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Observing the quantum behavior of light in an undergraduate laboratory
J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Becka)

Department of Physics, Whitman College, Walla Walla, Washington 99362

~Received 4 December 2003; accepted 15 March 2004!

While the classical, wavelike behavior of light~interference and diffraction! has been easily
observed in undergraduate laboratories for many years, explicit observation of the quantum nature
of light ~i.e., photons! is much more difficult. For example, while well-known phenomena such as
the photoelectric effect and Compton scattering strongly suggest the existence of photons, they are
not definitive proof of their existence. Here we present an experiment, suitable for an undergraduate
laboratory, that unequivocally demonstrates the quantum nature of light. Spontaneously
downconverted light is incident on a beamsplitter and the outputs are monitored with single-photon
counting detectors. We observe a near absence of coincidence counts between the two detectors—a
result inconsistent with a classical wave model of light, but consistent with a quantum description
in which individual photons are incident on the beamsplitter. More explicitly, we measured the
degree of second-order coherence between the outputs to beg(2)(0)50.017760.0026, which
violates the classical inequalityg(2)(0)>1 by 377 standard deviations. ©2004 American Association

of Physics Teachers.

@DOI: 10.1119/1.1737397#

I. INTRODUCTION

Students often believe that the photoelectric effect, and
Einstein’s explanation of it, proves that light is made of pho-
tons. This is simply not true; while the photoelectric effect
strongly suggeststhe existence of photons, it does not de-
mand it.1,2 It was shown in the 1960s by Lamb and Scully
that the photoelectric effect can be explained by assuming
that the detector atoms are quantized, but that the field is not
~i.e., by assuming light to be a classical wave!. This expla-
nation is based on the semiclassical model of photoelectric
detection, which we will discuss further below.3,4

How then does one prove that photons exist? Here, we
will assume that proving photons exist is equivalent to ob-
serving an effect that requires a quantum mechanical descrip-
tion of the field; equivalently, we will say that photons exist
if the results of an experiment cannot be explained using a
classical wave theory of light. Ideally, an experiment to
prove the existence of photons will also demonstrate that
light has ‘‘granular’’ properties. While physicists may argue
about which specific experiment was the first to conclusively
demonstrate the existence of a field requiring a quantum me-
chanical~QM! description, one can be fairly certain that this
experiment was carried out in the 1970s.5–7 While many
such experiments have subsequently been performed, we
know of very few that are well-suited for an undergraduate
laboratory.8–10

In 1986, Grangier, Roger, and Aspect performed an el-
egant experiment.11,12 Conceptually very simple, their ap-
proach was to examine correlations between photodetections
at the transmission and reflection outputs of a 50/50 beam-
splitter. To quote the experimenters, ‘‘a single photon can
only be detected once!’’11 Hence, if a single quantum of light
is incident on the beamsplitter~BS!, it should be detected at
the transmission output or at the reflection output, but not
both: there should be no coincident detections between the
two outputs. In fact, Grangieret al. measured fewer coinci-
dences than predicted by a classical wave theory, violating a
classical inequality by 13 standard deviations, and demon-
strating that the field incident on the beamsplitter was well

described by a single-photon state.11 As discussed below in
more detail, the key challenge in such a measurement is to
create a field that truly has asingle-photon incident on the
BS; a weak beam containing onaveragea single photon~or
less! is not sufficient.

Here, we have repeated the experiment of Grangieret al.,
adapting it for an undergraduate laboratory. We have taken
advantage of over 15 years of technological advancements to
obtain orders of magnitude increased count rates over those
obtained by Grangieret al. The increased count rate in our
experiment allows us to violate a classical inequality by 146
standard deviations with only 5 min of counting time. Our
experiment is well described by the QM description of a field
in a single photon state incident on a beamsplitter.

II. HISTORY AND THEORY

A. Early measurements

As stated above, we are interested in examining correla-
tions between the photocounts on two detectors situated at
the output ports of a BS~Fig. 1!. The first experiment to
examine these correlations was carried out by Hanbury
Brown and Twiss,13,14 who found a positive correlation be-
tween the outputs of the two detectors. It should be noted
that in this first experiment, Hanbury Brown and Twiss were
not counting individual photons, but were instead measuring
correlations between continuous currents from photomulti-
plier tubes~PMTs!.13 As such, this positive correlation indi-
cated that when the current from one PMT increased, the
current on the second tended to increase simultaneously.
While the intent of Hanbury Brown and Twiss was to de-
velop a new technique for measuring the angular diameter of
stars,15 their work played an important role in creating the
field of quantum optics.

A brief controversy arose when Brannen and Ferguson
performed a similar experiment in which they observed no
positive correlation, and then claimed ‘‘that if such a positive
correlation did exist, it would call for a major revision of
some fundamental concepts in quantum mechanics.’’16 How-
ever, Purcell17 and Hanbury Brown and Twiss18 quickly
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noted that the experimental parameters used by Brannen and
Ferguson precluded the observation of positive correlations.
They also showed that positive correlations are not only al-
lowed by quantum mechanics, but are a natural consequence
of the tendency for photons~and other bosons! to ‘‘bunch’’
together. The first experiment to observe positive correlations
using coincidence detection of individual photocounts~not
just photocurrents! from PMTs was performed by Twiss,
Little, and Hanbury Brown,19 who observed positive corre-
lations of a few percent. This amount of correlation was
consistent with that expected, given their experimental pa-
rameters.

B. Classical fields

By a classical field, we mean an electromagnetic wave that
is perfectly described by Maxwell’s equations. For such a
field, the correlations between the intensities of the transmit-
ted I T and reflectedI R beams are given by thedegree of
second-order (temporal) coherence, gT,R

(2) (t), which is a
function of the time delay t between the intensity
measurements:20

gT,R
~2! ~t !5

^I T~ t1t!I R~ t !&

^I T~ t1t!&^I R~ t !&
. ~1!

If the light source isstationary ~i.e., if its statistics do not
change in time!, then we can interpret the brackets as refer-
ring to ensemble averages rather than time averages. It is
called the degree of second-order coherence because it in-
volves correlations between intensities, whereas the degree
of first-order coherence describes correlations between fields.

Of particular importance to the present work is the case of
simultaneous~t50! intensity measurements. In this case, and
furthermore assuming a 50/50 BS in which the transmitted,
reflected, and incident intensities are related byI T(t)
5I R(t)5 1

2I I(t), it is straightforward to see that

gT,R
~2! ~0!5gI ,I

~2!~0!5
^@ I I~ t !#2&

^I I~ t !&2
5g~2!~0!. ~2!

From the Cauchy–Schwartz inequality, it is straightforward
to prove that^I I(t)&

2<^@ I I(t)#2&.20,21 Using this, we find
that

gT,R
~2! ~0!5g~2!~0!>1 ~classical fields!, ~3!

where we emphasize that this result has been derived using
classical wave theory. In Eq.~3!, equality with 1 is achieved
if the input field is perfectly stable with no fluctuations,
while for fluctuating fields the second-order coherence is
greater than 1. For ‘‘chaotic’’ light~e.g., light from a thermal

source that is either collisionally or Doppler broadened!, it
can be shown thatg(2)(0)52.20 In an ingenious set of ex-
periments involving a ‘‘pseudothermal’’ light source~a laser
whose phase was randomized by a rotating ground-glass
slide!, Arrechi et al. were able to measure fields with
g(2)(0)51 andg(2)(0)52.22

C. Semiclassical theory of photodetection

So far, we have been speaking about correlations between
the intensities of the fields leaving the BS. In an experiment,
however, one does not measure the intensity directly, but
rather the photocurrent from a detector. It is then necessary
to model the photodetection process. Since to this point we
have been discussing classical fields, it is most appropriate to
use a model that treats the field classically. The most rigor-
ous theory of this sort is the semiclassical theory of photo-
electric detection, in which the field is treated classically and
the photodetector is treated quantum mechanically.23 For the
purposes of the discussion here, it is convenient to refer to
the detector monitoring the transmitted~reflected! field as
detectorT(R).

In the semiclassical theory of photoelectric detection, it is
found that the conversion of continuous electromagnetic ra-
diation into discrete photoelectrons is a random process. The
probability of obtaining a single photocount from a single
detector~for example, detectorT! within a short time win-
dow Dt is proportional to the average intensity of the field
striking that detector, given as

PTDt5hT^I T~ t !&Dt, ~4!

wherehT is a constant that characterizes the detection effi-
ciency of detectorT. The joint probability of obtaining a
photocount~within a time widowDt) at detectorR, and then
after a timet obtaining a photocount at detectorT ~within a
time widow Dt), is given by

PTR~t!Dt25hThR^I T~ t1t!I R~ t !&Dt2. ~5!

It is then easily seen that if one measures the probability of
joint and individual photocounts at detectorsT and R, one
can determine the degree of second-order coherence from

gT,R
~2! ~t !5

PTR~t!

PTPR
. ~6!

Again, we are most interested in simultaneous,t50, detec-
tion of photocounts at detectorsT andR, which occurs with
probability PTR(0). Using Eq.~3!, we find that for classical
fields, the measured degree of second-order coherence must
be greater than or equal to 1:

gT,R
~2! ~0!5

PTR~0!

PTPR
5g~2!~0!>1 ~classical fields!. ~7!

Here, we see that if the joint probability factorizes,PTR(0)
5PTPR , which occurs when the detections atT and R are
completely uncorrelated, theng(2)(0) is minimized and is
equal to 1.

We can summarize what we have learned about classical
field statistics as follows. It is possible to measure the degree
of second-order coherence between the fields leaving a
beamsplitterg(2)(0) by measuring the probability of joint
and individual photocounts at detectorsT andR. The second-
order coherence must satisfy the inequalityg(2)(0)>1.

Fig. 1. Coincidence measurement. The incident~I! beam is split into trans-
mitted ~T! and reflected~R! beams at a 50/50 BS. Detections atT andR are
examined to see whether or not they occur simultaneously.
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When the photocounts atT and R are completely uncorre-
lated,g(2)(0)51, which occurs when the input field to the
beamsplitter is a perfectly stable wave. If the input field fluc-
tuates, theng(2)(0).1, indicating positive correlations be-
tween the photocounts.

Sinceg(2)(0) cannot be less than 1, we are left with the
conclusion that for classical fields the measured photocounts
at T and R cannot be anticorrelated. This makes sense be-
cause a BS simply splits a classical input field into two iden-
tical copies. These output fields either fluctuate together
~positive correlation! or do not fluctuate at all~no correla-
tion!. It is not possible for the intensity of one to decrease
while the intensity of the other increases~anticorrelation!.

D. Quantum fields

From the time of the original Hanbury Brown and Twiss
experiment in 1956,13 the importance of a rigorous theory of
photoelectric counting was recognized. The first attempts
were the semiclassical theories discussed in the previous sec-
tion. In the mid-1960s sophisticated fully QM theories, in
which both the electromagnetic field and the detector atoms
are treated quantum mechanically, were developed by Kelly
and Kleiner,24 Glauber,25 and others~see Refs. 20 and 23,
and the references therein!. A QM field is not fully described
by Maxwell’s equations.

In the fully quantum theory, the correlations between the
output fields from the BS in Fig. 1 are still described by the
degree of second-order coherencegT,R

(2) (t), although now the
electric fields~and corresponding intensities! are treated as
QM operators, rather than as classical waves. Again, we are
interested in simultaneous~t50! detection of photons at the
outputs; quantum mechanicallygT,R

(2) (0) is defined as

gT,R
~2! ~0!5

^: Î TÎ R :&

^ Î T&^ Î R&
. ~8!

Here the colons indicate that the creationâ† and annihilation
â operators corresponding to the electric fields are to be
placed in normal order, which means that all creation opera-
tors appear to the left of all annihilation operators. The in-
tensity operator is proportional to the photon number opera-
tor for the fieldn̂5â†â, so that

gT,R
~2! ~0!5

^:n̂Tn̂R :&

^n̂T&^n̂R&
5

^âT
†âR

† âRâT&

^âT
†âT&^âR

† âR&
, ~9!

where we have explicitly placed the field operators in normal
order.

The averages in Eqs.~8! and~9! are given by QM expec-
tation values. The expectation value is computed using the
field states at the detectors. These states can be derived from
the input state to the BS.23,26Alternatively, the operators for
the reflected and transmitted fields can be written in terms of
the operators for the input fieldâI , and the unoccupied
~vacuum! field âV that enters the unused port of the BS~Fig.
2!. For a 50/50 BS, and one particular choice of phase for the
BS, it is straightforward to show that

âR5
1

A2
~ âI1âV!, âT5

1

A2
~ âI2âV!. ~10!

Substituting the reciprocity relations Eq.~10! into Eq. ~9!,
and using the fact that the unoccupied field mode is in a

vacuum state, the second-order coherence can be rewritten
as20

gT,R
~2! ~0!5

^n̂I~ n̂I21!&

^n̂I&
2

5gI ,I
~2!~0!5g~2!~0!, ~11!

where now the expectation value is computed using the QM
state of the field incident on the BS. As in the classical case,
the second-order coherence between the BS outputs is equal
to the second-order coherence of the input.

Quantum mechanically, the measured correlations at the
detectors are determined by the state of the field incident on
the BS~the input state!. The QM equivalent to a stable clas-
sical wave is a coherent stateua&, which is the eigenstate of
the annihilation operatorâua&5aua&.20 If one evaluates the
second-order coherence@Eq. ~11!#, assuming an input field in
a coherent state, one findsg(2)(0)51, which is the same as
the classical result for a stable classical wave. Evaluating Eq.
~11! assuming an input field in a thermal state~which is an
incoherent mixture described by a density operator! one finds
g(2)(0)52.20 Such a field is said to be ‘‘bunched,’’ because
one interpretation of this result is that the photons tend to
come in bunches; once they strike the BS, some are trans-
mitted and others are reflected, leading to positive correla-
tions between the output fields.

Thus, the quantum theory of photoelectric detection is in
agreement with the classical theory described in Sec. II, as
long as one uses the appropriate field states. However, there
exist certain field states that are inherently QM in nature, and
for which there is no classical wave theory counterpart. Such
nonclassical fields are not in general constrained by the lim-
its discussed in Sec. II C. An example of a nonclassical field
state is one containing exactly one photon; this state is an
eigenstate of the photon number operator, with eigenvalue 1:
n̂u1&51u1&. Evaluating Eq.~11! using an input field in a
single-photon state yieldsg(2)(0)50, which violates the
classical inequalityg(2)(0)>1.

Theoretically predicting the existence of nonclassical
fields, and generating them in the laboratory, however, are
two very different matters. One of the first experiments to
demonstrate the existence of a nonclassical field was per-
formed by Kimble, Dagenais, and Mandel in 1977.7 They
measured the light emitted by a single atom~‘‘resonance

Fig. 2. Field operators corresponding to BS input and output ports.
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fluorescence’’! and foundg(2)(0)50.4<1, proving that the
field was ‘‘anti-bunched.’’ An anti-bunched field can be in-
terpreted as one in which the photons do not clump together,
and hence tend to arrive one at a time. When these individual
photons strike the beamsplitter, they are either transmitted or
reflected ~but not both!, leading to anticorrelations in the
photocounts at the detectors.

Despite clearly demonstrating that the light emitted by a
single atom is anti-bunched, this experiment was compli-
cated by the difficulty of isolating the light coming from the
atom from the background scattered light. This complication
was due to the fact that the laser light used to excite the atom
and the resonance fluorescence were both at the same fre-
quency. To isolate the resonance fluorescence, it was neces-
sary to use a detailed model of the experiment, and to correct
for the expected contribution from the scattered laser light.

A conceptually much simpler demonstration of photon
anti-bunching was performed by Grangier, Roger, and As-
pect in 1986.11 A schematic of their experiment is shown in
Fig. 3. They circumvented the problem of background light
by using a two-photon cascade in Ca. In this process, a Ca
atom absorbs two photons, one each from two lasers operat-
ing at frequenciesn l1 and n l2 , promoting it to an excited
state. The Ca atom then decays by emitting two photons at
different frequencies: one at frequencyn1 by decaying to a
short-lived intermediate level, and a second at frequencyn2
by decaying to the ground state. All four frequencies are
distinct and can be isolated using filters, greatly reducing the
problem of scattered background from the intense laser
beams. Furthermore, angular momentum conservation en-
sured that the two photons always were emitted in opposite
directions. The detection of one photon at one detector en-
sured that there would be a photon heading in the opposite
direction, so that the first photon could be used as a gate to
tag the arrival of the second. Thus, when a gate photon was
detected, it was known with high confidence that there was
one ~and only one! photon incident on the BS.

For this experiment, detections atT and R were condi-

tioned upon detections at the gate detector~detectorG!. With
this conditioning, the measured degree of second-order co-
herence@Eq. ~6!# is given by

g~2!~0!5
PGTR

PGTPGR
. ~12!

Here, PGT(PGR) is the probability of measuring simulta-
neous photocounts at detectorT(R) and detectorG, and
PGTR is the probability of obtaining a threefold coincidence
between detectorsT, R, andG. The probabilities can be writ-
ten as

PGTR5
NGTR

NG
, PGT5

NGT

NG
, PGR5

NGR

NG
, ~13!

where, given a specified time window,NGT(NGR) is the
number of simultaneous photocounts at detectorT(R) and
detectorG, NGTR is the number of threefold coincidences,
and NG is the number of singles counts at detectorG. By
using Eq.~13!, we can rewrite the experimentally determined
degree of second-order coherence@Eq. ~12!#, as

g~2!~0!5
NGTRNG

NGTNGR
. ~14!

In an experimental tour-de-force, Grangieret al.measured
a second-order coherence ofg(2)(0)50.1860.06, which
violated the classical inequalityg(2)(0)>1 by 13 standard
deviations.11 In a 5 h experiment, they measured a total of
nine threefold coincidences, while a classical wave theory
would have predicted greater than 50 threefold coincidences.
If the state were a perfect one-photon state, Grangieret al.
would have measured no threefold coincidences.

We have repeated the experiment of Grangieret al.; with
advances in technology over the past 151 years, however, a
tour-de-force is no longer required. By using only readily
available, off-the-shelf components, we were able to as-
semble this experiment in an undergraduate laboratory. In a
typical run lasting less than 5 min, we measureg(2)(0)
50.018860.0067, where no corrections have been applied
to the data to account for accidental coincidences. We have
also determined that by accounting for the expected acciden-
tal coincidences~see Appendix A!, the difference between
our result andg(2)(0)50 ~i.e., that expected from a true
single-photon incident on the BS! is fully explained by the
accidental coincidences.

III. PARAMETRIC DOWNCONVERSION

The key to our ability to perform the experiment is our use
of a parametric down-conversion source in place of the
atomic Ca cascade source used by Grangieret al.11 This
method has the advantages of increased simplicity, reduced
cost, and increased count rates~several orders of magnitude
greater than those observed by Grangieret al.! In the process
of spontaneous parametric downconversion, a single photon
of one frequency is converted into two photons of lower
frequency~by approximately a factor of 2!. Although down-
conversion is extremely inefficient~milliwatts of input power
generate output beams that must be detected using photon
counting!, it is much more efficient than the Ca cascade.

Fig. 3. Coincidence measurements with a gate. A source emits pairs of
photons simultaneously, and the photons travel in opposite directions. De-
tection of the gate signal tells theT and R detectors when to expect a
‘‘proper’’ detection on the experiment side.
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The input is referred to as the pump~at angular frequency
vp), while the two outputs are referred to as the signal and
idler ~at angular frequenciesvs and v i). Energy conserva-
tion requires that

\vp5\vs1\v i , vp5vs1v i . ~15!

Momentum conservation is equivalent to the classical phase-
matching condition, which requires that the wave vectors of
the input and output fields satisfy

k¢p5k¢s1k¢ i . ~16!

The frequencies and wave vectors are not independent of
each other, and are related by the dispersion relation

kp5
np~vp!vp

c
, ~17!

wherenp(vp) is the index of refraction of the pump wave at
the pump frequency, and similarly for the signal and idler
waves.

In Type-I downconversion, which is what we use in our
experiments, the signal and idler beams are polarized parallel
to each other, and their polarization is perpendicular to that
of the pump; all polarizations are linear. By proper orienta-
tion of the pump beam wave vectork¢p with respect to the
optic axis of the crystal, it is possible to satisfy the con-
straints imposed in Eqs.~15!–~17!. Because only the relative
angle between the pump, signal, and idler are important, the
downconverted light is emitted into a cone surrounding the
pump beam~see, for example, Ref. 9!.

Typically, the frequencies of the signal and idler beam are
chosen to be equal to each other, at half the frequency~twice
the wavelength! of the pump. In order to separate the signal
and idler, they are chosen to make a small angle~a few
degrees! with the pump beam so that the signal comes out a
few degrees from the pump, and the idler comes out a few
degrees on the other side of the pump.

However, for a given crystal orientation, there is no unique
solution to the constraints imposed in Eqs.~15!–~17!. The
sums of the frequencies and wave vectors are constrained,
but not the individual frequencies and wave vectors. For in-
stance, if the signal frequency is less than half the pump
frequency by a certain amount, it is possible for energy to be
conserved@Eq. ~15!#, if the idler frequency is an equal
amount greater than half the pump frequency. In order for
momentum to be conserved@Eq. ~16!#, the signal makes a
slightly greater angle with respect to the pump, and the idler
makes a slightly smaller angle. Thus, the light coming out of
a downconversion crystal is emitted into a range of angles
~several degrees!, and wavelengths~on the order of 10s of
nm, centered about twice the pump wavelength!.

The similarity between the Ca cascade source used by
Grangieret al.11 and our downconversion source is that both
sources produce two photons, one of which is used as a gate.
In our experiment, we use the idler photons as a gate—the
detection of an idler photon in one beam~using detectorG!
indicates that there is a signal photon present in the other.
The signal beam is directed to a beamsplitter with two de-
tectors at its outputs~detectorsT and R!. Just as in the ex-
periment of Grangieret al., we expect to see an absence of
coincidences between theT andR detectors, conditioned on
a detection atG. This absence is equivalent to an absence of
threefold coincidences betweenG, T, andR. We can use Eq.

~14! as a measure of the second-order coherence of the signal
beam, and a result ofg(2)(0),1 is inconsistent with a clas-
sical wave description of our system.

IV. EXPERIMENT

We now describe the major components for our updated
version of the experiment of Grangieret al. The layout of
these components is presented in Fig. 4. In brief, a beam of
ultraviolet laser light enters a nonlinear crystal where, via
spontaneous parametric downconversion, some of the light is
converted into IR light in two beams. Light from one of the
IR beams~the idler! is used as agating beamand passes
directly from the crystal into a photodetector. Light from the
other beam~the signal!, which we shall call theexperiment
beam, is directed into a 50/50 BS and subsequently observed
by photodetectors placed in both the transmission and reflec-
tion ports of the beamsplitter. A photodetection in the gating
beam is used to signal that the experiment beam has been
prepared in the proper single-photon state, and it is the light
in the experiment beam whose second-order coherence is
measured. Detections from the three detectorsG, T, and R
are registered by a series of time-to-amplitude converters and
single-channel analyzers; coincidence statistics are then com-
piled and analyzed.

For a more detailed discussion, it is convenient to group
components of the instrument into three categories:~i! light
source, ~ii ! light detection, and~iii ! coincidence-counting
electronics; there also are some diagnostic instruments that
make the experiments easier to perform. A list of major com-
ponents, manufacturers, and part numbers is provided in Ap-
pendix C; all of the equipment is commercially available and
relatively affordable; a complete parts list and further infor-
mation is available on our website.27

Fig. 4. Experimental apparatus. Major components include an ultraviolet
laser, downconversion crystal~DCC!, polarizing beamsplitter~PBS!, single-
photon counting modules~SPCMs!, and gating, transmission-side, and
reflection-side collection optics (G,T,R). Optical fibers direct the light from
G, T, andR to their corresponding SPCMs.
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A. Light source

Our light source was designed to be sufficiently bright so
that alignment can be done in real time; we obtain sufficient
coincidences in a 100-ms counting window to use the
;10-Hz rate of raw coincidence measurements to perform
final alignment. Given this high brightness, data collection
occurs over a few minutes~our experimental runs last from
approximately 5 to 40 min!.

The pump laser used in this work is a cw ultraviolet~409
nm!, diode-pumped, frequency-doubled, solid-state laser; the
pump is linearly polarized. It was chosen for its turnkey op-
eration, high output power~20 mW!, long advertised lifetime
~10 000 h! and comparative value. Before entering the down-
conversion crystal, the pump passes through a zero-order,
400-nm half-wave plate, which allows us to adjust the pump
polarization to maximize the downconversion rate~by rotat-
ing a half-wave plate in its mount, the direction of linear
polarization also rotates.! Downconversion is accomplished
in a 535 mm aperture, 3-mm-long beta-barium borate
~BBO! crystal. It is cut for Type-I downconversion of
405-nm pump light, with a 810-nm signal and idler waves
making angles ofu53° with respect to the pump. Because
the crystal is hygroscopic, the crystal faces have humidity-
barrier, antireflective coatings. The crystal is mounted so that
a small flow of dry nitrogen flows over it while in use on the
optical table. When not in use, the crystal is stored in a
desiccant jar.

When discussing the performance of the source, it is use-
ful to talk in terms of the count ratesR, measured in counts
per second~cps!; RG5NG /DT, whereDT is the measure-
ment time, and similarly for other count rates. Our source
regularly produces singles count rates in the signal and idler
beams~e.g., RG) of ;110 000 cps, and total coincidence
rates between the signal and idler beams of;8800 cps~co-
incidence rates for the counters behind the BS,RGT andRGR
are half this value.!

The downconverted light is vertically polarized. Instead of
using an ordinary 50/50 BS, we use a combination of a half-
wave plate and a polarizing beamsplitter~PBS!. The half-
wave plate is adjusted so that the light entering the PBS is
polarized at 45° with respect to the polarization axis of the
PBS; the light then splits equally between the two outputs.
By rotating the half-wave plate, we can adjust the input po-
larization ~and hence the splitting ratio!, allowing us to fine
tune the splitting to be as close to 50/50 as possible. We also
can easily transmit or reflect 100% of the beam, which is
useful during alignment.

B. Light detection

Our light collection optics are designed for ease of align-
ment and ambient light rejection. The use of fiber optic
cables also makes the system very flexible. We highly rec-
ommend that anyone performing experiments with downcon-
verted light consider using a similar fiber-based system.

The collection optics and detection systems for the three
detectors~G, T, andR! are identical. Downconverted light is
collected by a converging lens and focused into the end of a
62.5-mm-diameter, 1-m-long multimode fiber optic cable that
has fiber-coupling~FC! connectors on both ends. The lens is
a fiber-coupling lens~Thorlabs F220FC-B!, and is pre-
aligned to place the tip of the fiber cable in the focal plane of
the lens, so that no alignment of the lens to the fiber is
necessary. The other end of the fiber connects to a fiber-to-

fiber coupler, which couples light into a second, identical,
fiber. This arrangement allows us the flexibility of swapping
connections between the coupling lenses and different detec-
tors, which is useful in setting up the coincidence counting
electronics~detailed below!. It also allows us to easily con-
nect a fiber-coupled laser diode which shines light backward
through the coupling lens onto the downconversion crystal
for alignment purposes~detailed below!. The second fiber
carries the downconverted light into a light-tight enclosure
which houses the optical filters and detectors. The only light
entering this enclosure comes through the fibers, which
greatly eliminates problems with stray light.

Light is coupled out of the second fiber with another fiber-
coupling lens, passes through an RG 780 filter~which passes
wavelengths longer than 780 nm!, and is coupled with a third
lens into a third fiber cable~50 mm diameter, FC connectors,
and an opaque jacket!. We use a kinematic mount to align the
output of one lens with the input of the other. We also sur-
round the lenses and filter with beam tubes to further elimi-
nate the possibility of collecting ambient light. The third fi-
ber cable transports the light to the single-photon counting
module~SPCM!, which has its own FC connector which is
pre-aligned to image the fiber tip onto the active area of the
detector.

The SPCMs use an avalanche photodiode operated in Gei-
ger mode to detect the light. They output a 30 ns, 4.5 V~into
50 V! pulse when they detect a photon, with a 50 ns dead
time between pulses. The SPCMs have a specified quantum
efficiency of;50% at 810 nm, and the model we used had
dark count rates of;250 cps. With this dark count rate and
our 2.5-ns coincidence window, coincidences due to dark
counts are negligible.

C. Coincidence counting electronics

As described above, we are interested in detecting coinci-
dence counts between the outputs of different detectors. We
use a coincidence window of 2.5 ns, and coincidences are
determined using a combination of a time-to-amplitude con-
verter ~TAC! and a single-channel analyzer~SCA!. Three
such coincidence units are used~one each forGT, GR, and
GTR coincidences!, and their outputs are recorded by a
counting board in our computer. We briefly describe how we
use the TAC/SCA to determine twofoldGT coincidences.
(GR coincidences are determined in the same manner!.
Modification of the TAC/SCA configuration to obtain three-
fold GTR coincidences also is described.

A TAC operates by receiving two inputs, called START
and STOP, and then outputing a pulse, the amplitude of
which is proportional to the time interval between the rising
edges of the START and STOP signals. The proportionality
between the amplitude and the time interval is controlled by
the gain of the TAC, and we typically use a value of 0.2
V/ns. To measure GT coincidences, the START input comes
from the output of detectorG and the STOP input comes
from detectorT ~see Fig. 5!. To ensure that the START pulse
precedes the STOP pulse, we insert an extra length of coaxial
cable, corresponding to a delay of;6 ns, betweenT and the
STOP input. Thus, if detectorsG andT record simultaneous
detections, the delay between START and STOP signals is 6
ns, and the output from the TAC is 1.2 V.

The SCA operates by receiving an input pulse, and then
outputing a pulse~with an amplitude of 5 V! only if the
amplitude of the input pulse falls within a certain voltage
window. The width of the window is adjustable, as is the
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lower level of the window. The input to the SCA is the out-
put from the TAC. Using the values for the TAC output
above, a coincidence window of 2.5 ns centered about 6 ns
corresponds to a voltage range of 0.95–1.45 V, and our SCA
is configured to output a pulse if the amplitude of the input
pulse lies within this range. The only trick to configuring the
TAC/SCA setup is in properly setting the SCA window to
maximize true coincidences and reject false coincidences.
This procedure is described in Appendix B.

In order to measure the threefold GTR coincidences, we
use T as the START input andR as the STOP input, and
configure the TAC/SCA as described above to registerTR
coincidences. To ensure that theseTR coincidences also are
coincident with a detection atG, we operate the TAC in
‘‘start gate coincidence’’ mode, and feed theG signal to the
START GATE input of the TAC. If an output pulse fromG is
not present at the START GATE when the pulse fromT
arrives at START, then the timing circuitry in the TAC is
disabled, and no output is produced.

There is one last trick used in setting up this threefold
coincidence unit. The technique for setting the SCA window
described in Appendix B relies on observing coincidences
between the detectors measuring the START and STOP in-
put; however, we expect anabsenceof coincidences between
T and R. In order to obtain coincidences between these de-
tectors so that we can set the window, we switch the fiber
optic cables so that the idler~gate! beam is fed into the
detector that ordinarily measures theR output. Now, we have
coincident photons entering the two detectors, so that we can
set the window as described in Appendix B. The delays are
all set by the coaxial~electrical! cables between the detectors
and the coincidence units. Because all of the fiber cables
have the same length, the optical delays are the same, and
switching the fiber cables back after the window is set does
not affect the timing.

We measure a total of six photocounts in each data acqui-
sition interval: singles counts from each of the three detec-
tors, NG , NR , and NT , as well as the coincidence counts
NGR , NGT , andNGTR. We use a counting board that plugs
into a PCI slot in our computer, and it simultaneously records
these counts on six different channels. ALABVIEW program
reads the data from the board, computes the second-order
coherence@Eq. ~14!#, and saves the data.

D. Optical alignment

Although requiring some care, we have found the setup
and alignment process to be sufficiently straightforward that
two undergraduates having some familiarity with the experi-
ment were able to start from a bare optical table and com-
plete the process with minimal supervision over the course of
one or two days. The alignment is robust once it has been
completed. For example, we remove the downconversion
crystal when it is not in use; reinserting the crystal and
tweaking-up the alignment takes only a few minutes. When
starting from scratch, the major components are first affixed
to the optical table in rough alignment as illustrated in Fig. 4;
although at first we are interested solely in obtaining coinci-
dences between the idler and signal beams, so that the half-
wave plate, PBS, and detectorR are not used. The pump
beam is aligned level to the table using the two mirrors, and
the electrical connections are completed.

The first component to be aligned is the collection optics
~i.e., fiber optic cable/lens assembly! for the G detector. The
collection lens is mounted in a kinematic mount that allows
for horizontal, vertical, and angular adjustment, and the cen-
ter height of the lens is adjustable using a post holder and
post. The height is initially adjusted so that the center of the
lens is at the same height as the pump beam. Light from a
fiber-coupled 780 nm laser diode is coupled~via the fiber-to-
fiber coupler! backward through the fiber cable, and out
through the lens. The lens is placed so that angle of this
beam is set to be 3° off of the pump beam, and the mount is
adjusted so that the laser shines back onto the center of the
downconversion crystal. The alignment laser is now removed
and the fiber cable is connected to the detector. By monitor-
ing the count rate from theG detector, the polarization of the
pump and the horizontal and vertical tilt of the downconver-
sion crystal are adjusted to maximize the count rate. Once
this adjustment has been accomplished, the kinematic mount
controlling the alignment of the two lenses surrounding the
RG780 filter also is adjusted to maximize the count rate.
Now, the horizontal placement of the collection lens~and
hence the angle between the collection lens and the pump
beam! is carefully adjusted to maximize the count rate. The
alignment of the downconversion crystal and placement of
the collection beam is then iterated to maximize the count
rate on theG detector. As stated above, we typically obtain
;100 000 cps on this beam.

Next, theT detector is aligned in nearly the same way. At
first the goal is not to painstakingly align this detector for
maximum counts, but simply to get enough counts so that the
coincidence window between theG and T detectors can be
set as described in Appendix B. Once this alignment is set,
the alignment of theT collection optics is adjusted to maxi-
mize the coincidencerate betweenG and T, not the raw
count rate onT. We easily obtain a coincidence rate of over
7000 cps, and frequently achieve a rate of;8800 cps. Once
the alignment of theT optics has been accomplished, the
alignment laser is shone backward through this optics, and
adjustable iris diaphragms are aligned with the beam in be-
tween the downconversion crystal and theT optics. These
irises serve to identify the beam path and assist in aligning
the R detector.

The half-wave plate and PBS are now inserted, and the
alignment laser is shone backward through the collection op-
tics of theR detector. The optics are adjusted so that the light
goes back through the irises and onto the crystal. TheR
detector is connected and when counts are achieved, the win-

Fig. 5. Coincidence counting electronics. TACs and SCAs are used to iden-
tify GT, GR, andGTR coincident detections. HereST, SP, andGT refer
to START, STOP, and START GATE inputs, respectively. The outputs go to
six input channels on the counter.
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dow on theGR coincidence unit is set, and theGR coinci-
dence count is maximized. Lastly, theGTR coincidence unit
is configured using the procedure described above.

V. RESULTS

One of the primary advantages of the apparatus described
in this paper is the ability to acquire good counting statistics
in time periods reasonable for an undergraduate laboratory.
In Table I, we present the results of four experimental runs.
In each of these runs, we performed;100 measurements of
g(2)(0), while in each run we changed the integration time
for each measurement. These results are clearly inconsistent
with a classical wave theory, which predictsg(2)(0)>1.
Even for counting times of less than 5 min, we obtain a value
of g(2)(0) that is lower than the classical lower limit by 146
standard deviations. Increasing the counting time does not
affect the measured value ofg(2)(0) ~to within the statistical
error of our measurement!, but increasing the counting time
does decrease the statistical error. Our best results is
g(2)(0)50.017760.0026, which violates the classical in-
equality by 377 standard deviations.

If a truly single-photon state were incident on the BS, QM
would predict thatg(2)(0)50. Why don’t we see this? A
consequence of defining a ‘‘coincidence’’ with a finite time
window is an expected nonzero anticorrelation parameter.
This is because there is the possibility that uncorrelated pho-
tons from different downconversion events may hit theT and
R detectors within our finite coincidence window; these are
‘‘accidental’’ coincidences. As the count rates and coinci-
dence window increase, so do the number of accidental co-
incidences. In Appendix A, we analyze the effect of these
accidental coincidences on our measurements ofg(2)(0). For
our experimental parameters, when we account for accidental
coincidences, we calculate an expected value of the second-
order coherenceg(2)(0)50.0164, which is what we observe
to within our statistical error.

As a final check on the instrument and method, the mea-
surement was repeated, but with an extra length of coaxial
cable ~corresponding to a delay of 6 ns! placed after theR
detector. In this case we are not measuring true coincidences,
but instead coincidences between measurements made at
time t at detectorR, and timet16 ns for detectorT. This
means we do not measure the quantityg(2)(t50), but in-
stead we measureg(2)(t56 ns). Under such circumstances,
GTR coincidences are not excluded because we expect the
detections atT andR to be due to uncorrelated downconver-
sion events. Indeed, we would expect to obtain a measured

value g(2)(t56 ns)>1. In two different experimental runs
we obtained measured values forg(2)(t56 ns) in the range
2–3.

VI. CONCLUSIONS

We have performed an experiment whose results cannot be
explained using a classical wave description for light. The
results are consistent with a quantum mechanical description
in which a field in a single-photon state is incident on a
beamsplitter, and as such we take this experiment as proof of
the existence of photons. The experiment is conceptually
simple, and is suitable for an undergraduate laboratory.

While we would not describe the cost of this experiment
as inexpensive~total cost of;$40 000!, the cost is not pro-
hibitive; a more detailed discussion of this cost is presented
in Appendix C, along with the parts list. Furthermore, the
equipment is extremely versatile and can be used for a num-
ber of other experiments. By adding approximately $2,500 in
components, we have extended the work described here to
demonstrate that~i! single photons interfere with themselves
as they pass through the two arms of an interferometer, and
~ii ! that the frequencies of the signal and idler beams gener-
ated in our experiment are highly correlated. These experi-
ments will be described in a future publication. With other
small additional purchases, it will be possible to perform
tests of Bell’s inequalities9,10 and to demonstrate two-photon
interference.28,29 Thus, for less than $50 000, one could
implement five experiments suitable for undergraduates that
demonstrate interesting features of quantum mechanics.
While the total cost is not inexpensive, it is most certainly
cost effective.
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gate University.30

APPENDIX A: ACCIDENTAL COINCIDENCES

The time interval defining a coincidence is determined by
the windowing of the SCAs. Specifically, the SCAs are con-
figured with finite time windows ofDt52.5 ns, giving the
term ‘‘coincidence’’ the meaning ‘‘within 2.5 ns’’. A conse-
quence of this finite window is a finite probability, propor-
tional to Dt, of registeringGTR coincidences that have no
relation to the coincidences of interest; these are accidental
coincidences.

For example, suppose we obtain a valid coincidence be-
tween detectorsG and T, which occurs with probability
PGT5RGT /RG , where we have written Eq.~13! in terms of
the count rates. WithinDt of this coincidence, there is a
random chance that theR detector also will measure a count,
leading to an accidental threefold coincidence. If the time
interval Dt is small enough, then the probability of this ran-
dom R detection occurring can be approximated byPR8
'RRDt, where the prime indicates that this is an accidental
event, occurring within a specific time window. Similarly, a
valid GR coincidence and a chance detection atT also will

Table I. Measurements ofg(2)(0), the degree of second-order coherence.

Trial
~Total acquisition

time, min!

Integration
time per

point
~s!

Number of
points g(2)(0)

Standard
deviation of

g(2)(0)

1 ~;5! 2.7 110 0.0188 0.0067
2 ~;10! 5.4 108 0.0180 0.0041
3 ~;20! 11.7 103 0.0191 0.0035
4 ~;40! 23.4 100 0.0177 0.0026
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yield an accidental threefold coincidence. The probability of
the accidental coincidences can then be written as

PGTR8 5PGTPR81PGRPT85PGTRRDt1PGRRTDt. ~18!

Here, we have ignored the probability that the accidental
threefold coincidences may be due to pure chance detections
at all three detectors, because for our count rates and coinci-
dence window, this probability is negligible.

We can now calculate the effect of these accidental coin-
cidences on the second-order coherence. Substituting Eq.
~18! into Eq. ~12! yields

g~2!~0!5
PGTR

PGTPGR

5
PGTRRDt1PGRRTDt

PGTPGR

5
RRDt

PGR
1

RTDt

PGT
5RGDtS RR

RGR
1

RT

RGT
D . ~19!

Using the average count rates obtained from the data col-
lected during trial 4 of Table I, we calculate the contribution
to g(2)(0) from the accidental coincidences to be 0.0164.

APPENDIX B: SETTING THE
SINGLE-CHANNEL-ANALYZER WINDOW

One technique for setting the voltage window of the SCA
is to simply set the window width to some value, and to
slowly adjust the lower level of the window while monitor-
ing the SCA output. The goal is to maximize the coincidence
rate. The window is then adjusted to be just wide enough so
that a further increase in width does not significantly increase
the count rate. Adjustments of the width and lower level of
the window can be iterated to optimize the count rate.

An easier way to set the SCA window is to use a multi-
channel analyzer~MCA!. Our MCA is on a PCI card that
plugs into our computer and comes with its own software.
We use it as a diagnostic tool for setting the window, but do
not use it in our experiments to determineg(2)(0). An MCA
histograms voltage pulses of varying amplitude. The histo-
gram is displayed in real time, with an update rate of a few
hertz, so that one can watch the histogram build over time.
The input to the MCA is the output from the TAC, so that the
histogram can be interpreted as measuring time intervals in-
stead of voltages. As stated above, coincidence counts atG
andT are separated at the TAC by 6 ns, and with the coin-
cidence rates in our experiment, we easily see a peak in the
histogram generated by the MCA centered at this 6-ns time
delay. The wings of this peak extend outward to a width of
approximately 2.5 ns, which is the reason we chose this
value for our coincidence window.~This width is due almost
entirely to the properties of the SPCMs, as the time interval
between the photon pairs produced in our experiment is cer-
tainly much less than this.31! Uncorrelated photodetections
~arising from G seeing a photon from one pair-production
event andT seeing a photon from a different pair-production
event! contribute a uniform background that the coincidence
peak sits on top of.

Simply looking at the output of the TAC on the MCA
displays the coincidence peak, but yields no information
about the window of the SCA, which is what we are really
interested in. In order to set the SCA window, we throw a
switch on the TAC/SCA unit, which causes the SCA to win-

dow the output of the TAC. In this mode of operation, if the
output amplitude of the TAC falls within the voltage window
set by the SCA, the TAC operates normally and outputs a
voltage proportional to the time difference between the
START and STOP pulses. However, if the output of the TAC
falls outside of the SCA window, the TAC output is inhibited
and there is no TAC output. Thus, if the SCA window is not
properly set, no peak appears in the MCA histogram. We
thus set the SCA window by simply monitoring the MCA
histogram and adjusting the SCA controls until only the co-
incidence peak is seen and the uncorrelated background is
eliminated.

APPENDIX C: PARTS LIST AND COST OF
EXPERIMENT

Here, we list the major components for this experiment. A
detailed list of all the components can be found on our
website.27

Pump Laser: Edmund Industrial Optics, ^http://
www.edmundoptics.com/&. Diode-pumped, frequency-
doubled, solid-state laser~405–410 nm!; model NT55-872;
$5,800.

Downconversion Crystal:Cleveland Crystals,^http://
www.clevelandcrystals.com/&. Beta-barium borate~BBO!
crystal, 3 mm long, for converting a cw 405-nm input to an
810-nm output, 3° cone angle on signal and idler, XH0503
housing with a 5-mm aperture, Humidity-barrier antireflec-
tive coatings on the crystal faces, nitrogen purge connec-
tions, and no windows; $2,160.

Single-Photon Counting Modules:Pacer Components,
^http://www.pacer.co.uk/&. Single-photon counting module
~Perkin Elmer model SPCM-AQR-13-FC!, dark count less
than 250 cps, FC fiber connector; quantity 3; $4,300/each.

Counting Electronics: ORTEC, ^http://www.ortec-
online.com/&. TAC/SCA model 567; nuclear instruments
modular ~NIM ! plug-in module; quantity 3; $1,656/each.
These modules plug into a NIM crate with associated power
supply, which we already had available to us. If a NIM crate
is needed, the ORTEC model 4001A/4002D @$2,500 should
be suitable. MCA model TRUMP-PCI-2K~diagnostic for
setting up SCA window!; PCI plug-in card with software;
$2,370.

Counter: National Instruments, ^http://www.ni.com/&.
8-channel counter/timer model PCI-6602; plug-in card.
~Note that the optional BNC-2121 connector block and
SH68-68-D1 shielded cable greatly simplify connecting to
the counter!. Total cost with options, $1,000.

Alignment Laser and Power Supply:Thorlabs, ^http://
www.thorlabs.com&. 785-nm laser coupled to a single-mode
fiber with FC connector; model LPS-4224-785-FC; $400.
ILX Lightwave, ^http://www.ilxlightwave.com/&. Current
source model LDX-3412; $930.

The total cost of the experiment is;$40 000. This cost
includes all of the equipment necessary to carry out the ex-
periments, with the exception of a computer,LABVIEW soft-
ware, and the 335 foot optical table. The experiment does
not require a full optical table—an optical breadboard would
be sufficient, and it should be possible to fit everything on a
334 ft breadboard. Below, we discuss a few possibilities for
reducing the cost of the experiment.

Approximately $2,500 of the cost is for standard optical
components: mirrors, kinematic mounts, posts, etc. A labora-
tory with a stock of such components could save much of
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this cost. The fiber-coupled alignment laser and power sup-
ply are nothing special—any available laser coupled into a
fiber would suffice.

Another opportunity for reducing cost is in the counting
electronics. Many laboratories have some of the necessary
electronics as part of existing nuclear physics experiments.
Thus, it may be possible to save on the TAC/SCA cost and
the cost of a NIM crate. It also is possible to build coinci-
dence counting electronics from integrated circuits,9 elimi-
nating nearly $7,400 in cost.

After our apparatus was assembled, Perkin Elmer intro-
duced the SPCM-AQ4C, which consists of four fiber-
coupled photon-counting modules in one unit. These mod-
ules have a larger dark count rate~500 cps!, but that should
have little or no affect on the experiments described here.
The cost of this unit is $9,000, which is significantly cheaper
than purchasing three separate counters. If we were building
a new system, we would use this unit.

We do not recommend replacing the avalanche
photodiode-based photon-counting modules with photomul-
tiplier tubes ~PMTs!. Quantum efficiencies of most PMTs
above 800 nm are about 100 times smaller than avalanche
photodiodes, meaning that the count rates would be 100
times lower. PMTs with GaAs photocathodes have efficien-
cies that are only 5 or 6 times lower than avalanche photo-
diodes, which is not too bad. However, PMT-based systems
further require the use of cooled housings, high-voltage~HV!
power supplies, discriminators, and possibly high speed am-
plifiers; this increases the cost and complexity of PMT-based
systems. Even PMT-based photon-counting modules~which
incorporate the housing, HV supply, and discriminator! op-
erate significantly better with external temperature control
circuitry, which makes their cost higher than the avalanche
diode systems.

If a high-compliance voltage laser diode current source is
already available, stand-alone 30 mW blue laser diodes are
available directly from Nichia, ^www.nichia.com&, for
$2,000 each. It would be advisable to have a temperature-
controlled mount for this diode. If a laboratory already has
an Ar-ion laser, it could be used. The bluest line with signifi-
cant power~10 s of mW! is typically at 458 nm, which
places the downconversion at 916 nm. There is a slight re-
duction in quantum efficiency of the avalanche diodes at this
wavelength, but we envision no significant obstacles to op-
erating at this wavelength.
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