Harbors Act of 1899, which gave the U.S. Army Corps of Engineers 

(Corps) approval authority for obstructions in navigable waters. This role 

has expanded to the current Clean Water Act Section 404, giving the Corps 

responsibility, subject to Environmental Protection Agency review, to 

regulate the discharge and fill of material into wetland areas (Want, 1989). 

In order to fulfill this responsibility, the Corps permit process requires that 

the boundaries of wetland areas be determined. The size of the area (e.g., 1 

acre [0.40 hectare] versus 10 acres [4.04 hectares]) has a dramatic effect on 

the regulatory framework the permit process takes (Want, 1989). The 

National Wetland Inventory (NWI) maps produced at 1:24000 do not have 

sufficient spatial resolution to meet the Corps 1:6000 mapping 

requirements . A recent study of Corps-issued permits in Oregon (January 

1977 through January 1987) and Washington (1980-1986) indicated that 



66% (Oregon) and 65% (Washington) of the impacted areas were less than 

one acre in size (Kentula et al., 1992). This interest in wetlands both from 

the permitting process and other legal and institutional considerations has 

led to attempts by some agencies to determine the presence and extent of 

wetland areas within their jurisdiction or under their management or 

regulatory purview . For example, the state of Washington Department of 

Transportation (WDOT) has begun an effort to inventory wetlands along 

highway rights-of-way (Ossinger, Schafer, and Cihon, 1992). 

Remote Sensin~ Efforts 

Previous researchers have used a variety of remote sensing 

techniques to quantify and examine wetlands . Bartlett and Klemas (1980) 

examined Landsat/multispectral scanner (MSS) data and found it suitable 

for estimating biomass in mid-Atlantic tidal wetlands. Dottavio and 

Dottavio (1984) compared simulated Landsat/MSS and Landsat/Thematic 

Mapper (TM) data for broad community identification. In discriminating 

between agriculture, upland forest, brackish high marsh, brackish low 

marsh, and water classes, overall classification accuracies of 65.6% (MSS) 

and 69.4% (TM) were obtained. Another group of researchers used 

Landsat/TM to classify a portion of Maryland's Eastern Shore bordering the 

Chesapeake Bay into forest, agriculture/grass, water, and wetlands with an 

81 % accuracy (Ormsby et al., 1985). 

5 



Data from the Landsat used to classify coastal wetlands in South 

Carolina resulted in accuracies of 86.7 to 92.3% (Jensen et al., 1993a). The 

Environmental Protection Agency evaluated both Landsat and aircraft.

based MSS for wetland identification in southwestern Florida . Accuracies 

were 68% for aircraft MSS (7.6 m resolution) and 74% for Landsat/MSS 

(Butera, 1979). Jensen and others have done extensive work in the area of 

remote sensing of wetlands in South Carolina. A 1981 study using an 

aircraft MSS (3 m resolution) resulted in 83% accuracy for wetland 

classification (Jensen et al ., 1986). A follow-on study with multiple flight 

dates with an aircraft MSS (5.6 m resolution) found 82-86% accuracy 

(Jensen et al., 1987). 

Probably the most commonly used method to remotely identify 

wetlands is aerial photography (Mitsch and Gosselink, 1986). Recent uses 

include a pilot study by WDOT using color and color-IR photography at a 

variety of scales to delineate wetlands with areas as small as 0.25 acres . 

Though no accuracies were reported, the color-IR photos at 1:12000 gave 

acceptable classification results (Ossinger, Schafer, and Cihon, 1992). An 

investigation of techniques for this project included a live demonstration of 

a videography system that was not used in any formal data analysis. In 

1975 the U.S. Department of the Interior Fish and Wildlife Service began a 

project to inventory wetlands in the United States to aid managers in the 

wise use of this resource (Tiner, 1990). This project, the National Wetlands 

6 



:nventory (NWI), makes use of high altitude aerial black and white 

)hotography at 1:80000 and color infrared photography at 1:56000 scales, 

riving a feature resolution of 1-3 acres . 

7 

These various efforts generated classifications with typical overall 

,1ccuracies of 60-90% at scale resolutions of 3-30 meters. Though the 

classification accuracies are acceptable, the resolution is generally still not 

mfficient to meet the Corps mapping requirements. National map 

3tandards require that no more than 10% of the points on a map with scale 

arger than 1:20000 can have a horizontal position error of more than 0.8 

lilIIl (]}30 in.) . For the 1:6000 Corps requirements, this 10% accuracy limit 

is 4.8 m . For normal vision, plotting accuracies of 0.25 mm to 0.5 mm 

onoo to ]}50 in.) can be resolved, which translates to positional accuracy of 

: .5 m to 3 m (4 to 6 ft) (Wolf and Brinker, 1989). Thus other methods are 

required to produce wetland classifications at a scale that will meet 

requirements for Corps jurisdictional delineation . 

With greater spatial resolution than satellites and lower cost in 

comparison to aerial photography, multispectral videography offers the 

possibility to meet these mapping requirements. Though aerial 

pmtography can offer greater spatial resolution, its lack of automated 

processing capability hampers its use for larger projects. Also, its combined 

spectral information requires extensive processing to obtain the separate 

spectral information that is readily available from the multispectral 
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imagery. The possible problems from film developing errors (temperature 

variability, exposure time, chemical variation) can alter the final film 

appearance and so alter the spectral information obtainable from the print . 

Multispectral videography eliminates these shortcomings because its data 

are collected in the more stable and repeatable medium of digital 

videotapes. Another system that would overcome the shortcomings of aerial 

photography is aircraft MSS . However , the high cost of its specialized 

equipment in comparison to the relatively inexpensive price of the mass 

market commercial equipment used in the multispectral system makes it 

uneconomical for routine use . In summary , the digital nature , repeatability, 

and relative inexpensiveness of multispectral video data make it easily 

subject to computerized processing of its spectral information, and the 

relatively low cost makes it amenable to routine use . The literature reports 

no efforts to perform jurisdictional delineations of wetlands using a remotely 

sensed approach. 

This study investigated the use of multispectral videography in 

jurisdictional delineation of a known wetland area . The test site was 

delineated the summer previous to the overflights as part of the Corps 

permitting process and the data from this jurisdictional delineation were 

used as ground truth for accuracy assessment (Grah and Crane, 1991). The 

first objective was to compare results of wetland classification using 

supervised and unsupervised classical spectral clustering as well as 
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maximum membership fuzzy c-means clustering from imagery collected with 

an airborne multispectral videography system. Second, the temporal effects 

on classification arising from seasonal variations of three different flight 

dates were inspected. Finally, all the information was examined to 

determine the suitability for use of multispectral videography in 

jurisdictional wetland delineation. 
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MATERIALS AND METHODS 

Site Description 

The wetland investigated is located south of Farmington, Utah just 

east of the Great Salt Lake (Sec 13 & 14, T3N Rl W in Davis County, Utah) 

(Grah and Crane, 1991) (see Figure 1). Multispectral imagery were 

acquired on June 2, July 22, and October 1, 1992, using the multispectral 

videography system described below with spatial resolutions of 0.69 m, 

0.81 m, and 0.56 m for each date, respectively . A subset of the 

jurisdictionally delineated site was selected as the test area. Though the 

delineation for this site was completed in June 1991, under existing Corps 

regulations jurisdictional delineations are valid for 2 years (Want , 1989) so 

that this delineation (Grah and Crane, 1991) was considered valid for use as 

ground truth . 

Data Acquisition 

The aerial multispectral videography system 1sed for data collection 

was developed at Utah State University (Neale, 1992). This system consists 

of the following items: (1) three COHU 4810 series high resolution (525 

horizontal lines) monochrome CCD video cameras with 10-nm interference 

filters centered on 550 nm (green), 650 nm (red), and 850 nm (infrared) and 



4230 
Farm ington 

Sidin11: • O O 

Figure 1. Site location in Utah . 
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with a 16-mm Sony television quality lens; (2) three Panasonic AG-7 400 S-

VHS videotape recorders (425 horizontal lines) for recording camera output; 

(3) an Exotech four-band radiometer with Landsat Thematic Mapper bands 

TMl (450-520 nm), TM2 (520-620 nm), TM3 (630-690 nm), and TM4 (760-

900 nm) with square 1-degree field-of-view lens; (4) an Everest thermal 

infrared radiometer (8-14 µm) with a circular 2-degree field-of-view; (5) an 

Omnidata 700 series Polycorder datalogger for recording de camera voltages 

and analog signals from the two radiometers; (6) a Trimble Pathfinder 

global positioning system (GPS) with output recorded by an Omnidata 600 

series datalogger; (7) a SMPTE time code generator to provide time/frame 

counts for image digitization at a later time. 

The cameras and radiometers were mounted in a vibration isolation 

frame to minimize blurring . Camera lens focuses were set at infinity and 

the focal axes aligned to converge on an object at the expected height above 

ground for data collection. All three cameras were synchronized with the 

green camera designated as the master, thus allowing all three cameras to 

simultaneously record the same image . The synchronization signal from the 

master camera was fed to the time code generator to supply time/frame code 

information which was recorded on audio channel #2 by each videorecorder. 

The time/frame code information was also provided in a data block on the 

bottom of the green camera image for visual reference during image 



digitizing. Another data block on the bottom of the red camera image 

contained GPS information from the Trimble Pathfinder. 

Ima~e Preprocessin~ 

13 

Images were viewed and digitized with a Panasonic S-VHS AG-7500 

editing machine controlled via a Diaquest board and software system on a 

PC-386 (Neale, 1992). The Diaquest board used the time code to locate the 

same scene on each monochrome videotape for automatic digitization of 

desired frame sequences. Individual frames were digitized to an 8-bit (256 

gray scales) file using a TARGA+ board for transfer and processing on an 

IBM RS-6000 530H workstation. Data processing on the workstation was 

conducted using the Earth Resource Data Analysis System (ERDAS) and 

software developed for this project . 

Images were first corrected for vignetting via procedures established 

by Crowther (1992) and Crowther and Neale (1991). Vignetting is the 

darkening of the image with increasing distance from the center of the lens. 

The vignetting correction adjusts the imagery for departures from perfect 

focusing, which causes this effect, as well as accounting for nonuniformities 

in the camera sensing chip. Three-band false color composite images of 

each video scene were constructed by registration of the red and infrared 

images to the green image (see Figure 2). The interlaced scanning resulting 

from the RS-170 television standard resulted in a horizontal shifting due to 
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Green 

Infrared 3band Composite 

Figure 2 . Example single bands and 3-band false color composite . 
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aircraft motion perpendicular to the flight path (transitional and roll effects) 

and a vertical shifting due to both forward plane motion and pitch. Image 

shifts due to platform yaw were not corrected . Vertical line shifting was 

corrected by maximizing the correlation of the summed brightness values 

for shifting of odd/even lines (Neale et al., 1993). Every tenth value in an 

image-centered window 1/9th the size of the image was used in the 

correlation . Horizontal line shifting was then performed in the same 

manner. Images were then visually reviewed to confirm the selected 

shifting. These 3-band composites for each flight (June - 32 images, July -

17 images, October - 29 images) were stitched into a mosaic for analysis and 

presentation purposes (see Figures 3-5). 

The individual 3-band images were clustered and classified using 

three classical techniques : (1) supervised clustering with a Bayesian/ 

maximum likelihood classification; (2) iterative self-organizing data 

analysis technique (ISODATA) which used a Euclidian distance classifier; 

and (3) statistical clustering with a Bayesian/maximum likelihood 

classification (ERDAS, 1991). The stitched images were also evaluated 

using a fuzzy c-means pattern recognition algorithm (Gunderson and 

Jacobsen, 1983) . 

The classical signature evaluation and classification was performed 

with the ERDAS software package on an IBM RS/6000 Model 530H. 
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Figure 3. June 2, 1992 mosaic image. 
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Figure 4 . July 22, 1992 mosaic image. 
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Figure 5. October 1, 1992 mosaic image . 



Because the individual images were not radiometrically corrected, each 3-

band composite was evaluated individually for the parametric methods. 

19 

The resulting GIS image files were stitched to form mosaics for the three 

dates and rectified to a 1:24000 orthophoto 1 map for accuracy analysis. A 

fuzzy c-means program developed at Utah State University was modified to 

read the ERDAS file formats and the mosaic for each date was submitted to 

this method to produce a mosaiced GIS image for accuracy evaluation . 

Parametric Techniques 

Traditional classification of images has relied on parametric 

techniques (Foody , 1992). This project used three parametric techniques to 

cluster and classify the data. Individual 3-band composites were classified 

and the resulting classified images stitched together into a mosaic using the 

coordinate transformation matrices developed for forming the composite 

mosaics. 

Supervised clustering 

The first parametric technique was a supervised classification using 

operator-identified training sets and a Bayesian/maximum likelihood 

classifier. To determine the appropriate number of training sets, three 3-

band composites were randomly selected from the first flight date. Spectral 

1A map composed of geometrically corrected aerial photos. 
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signatures derived from the operator-selected, spectrally homogeneous, 

spatially contiguous pixel groups were tested for use as training sets. These 

test sets of spectral properties were evaluated with a transformed 

divergence separabilit y index (equation [1]) (Swain and Davis , 1978) to 

determine if a sufficient number of classes were selected with no overlap . 

where 

D 
2 ( 1-exp ( -~ ) ) 

8 

i and j are the classes compared 

Ci is the covariance matrix with values for bandstand u of 

signature i with 11; samples in the signature given by 

tr is the trace of the covariance matrix 

~ is the mean for signature i 

Dii is the divergence 

TDu is the transformed divergence . 

Some test signature sets, for example signature 1 in test file 1 (see Figure 

6), had saturated values in the IR band (brightness values of 255) . These 

test signatures had a covariance matrix with zero values in one column and 

row , so the covariance matrix was not invertible for use in equation (1). 

These signatures were deleted from the test file prior to the transformed 
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divergence testing (see Appendixes A-C for transformed divergence values 

for evaluated signature pairs from the test files). By using the remaining 

test signatures with all band pair combinations, two-dimensional principal 

component plots of the clusters were viewed to evaluate test set signature 

overlap. Visual examination of these signature overlaps at two standard 

deviation units (see Figures 6-8) led to selection of a TDu threshold level of 

1300. For example , in Figure 6, test signatures 9 and 13 have slight 

overlap in the band 1-3 and band 2-3 plots and significant overlap in the 

band 1-2 plot (bandl - near-IR, band2 - red, band3 - green), which 

corresponds to TDii=l 775. In Figure 7, test signature 10 and 16 have 

significant overlap with a TDu=1228. Pairs of clusters with values lower 

than the 1300 threshold were considered inseparable and combined. This 

evaluation led to the selection of six to seven vegetational classes, two water 

classes, two shadow classes, three soil classes, and three to four man-made 

object classes to generate training sets for each 3-band composite. 

The training sets were used in a Bayesian/maximum likelihood 

classifier (equation [2]) for clusters with multivariate normal distributions 

and the a priori probabilities set equal. 

where 

BiJ = ln(pJ)-[0.51n(ICJl)J-[0.5(x 1 -µJ)T(cj1) (x 1 -µJ)J c2> 

Bij is the natural logarithm of the likelihood that sample i 

belongs to class j 

pi is the a priori probability that any element belongs to class j 
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The sample i is placed in the class j for which Bij is a maximum . 

Histograms for selected signatures were examined to verify normality . In 

the three-dimensional spectral space , the training sets appear as ellipsoids 

of varying shape and size while the resulting decision boundaries to 

maximize Bii are hyperquadrics (Duda and Hart, 1973) . 

ISO DATA 

The first of the unsupervised parametric methods involves the 

iterative solution of a Euclidian distance classifier with class membership 

recalculated based on the membership values assigned in the previous 

iteration (equation [3]). The first assignment of membership values to N 

( 3) 

user-defined clusters is accomplished by dividing the sample spectral space 

into N equal volumes oriented along the major principal component axis . 

The cluster membership values between successive iterations are compared 

for each sample. When the percentage of pixels whose classification does 

not change reaches a preassigned convergence threshold, the algorithm 

terminates . The ERDAS software also provides for the termination after a 

prespecified number of iterations to prevent hunting by the algorithm and a 

minimum number of samples for a valid cluster . 
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Based on the evaluation of required classes for the supervised 

method, the number of classes for ISODATA was set at 20. Setting the 

convergence threshold at 95% and maximum number of iterations at 24 

yielded a minimum of 92% convergence for all files . Following clustering of 

the images with ISODATA, the training sets were evaluated using 

transformed divergence (equation [1]). Again, a threshold of 1300 was used 

to evaluate signature pairs. In cases where two of the possible pair 

comparisons among three clusters fell below 1300 and the remaining pair 

comparison fell below 1400, the clusters were judged to be indistinguishable 

and combined . If TDij > 1400 for the remaining pair, then the signature 

which was common between the two pair comparisons with TDii < 1300 was 

judged to overlap the other two clusters and deleted. This gave a range of 

10 to 19 (typically 14) clusters for each 3-band composite . The clusters from 

this evaluation/combination were used as the training sets in a Euclidian 

distance classifier . A Euclidian classifier was chosen because of its 

similarity to the ISODATA clustering routine. 

Statistical clusterin~ 

This algorithm steps nonoverlapping 3-by-3 windows across the image 

and performs a spatial homogeneity test to determine a user-specified 

number of signatures, N. The standard deviation, si, of each band for each 

window is compared against a lower bound. This lower band prevents ill

conditioned covariance matrices in the classification routines that are used 
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with the signatures generated (covariance matrices for the classification 

algorithms are calculated as described above for the transformed 

divergence). If this test is passed, si is tested against an upper bound, G, to 

determine its use in fixing the clusters (equation [4]). 

G = maximum (U, m1 ·V/l00) (4) 

where U is a user-defined value to ensure windows with low means 

are not discounted as homogeneous 

ID; is the mean for band i in the window 

V is the user-selectable coefficient of variation (percentage) 

used with the mean as an alternative upper limit 

If si<G, the window is considered homogeneous in band i, and if all bands 

are homogeneous, the window is used in cluster determination. Each 

window is initially considered a separate cluster until N+l clusters are 

found. Windows are pair-wise compared and those whose scaled spectral 

distance, Sx, (equation [5]) exceeds a user-specified maximum are merged 

(ERDAS, 1991). 

(5) 

where W ai,Wbi are the number of windows in cluster a,b band i 

µai,~i are the means of cluster a,b band i 
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To allow comparison with the unsupervised ISODATA, the user-defined 

upper limit for number of classes was set to 20. The resulting clusters were 

submitted to transformed divergence testing as described above for 

ISODATA, and again yielded 10 to 20 classes (typically 14) for each 3-band 

composite. The resulting training sets were then used for image 

classification with a Bayesian/maximum likelihood classification decision 

rule (Duda and Hart, 1973; ERDAS, 1991). 

Fuzzy c-Means Clustering 

Classical clustering techniques requires that each pixel be a member 

of only one class. Class membership value, �k, for an element, xk, is 

assigned a value of O or 1 to denote its membership in a class, c (equation 

[6] ).

_ 
{ 

1 if sample k belongs to class c 
uik- o if sample k does not belong to class c <6 >

with the conditions 

E uik = i for every sample 
1�1 

(7) 

E uik > a for every cluster i 
k�l 

The first condition ensures that the sample belongs to at least one and only 

one cluster and the second condition requires that all clusters must have at 

least one member. 
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In nature, divisions are not so neat and pixels generally contain 

properties of more than one of the classes of interest. A new approach 

which overcomes this shortcoming is the use of fuzzy sets logic. Fuzzy logic 

allows a pixel to take on values from more than one cluster. In fuzzy set 

clustering the membership value, ~b can take on any value between O and 

1 (equation [8]) \vith the conditions listed in equation (7). The first 

uik E { o, 1 } for every i and k (8) 

condition limits each sample to one total class while the second condition 

ensures that the class is not an empty set. If the data set is represented by 

n cl-dimensional vectors, xk, then the membership values, ~k, can be 

calculated by equation (9) where Dik represents the measure of the distance 

between the sample and the cluster center (Gunderson and Jacobsen, 1983). 

( D ii"' o , m> 1) < 9 > 

For this application the distance vector is defined as: 

(10) 

with cluster centers 
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(11) 

Equations (10) and (11) describe the Euclidian distance to the center of the 

fuzzy clusters . More generalized forms of equation (10) can be used to 

specify differing distance measurements as well as cluster shapes (Bezdek et 

al. , 1981 ). The exponential weight factor, m, determines how "fuzzy" each 

cluster is . As m approaches 1, the algorithms act as a classical Boolean 

classifier . As the value of m increases, samples that are only marginally in 

the cluster have less influence in defining the cluster centers (Gunderson, 

1983). The U;k values are analogous to the covariance matrix in a 

conventional parametric method. The use of a Euclidian distance measure 

with its squared term and the analogy to covariance suggest a "natural" 

value of 2 for m (Gunderson, 1994). For this application, a value of 2 was 

selected for use in the fuzzy c-mean.s clustering algorithm . 

Fuzzy set logic is relatively untested in the world of remotely sensed 

image classification . The only work known in this field was performed in 

England where Foody (1992) used a supervised fuzzy c-mean.s algorithm 

(m=l.25) and a Mahalanobis norm to classify lowland heaths. Although his 

results were promising, with 100% accuracies, the use of the same sample 

set for training and accuracy testing makes the accuracy estimate 

questionable . 
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This investigation used a modified maximum membership clustering 

protocol. Each class was examined to determine which of the fuzzy classes 

could be combined or considered indistinct . These class memberships for 

these classes were combined and a classified file produced where each pixel 

was assigned to the class with the highest membership value. 

Accuracy Assessment 

Results for the two accuracy testing methods are given in terms of 

contingency tables and omission/commission tables (error matrices) (see 

Results section). The results from all dates for each technique produced 24 

contingency tables. In order to reduce the amount of analyzable data to a 

more easily seen form, the kappa, K, coefficient was used to reduce the data 

in each contingency table to a single value . The K measures how much 

better the classification algorithm is than a random assignment of features 

to classes with the same class-to-class ratios -as the tested classification. 

For example, if the true image had a 1: 1 ratio for features A and B, a 

random assignment of features would be expected to assign 50% of the A 

objects and 50% of the objects to the correct classes. This would give an 

overall classification accuracy of 50% with 50% of both class A and B 

misclassified. A classification decision rule which correctly assigned 75% of 

objects A and B (improperly assigning 25% of each of the true classes) of the 
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same set would correctly assign 50% of the objects missed by the random 

classifier. This would equate to a kappa of (0.75-0.50)/(1.0-0.50)=0.50. 

Kappa values, K, were calculated using equations (12) and (13) as 

proposed by Cohen (1960) (for other methods to calculate kappa, see Foody 

[1992]). 

lC ;:: (12) 

(13) 

where 8
1 

is the overall accuracy of the classification 

8
2 

is the accuracy of a random classifier with the same 

marginal values (class-to-class ratios) as the tested 

classifier 

� is the number of samples in position iJ of the contingency 

table 

Values for the K large sample variance (cr/ in Tables 7 and 8) were 

calculated using equation (14) (Bishop, Fienberg, and Holland, 1975). 

where 

0
2 = ..!.{ e1 (1-e1 ) + 2 (1-e1 ) (2e1e2 -e3 ) + (1-e1 ) 

2 ,e,-48�)}
it 

N ( 1-6
2

) 2 ( 1-6
2

) 3 ( 1 -8
2

) ' 

N is the number of values �i in the contingency table 

(14)
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and 

(15) 

Comparison of multiple K values was performed using methods outlined by 

Fleiss ( 1981) . First, a common kappa is estimated from g values using 

equation ( 16). 

- g 1em;g 1 x=E-2 E-2 
m=l Oita .m=l Oita 

(16) 

Next, the null hypothesis of equal K's is tested using the chi-square 

distribution at the a level of significance with g-1 degrees of freedom as 

calculated by equation ( 17). 

2 
X11,g-1 (17) 
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RESULTS 

Classification Accuracy 

Data from the ground-based sample points used in original 

jurisdictional delineation were used in the recoding and in the ground point 

comparison accuracy test described below . These sample points were 

selected by the wetland consulting firm that produced the original 

jurisdictional delineation and can be seen in Figure 9 (Grah and Crane , 

1991 ). The data for the sample points included soil type, hydrologic 

characterization, and vegetational type listed by percentage areal coverage. 

Jurisdictional delineation requirements mandate the presence of hydric 

soils , wetland hydrological conditions , and hydric vegetation. The 

wavelengths used by the mutltispectral videography system do not 

penetrate the surface. Thus determination of subsurface conditions is not 

possible and direct information concerning soil characteristics and 

subsurface hydrology is unavailable . As a result, only the vegetation 

information for each of the original sample points was used for evaluation . 

Areal vegetational coverage for the sample points was used to divide 

the points into wetland and upland categories . Based only on this 

vegetation criterion (ignoring the soil and hydrology requirements), five of 

the upland points were moved to the wetland category. These five sample 

points actually had predominantly wetland vegetation, but lacked the 



supporting soils and/or hydrology that resulted in their classification as 

upland in the original jurisdictional delineation. By using the vegetation

only criterion, these five points were recoded as wetland for the recoding 

and accuracy comparison . As shown in Figure 9, these ground sample 

points were randomly divided into a training set (yellow points) and a 

verification set (white points). 
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The training set was used in recoding of classified files into six 

thematic groups identified. From ground site visits and the visual 

inspection of the imagery, six thematic classes were initially selected for use 

in analysis: (1) wetland vegetation, (2) open water, (3) upland vegetation, (4) 

open ground, (5) man-made objects, and (6) shadow. Classes produced in 

each of the individual images for the parametric methods and the mosaic for 

the fuzzy c-means were evaluated against the training set and placed into 

one of these six thematic classes. The ground truth map from the 

jurisdictional delineation contained only upland and wetland information, so 

for the final accuracy assessment, these six thematic classes were evaluated 

as wetland and upland or ignored as background. Shallow areas of open 

water are denoted as wetlands in the Corps permitting process, so the open 

water class was compared as wetland. Areas exhibiting open ground 

properties were compared as upland since they did not meet vegetation 

requirements. Man-made objects and deep shadows were ignored as 

background. Figures 10-12 show the final recoded and registered 



Figure 9. Location of ground-based sample points divided into training 
set (yellow points) and verification set (white points). 
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(a) S1pervised 
Clustering 

(c) Sia tistical 
C.ustering 

(d) Fuzzy 
C-means 

Figure D. June 2, 1992 classified imagery . (key: wetland - red, upland -
green , background - black) 
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(a) Supervised 
Clustering 

(c) Statistical 
Clustering 

(b) ISODATA 

(d) Fuzzy 
C-means 
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Figure 11. July 22, 1992 classified imagery . (key : wetland - red, upland -
green, background - black) 



(a) Supervised 
Clustering 

(c) Statistical 
Clustering 

(b) ISODATA 

(d) Fuzzy 
C-means 

Figure 12. October 1, 1992 classified imagery . (key : wetland - red, 
upland - green , background - black ) 
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mosaics . These recoded mosaics were submitted to the two testing methods, 

ground point comparison and random window comparison, described below . 

Ground Point Comparison 

The first method involved comparing the mosaiced and registered 

images to the verification set of 38 points described above . The ground

based sample points were displayed on a set of the classified imagery in 

hard copy format. Five individuals were asked to use the verification set to 

determine accuracies for each classification technique for each date . The 

individuals included one U.S. Forest Service biologist and four individuals 

familiar with multispectral imagery as used with natural systems 

evaluation . The individuals evaluated the verification points as either 

upland or wetland on the classified mosaiced images. The point's selected 

class from each evaluator was tabulated against the correct class (ground 

truth) from the original classification. The average of these responses was 

compiled in 2-by-2 contingency tables (see Tables 1-3). For example, in 

Table la, 18.8 wetland points were correctly identified as such for the 

possible 25 wetland points in the verification set . Upland points were 

correctly identifies as upland for 9.4 of the 13 points . In addition to the 

contingency tables, an error matrix was calculated for each contingency 

table and is presented immediately following its contingency table. The 

omission error is the percentage of actual wetland points (ground truth) 
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Table 1. June 2 flight - ground point comparison 

a . Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 18.8 6.2 

Upland 3.6 9.4 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 24.8% 14.4% 75.2% 

Upland 27 .7% 47 .7% 72.3% 

Overall 25.8% 25 .8% 74.2% 

b. ISODATA clustering, Euclidean classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 17.0 8.0 

Upland 3.8 9.2 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 32 .0% 15.2% 68.0% 

Upland 29.2% 61.5% 70.8% 

Overall 31.1% 31.1% 68.9% 



Table 1. (cont'd) 

c. Statistical clustering, Bayesian classifier

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 17.8 7.2 

Upland 4.6 8.4 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 28.8% 18.4% 71.2% 

Upland 35.4% 55.4% 64.6% 

Overall 31.1% 31.1% 68.9% 

d. Fuzzy c-means clustering and maximum membership
classifier

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 17.6 7.4 

Upland 3.4 9.6 

Error Matrix Omission Errors Commission Correct 
Errors 

Wetland 29.6% 13.6% 70.4% 

Upland 26.2% 56.9% 73.8% 

Overall 28.4% 28.4% 71.6% 
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Table 2. July 22 flight - ground point comparison 

a . Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 14.2 10.8 

Upland 3.2 9.8 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 43.2% 12.8% 56.8% 

Upland 24.6% 83.1% 75.4% 

Overall 36.8% 36.8% 63 .2% 

b. ISODATA clustering, Euclidean classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 14.8 10.2 

Upland 5 8 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 40.8% 20.0% 59.2% 

Upland 38.5% 78.5% 61.5% 

Overall 40 .0% 40.0% 60 .0% 



Table 2. (cont'd) 

c. Statistical clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 17.2 7.8 

Upland 4.4 8.6 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 31.2% 17.6% 68.8% 

Upland 33.8% 60 .0% 66.2% 

Overall 32.1% 32.1% 67.9% 

d. Fuzzy c-means clustering and maximum membership 
classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 15.8 9.2 

Upland 4.2 8.8 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 36.8% 16.8% 63.2% 

Upland 32.3% 70.8% 67.7% 

Overall 35.3% 35 .3% 64.7% 
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Table 3. October 1 flight - ground point comparison 

a . Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth w·etland 15.8 9.2 

Upland 4.8 8.2 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 36.8% 19.2% 63.2% 

Upland 36.9% 70.8% 63.1% 

Overall 36.8% 36.8% 63.2% 

b. ISODATA clustering, Euclidean classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 11.2 13.8 

Upland 5.4 7.6 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 55.2% 21.6% 44.8% 

Upland 41.5% 106.2% 58.5% 

Overall 50.5% 50.5% 49.5% 



Table 3. (cont'd) 

c. Statistical clustering, Bayesian classifier

Contingency Table Image 

Wetland 

Ground 'l'ruth Wetland 13.8 

Upland 3.6 

Error Matrix Omission Commission 
Errors Errors 

Wetland 44.8% 14.4% 

Upland 27.7% 86.2% 

Overall 38.9% 38.9% 

Upland 

11.2 

9.4 

Correct 

55.2% 

72.3% 

61.1% 

d. Fuzzy c-means clustering and maximum membership
classifier

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 14.6 10.4 

Upland 2.2 10.8 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 41.6% 8.8% 58.4% 

Upland 16.9% 80.0% 81.5% 

Overall 33.2% 33.2% 66.8% 
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that are misidentified as upland (6.2/25=24.8%). The commission error is 

the number of points identified as wetland that are in fact upland as a 

percentage of the actual number of wetland points (3.6/25=14.4%). The 

values in the correct column are the percentage of wetland points from the 

verification set that were correctly identified (18.8/25=75.2%). 

Random Window Comparison 

The second method used to determine the accuracy of the 

classification was to compare pixels on the classified image to corresponding 

points on the registered ground truth map (Figure 13). The following 

discussion is for a generic registered mosaic with all 12 of the registered 

mosaics (Figures 10-12) submitted to the same process. In order not to lose 

or modify the brightness values for each pixel due to resampling if the 

spectral imagery were scaled to a map base, a digitized copy of the ground 

truth map was rescaled (using nearest neighbor resampling) to match the 

resolution of each registered mosaic (0.69 m for June, 0.81 m for July, and 

0.56 m for October). Because the resultant resolution exceeded the national 

mapping standards, a 5-by-5 pixel window (3.45 m x 3.45 m for June, 4.05 

m x 4.05 m for July, and 2.30 m x 2.30 m for October) was used to more 

closely represent the map resolution. 

The 5-by-5 window was randomly placed on the same location on both 

the ground truth map and the registered mosaic to compare classes. The 



Upland 
Disturbed Upland 
Disturbed Land 
Wet Meadow 
Marsh 
Disturbed Wet Meadow 
Disturbed Marsh 

• Created Marsh 

Figure 13. Ground truth map from original jurisdictional delineation 
(Grah and Crane, 1991) . 
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software written for this comparison allowed a purity threshold for the 

window to be specified. This threshold set the minimum percentage for 

which a class must dominate the window in the truth and image files in 

order for the classes within the two windows to be compared . The test was 

performed in 5% increments from 0% to 100% for each date and 

classification method combination. For each test, 5000 windows were 

selected ·with random replacement. The responses for each date and 

classification method were tabulated in contingency tables and error 

matrices as described for the ground point comparison. Again to reduce the 

amount of data, a K value was calculated for each contingency table . These 

K's were graphed against the purity threshold and are presented in Figures 

14-16. As the threshold decreases, the K value drops rapidly toward an 

asymptotic value at about 50-60%. Because the definition for vegetation 

predominance in a jurisdictional wetlands requires :2:51 % areal coverage for 

wetland vegetation, the classified mosaics were compared with a 51 % 

threshold. The contingency table and error matrices are presented in 

Tables 4-6. Due to the asymptotic response of the K as the purity threshold 

drops, accuracy values predicted with the random window comparison are 

believed to be conservative. 
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Table 4. June 2 flight - random window comparison 

a . Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1764 753 

Upland 826 1657 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 29 .9% 31.9% 70 .1% 

Upland 33 .3% 31.2% 66.7% 

Overall 31.6% 31.6% 68.4% 

b. ISODATA clustering, Euclidean classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1710 804 

Upland 988 1498 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 32.0% 36.6% 68.0% 

Upland 39 .7% 34.9% 60 .3% 

Overall 35 .8% 35.8% 64.2% 



Table 4. (cont'd) 

c. Statistical clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Gronnd Truth Wetland 1820 690 

Upland 1072 1418 

Error Matrix Omission Com.mission Correct 
Errors Errors 

Wetland 27.5% 37.1% 72.5% 

Upland 43.1% 32.7% 56.9% 

Overall 35.2% 35.2% 64.8% 

d. Fuzzy c-means clustering and maximum membership 
classifier 

Contingency Table Image 

Wetland Upland 

Gronnd Truth Wetland 1686 801 

Upland 830 1683 

Error Matrix Omission Com.mission Correct 
Errors Errors 

Wetland 32.2% 33.0% 67.8% 

Upland 33.0% 32.3% 67.0% 

Overall 32.6% 32.6% 67.4% 
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Table 5. July 22 flight - random window comparison 

a. Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1601 901 

Upland 660 1838 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 36.0% 29.2% 64.0% 

Upland 26.4% 32.9% 74.6% 

Overall 31.2% 31.2% 68.8% 

b. ISODATA clustering, Euclidean classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1609 910 

Upland 973 1508 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 36 .1% 37.7% 63.9% 

Upland 39.2% 37.6% 60.8% 

Overall 37.7% 37.7% 62.3% 



Ta ble 5. (cont'd) 

c. Statistical clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1832 691 

Upland 953 1524 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 27.4% 34 .2% 72 .6% 

Upland 38 .5% 31.2% 61.5% 

Overall 32.9% 32 .9% 67 .1% 

d. Fuzzy c-means clustering and maximum membership 
classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1561 949 

Upland 562 1928 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 37.8% 26.5% 62.2% 

Upland 22.6% 33.0% 77.4% 

Overall 30 .2% 30.2% 69.8% 
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Table 6. October 1 flight - random window comparison 

a . Supervised clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1473 1005 

Upland 766 1756 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 40.6% 34.2% 59.4% 

Upland 30.4% 36.4% 69.6% 

Overall 35.4% 35.4% 64.6% 

b. ISODATA clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1355 1202 

Upland 668 1775 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 47.0% 33.0% 53.0% 

Upland 27.3% 40.4% 73.7% 

Overall 37.4% 37.4% 62.4% 



T1able 6. (cont'd) 

c. Statistical clustering, Bayesian classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1437 1039 

Upland 661 1863 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 42 .0% 31.5% 58.0% 

Upland 26 .2% 35 .8% 73.8% 

Overall 34 .0% 34 .0% 66 .0% 

d. Fuzzy c-means clustering and maximum membership 
classifier 

Contingency Table Image 

Wetland Upland 

Ground Truth Wetland 1393 1116 

Upland 468 2023 

Error Matrix Omission Commission Correct 
Errors Errors 

Wetland 44 .5% 25.5% 55.5% 

Upland 18.8% 35.6% 81.2% 

Overall 31.7% 31.7% 68.3% 
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DISCUSSION 

Ima~e Description 

A visual examination of the 3-band false color imagery in Figures 4-6 

reveals spatial patterns which correspond well with habitat designations on 

the ground truth map (Figure 13). In all the imagery, the reddish areas 

associated with greater vegetational biomass generally follow the wetland 

designations while the bluish colors associated with lesser biomass areas 

follow the upland designations . This coloration arises because the greater 

biomass areas reflect a greater portion of the infrared than lesser biomass 

areas . Because the infrared information is shown in the red portion of the 

standard red-green-blue (RGB) of color imagery display, the greater biomass 

appears redder than the lesser biomass imagery, which takes on a bluish or 

blue-greenish appearance relative to the greater biomass vegetation . The 

expected phenological changes in the plant communities are manifested by 

lesser biomass wetland areas as evidenced by the diminished red intensity 

of the July 22 imagery compared to the June imagery. This is easily seen 

by a comparison of the center and the lower left edge of the imagery 

between the June and July periods where the denser vegetation is already 

dying back as the midsummer conditions affect the moisture sensitive 

wetland plants. This results in the diminished intensity in the red colors of 

the imagery . In the October imagery, almost all the denser vegetation has 
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undergone senescence and appears as brownish areas within the imagery. 

The open water marsh area at the lower right edge of mosaics has reddened 

between the June and July imagery, probably due to a combination of 

denser emergent vegetation and lowering water levels. By October, this 

same area exhibits virtually no characteristic.s expected from open water 

and the emergent vegetation has died back, as evidenced by the lack of 

enhanced red intensity. 

Results of this study indicate that the spectral differences associated 

with the temporal variation over the sequence of flight dates for specific 

features can influence classification results due to the influence of timing on 

these features. As will be noted below, a major problematic area in terms of 

concurrence between the results based on the classification techniques and 

the nature of the ground-based delineation process is the disturbed land in 

the lower or southerly portion of the imagery. Disturbed land area 

classification is most often affected by the subjective experience of the 

wetland scientist, whereas the nature of the jurisdictional interpretive 

process allows interpretations based on normal or expected conditions 

rather than those actually present. 

Overall Study Performance 

The overall classification accuracies for all algorithms tested ranged 

between 60-75% (see Tables 1-6) using analysis of data from a single date. 
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This compared favorably with the other results based on larger spatial 

resolution using aircraft MSS (40 m resolution, 68% accuracy, for wetland 

classifications, Butera [1979] ). Improved classification accuracy may be 

achieved by combining multiple temporal imagery during the classification 

procedures (Jensen et al., 1986; Jensen et al., 1993b). However, this 

approach was not attempted as part of this study. 

The heavy cloud shadowing a part of the upland area in the 

southwestern portion of the site on the July overflight (lower left corner of 

the images) was problematic due to the affected masking of the brightness 

values primarily in the near-infrared spectral band . Presence of the cloud 

shadow precluded classification of features within this area for the July 

imagery. Classification accuracy within this area was also rated poor on the 

other flight dates and would probably have been poor for the July date as 

well. 

These lower than typical classification accuracies for this area 

lowered the overall performance for the June and October flight dates for all 

methods. If the area had been available for classification from the July 

imagery, it would have probably affected the performance of the 

classification techniques to yield lower accuracies than those listed in Tables 

5a-5d . This is suggested by an examination of the K values in Table 8 for 

July . By arranging the Kin Table 8 by rank, it can be seen that the two 

greatest values (0.396 and 0.376) are from the July imagery and that three 
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of thE four values for July were above the median. This same problem with 

the J ·.tly imagery did not exist for the ground point comparison 

deter:nination (Table 7) because none of the verification points fell within 

the cloud shadow area. 

As an unfunded study, heavy reliance was made on the data from the 

jurisciictional delineation. Consequentially, the number and location of 

ground sample points were not entirely adequate. The nature of 

jurisdictional delineation by an experienced wetland scientist allows for 

some subjective judgment in the boundary determinations of specific 

wetlal'l.d features. Wetland scientists often minimally sample areas that are 

obviously wetland or upland and concentrate their samples in more 

quest.onable areas, such as transition areas between upland and wetland or 

in arrns which have been disturbed in some way . The accuracies predicted 

by th e ground point accuracy testing (Tables 1-3 and 7) were probably 

biase d to lower accuracy values as the points used were in these marginal 

or qu estionable areas. An increase in the number and a randomized spatial 

locatim process for the selection of ground points for use in accuracy testing 

woulc probably have yielded better results in terms of comparing the two 

apprcaches. 

Registration of the mosaiced images to an orthophotoquad also 

prese1ted some challenges. The small scale of the orthophotoquad 

(1:24WO)and lack of distinctive features yielded few distinctive points with 



Table 7. Kappa values (K) and standard deviations (cr/) for ground 
point comparison calculated from Tables 1-3 

Clustering K (a}) 
method 

June July October 

Supervised 0.453 0.282 0.243 
(0.022) (0.020) (0.024) 

ISO DATA 0.360 0.189 0.028 
(0.022) (0.024) (0.021) 

Statistical 0.342 0.329 0.241 
(0.024) (0.024) (0.021) 

Fuzzy c- 0.412 0.283 0.360 
means (0.022) (0.023) (0.018) 

Table 8. Kappa values (K) and standard deviations (cr,/) for random 
window comparison calculated from Tables 4-6 

Clustering K( cr,/) 
method 

June July October 

Supervised 0.368 0.376 0.291 
(0.000173) (0.000170) (0.000182) 

ISO DATA 0.293 0.247 0.255 
(0.000183) (0.000188) (0.000178) 

Statistical 0.295 0.342 0.319 
(0.000178) (0.000175) (0.000176) 

Fuzzy c-means 0.348 0.396 0.367 
(0.000176) (0.000165) (0.000161) 
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Kappa values and 95% confidence intervals for the ground point 
comparison for all dates . 
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which to anchor the mosaics. The scale of the orthophotoquad corresponds 

to almost a 20 m resolution, which is represented by 25 to 35 pixels in the 

mo.5aiced images . Also, due to the age of the aerial photographs used for 

the orthophotoquad, many of the features present in the imagery (e.g., 

residential roads and buildings, businesses, a golf course on the northwest 

edge of the site) were not on the orthophotoquad . As a result of the 

rel atively low resolution and lack of common features of the 

orthophotoquad , registration error was significant enough to preclude the 

use of the classified images as a map . This registration error also affected 

the accuracy results derived from the random window accuracy testing and 

most probably resulted in underestimating the actual accuracies . 

One objective of this research was to determine the temporal effects 

on classification. Two factors significantly hampered acquiring the requisite 

dat a for completely achieving this objective. At the time of this work, an 

eas ily applied and suitable method for radiometric correction of the imagery 

for each of the flights was not available. This precluded the direct 

comparison of radiometric values between images of successive dates to 

detff1nine the temporal effects on the area of interest in terms of 

rad iometric response in the vegetational elements. 

The second shortcoming was the lack of data from early spring (late 

April to early May), which would have allowed a more detailed study of the 

phe:1.ological responses of the plant communities . Delay in image 
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acquisition was due to Federal Aviation Administration (FAA)-required 

modifications to the sensor platform. In this region, upland grasses 

typically grow quickly in the early spring in order to take advantage of the 

relative abundance of water at this time of year. By early summer, much of 

this upland grass growth has gone into senescence and the wetland/riparian 

vegetation, which has a more reliable source of water, begins to dominate . 

Other researchers have found a greater ability to differentiate wetlands by 

taking advantage of differences in the phenological cycle (Jensen et al ., 

1986; Jensen et al., 1993b). Although the visual differences in the images 

from the June and July dates are not great, it is interesting to note that the 

June date had the highest classification accuracies of all dates for the 

wetland class . The use of radiometrically corrected data sets collected from 

early spring through late summer might enhance the accuracy of the 

classification, by better identifying upland vegetation as well as providing 

important monitoring of seasonal changes . 

The potential usefulness of an earlier flight can be seen in the 

estimated areas of wetland hectares in Table 9. The decreasing values of 

wetland area (or as a percentage of the total area) are indicative of the 

seasonal variation in water supply for this area and its effect on the 

phenology of the plant communities. For the jurisdictional delineation by 

the Corps, wetland area is a constant because the delineation is based on 

the maximum wetland area independent of seasonal variation as 
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incorporated by the phrase "normal circumstances" in the legal definition. 

Clearly, the interaction between phenological responses of the vegetation to 

site specific hydrology and timing of remotely acquired data shows a 

temporal variation in study results , which in turn can result in significant 

differences in the amount of area associated with wetlands at a specific site. 

Differential results in wetland area classifications have direct 

implications from a legal or institutional framework . The size of the 

distinguished areas from any delineation process directly affects the nature 

and extent of permitted activities based on the regulations governing 

wetlands . This is further compounded by the shifting definition for 

jurisdictional wetlands and suggests that results based on analyses of 

multispectral videography from a number of representative wetlands over 

time could be used by wetland scientists to make the criteria for wetland 

definition more objective . 

Classifier Performance 

Visual evaluation 

Supervised clusterin~. Supervised clustering used with the Bayesian/ 

maximum likelihood classifier produced results in which both wetland and 

upland areas showed good correspondence to the boundaries of these classes 

in the jurisdictional delineation. A visual comparison of the classification 

results provided in Figures lOa, 1 la, and 12a against the ground-based 
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Table 9. Wetland area in hectares and as a percentage of the total area 

Flight Date 

June July October 

Supervised 23 .76 ha 21.29 ha 20.42 ha 
clustering 

51.50% 46.41% 45.49% 

ISO DATA 25.53 ha 23.77 ha 19.09 ha 

54 .61% 52 .28% 41.63% 

Statistical 26 .69 ha 25 .39 ha 19.55 ha 
clustering 

57.40% 56.32% 43 .33% 

Fuzzy c-means 24.07 ha 19.87 ha 16.30 ha 

51.45% 43.49% 36 .50% 

Ground truth 25.56 ha 

49.71% 

delineation map in Figure 13 shows that the boundaries for both the upland 

and wetland classes are in close agreement for the June flight, with 

progressively worse performances for the later dates. As mentioned 

previously , the disturbed lands located in the lower left-hand area of the 

imagery have the lowest classification accuracy of any portion of the 

imagery for all flight dates as compared against the ground-based 

delineation. This is evident by visual inspection of the classified imagery 

and ground based delineation map. In the June imagery, the disturbed 

area contains a mix of wetland/upland classes, while in the July imagery 
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the wetland classified areas decrease dramatically. In the October imagery, 

this disturbed area is almost entirely classed as upland. Other portions of 

this imagery show the same progression, but not to the same extent. The 

differential classification of wetland versus upland in the videography 

reflects this phenological change while the ground-based classification does 

not . The resulting lower classification accuracy for this area is attributed to 

the static delineation based on the subjective professional judgment of the 

wetland scientist in delineation of wetland and upland features in this 

disturbed land area versus the reliance only on vegetational and surface soil 

spectral properties for the video-based classifications . 

ISODATA clusterin~. A visual comparison of the ISODATA 

clustering results is provided in Figures lOb, llb, and 12b. As can be seen, 

this algorithm generally does a poor job in representing the spatial 

relationships of wetland and upland features compared to the ground-based 

delineations in Figure 13. In particular, notice the "speckling" pattern of 

classified features evident in all the classified imagery, which is especially 

evident in the July results . This is in contrast to the results presented 

above for the supervised classification results. In general, classification 

results for ISODATA are the poorest compared for all sampling dates when 

compared with other classification techniques employed in this study. 

However, ISODATA does show a reduction in the wetland class areas over 

the period of sampling dates, as was observed in the supervised clustering 
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results discussed above. As was noted for the supervised clustering results, 

ISODATA also shows the poorest performance in the disturbed land area in 

the lower left portions of the imagery during all sampling dates . 

Statistical clusterin~. Statistical clustering results are presented in 

Figures lOc, llc, and 12c. A visual inspection of these results shows that 

this algorithm performed better than the ISODATA clustering but was not 

as good as the supervised clustering approach. In general, the statistical 

clustering can be seen to have overclassified wetland features during June 

compared to the ground-based delineations shown in Figure 13. 

Overclassification of wetlands is also evident in the upper portions of the 

imagery for the July date, but is generally close to the delineated wetland 

features in this area of the imagery for the October data . Under

classification of wetlands in October, however, is evident in the lower 

portion of the imagery. As was noted for the other algorithms, statistical 

clustering of vegetational features is poorest in the disturbed land areas 

when compared against the ground-based delineations located in the lower 

left portions of the imagery on all flight dates. The statistical clustering 

approach also shows a reduction in wetland area classifications over the 

time sequence of the imagery, reflecting the phenological changes evident in 

the plant communities . 

Fuzzy c-Means. Results for the fuzzy c-means classification results 

for all three time periods are provided in Figures lOd, 1 ld, and 12d. 
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Comparison of these images with the ground-based delineations in Figure 

13 shows that, in general, this approach represents the spatial 

characteristics of the vegetation classes for all three flight dates and is 

similar in this regard to the supervised classification results shown in 

Figures lOa, lla, and 12a . This similarity to the supervised results is 

demonstrated in Figure (19) for the June imagery where the fuzzy c-means 

results are overlaid on the results from the three parametric techniques . 

The figure also shows some of the speckling of the ISO DATA method and a 

tendency of the statistical clustering to overclassify for wetlands in the 

center of the image . 

A careful examination of the results for the June fuzzy c-means shows 

an overclassification of wetland features in the upper area of this imagery 

as seen on the ground truth map . The results in July show some 

improvement in this regard for the upper area, but show underclassification 

of wetland features in the lower areas of the July imagery. The October 

classification shows some problems along the right-hand side of the imagery 

east side) as exhibited by a marbled appearance in the wetland classes due 

:o misclassification of some wetland from the ground-based delineation as 

1pland . As was noted for all classification approaches, fuzzy c-means 

:-esults are poorest in the disturbed land areas when compared against the 

sround-based delineation of features in this area. Fuzzy c-means 



(a) Supervised and 
Fuzzy c-means 

(b) I SODA TA and 
Fuzzy c-means 

(c) Stat. Cl. and 
Fuzzy c-means 
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Figure 19. June flight date Fuzzy c-means overlaid on all three parametric 
techniques . (key : Dk gray - upland/both; Lt Gray -
wetland/both; Blue - upland/Fuzzy, wetland/parametric; 
Yellow - wetland/Fuzzy, upland/parametric) 
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classdc :ation results also show a consistent reduction in the area associated 

with we!tland features over the time period of imagery. 

Perfomrance based on ~ound 
point comparison 

A quantitative assessment of classification accuracy for each of the 

algorihms was made based on comparison of ground points from the ground 

truth map to classified features (see Figure 9 and Results section above) . It 

should be remembered that a limited number of ground points were 

available for this study and that algorithm performance characteristics may 

have been biased by both the small sample size and spatial location of the 

ground points. 

The K values in Table 7 show that algorithm performance based on 

ground point comparisons is highly dependent on date-of-flight acquisition. 

The K values within each flight date were submitted to the x2 test discussed 

in the Materials section above . The null hypothesis of equal K
1s was not 

rejected . An examination of the 95% confidence intervals from Figure 17 

shows significant overlap of the K values in Table 7. Because the variance 

as calculated in equation (14) is proportional to 1/N, the small sample size 

results in large confidence intervals. As a consequence, only general 

inferences about the performance of the algorithms as tested with the 

ground point comparison can be made . 
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Tor the June results, the supervised classification approach shows 

the bes~ overall performance. The fuzzy c-means algorithm has similar 

perforrrance to the supervised clustering approach when compared with the 

other algorithms tested. The results for July show that the best algorithm 

perforrrance is achieved using statistical clustering. As in June, the results 

for supervised clustering and fuzzy c-means are similar in July. Fuzzy c

means ::-esults in October produced the best performance using the ground 

point ccmparisons . Supervised clustering and statistically clustering 

approaches are very similar for this date. 

Study results indicate that the ISODATA clustering/Euclidean 

classifiEr is the poorest of all the classification techniques. This is pointedly 

illustra ted by the October K of 0.028 in Table 7, which indicates the 

ISODATA technique is no better than a random assignment of ground-based 

points on this date . This is supported by the random speckling of the 

classification discussed above. For the July date it is the poorest performer 

and had one of the lowest 1C values for the June date. 

The results in Table 7 show a trend toward generally poorer 

performance with later flight dates and this trend is reflected in the results 

for all methods. This is expected from the normal drop in wetland 

vegetation cover and density during the lower water levels at midsummer 

and is further supported by other researchers who have found that earlier 



dates in the growing season result in greater accuracy for wetland 

classification (Jensen et al ., 1987). 

Performance based on random 
window comparisons 

An alternative assessment of algorithm performance based on a 
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comparison of classification results with the ground-based delineations was 

conducted by use of a 5-by-5 randomized window as described above . This 

approach was undertaken due to concerns of the low number of ground 

points available and spatial bias noted in the previous section. 

The K values in Table 8 show that algorithm performance based on a 

randomized window comparison is highly dependent on date-of-flight 

acquisition as was found for the ground point comparison results noted 

above. The x2 test for the K values from the randomized window comparison 

rejects the null hypothesis of equal K's. The 95% confidence intervals are 

plotted in Figure (18). The larger sample size (5000 vs. 38 for the ground 

point comparison) helped narrow the confidence intervals such that 

meaningful compaisons could be made between methods. Results for June 

indicate that the supervised clustering approach performed best in 

agreement with the indication from the ground point comparison. 

Additionally, as was suggested by the ground point results for this date, the 

fuzzy c-means algorithm is similar to the supervised classification approach. 

The results for July also show that the fuzzy c-means and supervised 
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clusterring algorithms are the best with a slight edge to fuzzy c-means. 

The statistical clustering results are slightly worse than the supervised 

clustering results and statistically lower than the fuzzy c-means. Results 

for October show that the fuzzy c-means algorithm is again the best based 

on this test . The fuzzy c-means shows strong superiority over other 

methods for this late season flight . The supervised clustering and 

stati sti cal clustering approach are similar , with a slight edge to the 

statistical clusterring algorithm . As suggested by the ground point 

comparisons , the ISODATA clustering results are overall the poorest when 

compared to all other approaches . 

Overall Al~orithm Ratin~ 

In general , both testing procedures examined to assess algorithm 

perfo rmance show that either the supervised clustering or fuzzy c-means 

appr oaches are superior to other methods examined . The only exception is 

the better performance indicated by the ground point measurement test for 

the July imagery , where statistical clustering is found to perform better 

than these other two techniques. Caution must be exercised, however, in 

reliarce on the ground-based test procedures given the limited number of 

samp e points and poor representation of vegetational features throughout 

the spatial area covered by the imagery . 
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The poor performance of ISODATA is attributed to two weaknesses in 

the technique as compared to the other methods . The Euclidean classifier 

disregards within-cluster variability and so assumes that all clusters have 

the same variability . Thus , for a class with high variability, members that 

should fall within the class, but are at the edges of the "cluster space," will 

instead be placed in a neighboring cluster . The Bayesian/maximum 

likelihood classifier used by the supervised and statistical clustering 

algorithms does not have this shortcoming because it considers within

cluster variability in its classification . The second weakness is the method 

of initial cluster center selection of the ISO DATA algorithm. The selection 

of cluster centers along the principal axis of the data set biases the final 

cluster centers along this axis. A visual examination of the two-dimensional 

projections of the final ISODATA clusters for most images shows them to be 

a series of stacked discs (similar to stacked dinner plates ) oriented along the 

principal axis . This principal axis generally falls along the soil line 

(Jackson, 1983). This line is used as a starting point for the perpendicular 

vegetation index (PVI) used in predicting the biomass (e.g., grams of plant 

mass per square meter) of a natural system. This is valuable information 

for predicting the type and health of vegetation. The orientation of the 

clusters is parallel to the information contained in the PVI, so this 

valuable information is suppressed . Based on these factors and study 

results, ISODATA is judged to be inferior compared to other approaches and 



is probably not suitable for applications of wetland delineations under 

similar study conditions. No other specific reference in the literature was 

found for the successful application of this particular clustering technique 

for wetland delineations . 
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The statistical clustering method is found to be the best classifier for 

the July data using the ground point testing procedure , and generally 

performs similar to the supervised classification approach for other flight 

dates . This is attributed to the use of the Bayesian/maximum likelihood 

classifier by the statistical clustering technique which allows it to approach 

the performance of the supervised clustering method . Other factors which 

may have contributed to its generally good performance are related to the 

operator selection of the criteria for use in homogeneity testing as discussed 

in the Material and Methods section . This can allow the algorithm to define 

a fairly narrow definition of spectral properties associated with clusters and 

therefore produce similarly narrow clusters as derived from supervised 

signature extraction techniques. One disadvantage to this algorithm is its 

bias towards classes in the top left corner of the image since it only uses a 

single linear pass through the file, starting in the upper left corner and 

working horizontally to the lower right corner . This drawback could present 

problems if used in other classification studies . 

The supervised classification approach does provide the best 

performance among the parametric methods when all dates are considered 
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(i.e., excluding the fuzzy c-means results) . In comparison to the other 

parametric methods, the narrow definition of each class afforded by operator 

supervision allows more refined clustering. Coupled with the 

Bayesian/maximum likelihood classifier, this provides the overall highest 

accuracy among the parametric techniques . A disadvantage of the 

supervised clustering approach is related to the operator intensive nature of 

this approach during signature extraction and class definitions. This 

approach also relies heavily on either ground -based measurements or ocular 

interpretation of image features in the class selection process. 

The only nonparametric method tested in this study is the fuzzy c

means algorithm . Compared to the other classification procedures , and in 

particular the supervised clustering approach , fuzzy c-means requires the 

least operator interaction. Typical processing time is a few hours to cluster, 

classify , and perform accuracy evaluation of the preprocessed imagery . This 

compares to one ( unsupervised ) to several days (supervised) for the 

parametric methods . Another advantage of the fuzzy c-means classification 

method is its ability to classify pixels as having partial membership in all 

defined clusters for a particular image . This property was not exploited in 

this study but may have importance in the delineation of transitional areas 

where mixed features may have both physical and biological significance for 

the investigator. Fuzzy c-means classification can also be used to exploit 

non-Euclidian distance metrics as well as allowing nonellipsoid cluster 
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shapes in the classification procedures . Traditional classification algorithms 

use class parameters (mean, standard deviation, etc.) to specify the shape of 

the class and force the data to conform to this shape, typically ellipsiodal (in 

three dimensions) . Shape adaptive fuzzy-c algorithms are available which 

can "find" cluster shapes within the data set whether cluster are ellipsoidal, 

linear or a combination of these shapes or others. This may be a significant 

advantage for some types of data where cluster shape is markedly 

nonellipsoidal (Gunderson, 1983). 

Although the supervised, and to a lesser degree the statistical, 

clustering approaches are generally similar to the fuzzy c-means results, 

based on the factors discussed above, the fuzzy c-means approach is judged 

to be the best algorithm for use in wetland delineations for this study. 
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SUMMARY 

The overall accuracies in the range of 60-80% were comparable to 

those found using smaller scale techniques as described in the literature . 

The supervised clustering provided the best performance, but with a 

significant increase in time required. From Table 10 and Figure 20 it is 

obvious that the unsupervised methods can probably give the desired 

accuracy in most cases with significant reduction in processing time. High 

altitude aerial photography is the most widely used method for wetland 

identification , and though it can provide the necessary spatial accuracy , it is 

hampered by difficulty in digitization and sometimes poor spectral 

resolution (Carter , 1982; Jensen et al ., 1993b). 

Table 10. Time estimates for major phases of the project 

Category Time (hours ) 

Image digitization 7 

Image preprocessing 75 

Supervised clustering 75 

ISODATA clustering 25 

Statistical clustering 25 

Fuzzy C-means 10 



Ground point comparison 
0.5 

0.4 

0.3 
July 

0.2 

0.1 

o..._---+------+-~~----~-~--4---' 
Supervised (75 hrs ) Stat istical (25 hrs ) 

ISODAT (25 hrs ) Fuzzy (8 hrs ) 

Time for analysis from Table 10 

Random window compari~ 

0 .36 

0.32 

0 .28 

0 .24 ..__--+-----+------+-----+----' 
Supervised (75 hrs) Statistical (25 hrs) 

ISODAT (25 hrs) Fuzzy (8 hrs) 

Time for analysis from Table 10 

Figure ~O. Plot of kappa for each algorithm by date versus estimated 
processing time. 
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The fuzzy c-means clustering was the best of the unsupervised 

methods . Its JC values in Tables 7 and 8 exceeded all but the July statistical 

clustering ground point comparison. The performance of the fuzzy c-means 

classifier can most probably be attributed to superior performance for mixed 

pixels at transition regions . .As this technique receives further use, its 

performance will undoubtedly improve. One of the pieces of information 

provided by the fuzzy c-means method, absent in the parametric techniques, 

is data about the sample's relationship to all classes . A limitation for this 

study was the inability to present fuzzy data in viewable form . The use of 

operator-provided training sets could also make it measurably better than 

the supervised classifier. When a technique is developed to exhibit not only 

the fuzzy cluster, to which the sample most strongly belongs, but also 

information about the strength of that and other cluster relationships, then 

fuzzy sets may indeed replace parametric techniques in most applications. 

Overall, a visual examination of conventional ground-based maps 

(NWI, US Geological Survey 1:24000) such as standard 1:24000 quad maps 

shows the classified images to be more accurate in identification of wetland 

areas. This application demonstrated the usefulness of multispectral 

videography in jurisdictional delineation of wetland areas, although it is 

still dependent on some minimal ground-based sampling. Multispectral 

videography in the form of unsupervised classified imagery could also prove 
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valuable as a field tool to improve classification and boundary determination 

by the wetland scientist. 

Two important uses will arise from the development of successful 

aerial videography techniques for wetland mapping. Natural resource 

managers can monitor wetlands and examine temporal changes associated 

with usage impact, rehabilitation, and natural processes. Additionally, 

spatially accurate and reproducible quantification of wetland boundaries , 

whether for jurisdictional delineation or other uses, promises to aid in the 

protection of these vital areas. The Corps processes over 15,000 permit 

applications each year involving dredge and fill of wetlands (Want, 1989). A 

jurisdictional delineation survey accompanies each application. An often 

critical part of the permit process is the determination of the wetlands area . 

Because of the 1- and 10-acre breakpoints, changes are triggered in permit 

handling procedures . Because of the advantage provided by the inexpensive 

high-spatial resolution from digital video imagery, the successful application 

of this technique can aid in a timely evaluation of wetland sites . These 

results can be used in the planning stage to minimize potential impact and 

aid resource managers and engineers in better system design and long-term 

trend monitoring based on quantifiable and repeatable data within a GIS 

framework. 
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RECOMMENDATIONS 

A number of improvements and areas of further study come to mind . 

As previously mentioned, a greater number of ground points to improve 

statistical comparisons are desirable. A more suitable sampling scheme 

would be to select sample points based on some type of gridded pattern or 

stratified random sampling . In addition, a much greater number of sample 

points would be needed for accuracy testing. Work by Hord and Brooner 

(1976) and Schowengerdt (1983) has suggested that as many as 250 points 

might be needed for accuracy estimates with 95% confidence levels. 

Concurrent with an increase in the number of ground sample points, 

an improvement in fixing the location of these points is needed. To improve 

determination of sample point location, a hand-held GPS unit could be used 

to reduce image rectification error . This would reduce the problem with 

error due not to misclassification, but instead due to misrectification . In 

addition, differential GPS would allow the use of the classified mosaic as a 

planimetrically accurate layer in a geographic information system (GIS). 

Another improvement would be the development of easily applied 

techniques for radiometric correction of the video data. This would allow 

the direct comparison of image brightness values between dates using a 

normalized scale. This approach could be used along with differences in the 

phenological cycles of wetland and upland to test the ability of differing 

time-of-season flights in enhancing the accuracy of the classification. 
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An interesting separate study would be improvements or 

modifications to the fuzzy sets technique . One immediate improvement 

would be the use of alternative distance algorithms. Measurements such as 

the Mahalanobis measurement, which incorporate within-cluster variation, 

could improve the identification of marginal cluster members . Another 

improvement would be the use of shape-adaptive algorithms suggested by 

Gunderson (1983) . Use of such an algorithm would allow the fuzzy 

clustering techniques to find nonspherical clusters. In addition, user

supplied training sets, along with the radiometrically corrected imagery in a 

semisupervised approach, could be used to monitor areas as they shift from 

one group to another. This could give quantifiable indications of 

improvement or degradation of a wetland area. 
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ENGINEERING SIGNIFICANCE 

The interest in identifying and monitoring wetlands will continue to 

increase as such areas are subjected to the often competing pressures of 

development and conservation . To meet these goals, the resource manager , 

politician, conservationist , businessperson, and other interested parties 

require quick , cheap , and accurate multipurpose tools. With accuracies as 

good or better than conventional methods, and the advantage of its digital 

nature, multispectral videography has demonstrated its ability to fulfill 

these requirements . 

Multispectral videography can provide direct input to digital mapping 

databases . This input can be displayed along with other geographic 

information to allow informed and objective data for decisions affecting 

these areas . Incorporation with radiometric information will allow 

comparison between different dates for data collection. The timely nature of 

data collection and ease of its analysis, when compared with conventional 

techniques, means that data can be collected at shorter intervals . By 

having more rapid feedback, the outcomes of these management decisions 

can be monitored and corrective actions taken more quickly to reduce any 

adverse effects. 
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APPEND DIBS 



Bands 

1 2 3 

Appendix A 

Signature Separability Listing for Figure 6 

File: wlg-test 
Distance measure: Transformed Divergence 
Using bands: 123 
Taken 3 at a time 

Class (Weight)/(TotalWeight) 

1. Veg-2 .071 
2. Veg-3 .071 
3. Veg-5 .071 
4. Veg-6 .071 
5. Veg-7 .071 
6. Veg-8 .071 
7. Veg-9 .071 
8. Veg-10 .071 
9. Veg-11 .071 

10. Veg-12 .071 
11. Grnd-1 .071 
12. Water-1 .071 
13. Water-2 .071 
14. Veg-13 .071 

Separability Listing 
AVE MIN Class Pairs: 

1:2 1:3 1:4 1:5 1:6 1:7 1:8 
1:9 1:10 1:11 1:12 1:13 1:14 2:3 
2:4 2:5 2:6 2:7 2:8 2:9 2:10 
2:11 2:12 2:13 2:14 3:4 3:5 3:6 
3:7 3:8 3:9 3:10 3:11 3:12 3:13 
3: 14 4:5 4:6 4:7 4:8 4:9 4: 10 
4:11 4:12 4:13 4:14 5:6 5:7 5:8 
5:9 5:10 5:11 5:12 5:13 5:14 6:7 
6:8 6:9 6:10 6:11 6:12 6:13 6:14 
7:8 7:9 7:10 7:11 7:12 7:13 7:14 
8:9 8:10 8:11 8:12 8:13 8:14 9:10 
9:11 9:12 9:13 9:14 10:11 10:12 10:13 
10:14 11:12 11:13 11:14 12:13 12:14 13:14 

1985 1531 2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
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2000 2000 1932 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 1893 2000 2000 1856 1913 2000 
2000 2000 2000 2000 2000 2000 1983 
1810 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 1755 2000 2000 2000 
1531 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
1996 2000 2000 2000 1994 2000 2000 



Bands 

Appendix B 

Signature Separability Listing for Figure 7 

File: wlj-test 
Distance measure: Transformed Divergence 
Using bands: 123 
Taken 3 at a time 

Class (Weight)/(TotalWeight) 

1. Veg-1 .045 
2. Veg-2 .045 
3. Veg-3 .045 
4. Veg-6 .045 
5. Veg-7 .045 
6. Veg-8 .045 
7. Veg-9 .045 
8. Veg-10 .045 
9. Veg-11 .045 

10. Veg-12 .045 
11. Veg-13 .045 
12. Veg-14 .045 
13. Veg-15 .045 
14. Veg-16 .045 
15. Grnd-1 .045 
16. Grnd-3 .045 
17. Road-1 .045 
18. Road-2 .045 
19. Water-1 .045 
20. Water-2 .045 
21. Shadow-1 .045 
22. Shadow-2 .045 

Separability Listing 
AVE MIN Class Pairs: 

1:2 1:3 1:4 1:5 1:6 1:7 1:8 
1:9 1:10 1:11 1:12 1:13 1:14 1:15 
1:16 1:17 1:18 1:19 1:20 1:21 1:22 
2:3 2:4 2:5 2:6 2:7 2:8 2:9 
2:10 2:11 2:12 2:13 2:14 2:15 2:16 
2:17 2:18 2:19 2:20 2:21 2:22 3:4 

99 



100 

3:5 3:6 3:7 3:8 3 :9 3:10 3:11 
3:12 3:13 3:14 3:15 3:16 3:17 3:18 
3:19 3:20 3:21 3:22 4:5 4:6 4 :7 
4:8 4:9 4:10 4 :11 4 :12 4:13 4:14 
4:15 4:16 4 :17 4:18 4 :19 4:20 4 :21 
4:22 5:6 5:7 5:8 5:9 5:10 5:11 
5:12 5:13 5:14 5:15 5 :16 5:17 5:18 
5:19 5:20 5:21 5:22 6:7 6:8 6:9 
6:10 6:11 6:12 6:13 6 :14 6:15 6:16 
6:17 6:18 6:19 6:20 6 :21 6:22 7:8 
7:9 7:10 7:11 7:12 7:13 7:14 7:15 
7:16 7:17 7:18 7:19 7:20 7:21 7:22 
8:9 8:10 8:11 8:12 8:13 8:14 8:15 
8:16 8:17 8:18 8:19 8:20 8:21 8:22 
9:10 9:11 9:12 9:13 9:14 9:15 9 :16 
9:17 9:18 9:19 9:20 9:21 9:22 10:11 
10:12 10:13 10:14 10:15 10:16 10:17 10:18 
10:19 10:20 10:21 10:22 11:12 11:13 11:14 
11:15 11:16 11:17 11:18 11:19 11:20 11:21 
11:22 12:13 12:14 12:15 12:16 12:17 12:18 
12:19 12:20 12:21 12:22 13:14 13:15 13:16 
13: 17 13: 18 13: 19 13:20 13:21 13:22 14: 15 
14: 16 14: 17 14: 18 14: 19 14:20 14:21 14:22 
15:16 15:17 15:18 15:19 15:20 15:21 15:22 
16: 17 16: 18 16: 19 16:20 16:21 16:22 17: 18 
17:19 17:20 17:21 17:22 18:19 18:20 18:21 
18:22 19:20 19:21 19:22 20 :21 20 :22 21:22 

1 2 3 1994 1228 2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 1990 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 1996 2000 2000 2000 



101 

2000 2000 2000 2000 2000 2000 2000 
1999 2000 2000 1991 2000 1228 2000 
2000 2000 2000 2000 2000 2000 2000 
1646 2000 1992 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
1997 1906 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 1948 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 1999 



Appendix C 

Signature Separability Listing for Figure 8 

File:w2h-test 
Distancemeasure:TransformedDivergence 
Usingbands: 123 
Taken3atatime 
Class (Weight)/(TotalWeight) 

1. Veg-1 
2. Veg-3 
3. Veg-4 
4. Veg-7 
5. Veg-8 
6. Veg-9 
7. Veg-10 
8. Veg-11 
9 . Veg-12 

10. Veg-13 
11. Veg-14 
12. Grnd-1 
13. Grnd-2 
14. Road-1 
15. Road-2 
16. Road-3 
17. Shadow-1 

Separability Listing 
Bands AVE MIN ClassPairs: 

1:2 1:3 
1:9 1:10 
1:16 1:17 
2:8 2:9 
2:15 2:16 
3:8 3:9 
3:15 3:16 
4:9 4:10 
4:16 4:17 
5:11 5:12 
6:7 6:8 
6:14 6:15 

1:4 1:5 1:6 
1:11 1:12 1:13 
2:3 2:4 2:5 
2:10 2:11 2:12 
2:17 3:4 3:5 
3:10 3:11 3:12 
3:17 4:5 4:6 
4:11 4:12 4:13 
5:6 5:7 5:8 
5:13 5:14 5:15 
6:9 6:10 6:11 
6:16 6:17 7:8 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

.059 

1:7 
1:14 
2:6 
2:13 
3:6 
3:13 
4:7 
4:14 
5:9 
5:16 
6:12 
7:9 

1:8 
1:15 
2:7 
2:14 
3:7 
3:14 
4:8 
4:15 
5:10 
5:17 
6:13 
7:10 

102 



103 

7:11 7:12 7:13 7:14 7:15 7:16 7:17 
8:9 8:10 8:11 8:12 8:13 8:14 8:15 
8:16 8:17 9:10 9:11 9:12 9:13 9:14 
9:15 9:16 9:17 10:11 10:12 10:13 10:14 
10:15 10:16 10:17 11:12 11:13 11:14 11:15 
11:16 11:17 12:13 12:14 12:15 12:16 12:17 
13:14 13:15 13:16 13:17 14:15 14:16 14:17 
15:16 15:17 16:17 

123 1984 1298 2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 1978 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 1999 1970 
1915 2000 2000 2000 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 1298 1923 2000 2000 2000 
2000 2000 2000 1399 2000 2000 2000 
2000 2000 2000 2000 2000 2000 2000 
2000 2000 1507 2000 2000 2000 2000 
2000 2000 2000 2000 2000 1908 2000 
1994 2000 2000 
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Appendix D 

Black and white copies of color prints 
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Infrared 3band Composite 

Figure 2. Example Single Bands and 3-band False Color Composite 
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Figure 3. June 2, 1992 mosaic image 
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Figure 4. July 22, 1992 mosaic image 
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Figure 5. October 1, 1992 mosaic image 



Figure 9. 
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Location of ground based sample points divided into training 
set (yellow points) and verification set (white points) 



(a) Supervised 
Clustering 

(c) Statistical 
Clustering 

(d) Fuzzy 
C-means 

Figure 10. June 2, 1992 classified imagery 
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(a) Supervised 
Clustering 

(c) Statistical 
Clustering 

(b) ISODATA 

(d) Fuzzy 
C-means 

Figure 11. July 22, 1992 classified imagery 
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(a) Supervised 
Clustering 

(c) Sta tis ti cal 
Clustering 

(b) ISODATA 

(d) Fuzzy 
C-means 

Figure 12. October 1, 1992 classified imagery 
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I Upland 
Disturbed Upland 

tlt Disturbed Land 
II Wet Meadow 
III Marsh 
M Disturbed Wet Meadow 
l Disturbed Marsh 

flt Created Marsh 
:-:·:·:·'.·'.·'.· 

Figure 13. Ground truth map from original juridictional delineation 

113 



(a) Supervised and 
Fuzzy c-means 

(b) I SODA TA and 
Fuzzy c-means 

(c) Stat. Cl. and 
Fuzzy c-means 

114 

Figure 19. June flight date Fuzzy c-means overlaid on all three parametric 
techniques . (Dk gray - upland/both; Lt Gray - wetland/both; 
Blue - upland/Fuzzy, wetland/parametric; Yellow -
wetland/Fuzzy, upland/parametric) 
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