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ABSTRACT 

Winter Habitat Selection Of Cutthroat Trout 

(Oncorhynchus clarki) In A Large Regulated River 

by 

Ronald A. Englund, Master of Science 

Utah State University, 1991 

Major Professor: Dr. Timothy Modde 
Department: Fisheries and Wildlife 

vi 

Microhabitat use by cutthroat trout and macrohabitat use by both 

cutthroat and rainbow trout were studied in the Green River below 

Flaming Gorge Dam during the winters of 1988 and 1989. Microhabitat 

parameters used by cutthroat trout, such as focal velocity, depth, and 

fish elevation, differed significantly in eddies, runs, and riffles. 

Mean focal velocities in runs were 0.79 body lengths/seconds (bl/s), 

in riffles 0.66 bl/s, and in eddies 0.24 bl/s. Cutthroat trout size 

also varied significantly with macrohabitat; larger fish were found in 

riffles. 

Macrohabitat use by cutthroat trout and rainbow trout differed 

significantly among species, macrohabitat types, and months. Both 

rainbow trout and cutthroat trout macrohabitat use shifted from lower 

velocity habitats during winter to faster velocity habitats in summer. 

Cutthroat trout and rainbow trout used macrohabitats at seasonally 

differing rates. Riffles were never selected in proportion to their 



INTRODUCTION 

Habitat selection by salmonids is a process of optimizing 

energetic expenditures while minimizing energetic costs and is related 

to body form and competition (Fausch 1984; Bisson et al. 1988). The 

specific location occupied by salmonids is a function of biotic factors 

associated with fitness and the physical structure of available 

habitat. Although salmonids have been described as using specific 

microhabitat ranges (Griffith 1972; Fausch 1984; Cunjak and Power 

1986), species such as rainbow trout (Oncorhynchus mykiss) and 

cutthroat trout (~ clarki) are flexible in their habitat needs, 

existing in both lacustrine and lotic habitats during the same life 

stage. My study evaluated the flexibility of cutthroat trout winter 

microhabitat use and the variability throughout the year of 

macrohabitat selection by both cutthroat trout and rainbow trout in a 

regulated reach of the Green River. 

Bisson et al. (1988) described the morphology of cutthroat trout 

as intermediate in shape between the steelhead, which prefers higher 

velocity habitats, and the coho salmon (~ kisutch), which selects 

slower velocity habitats. Glova (1984, 1986, 1987) observed that 

allopatric populations of cutthroat trout selected slow velocity 

habitats, but in the presence of coho salmon, were displaced into 

higher velocity habitats. Displacement of cutthroat trout to higher 

velocity habitats has its greatest impact during the winter months when 

most salmonids shift to slower velocity habitats (Campbell and Neuner 

1985) in response to decreasing metabolic rates associated with lower 
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abundance, especially during high winter discharges. Cutthroat trout 

implanted with radiotransmitters exhibited little movement during diel 

monitoring and did not change their occupation of macrohabitats (37 

pages) . 
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water temperatures (Cunjak 1988). A lack of slow water habitat in 

winter can adversely affect trout populations (Johnson et al. 1987) by 

reducing trout carrying capacity (Chapman 1966; Bustard and Narver 

1975; Mason 1976; Hickman and Raleigh 1982). Although energetic 

refuges are important to overwintering salmonid populations, few 

studies have described resident salmonid winter habitat use in large 

lotic systems. 

Previous studies on salmonid winter habitat use in streams 

reported cover and low water velocities to be important in maintaining 

juvenile salmonid populations (Tschaplinski and Hartman 1983). 

Juvenile coho salmon and steelhead trout were found to shift from 

higher water velocities and less cover in the summer to lower water 

velocities (< 15 cm/s) and areas of greater cover as temperatures 

declined to 2° C (Bustard and Narver 1975). Brook trout (Salvelinus 

fontinalis) moved into areas of deeper and slower water during the 

winter, seeking refuge from high water velocities (Chisholm et al. 

1987). Habitat shifts have been observed to occur in response to 

lowering energetic costs as metabolic efficency decreases with water 

temperature (Cunjak 1988). Salmonid behavior changes with changing 

environmental conditions (Dill 1983), and seasonal shifts in habitat 

use are common in lotic environments (Gibson 1978; Rimmer et al. 1983; 

Campbell and Neuner 1985; Chisholm et al. 1987). In laboratory 

streams, low water temperatures and increases in water velocity are 

responsible for microhabitat shifts of coho salmon and chinook salmon 

to areas of greater cover and lower water velocities (Taylor 1988). 

In lotic systems, rainbow trout seek areas of high water velocities to 
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maximize food intake in the summer months (Smith and Li 1983) but seek 

backwater and slow-water habitats in the winter months (Bustard and 

Narver 1975; Campbell and Neuner 1985). Previous studies of winter 

salmonid habitat selection in small streams have determined that water 

depth may be a limiting factor during winter months (Bustard and Narver 

1975; Tschaplinski and Hartman 1983; Campbell and Neuner 1985; Cunjak 

and Power 1986; Swales et al. 1986; Chisholm et al. 1987; Hillman et 

al. 1987). However, little is known of seasonal changes in trout 

rnacr.ohabitat selection or cutthroat trout winter microhabitat use in 

large, regulated rivers. 

The objectives of this study were to describe the flexibility of 

cutthroat trout winter microhabitat use and to determine the extent of 

seasonal shifts in Colorado River cutthroat trout(~.£.:.. plueriticus) 

and rainbow trout macrohabitat use in the Green River below Flaming 

Gorge Dam. Specifically, my objectives were to describe 1) 

microhabitat use among macrohabitats by cutthroat trout, 2) cutthroat 

trout microhabitat use associated with fluctuating discharges, 3) 

seasonal cutthroat trout and rainbow trout macrohabitat use, 4) 

cutthroat trout winter diel activity and macrohabitat use. 

STUDY SITE 

The study area included the 18.3 km section of the Green River 

from the Flaming Gorge Dam to the confluence of Red Creek (Figure 1). 

The elevation of the river bed ranged from 1705 mat the Flaming Gorge 

Dam Base to 1670 mat Red Creek. Water temperatures ranged from 3-6° 

C during the winter and 13-17° C during the summer. Discharges 
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released from the Flaming Gorge Dam vary from a low of 22.7 m3/s to a 

high of 110 m3/s. The study area was divided into four representative 

reaches based on geomorphology, dominant macrohabitat type, and river 

gradient (Figure 1). Within each reach the river was separated into 

macrohabitat types defined either as eddies, pools, runs, or 

riffles/rapids (Helm 1985; Upper Colorado River Basin Database 1987). 

Reach A contained the highest frequency of slow velocity eddy and pool 

habitats, Reach B consisted primarily of fast riffles and runs, Reach 

C was dominated by runs, and Reach D was largely pool habitat. 

METHODS 

Microhabitat Data Collection 

Microhabitat was defined as the specific location or area in the 

river where a fish was located. Five variables were used to define 

microhabitat: focal velocity, water column depth, substrate size, 

cover type, and fish elevation (Griffith 1972). Focal velocity was the 

water velocity at the fish's snout (Griffith 1972) and was measured by 

a diver equipped with a Montedoro-Whitney PVM-2A current meter probe. 

An onshore technician recorded the velocity from a meter connected to 

the velocity probe. Ten-second velocity averages were used for each 

observation. The current meter probe was attached to a 2-m steel rod, 

which ~xceeded the minimum 1.5-m Marantz et al. (1986) recommended to 

avoid erroneous velocity measurements. Water column depth was the 

distance from the substrate to the surface of the river. In depths 

greater than 2-m, the water column depth was measured with a depth 

gauge on the diver's air gauge and with the current meter probe in 
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shallower waters. The Brusven substrate index was used to describe 

substrate size (Bovee 1982). Fish elevation represented the elevation 

of the fish above the substrate and was estimated to the nearest cm. 

Fish length was estimated by the diver. Observers equipped with SCUBA 

entered at the downstream end of a macrohabitat and moved slowly 

upstream while maintaining a low profile on the river bottom. 

Macrohab i tat types sampled with SCUBA included eddies, runs, and 

riffles. Snorkeling was used in shallower portions of runs and 

riffles. When collecting microhabitat data, the diver selected the 

first fish sighted that was not noticeably affected by the diver's 

presence. Each individual fish was observed for 1-2 minutes to 

determine its focal point, or center of activity and feeding (Griffith 

1972, Bustard and Narver 1975), before microhabitat variables were 

measured. 

In addition to microhabitat variables, fish behavior mode was also 

recorded. Behavior mode was classified as either drift feeding, random 

swimming or stationary swimming. Fish in low velocity areas and 

swimming without orientation to the current were described as random 

swimming, while fish maintaining a single position by swimming with 

observable orientation to the current were desiginated as stationary 

swimming (Gosse 1981, 1982). Fish actively engaged in the capture of 

food were described as drift feeding. 

Cutthroat trout microhabitat use data were collected from January 

1 to March 15 during the winters of 1988 and 1989. Microhabitat data 

were sampled equa 11 y from the randomly selected eddies, runs, and 

riffles in reaches A, B, and C in the winter of 1988. In 1988, 
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microhabitat sampling was evenly divided among low (22.7-45 m3/s), 

medium (46-80 m3/s), and high (80-110 m3/s) discharges. In the winter 

of 1988, discharges varied daily from 22.7 m3/s to 110 m3/s. Due to 

a drought in the Green River drainage beginning in 1988, only constant 

low flows were discharged from Flaming Gorge Dam (22.7 m3/s) during the 

winter of 1989. Reach B was not sampled in 1989 because low discharges 

prevented transportation to the dive sites. 

Macrohabitat Data Collection 

Seasonal macrohabitat selection and distribution of cutthroat 

trout and rainbow trout in reaches A through D were determined from 

diver observations in randomly selected macrohabitat types (eddies, 

pools, runs, riffles) on 11 dates between 1988 and 1989. The same 

macrohabitats were sampled through time, with one pass made for each 

macrohabitat sampled. Macrohabitat types were sampled in proportion 

to their abundance in the Green River study area. Two divers counted 

fish with each diver maintaining equal spacing on the opposite ends of 

a 2-cm diameter, 4.5-m PVC pipe (Schill and Griffith 1984). Because 

visibility in the Green River was usually at least 4-m, the length of 

the P-VC pipe reduced duplicate counts by divers and maintained a 

consistent counting lane. Each diver counted fish directly downstream 

and to the side opposite of the other diver. Fish in the middle were 

not counted to further reduce duplicate counts (Schill and Griffith 

1984). 
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Diel Movements 

Winter diel cutthroat trout macrohabitat selection was monitored 

using radiotelemetry during the winters of 1988 and 1989. Cutthroat 

trout were captured from the Green River by angling and electrofishing. 

To ensure fish were collected from different habitats in the river, 

trout were captured by both electrofishing in shallow areas(< 2-m) and 

angling in deeper areas (> 2-m) of the river. Immediately following 

capture, fish were marked with an external color-coded tag to allow 

underwater identification . After tagging, the cutthroat trout were 

placed in a fish cage and, after a one-hour recovery period, 

anaesthe t ized with MS-222 and implanted with 30 mHz radio transmitters. 

Fish were released into the river after they appeared to be swimming 

strong ly. Fish were allowed a three-week acclimation period before 

data col ection began. 

In the winter of 1988, transmitters with an expected life of 90 

days were used, while smaller 30-day transmitters were used for 8 small 

cutthroa t trout in 1989. A total of 16 cutthroat trout in four 

differen t size classes were implanted with radio transmitters in both 

the winters of 1988 and 1989. 

Mon'toring of implanted fish over a 24-h period occurred seven 

times i n the two winters. Due to assumed mortalities or loss of the 

radio t_ransmitter signal, a total of six cutthroat trout were monitored 

in the winters of 1988 and 1989. Fish location was monitored every two 

to three hours during the 24-h period. Triangulation points were 

marked w·th double stakes on the river bank. Macrohabitat location, 

mean wat~r column velocity, water depth, and substrate size were 



8 

recorded at the triangulation point. Measurements were taken after the 

diel monitoring period was completed. To quantify cutthroat trout 

movements, diel changes were measured on river maps traced from aeria l 

photographs. 

Statistical Analysis 

Cutthroat trout microhabitat data were normally distributed 

(Ko lmogorov-Smirnov test, NS) and variances were homogeneous 

(Bartlett's test, NS). The SAS software program was used for these 

tests, and the Number Cruncher Statistical System (NCSS) software 

program was used for all remaining tests . An unbalanced design, one

way analysis of variance (ANOVA) was used to determine if cutthroat 

trout size significantly differed among eddies, runs, or riffles . 

Linear regression was used to describe whether facing velocity was 

dependent on discharge during the winter of 1988, the only year that 

a range of different discharges occurred. A one-way ANOVA was used to 

determine if mean focal velocity, water column depth , and fish 

elevation differed among eddies, runs, and riffles. When differences 

existed, Fisher's LSD test identified these differences. Focal 

velocity was converted into body lengths/second to more accurately 

represent the energy demands of the fish. 

Seasonal macrohabitat use for cutthroat trout and rainbow trout 

was determined by the total number of fish counted in a macrohabitat 

type and dividing by the total length (meters) of the macrohabitat 

sampled. Electivity was used to determine if seasonal macrohabitat use 

by rainbow and cutthroat trout varied among macrohabitat types. 
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Chesson's a, calculated from the following equation was used as the 

electivity index: 
n 

= ( r . Ip.) /"i, ( r ./ p.) . 
1 1 i•l 1 1 

In the above equation, r is the relative amount of available 

macrohabitat and was determined by the length in meters of each 

macrohabitat sampled, and p is the relative use of each habitat type 

(Lechowicz 1982). A three-way ANOVA comparing fish numbers/meter by 

macrohabitat, fish species, and month was used to determine if 

cutthroat trout and rainbow trout differed in macrohabitat selection 

and monthly use of macrohabitat types. To stabilize variances, total 

fish numbers counted in a macrohabitat type each month were transformed 

to the square root of fish numbers/length of macrohabitat sampled. 

Time categories relative to daily trout activity were determined 

by dividing the day between sunrise and sunset into five intervals and 

the remaining period into five additional intervals for a total of ten 

daily time intervals. The average distance and standard error each 

cutthroat trout moved was calculated for each time period. 

RESULTS 

Microhabitat Use 

Association of cutthroat trout to substrate in different 

macrohabitat types showed no clear pattern of use (Figure 2). 

Cutthroat trout in eddies tended to be associated with either fine 

substrates or large boulders. Trout in runs and riffles were 

associated more with cobble- and boulder-sized substrate. 
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Results of linear regression indicated no dependence of focal 

velocity to discharge from fish observed in riffles (r2 = 0.048, P = 

0.63), runs (r2 = 0.061, P = 0.12), or eddys (r2 = 0.002, P = 0.80). 

A one-way ANOVA detected differences in the use of depths (F(2•6n = 

12.9, P<0.001), focal velocities (F(2,6n = 16.7, P<0.001), and fish 

elevations (F(2,67) = 20.7, P < 0.001) among macrohabitat types by 

cutthroat trout during the winter of 1988 (Table 1). Fisher's LSD 

detected no difference in microhabitat variables between run and riffle 

macrohabitats (Table 1), while differences were detected between eddies 

relative to both runs and riffles. Cutthroat trout used the greatest 

depths in eddies, and used shallower depths in runs and riffles 

(Table 1, Figure 3). More than 50% of the cutthroat trout were found 

between 1.5-2.5-m in eddies, while greater than 94% of the fish 

observed in riffles were found in water less than 1.5-m deep. Depth 

occupied in runs was intermediate to that of eddies and riffles. 

Cutthroat trout were found in lower elevations in riffles and runs, and 

at higher elevations in eddies (Table 1, Figure 4). Cutthroat trout 

used lower focal velocities in eddies than in runs and riffles. Most 

velocities (96%) used in eddies were less than 1.0 bl/s, while 23.6% 

and 37.6% of velocities were greater than 1.0 bl/s, respectively, in 

riffles and runs (Figure 5). 

Size distribution of cutthroat trout differed among macrohabitat 

types (Figure 6). One-way ANOVA detected differences between the mean 

size of fish found in riffles, runs, and eddies (F(2•145) = 14.16 P < 

0.001). Average fish size in eddies was 33-cm (±9.1 SD), 33.2-cm (±7.5 

SD) in runs, and 44.2-cm (±5.7 SD) in riffles. Fisher's LSD detected 
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a difference between cutthroat trout size in riffles from those in 

eddies and runs (P = 0.01). Cutthroat trout behavior mode also varied 

Table 1.--Cutthroat trout microhabitat use (mean values) among 
macrohabitat types in winter 1988. Asterisks(*) denote P < 0.05; NS= 
not significant. 

Microhabitat Parameter 

Macrohabitat (N) 

Eddy (67) 
Run (64) 
Riffle (17) 

Focal Velocity (bl/s) 

0.26 * 
0.84 NS 
0.97 NS 

Depth(m) 

2.46 * 
1. 22 NS 
1.11 NS 

Fish Elevation (m) 

0.91 * 
0.24 NS 
0.30 NS 

with macrohabitat type. Fish in riffles and runs were found almost 

exclusively in the (Table 2) stationary swimming mode, while fish in 

eddies were most often observed in the random swimming mode. Drift 

feeding did not occur frequently in any habitat but was most common in 

riffles (Table 2). 

Seasonal Macrohabitat Distribution 

Based on aerial photographs taken at a 22. 7 m3 Is discharge, total 

macrohabitat surface area within each reach varied, with the greatest 

area of slower water velocity macrohabitats such as eddies and pools 

occurring in reach A (Figure 7). Reach B had the greatest area of 

higher velocity riffles, and contained little slow water habitat. 

Reach t contained the greatest area of runs, and reach D consisted 

mainly of pools. 

Both rainbow trout and cutthroat trout used lower velocity 

macrohabitats at a greater rate when discharge was high and variable 
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during 1988. Higher velocity macrohabitats were used to a greater 

extent during low, stable discharges in 1989 (Figures 8-11). 

Table 2.--Percent cutthroat trout behavior mode found in eddys, 
runs, and riffles for the winters of 1988 and 1989. 

Macrohabitat Type 

Behavior Mode(%) Eddy Run Riffle 

Random Swimming 65.7 4.0 0.0 
Stationary Swimming 29.7 90.8 88.9 
Drift Feeding 4.5 4.6 11.1 

In the winter of 1989, fish counts were generally higher each month in 

all habitat types except for eddies, when compared to the previous 

winter (Figures 8-11). Changes in underwater visibility due to 

fluctuating flows were probably responsible for the wide range of fish 

counts. During periods of high fluctuating discharges in 1988, 

underwater visibility usually ranged from 4-5-m. Visibility was 11-m 

or more during the low, constant flows of 1989. This could account for 

the higher number of fish counted in pools in the winter of 1989 

(Figure 9). There was variation in the number of fish counted in runs, 

but a general non-significant trend of increasing numbers in runs from 

winter to summer months was noted for cutthroat trout (Figure 10). 

Fish counts were the most constant in riffles, with numbers of both 

cutthroat and rainbow trout increasing from winter to summer months 

(Figure 11). 

Macrohabitat electivity was greatest for eddies, both by 

cutthroat and rainbow trout; especially during the high discharge 

winter of 1988 (Figures 12, 13). Eddies were highly selected in ten 
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of e 1 even months by cutthroat trout and nine of e 1 even months by 

rainbow trout. Electivity for pools was highest in February 1989. 

Trout did not select pool macrohabitats during periods of high flows, 

but increased selection of pools during the low-flow 1989 winter. 

Selection of eddies was high in both winter and spring for cutthroat 

trout. 

Macrohabitat selection varied by season and discharge regime, with 

a general non-significant trend toward increasing selection of faster 

water macrohabitats during summer months. Relative selection of runs 

and riffles was lowest during periods of high discharges, such as the 

winter of 1988, for both cutthroat trout and rainbow trout. Cutthroat 

trout did not consistently select runs until discharges became low and 

constant after September, 1988; this contrasts with greater selection 

of runs by rainbow trout. Although riffles were never used extensively 

by cuttthroat trout, electivity (a) increased from a low of 0.024 in 

March, 1988 to a high of 0.168 in September, 1989. Selection of 

riffles by both cutthroat trout and rainbow trout was higher during the 

low-flow winter of 1989 than during the high-flow winter of 1988. 

A measure of the total use of each macrohabitat type by cutthroat 

trout in the winters of 1988 and 1989 was determined by multiplying the 

mean number of fish counted/linear meter during the winter months by 

the to!al length of available macrohabitat in the Green River (Table 

3). In the winter of 1988, the slow-water macrohabitats, eddies and 

pools, accounted for greater than 60% of the cutthroat trout observed. 

During the low-flow winter of 1989 less than 55% of cutthroat trout 

used slow-water macrohabitats. 
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Table 3.--Percent cutthroat trout observed in each macrohabitat 
in the winters 1988 and 1989. 

Percent Selection 

Macrohabitat 

Eddy 
Pool 
Run 
Riffle 

Winter 1988 

19.8 
40.7 
38.9 
0.6 

Winter 1989 

11. 9 
42.6 
40.5 
4.9 

Relative trout densities (fish/m) were significantly different 

among macrohabitats, between species, and over time. A three-way ANOVA 

detected differences in rainbow trout and cutthroat trout densities 

among macrohabitats (F(3o,Jo) = 2.56, P < 0.01). Rainbow trout relative 

densities were greater than those of cutthroat trout ( F(J,JO) = 11. 25, 

P < 0.001). Also, both rainbow trout and cutthroat trout densities 

were different among count dates (Foo.Jo) = 2.75, P < 0.05). Rainbow 

trout selected higher velocity macrohabitats such as runs and riffles 

in a greater percentage than cutthroat trout. Runs were selected in 

percentages greater than ava i 1 ability by cutthroat trout only when 

discharges were relatively low and stable after September 1988. 

Electivity of riffles by rainbow trout was greater than cutthroat trout 

electivity values for eight of eleven months. Cutthroat trout 

electivity values for slow-water eddy macrohabitats were greater than 

those of rainbow trout for 10 of 11 months. 

Diel Movements 

Due to transmitter failure and probable fish mortality, only three 

cutthroat trout in the winter of 1988 and four in the winter of 1989 

were monitored over a twenty-four hour diel period. Of the seven fish 
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monitored through twenty-four hour periods, none moved from the 

initially occupied macrohabitat type during the observation period. 

Mean distance moved and standard errors were calculated from six fish. 

One fish was monitored twice due to transmitter failure in all other 

implanted fish. The distance moved between monitoring periods was not 

measured for one of the seven cutthroat trout due to measurement 

difficulties caused by high flows. Although mean distances moved 

within a macrohabitat type were variable during the twenty-four period, 

movements were small and ranged from 4-8-m (Figure 14). 

DISCUSSION 

Microhabitat occupied by cutthroat trout in the Flaming Gorge Dam 

tailwaters differed among macrohabitat types. Although availability 

was not measured, microhabitat use by cutthroat trout appeared to 

respond to microhabitat availability with focal velocity lowest and 

water depth greatest in eddies, and conversely fish in riffles occupied 

the highest velocity and shallowest microhabitats. Eddies in the Green 

River are slow, counter-currents formed below riffles and adjacent to 

runs, and represent hydraulic refuges for fish that are located close 

to higher velocity habitats which have higher invertebrate drift rates 

(Everest and Chapman 1972; Smith and Li 1983). High use of eddies by 

cutthroat trout may represent a cost-minimizing energetic strategy. 

Cutthroat trout macrohabitat selection in the Green River differed 

between winters. During periods of higher discharges, cutthroat trout 

used lower velocity macrohabitats, but increased their use of faster 

velocity macrohabitats during periods of lower discharges. Similarly, 
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in a Pennsylvania stream, Bachman (1984) determined brown trout used 

discrete, energy-saving foraging sites, while Fausch (1984) found 

salmonids established intraspecific heirarchies with dominant fish 

maintaining positions allowing maximum potential energetic gains. Mean 

focal velocities in runs were more than three times greater than that 

of mean focal velocities in eddies. Greater than 96% of focal 

velocities used in eddies were less than 1.0 bl/s, indicating cutthroat 

trout were expending less energy in eddies as compared to runs and 

riffles. Although eddies comprised only 3.7 percent of the total 

available macrohabitat in the Flaming Gorge tailwater, 11.9% (winter 

1989) to 19.8% (winter 1988) of cutthroat trout counted during the 

winter months were located in eddies. Eddies provided an important 

velocity refuge for cutthroat trout, especially during winters with 

high discharges. 

Flexibility in habitat use by the Colorado River cutthroat trout 

is evident by their establishment in both lakes and rivers (Martinez 

1988). Substantial percentages of cutthroat trout were found in run 

and riffle macrohabitats, even though these macrohabitats were often 

selected in lower proportions than eddies and pools. If macrohabitats 

are combined into two general velocity categories of high (riffles and 

runs) and low (eddies and pools) velocities, percentages of cutthroat 

trout found in high velocity macrohabitats were approximately 40% for 

the winters of 1988 and 1989. Fish in low velocity macrohabitats have 

less available food and lower energetic costs, while fish in high 

velocity macrohabitats have higher energetic costs but also have access 

to greater prey densities. Thus cutthroat trout may exhibit two 
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behavioral modes during the winter in the Flaming Gorge Tailwater. 

Diel monitoring of winter cutthroat trout movements suggested that fish 

spend most of their time in a single macrohabitat type. Gosse (1982) 

reported similar results in the Green River and found significant 

differences in focal velocity use between cutthroat trout observed in 

the stationary swimming mode as compared to the random swimming mode. 

Stationary swimming was usually found in high velocity macrohabitats, 

as compared to random swimming which was found only in low velocity 

macrohabitat types. 

Cutthroat trout found in riffles were significantly larger than 

those occupying eddies and runs. Although fish in eddies were similar 

in size to fish in runs, velocities used in runs were significantly 

greater. Energetic factors probably contribute to the incidence of 

larger fish being found in riffles, and may exclude smaller cutthroat 

trout from high velocity riffle macrohabitats. For example, a fish 25 

cm would swim at a rate of 2 bl/s in a 50 cm/s water velocity, while 

a 50 cm fish could maintain its position at only 1 bl/s. Similar size

dependent hierarchical use of habitat due to intraspecific competition 

between age classes was found for brown trout in a small Swedish stream 

(Bohlin 1977, 1978). 

Seasonality was 

macrohabitat selection. 

another major factor influencing trout 

Electivity for both cutthroat trout and 

rainbow trout shifted from low velocity macrohabitat types in the 

winter to high velocity macrohabitat types in the summer. Electivity 

of eddies was high in almost all months for cutthroat trout, while 

rainbow trout preferred high velocity macrohabitats. Rainbow trout 
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selected riffle macrohabitats in greater proportions than cutthroat 

trout, and this is consistent with predictions based on body form 

(Bisson et al. 1988). Similar seasonal shifts have been reported for 

other salmonid populations, with brown and brook trout in Ontario 

streams using areas of lower water velocities in the winter relative 

to summer (Cunjak and Power 1986). Hicks and Watson (1985) reported 

seasonal movements of rainbow and brown trout in a New Zealand river. 

In Cascade Mountain streams in Washington, numbers of rainbow trout 

using pool habitats during winter doubled compared to those in pools 

during the summer (Campbell and Neuner 1985). 

Seasonal changes in macrohabitat selection by cutthroat trout in 

the Green River may be due to a combination of energetic factors caused 

by changes in temperature. As temperatures decline in the fa 11 

salmonids undergo a stressful period of acclimatization accompanied by 

declining body condition and fat reserves {Cunjak 1988). To cope with 

declines in energetic reserves, salmonids may seek areas of lower-water 

velocities as metabolic deficits occur when temperatures decrease in 

the fall (Cunjak and Power 1987). Similarly, cutthroat trout in the 

Green River selected lower water velocity macrohabitat types in the 

colder winter months. Temperature affects salmonid sustained swimming 

speeds more than burst speeds (Brett 1964) and this temperature effect 

is probably linked to seasonal changes in cutthroat trout macrohabitat 

selection in the Green River. Thus, regardless of flow regime 

salmonids may seek areas of lower velocities in rivers as an energy

minimization strategy. 
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Cutthroat trout did not highly select runs until discharge rates 

were low and stable after September 1988. Cutthroat trout al so 

selected riffles in greater proportions during periods of lower 

discharges. Rainbow trout selection of riffles showed a similar trend 

with lower use during periods of high discharge. 

The response of salmonids to changes in discharge has been 

variable. Reductions in discharge of up to 95% decreased rainbow trout 

densities by 40% in simulated stream channels in Oregon (White et al. 

1981). Heggenes (1988) found that increases in peaking discharges of 

4-100 times did not displace brown trout from a small Norwegian stream. 

Stream discharge appeared to effect fish activity in a small coastal 

stream in British Columbia, with juvenile coho salmon entering into low 

velocity side channels during winter freshets (Bustard and Narver 

1975). Tschaplinski and Hartman (1983) found juvenile coho salmon 

populations in British Columbia streams to be reduced by nearly 75% 

after major increases in stream discharge. No differences were found 

among brook and brown trout physiological measures of stress in a 

stable, spring-fed section of river as compared to a naturally 

fluctuating section of the same Ontario river (Cunjak 1988). 

Individuals within the same population of cutthroat trout in the 

Green River occupied different microhabitats, with microhabitat use 

differtng by macrohabitat location. The macrohabitats sampled in the 

Green river consisted of two general categories, high and low velocity. 

Microhabitat use was different in low velocity macrohabitats as 

compared to high velocity run and riffle areas. Thus, cutthroat trout 

microhabitat use varied widely according to the macrohabitat type 
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Ehlinger (1990) determined bluegill sunfish (Lepomis 

macrochirus) exhibited similar patterns of differential habitat use, 

with some individuals foraging in open-water habitats, and others in 

littoral areas. These behavioral differences were correlated with 

morphological differences in bluegill pectoral fin size. 

The results of this study indicated adult cutthroat trout 

macrohabitat and microhabitat selection were flexible in a large

regulated river. Cutthroat trout microhabitat use was dependent upon 

the macrohabitat inhabited, which may be influenced by seasonality and 

size of fish. In winter, cutthroat trout exhibited two different 

spatial use patterns, with some fish selecting low prey density 

macrohabitats with lower energetic costs, and other fish selecting high 

prey density macrohabitats with greater energy costs. 
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Figure 1.--(A) Study site. (B) Study reaches, Green River below Flaming 
Gorge Dam, near Dutch John, Utah. 
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Figure 2.--Proportion of substrate use for cutthroat trout in eddies, 
r uns, and riffles . 
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Figure 5.--The proportion of focal velocities used by cutthroat trout 
in eddies, runs, and riffles. 
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Figure 7.--The total amount of surface area of eddies, pools, runs, and 
riffles in each reach. 
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Figure 8.--Mean numbers of fish counted per linear meter in eddy 
macrohabitats. Vertical bars are standard error of the mean. 
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Figure 14.--Diel movements of six cutthroat trout in the winters of 
1988 and 1989. 
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