
AUTOMATED PENETRATION TESTING FOR PHP WEB APPLICATIONS

Undergraduate Research Option Thesis

By

Zixiang Zhu

Georgia Institute of Technology

November 2016

Copyright c© Zixiang Zhu 2016

AUTOMATED PENETRATION TESTING FOR PHP WEB APPLICATIONS

Approved by:

Dr. Alessandro Orso
College of Computing, School of
Computer Science
Georgia Institute of Technology

Dr. Robert Waters
College of Computing, School of
Computer Science
Georgia Institute of Technology

Date Approved: December 9, 2016

The task is...not so much to see what no one has yet seen; but to think what nobody has yet

thought, about that which everybody sees.

Erwin Schrödinger

TABLE OF CONTENTS

List of Tables . 3

List of Figures . 4

Chapter 1: Introduction . 1

Chapter 2: Technical Approach . 3

2.1 Background . 3

2.1.1 Data-flow Analysis . 3

2.1.2 HipHop VM and HipHop Bytecode 6

2.2 Inter-procedural CFG Construction . 6

2.3 Testcase Generation Algorithm . 8

2.3.1 Precise String Analysis for Input Generation 8

2.3.2 Array Content Propagation . 15

2.4 Interface Discovery Algorithm . 15

Chapter 3: Empirical Evaluation . 16

3.1 Experiment Setup . 16

3.1.1 Experimental Subjects . 16

3.1.2 Tools Used in Evaluation . 16

1

3.2 Results . 16

3.2.1 Email Sender . 16

3.2.2 Fancy Hotel (CS4400 Class Project) 17

3.2.3 Paycheck Calculator . 19

Chapter 4: Discussion . 21

Chapter 5: Conclusion . 23

Appendix A: Experiment Equipment . 25

Appendix B: Function buildFlowGraph Continued 26

Appendix C: Experiment Interface Output . 28

C.1 Email Sender . 28

C.2 Fancy Hotel - User Login . 31

C.3 Fancy Hotel - User Registration . 32

C.4 Fancy Hotel - Room Search . 36

C.5 Paycheck Calculator . 39

References . 40

2

LIST OF TABLES

2.1 Supported PHP Core operations . 14

2.2 Supported PHP string operations . 14

3

LIST OF FIGURES

2.1 Control Flow Graph for Function t3f1 . 4

3.1 Code Coverage Performance Comparison with Naive Testcase Generator . . 20

4

ABSTRACT

Penetration Testing emerged in the mid-1960s as an approach to exploit vulnerabilities

of possible attacks of a software application by nefarious users. Traditional penetration

testing is done manually, which is not only inefficient but also unstable in terms of reliability.

In the recent decade, multiple automated penetration testing approaches have been proposed,

including automatically test inputs generation based on genetic algorithms and neural

networks learning. However, these black-box testing methods only have limited accuracy,

and usually require a large number of data to train the agents before they can be used to

do actual tests. To address this issue, we present a novel approach in which program static

analysis is exploited. The proposed penetration testing system is able to not only estimate

HTTP request data more precisely, but also discover dynamic interfaces exposed by the web

applications. This research is focused on PHP web applications only.

5

CHAPTER 1

INTRODUCTION

As the scale of enterprise web applications grows rapidly, finding an effective way for testing

site reliability is becoming increasingly important. As a widely-used testing technique,

penetration testing is able to exploit the vulnerabilities of a web application back-end by

simulating sending HTTP requests from the client side. Since penetration testing is used to

test as many parts of an application as possible, comprehensiveness is the most important

factor in performing penetration testing. An ideal penetration test is the one that generates

HTTP requests which cover 100% of the server-side code.

Traditionally, penetration tests are performed as black-box testing, which views the

program to be tested as a ”black box” whose implementation detail is unknown to the tester.

Black-box testing allows the tester to focus on only the input and the output generated by

the program; however, since the inner functionality of the program is unknown, it is difficult

for the tester to generate a comprehensive test suite that guarantees 100% back-end code

coverage. In traditional manual penetration testing, a tester could only apply ”educated

guesses” when creating test requests. Some recent research proposed automated penetration

testing using AI techniques such as genetic algorithm [1] and neural network models [2].

Although these automated approaches showed promising results in some scenarios, by

nature they are still black-box testing, only improving the accuracy of ”educated guess”

by inferring from the statistical analysis results generated from the differences between

expected outputs and actual outputs.

The lack of comprehensiveness and efficiency in black-box penetration testing prompted

us to propose a new approach that performs white-box testing, during which tests are

performed by looking at the implementation details in the source code of the program itself.

In our implementation, both the interfaces that an application exposes and all the request

1

data that is processed in the back-end can be inferred from static analysis results. The test

suite goes through the program and checks at what positions each HTTP request variable

is used. If some other variables are involved at any of the positions, then the program will

use the result of data flow analysis to construct the exact value for such variables, which

are also the possible values that the HTTP request variable could take. The test suite uses a

library developed by Christensen, Møller, and Schwartzbach [3] to construct an automaton

that represents possible string values during string variable construction.

As another major part of penetration testing, interface discovering was traditionally done

by doing web crawling. However, since modern web frontend is becoming increasingly

dynamic, only extracting information from the client-side HTML pages does not guarantee

enough interfaces are discovered. In 2007, Halfond and Orso [4] proposed a novel approach

for discovering web application interfaces using static analysis. Such technique showed

promising results for finding and grouping dynamic interfaces that are not exposed directly

by the front-end. In this project, the same algorithms proposed by Halfond et al. is applied

for doing interfaces discovery, but is targeted for PHP web applications.

2

CHAPTER 2

TECHNICAL APPROACH

2.1 Background

2.1.1 Data-flow Analysis

In compiler theory, data-flow analysis is a technique for gathering information about the

possible set of values calculated at various points in a computer program. The basis for

performing data-flow analysis is control flow graph (CFG), which is used to determine those

parts of the program to which a particular value assigned to a variable might propagate. In

our particular case, we used reaching-definition for each instruction to represent the data

flow information. Two techniques applied for performing reaching-definition analysis are

Liveness Analysis and Reaching-Def Analysis.

Control Flow Graph (CFG) is a graph representation of all the paths that a computer

program might be traversed through during its execution. In a control flow graph, each

node represents a basic block - a sequential piece of a program that does not include jumps

or jump targets, while the directed edges represent jumps in the program. Figure 2.1 is

the complete control flow graph constructed for an example function t3f1. Each circle

represents a basic block (first number in the circle denotes its line number), and the black

edges represent the possible jumps that the program can take during execution. It is worth

noting that the while loop in t3f1 includes a condition check at line 4, which can be reached

from either line 4 (before loop starts) or from line 13 (after last instruction in the loop is

finished). Therefore in the CFG there are two nodes representing line 5, with one coming

from line 4 and another coming from line 13.

3

Figure 2.1: Control Flow Graph for Function t3f1

4

1 <?php

2 f u n c t i o n t 3 f 1 ($c , $d) {

3 $a = 0 ;

4 $b = 0 ;

5 whi le ($a <= 5)

6 {

7 i f ($b > 5) {

8 $b = 5 ;

9 }

10 $a = $a + 1 ;

11 $b = $b + 2 ;

12 }

13 }

14 ?>

As one of the two techniques used for performing reaching-definition analysis, liveness

analysis is to calculate, at instruction level, the variables that may be potentially read before

their next write, that is, the variables that are live at the exit from each program point. In the

given example, variable b is first defined at line 4; it is also defined at line 8 and 11 in the

main loop. Therefore, var b is said to be ”alive” from line 4 to line 8, and from line 11 back

to line 8. Given liveness analysis output, def-use chains can be constructed for each variable.

The DU chain represents the exact places where a variable definition is later used in other

instructions. The DU chains in t3f1 are shown as black dotted edges in Figure 2.1.

To the contrary of liveness analysis, reaching-def analysis calculates the possible defi-

nition instructions for a given use variable. Reaching-def analysis helps generate use-def

chains for each variable used in a program. The UD chains for variables in t3f1 are shown

as red dotted edges in Figure 2.1.

5

2.1.2 HipHop VM and HipHop Bytecode

HipHop Virtual Machine (HHVM) is an open-source virtual machine based on just-in-time

(JIT) compilation that serves as an execution engine for the PHP and Hack programming

languages. During HHVM execution, PHP or Hack code is first transformed into an

intermediate code format, HipHip bytecode (HHBC), for the consumption by JIT compilers

[5]. We found HHBC an ideal code representation for PHP programs, because unlike PHP

native statements, which only describes what actions to perform, HHBC is consisted by

instructions, which tell the machine how those actions should be performed. Specifically,

declare, load and set operations for variables are explicitly stated in HHBC, which makes it

easy to build CFGs and perform data analysis. Moreover, HHBC introduces the concept

of ”execution stack”, a stack space upon which data are processed by pushing and popping

according to different operations. Such concept could greatly help with the string analysis

that we use for testcase generation, which will be discussed in 2.3.1.

2.2 Inter-procedural CFG Construction

Usually during static analysis, an intra-procedural CFG is constructed for each individual

function before all intra-procedural CFGs are combined into one inter-procedural CFG

(ICFG) that represents the control flow for the entire program. ICFG is a combination of

all individual functions and a function call graph (CG), which is a graph representation

of function dependencies in a program, in which functions are represented as nodes and

function invocations are represented as directed edges. Since one variable defined/used in

any function can be used/defined in other functions, extra work needs to be done in order to

expand a variable’s DU and UD chains in ICFG. Algorithm 1 shows the construction of DU

and UD chains in ICFG given individual CFGs and CG.

6

Algorithm 1 Dataflow Expansion in ICFG
Require:

1: CG: call graph of the application program;
2: CFGS: CFGs for all functions in the program

. main
3: procedure DATAFLOW EXPANSION

4: visited← ∅
5: for Each CFG in CFGS do
6: for Each instruction I in CFG do
7: if I has KILL variable kv then
8: COMPLETEDEFUSE(CFG, I , kv, visited)
9: end if

10: end for
11: end for
12: visited← ∅
13: for Each CFG in CFGS do
14: for Each instruction I in CFG do
15: if I has GEN variable gv then
16: COMPLETEUSEDEF(CFG, I , gv, visited)
17: end if
18: end for
19: end for
20: end procedure

21: function COMPLETEDEFUSE(cfg, instr, var, visited)
22: if instr in visited then
23: return instr.duchain
24: end if
25: for Each Use use in instr.duchain do
26: if use is a function call site then
27: Get the callee function targetfunction
28: Get the function parameter targetvar in targetfunction that corresponds

to use.var
29: Get the instruction targetInstr that initiates targetvar in targetfunction
30: newuses ← COMPLETEDEFUSE(targetfunction.CFG, targetInstr,

targetvar, visited)
31: instr.duchain← (instr.duchain - use) ∪ newuses
32: end if
33: end for
34: visited← visited ∪ instr
35: return instr.duchain
36: end function

7

37: function COMPLETEUSEDEF(cfg, instr, var, visited)
38: if instr in visited then
39: return instr.udchain
40: end if
41: for Each Def def in instr.udchain do
42: if def is a function entry site then
43: Get all the functions callerfuncs that calls current function
44: for Each function callerfunc in callerfuncs do
45: Get the function parameter sourcevar in callerfunc that corresponds

to def.var
46: Get the instruction sourceInstr in callerfunc that passes sourcevar

to callee stack
47: newdefs ← COMPLETEUSEDEF(callerfunc.CFG, sourceInstr,

sourcevar, visited)
48: instr.udchain← (instr.udchain - def) ∪ newdefs
49: end for
50: end if
51: end for
52: visited← visited ∪ instr
53: return instr.duchain
54: end function

2.3 Testcase Generation Algorithm

2.3.1 Precise String Analysis for Input Generation

Typically, users interact with a web application through a user interface (e.g., web page) that

allows them to enter input data (e.g., into a form) and submit such data to the web application

via HTTP request. The data that users enter are mostly in string literal forms (e.g., name,

address, email, etc). Therefore, generating appropriate string inputs automatically during

penetration testing is of our particular interest.

The most direct and effective approach for generating test string literal inputs is to check

what values the input variable is compared with during input validation in the application

back-end. Usually after the application receives a request from the client side, it will

compare each input field against some specific values or regular expressions, in order to

check if the value is valid, or to process data differently according to the given value. For

8

string literal fields, the checker strings/regex are particularly useful, because they provide a

good reference for generating our test inputs (the testcase generator only needs to make the

input value either match the given value or differ from it). Therefore, in order to generate

our test inputs, the fundamental step is to construct the string literals or regular expressions

that the inputs are compared with in the application.

Conventional static analysis does not try to get the information of what the value of a

variable exactly is. However, in order for our testcase generation tool to construct more

plausible input string literals, it is important to estimate the exact value of string literals used

to compare with inputs passed into the application. Fortunately, the structure of HipHop

Bytecode makes it possible to perform such action. The compiled HHBC for a PHP program

models the flow of program execution by using a stack of frames referred to as the ”call

stack”. Each call stack maintains an ”evaluation stack”, on which data is pushed or popped

based on type of HHBC instruction. By using a stack data structure to model this evaluation

stack, along with the data flow analysis results that the earlier phase generates, we can

partially simulate the actual program’s behavior during execution, which is sufficient for us

to construct exact string literal values.

Listing 2.1 shows a simple PHP program that uses a create name function to build full

names from first and last names. In line 3, first name is first concatenated with a space

and then concatenated with last name. Listing 2.2 is the HHBC generated for line 3 after

compilation, which shows how the act of concatenation in line 3 is performed by HHVM.

HHVM starts the series of actions by declaring a String (a space) (line 152), which is pushed

to the evaluation stack; next, HHVM looks for the variable with ID 0 (CGetL2 0 in line

157), and pushes it onto the stack; then, when it comes to the ”Concat” instruction, HHVM

takes the top two elements from the stack, append the topmost value (which is the space) to

the back of the second topmost value (the variable with ID 0), and pushes the result onto the

stack, thus completing the first concatenation. The rest of the HHVM actions are similar to

what have happened: HHVM pushes the variable with ID 1 to the stack, pops the top two

9

elements, concatenates them, and finally pushes the result to the stack.

Listing 2.1: Sample PHP Code and Compiled HHBC Snippet

1 <?php

2 f u n c t i o n c r e a t e n a m e ($a , $b) {

3 r e t u r n $a . ” ” . $b ;

4 }

5 $ f i r s t n a m e 1 = ” John ” ;

6 $ l a s t n a m e 1 = ”Doe” ;

7 $ f i r s t n a m e 2 = ” George ” ;

8 $ l a s t n a m e 2 = ” B u r d e l l ” ;

9 $name1 = c e a t e n a m e ($ f i r s t n a m e 1 , $ l a s t n a m e 1) ;

10 $name2 = c r e a t e n a m e ($ f i r s t n a m e 2 , $ l a s t n a m e 2) ;

11 $n = $ POST [”name”] ;

12 i f ($n == $name1) {

13 echo ”You a r e a UGA s t u d e n t ” ;

14 } e l s e i f ($n == $name2) {

15 echo ”You a r e a Georg i a Tech s t u d e n t ” ;

16 } e l s e {

17 echo ” F a i l e d ” ;

18 }

19 ?>

Listing 2.2: HHBC Snippet for line 3

1 152 : S t r i n g ” ”

2 157 : CGetL2 0

3 159 : Concat

4 160 : CGetL 1

5 162 : Concat

6 163 : RetC

10

Given the fact that HHBC instructions also represent stack operations, we can take

advantage of such property to build the string literal by mocking HHVM stack operations.

In our implementation, a global stack data structure is maintained by the static analyzer.

After each basic block is created, all the instructions in the basic block are simulated to

work on the stack. The result is an ActionNode tree. ActionNode is a data structure that

represents the specific HHVM ”Action” performed by the given instruction. For example,

”Concat” and ”String” instructions represent ”Concatenation” and ”Declaration” actions

respectively. Different type of ActionNode. Essentially each instruction should correspond

to an action node and different instruction operators should be represented by distinct action

nodes. However, given the large number of PHP string operations, we only implemented

ActionNodes for certain commonly used operations (Table 2.2). ActionTree is a hierarchical

representation of ActionNode actions upon each other. In the HHBC sample given by

Listing 2.2, the ActionNode tree looks like the following:

Concat

Concat

Get 0

Declare firstname

Declare

Get 1

Declare lastname

As shown in the tree diagram above, Concat ActionNode always has two children, while

Get ActionNode has one child, and Declare ActionNode has zero. Different ActionNodes

have different number of children, depending on their specific actions.

In the last step, static analyzer uses the action trees and a modified Java String Analyzer

(JSA) library to construct string literal values. Java String Analyzer (JSA) [4] is a tool that

uses static analysis information to predict the possible values of string expressions in Java

programs. JSA is consisted of several phases, each transforming the program into a different

11

form. The phases are separated into two parts: The front-end and the back-end. At the

front-end, JSA performs Java language specific static analysis and generates a Flow Graph

for each string expression; at the back-end, JSA takes Flow Graphs as its input and converts

them in to finite-state automata.

Flow Graph is language-independent, and can be constructed directly from data flow

analysis(liveness and reaching-def analysis). Therefore, in our implementation, the static

analyzer uses Def-Use chains and Use-Def chains along with the action trees to build flow

graph for each string expression; the flow graph is then fed into the back-end of JSA library,

which will take care the rest of string analysis and generate a finite-state automaton to

represent the string expression.

Algorithm 2 Flow Graph Construction Algorithm
Require:

1: CG: Call graph of the application program
2: ICFGS: Inter-procedural CFG with complete Def-Use and Use-Def chains

. main
3: procedure FLOW GRAPH CONSTRUCTION

4: Group functions in CG into Strongly Connected Components sccGraph
5: Get the topological ordering of SCCs, sccList , in sccGraph
6: continue← true
7: until continue is false repeat
8: for Each SCC scc in sccList do
9: for Each Function function in scc do

10: cfg← function.cfg
11: for Each BasicBlock block in cfg.getTopologicalSortedBlocks do
12: success← STRINGANALYSIS(block, ICFG)
13: if success is true then
14: continue← false
15: end if
16: end for
17: end for
18: end for
19: end until
20: end procedure

12

21: function STRINGANALYSIS(basicblock, ICFG)
22: Build ActionTrees trees from basicblock.instructions
23: for Each ActionTree tree in trees do
24: success← BUILDFLOWGRAPH(tree.root, ICFG)
25: if not success then
26: return false
27: end if
28: end for
29: return true
30: end function

31: function BUILDFLOWGRAPH(ActionNode, ICFG)
32: Initialize FlowGraph flowgraph
33: Initialize FlowGraphNode fgnode
34: for Each child node childnode of ActionNode.children do
35: success← BUILDFLOWGRAPH(childnode, ICFG)
36: if not success then
37: return false
38: end if
39: flowgraph← childenode.flowgraph
40: Add all nodes in childnoded.flowgraph to flowgraph
41: end for
42: switch ActionNode.type do
43: case Declare
44: v← ActionNode.value
45: at← v.GETAUTOMATON

46: fgnode← flowgraph.ADDINITIALIZATIONNODE(at)
47: case Get
48: instr← ActionNode.instr
49: fgnode← flowgraph.ADDASSIGNMENTNODE;
50: for Each Definition def in instr.usedefchain do
51: Get the ActionNode setNode corresponding to def
52: setF lowGraph← setNode.flowgraph
53: Add all nodes in setF lowGraph to flowgraph
54: Set Def-Use relationship between setNode.fgnode and fgnode
55: end for
56: case Set
57: ActionNode toSet← ActionNode.child
58: fgnode← flowgraph.ADDASSIGNMENTNODE(toSet)
59: Set Def-Use relationship between toSet and fgnode

60: case Load . Explained in section 2.3.2

13

61: case Function
62: fgnode← flowgraph.ADDASSIGNMENTNODE

63: Get called function name funcName
64: retCFG← ICFG.GETCFG(funcName)
65: retBlocks← retCFG.GETRETBLOCKS

66: vars← ActionNode.children
67: varMap← Associate each variable in vars with its formal parameter in

function pointed by funcName
68: for Each BasicBlock retBlock in retBlocks do
69: retActionNode← retBlock.GETLASTACTIONNODE

70: fg copy← COPYFLOWGRAPH(retActionNode.flowgraph, varMap)
71: Add all nodes in fg copy to flowgraph
72: Set Def-Use relationship between the last node in fg copy and fgnode
73: end for

. change type to Default
74: ActionNode.type← Default
75: Clear ActionNode.children
76: case Default
77: do nothing

. For string specific actions, refer to Appendix B

Supported PHP Core Operations
Function
Declare

ArrayDeclare
Set
Get

Load

Table 2.1: Supported PHP Core operations

Supported PHP String Operations
Concat

StrComp
Substr

ToUpperCase
ToLowerCase

Reverse
Trim
Split

Replace
StrToTime

Table 2.2: Supported PHP string operations

14

2.3.2 Array Content Propagation

In addition to being initialized directly, it is common that string literals are also declared

in arrays and maps, therefore it is important to capture all possible string literal values in

such data structures. Suppose arr is an array with n string literals in a program, and at some

point in the program, a variable a is assigned to an element in arr at a particular position i.

The actual value of a depends on index i, but in our case, what we care is all the possible

string literal values a could be assigned, and therefore index is no longer relevant. Instead,

we assume that all the n elements in arr can be assigned to a. The same idea applies for

maps as well.

Nested array and map is another consideration when extracting string literals. If an

element is retrieved by indexing into the first level of a two-dimensional array, then only

the elements at the first level are extracted. Similarly, if the array is indexed at its second

level, then only those elements at the second level are retrieved. In our implementation,

each LOAD ActionNode represents going one more level into an array/map. Therefore

a recursive array unpacking procedure is applied at LOAD ActionNodes on flow graph

construction, by which the action node can get to the correct level of an array/map and copy

all the string literals at that level into its own data structure.

2.4 Interface Discovery Algorithm

In this step, variables exposed by the application interface(input variables) are identified and

grouped logically. This part of the program implements two interface discovery algorithms

proposed by Halfond and Orso [4].

15

CHAPTER 3

EMPIRICAL EVALUATION

3.1 Experiment Setup

3.1.1 Experimental Subjects

The experimental subjects used in the study is consisted of three student-developed projects

that use PHP as their back-end language.

3.1.2 Tools Used in Evaluation

We evaluate the effectiveness of our interface discovery mechanism by comparing the

number and quality of interfaces that it generates with the interfaces extracted by web

crawlers. The web crawler tool that we used is OpenWebSpider, an open-sourced framework

for crawling/spidering websites. For each interface output, we check if any of the HTTP

requests in this output is processed in the back-end program.

We evaluate the effectiveness of our test request generation mechanism by comparing it

against naive random test case generation. For each HTTP request, a set of possible values

is generated for all of the fields in this request, creating a set of test HTTP requests, which

are then sent to the server. The final code coverage of the back-end PHP code is recorded.

3.2 Results

3.2.1 Email Sender

A simple PHP program that processes a form which contains 4 input fields and sends an

email according to the information supplied in the form.

Form Inputs

16

• first name (required)

• last name (required)

• email (required)

• telephone (optional)

All required fields are checked against a regular expression. The only optional field (tele-

phone) is not checked against any regex or string variables.

Our penetration testing tool successfully identified all the fields (required and optional).

It generated test cases for all the required variables from the given regex expression. For

the ”telephone” field, which is optional, our testing tool did not infer any information from

static analysis, therefore would be producing random strings for this field during testing.

Code coverage achieved: 82.92%

Code coverage by random generator: 60.98%

3.2.2 Fancy Hotel (CS4400 Class Project)

A web application powered by PHP and MySQL that serves as an online room reservation

system for a non-existing hotel.

User Login

Form Inputs

• username (string)

• password (string)

Our penetration testing tool successfully identified both username and password fields

in the interface. Since the application does not compare username and password to specific

patterns or values, our static analysis did not infer possible value information for these fields.

17

However, the analyzer identified session information created during login, which could

potentially make subsequent penetration testing more thorough by exploiting user sessions.

In addition, the user login program can be redirected to three different URLs once login

information is validated. Since these URLs are not exposed to the front-end HTML, they

were not identified by web crawler. However, by performing static analysis on the source

code, our penetration testing tool was able to discover all three of them.

User Registration

Form Inputs

• username (string)

• password (string)

• confirmed password (string)

• email (string)

Our penetration tool successfully identified all request (or interface) parameters and

their names (usn, psw, con pwd, email). It identified the regular expression that was used to

check valid email and username in the program and used this information to construct test

cases for the email and username fields.

Code coverage achieved: 91.67%

Code coverage by random generator: 66.67%

Room Search

Form Inputs

• start date (string)

• end date (string)

18

• location (string)

Note

• start date must be greater than 2015-08-01;

• start date cannot be greater than end date;

• start date cannot be smaller than today’s date (2015-08-31);

• end date must be smaller than 2016-01-31;

Our penetration tester successfully identified all the required fields as well as the session

information not exposed by the interface itself. Furthermore, static analysis has inferred

key information about both start date and end date. For start date, output test cases include

”20150831” and ”20150801”; for end date, output test cases include ”20160131”.

Code coverage achieved: 95.23%

Code coverage by random generator: 85.71%

3.2.3 Paycheck Calculator

A basic PHP web application that takes in one input (salary) and shows how much tax should

be deduced.

Form Inputs

• salary (integer)

Our penetration tool successfully identified the interface. Static analysis generated all

possible numeric values that are used, either directly or indirectly, to compare with the

interface input variable in the program.

Code coverage achieved: 85.37%

Code coverage by random generator: 82.92%

19

Figure 3.1: Code Coverage Performance Comparison with Naive Testcase Generator

20

CHAPTER 4

DISCUSSION

The comparison against OpenWebSpider for interface discovery performance and naive

random string construction for test case generation shows that our penetration tool, which

is based on static analysis, could identify more web interfaces than traditional web spider

and achieve higher code coverage than traditional penetration testing tool. In our study,

we found that in the case that application hides its some of its URLs from the front-end,

web crawler is unable to discover those URLs and would fail to visit their pages. However,

there is no such problem for our penetration testing tool. Since our implementation does

not rely on front-end information when identifying interfacing but rather directly inspects

all the source codes, our interface discovery mechanism will eventually visit all the files

in the application code base and get interface information from them. Moreover, the static

analysis mechanism also helps us identify hidden URLs in the application, from which a

complete site map could be generated. However, the limitation for our penetration testing

tool is that it has to have read access of all the PHP files in use, which is sometimes difficult

to accomplish.

Another potential advantage for using our penetration testing tool is that its interface

discovery mechanism can identify which input variable is not going to be processed, thus

saving time to generate test case for it. If an input variable is never used in the back-end,

then it is not going to be identified during static analysis; however, a web crawler may

simply look at the input fields in the front end and assume that all input fields are going to

be processed.

Figure 3.1 shows our implementation for testcase generation achieves more code cov-

erage than the naive testcase generation method. The improvement is relatively big for

the first three sample programs while it is only minute for the last one. The reason is that

21

the first three programs are mainly dealing with string typed inputs, as opposed to the last

program, Paycheck Calculator, which only processes integer data input. It is clear that static

analysis along with string literal value estimation makes our penetration testing tool more

capable of getting to the ”edge cases” where the program may branch out, thus is able to

achieve high code coverage by using relatively fewer test cases. Further investigation into

the implementation details of sample programs leads to the finding that the performance of

our testcase generator is higher if input variables are checked against const string literals or

regular expression patterns (program 1 and 2), and is lower if input variables are checked

with each other(program 3).

22

CHAPTER 5

CONCLUSION

In this paper we presented a novel approach for performing automated penetration testing for

PHP web applications. It uses static analysis to identify the application program’s behavior

on each variable and function, and then construct the possible interfaces exposed by the

application as well as the possible values that each request field can take. We compared the

effectiveness of this new test system with traditional penetration testing tools, in terms of

interface discovery and test case generation. The result shows our proposed testing tool can

not only identify more interfaces for dynamic web applications, but is able to achieve higher

code coverage by using fewer test cases.

23

Appendices

24

APPENDIX A

EXPERIMENT EQUIPMENT

1. Ubuntu 14.04

2. Java Runtime Environment 1.7

3. PHP 5.5

4. HHVM 3.10.0

5. OpenWebSpider

25

APPENDIX B

FUNCTION BUILDFLOWGRAPH CONTINUED

78: case Concat
79: ActionNode toConcat1← ActionNode.children[0]
80: ActionNode toConcat2← ActionNode.children[1]
81: fgnode← flowgraph.ADDCONCATENATIONNODE

82: Set Def-Use relationship between toConcat1 and fgnode
83: Set Def-Use relationship between toConcat2 and fgnode

84: case Comp
85: ActionNode toCmp1← ActionNode.children[0]
86: ActionNode toCmp2← ActionNode.children[1]
87: fgnode← flowgraph.ADDBINARYNODE(AssertEqualsOperation)
88: Set Def-Use relationship between toCmp1 and fgnode
89: Set Def-Use relationship between toComp2 and fgnode

90: case Substr
91: ActionNode substrNode← ActionNode.children[0]
92: fgnode← flowgraph.ADDUNARYNODE(SubstringOperation)
93: Set Def-Use relationship between substrNode and fgnode

94: case ToUppserCase
95: ActionNode upperNode← ActionNode.children[0]
96: fgnode← flowgraph.ADDUNARYNODE(ToUpperOperation)
97: Set Def-Use relationship between upperNode and fgnode

98: case ToLowerCase
99: ActionNode lowerNode← ActionNode.children[0]
100: fgnode← flowgraph.ADDUNARYNODE(ToLowerOperation)
101: Set Def-Use relationship between lowerNode and fgnode

102: case Reverse
103: ActionNode reverseNode← ActionNode.children[0]
104: fgnode← flowgraph.ADDUNARYNODE(ReverseOperation)
105: Set Def-Use relationship between reverseNode and fgnode

26

106: case Trim
107: ActionNode trimNode← ActionNode.children[0]
108: fgnode← flowgraph.ADDUNARYNODE(TrimOperation)
109: Set Def-Use relationship between trimNode and fgnode

110: case Split
111: ActionNode splitNode← ActionNode.children[0]
112: fgnode← flowgraph.ADDUNARYNODE(SplitOperation)
113: Set Def-Use relationship between splitNode and fgnode

114: case StringToT ime
115: ActionNode timeNode← ActionNode.children[0]
116: fgnode← flowgraph.ADDUNARYNODE(ToTimeFormatOperation)
117: Set Def-Use relationship between timeNode and fgnode

return true
118: end function

27

APPENDIX C

EXPERIMENT INTERFACE OUTPUT

C.1 Email Sender

Found URLs :

==

I n t e r f a c e 1

==

Reques t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ l a s t n a m e }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N122 [l a b e l =”” , shape = c i r c l e]

N124 −> N122

N123 [l a b e l =”<???>”]

N124 [l a b e l =”” , shape = c i r c l e]

N123 −> N124

}

28

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] . C−z N.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ t e l e p h o n e }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ f i r s t n a m e }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N76 [l a b e l =”” , shape = c i r c l e]

29

N124 −> N76

N123 [l a b e l =”<???>”]

N124 [l a b e l =”” , shape = c i r c l e]

N123 −> N124

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] SIT

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 4

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ e m a i l }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N45 [l a b e l =”” , shape = c i r c l e]

N47 −> N45

N46 [l a b e l =”<???>”]

N47 [l a b e l =”” , shape = c i r c l e]

N46 −> N47

}

30

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] −S . YTh@A22 . I−P8P4G7nY0LIB.84−−−−.Mvw

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C.2 Fancy Hotel - User Login

Found URLs :

L o c a t i o n : / u s e r r e g i s t r a t i o n . php

L o c a t i o n : / f u n c t i o n a l i t y c u s t o m e r . php

L o c a t i o n : / f u n c t i o n a l i t y m a n a g e r . php

==

I n t e r f a c e 1

==

==

I n t e r f a c e 2

==

Reques t 1

. .

POST{ password }

T e s t Cases :

. .

Reques t 2

. .

POST{ username }

T e s t Cases :

. .

==

31

I n t e r f a c e 3

==

Reques t 1

. .

SESSION{ i d e n t i t y }

T e s t Cases :

. .

==

I n t e r f a c e 4

==

Reques t 1

. .

POST{ password }

T e s t Cases :

. .

Reques t 2

. .

POST{ username }

T e s t Cases :

. .

Reques t 3

. .

SESSION{ i d e n t i t y }

T e s t Cases :

. .

C.3 Fancy Hotel - User Registration

32

Found URLs :

==

I n t e r f a c e 1

==

==

I n t e r f a c e 2

==

Reques t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ usn }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types [S t r i n g]

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N38 [l a b e l =”<???>”]

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] 6Ew

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ con pwd}

33

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N54 [l a b e l =”” , shape = c i r c l e]

N168 −> N54

N167 [l a b e l =”<???>”]

N168 [l a b e l =”” , shape = c i r c l e]

N167 −> N168

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{pwd}

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

34

d i g r a p h FlowGraph {

N60 [l a b e l =”” , shape = c i r c l e]

N62 −> N60

N61 [l a b e l =”<???>”]

N62 [l a b e l =”” , shape = c i r c l e]

N61 −> N62

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 4

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ e m a i l }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types [S t r i n g]

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N74 [l a b e l =”<???>”]

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] o7Muhy1@Ph . com

35

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C.4 Fancy Hotel - Room Search

Found URLs :

==

I n t e r f a c e 1

==

==

I n t e r f a c e 2

==

Reques t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ usn }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types [S t r i n g]

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N38 [l a b e l =”<???>”]

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] 6Ew

36

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ con pwd}

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N54 [l a b e l =”” , shape = c i r c l e]

N168 −> N54

N167 [l a b e l =”<???>”]

N168 [l a b e l =”” , shape = c i r c l e]

N167 −> N168

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{pwd}

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types []

37

Values : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N60 [l a b e l =”” , shape = c i r c l e]

N62 −> N60

N61 [l a b e l =”<???>”]

N62 [l a b e l =”” , shape = c i r c l e]

N61 −> N62

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Reques t 4

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ e m a i l }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types [S t r i n g]

Va lues : []

S t r i n g v a l u e s :

d i g r a p h FlowGraph {

N74 [l a b e l =”<???>”]

38

}

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[] o7Muhy1@Ph . com

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C.5 Paycheck Calculator

==

I n t e r f a c e 1

==

Reques t 1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

POST{ s a l a r y }

−−−−−−−−−− Domain I n f o −−−−−−−−−−−−

Types [Number]

Va lues : [2 3 3 1 . 8 9 , 4 6 6 3 . 7 5 , 1 3 9 9 . 1 3 , 3 7 5 1 . 0 5 ,

3 7 5 1 . 0 6 , 2 8 2 6 . 6 6 , 2 3 3 1 . 8 8 , 1 9 0 3 . 9 9 , 4 6 6 4 . 6 8]

S t r i n g v a l u e s :

−−−−−−−−−−− T e s t Cases −−−−−−−−−−−−

[2 3 3 1 . 8 9 , 4 6 6 3 . 7 5 , 1 3 9 9 . 1 3 , 3 7 5 1 . 0 5 , 3 7 5 1 . 0 6 ,

2 8 2 6 . 6 6 , 2 3 3 1 . 8 8 , 1 9 0 3 . 9 9 , 4 6 6 4 . 6 8]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

39

REFERENCES

[1] P. S. Srivastava and T. Kim, “Application of genetic algorithm in software testing,”
International Journal of Software Engineering and Its Applications, vol. 3, no. 4, Nov.
2009.

[2] R. Zhao and S. Lv, “Neural-network based test cases generation using genetic
algorithm,” in 13th Pacific Rim International Symposium, Dec. 2007, pp. 97–100.

[3] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis of string
expressions,” in The 10th International Conference on Static Analysis, 2003.

[4] W. G. J. Halfond and A. Orso, “Improving test case generation for web applications
using automated interface discovery,” in
The the 6th Joint Meeting of the European Software Engineering Conference, ser.
ESEC–FSE ’07, Dubrovnik, Croatia: ACM, 2007, pp. 145–154, ISBN:
9781595938114.

[5] Facebook, Hiphop bytecode specification v1 revision 18, 2014.

40

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Technical Approach
	Background
	Data-flow Analysis
	HipHop VM and HipHop Bytecode

	Inter-procedural CFG Construction
	Testcase Generation Algorithm
	Precise String Analysis for Input Generation
	Array Content Propagation

	Interface Discovery Algorithm

	Empirical Evaluation
	Experiment Setup
	Experimental Subjects
	Tools Used in Evaluation

	Results
	Email Sender
	Fancy Hotel (CS4400 Class Project)
	Paycheck Calculator

	Discussion
	Conclusion
	Experiment Equipment
	Function buildFlowGraph Continued
	Experiment Interface Output
	Email Sender
	Fancy Hotel - User Login
	Fancy Hotel - User Registration
	Fancy Hotel - Room Search
	Paycheck Calculator

	References

