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Abstract— The concept of hybrid zero dynamics is a promi-
sing approach for designing exponentially stabilizing controllers
for dynamic walking with some degrees of underactuation. By
this approach a feedback controller is designed such that a
stable periodic orbit, within an invariant submanifold for the
hybrid closed-loop system is created. This is usually achieved
through an exponentially fast dynamics transverse to the zero
dynamics manifold and the stability properties of such periodic
orbit is then transferred to the full-order dynamic system. In
this paper a passivity-based controller for a planar biped with
one degree of underactuation is designed. By this approach
we aim to preserve the natural dynamics of the system in
the transverse dynamics (i.e. the dynamics transverse to the
zero dynamics manifold) in contrast to the common input-
output linearization method which cancels these dynamics. A
Lyapunov stability analysis of the full-order system based on the
conditional stability theorem is presented. By this analysis, the
asymptotic stability of the periodic orbit in lower dimensional
state space is extended to the full dimensional space. The results
of the analysis are verified by simulation on a seven-link biped
robot walking with zero ankle torque in sagittal plane.

I. INTRODUCTION

Biped robots with uncontrolled ankle joints or limited foot
support let us to study dynamic locomotion with underactu-
ated motion phases. Mainly heel strike, heel roll and toe
roll phases need to be allowed as part of the gait design for
robots. The degree of underactuation also increases when
compliant elements are used in the structure of the biped
robots to improve the energy efficiency. Beside the problems
related to the underactuation, an additional challenge in biped
robots arises from the impulsive events that happen when
the swing leg impacts the ground. All of these issues make
the underactuated biped robots a very challenging and rich
problem because of its multi-phase, hybrid and periodic
nature.

The Hybrid Zero Dynamics (HZD) is an extension of
the zero dynamics concept to a hybrid system. In HZD the
invariant manifold on which the zero dynamics is defined
must be also invariant under the impact map of the system.
It was introduced as a feedback controller for underactuated
bipedal robots in [1]. In summary, a set of virtual constraints
is first defined and a desired state-dependent trajectory that
create stable periodic orbit in HZD manifold is then obtained.
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The feedback design is finally completed by rendering the
zero dynamics manifold finite time attractive. The method
has had numerous successful implementations on bipeds
with different degrees of underactuation [2]–[5]. Most of the
works in the literature of HZD consider underactuated biped
robots with point feet. However, the framework has been
also extended to fully actuated flat-foot bipeds to exploit
ankle torque [6] or to allow inclusion of phases with foot
rotation and direct regulation of Zero Moment Point (ZMP)
in walking gait design [7], [8]. For a comprehensive overview
of the related approaches, [9] is referred.

In the earlier work of [1], finite-time convergence to the
zero dynamics manifold was assumed. Later, this condition
was relaxed to the exponential convergence with sufficient
rate through an input-output linearization of the dynamics
transverse to the zero dynamics manifold [10]. Most of the
works that utilize HZD controller, realize this closed-loop
structure on the output [3]–[5]. The motivation for assuring
a sufficiently fast rate of exponential convergence is because
of the expansive behavior of the impact maps which can lead
to the divergence of the hybrid constrained dynamics. Hence,
the convergence of the continuous dynamics to the manifold
must be sufficiently attractive to overcome this behavior.
Even though Control Lyapunov Function (CLF) approach
is taken in [11] to expand the set of feedback controllers
instead of simple PD controller, yet the core requirement is
intact; a sufficiently fast-rate exponential convergence, with
similar bounds to the linear case.

In this paper a passivity-based dynamics is devised as
the transverse dynamics towards HZD submanifold. Unlike
the common input-output linearization method, the passivity-
based controller keeps the natural dynamics of the system
which may enhance the performance of the system in terms
of robustness and control effort [12], [13]. Similar objective
is also followed in [14]. The stability analysis of the system is
performed using theory of semi-definite Lyapunov functions.
Sufficient conditions are established under which the stability
of the periodic orbits in HZD submanifold is extended to the
full order state space. The stability theory of semi-definite
Lyapunov functions has been applied successfully to the
analysis of control of redundant robots as well as orbital
stabilization by the authors [13], [15]. Note that most of the
existing locomotion researches are based on Poincaré map
and sensitivity analysis [1], [3], [10], [16]. Due to the need
to compute the whole solution during the analysis, only little
analytical insight about the characteristics of the system (for
instance, in terms of energy) is obtained. This reduces the
flexibility for the development of new control algorithms.
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Fig. 1: Left: A seven-link planar biped robot with the choice
of generalized coordinates designated based on stance foot.
The system is underactuated when zero torque is given to
the stance foot’s ankle. Right; Compliant planar leg under
development at DLR as our experimental testbed.

II. TECHNICAL BACKGROUND

A. An Underactuated Planar Biped Robot
An underactuated planar biped robot is naturally a hybrid

system with impulse effects. It is comprising of a torso and
two identical legs connected to the torso through the hip,
as illustrated in Fig. 1. The following main assumptions are
made through the paper;

- The gait is symmetric and constrained to sagittal plane;
- Walking consists of two alternative phases of motion;

single support and instantaneous double support.
- The swing foot contacts the ground flat-footed;
- The impact is perfectly plastic (no rebound or slippage);
- The foot-ground friction is sufficient to prevent sliding;
- The ankle torque at the stance foot is set to zero and

thus the model has one degree of underactuation.
The dynamics of an underactuated biped in single support

phase is written by

D(q)q̈ + C(q, q̇)q̇ + g(q) = Bu,B =

[
0

Im×m

]
, (1)

where q is (n × 1) set of angular coordinates of the sy-
stem, D(q) is the inertia matrix, C(q, q̇) contains centri-
fugal/Coriolis terms and g(q) is the vector of gravitational
forces. u is (m×1) vector of input torques. The generalized
coordinate q can be partitioned to the un-actuated and
actuated parts as q =

[
qTu qTa

]T
. The configuration variable

qu usually provides absolute orientation of the robot with
respect to an inertial frame, and qa are measured with respect
to the previous body frames. It is shown that the inertia
matrix is independent of qu and thus, D(q) = D(qa) [17].
The above dynamics is followed until a rigid impact between
the swing foot and the ground happens. At this time, while
the biped configuration does not change (only a relabeling
happens), the generalized velocities undergo a jump. The im-
pact model ∆ is obtained by relating the angular momentum
before and after the impact as

(q+, q̇+) = ∆q,q̇(q
−, q̇−), (2)

where superscripts (.)
− and (.)

+ refer to the quantities right
before and after the impact, respectively.

B. System with Impulse Effects

A nonlinear autonomous system with impact map can be
written as

Σ :

{
ẋ = f(x), x− /∈ S,
x+ = ∆(x−), x− ∈ S,

(3)

where the state manifold χ is a subset of Rn, and f is
a vector field on χ. The impact switching surface S is
a one-dimensional surface S which is defined as S =
{x ∈ χ|H(x) = 0}, where H : χ → R is C1, and
∀x ∈ S, ∂H/∂x(x) 6= 0. ∆ is the impact model and can be
considered as an instantaneous re-initialization of the state
of the system when the system trajectory intersects S .

The following definition, taken from [10], will help us to
constitute the problem in the following sections based on a
well-defined mathematics framework.

Definition 1: For autonomous system Σ, if a C1 embedded
submanifold Z ⊂ χ is hybrid invariant (invariant under both
continuous and impact dynamics [10]) and S ∩Z is C1 with
one dimension less than that of Z , then

ΣZ :

{
ż = fZ(z), z− /∈ S ∩ Z,

z+ = ∆S∩Z(z
−), z− ∈ S ∩ Z,

(4)

is called a hybrid restriction dynamics of the autonomous
system Σ. fZ and ∆S∩Z are the restrictions of f and ∆ to
Z and S ∩ Z , respectively.

III. HZD OF UNDERACTUATED BIPED: A
PASSIVITY-BASED APPROACH

In this section a passivity-based controller is designed as
the transverse dynamics for a planar underactuated biped
robot. By this controller we aim to preserve the natural inertia
of the system in the closed-loop dynamics which increases
the robustness of the system and decreases the control effort
[12], [13].

In the context of HZD, as a common approach, a set of
virtual constraints y = h(q) ∈ Rm in the form of output
is first defined. The error of these outputs are then zeroed
by an input-output linearization controller. This controller
inverts the dynamics associated with the virtual constraints
and thus cancels the natural dynamics of the system which is
practically not recommended (for normal HZD development
please see [17]). It is argued that the natural dynamics of
the system is applied by cost function minimization in the
virtual constraint for low control effort [9]. Nevertheless, the
possible application of passivity-based controllers that are
avoiding a full feedback inversion are much appealing. In
the following a passivity-based HZD controller is developed.
For the sake of comparison, at first the HZD controller with
an exponential rate of convergence is developed.

The dynamics (1) can be separated as,
D11q̈u +D12q̈a + C11q̇u + C12q̇a + g1︸ ︷︷ ︸

Ω1

= 0,

D21q̈u +D22q̈a + C21q̇u + C22q̇a + g2︸ ︷︷ ︸
Ω2

= u.
(5)



This equations can be equivalently re-written in the following
form

q̈u = −D−1
11 (D12q̈a +Ω1),

(D22 −D21D
−1
11 D12)︸ ︷︷ ︸

D̄(qa)

q̈a −D21D
−1
11 Ω1 +Ω2︸ ︷︷ ︸

Ω̄(q,q̇)

= u. (6)

A. Partial Feedback Linearization Approach

A partial feedback controller

u = D̄ν + Ω̄, (7)

is applied to convert the system (6) to simple form{
q̈u = −D−1

11 (D12ν +Ω1),

q̈a = ν.
(8)

Starting from this system, one can design ν such that the ac-
tuated joints follow a desired state-dependent trajectory. Lets
define parametric polynomials hα

d (θ) which its parameters
α = α∗ are obtained based on boundary conditions on the
configuration and velocity at the beginning and at the end of
a step to impose a periodic motion on hybrid submanifold.
θ = θ(q) is a monotonically increasing quantity which is
used to substitute time in parametrization of the periodic
motion. The angle of the line that connects the stance foot
to the hip is a good measure for θ (Fig. 1). Defining the error
y = qa − hα∗

d (θ), the control command

ν = ḧα∗

d (θ, θ̇, θ̈) +
kd
ε
ẏ +

kp
ε2

y, (9)

results in

ÿ +
kd
ε
ẏ +

kp
ε2

y = 0, (10)

which exponentially regulates the error y (transverse va-
riables vector) to zero with sufficient rate of convergence
adjusted by tuning parameter ε > 0. The rest of the
dynamics, given by the first equation, is actually the internal
dynamics of the system. Without loss of generality, consider
a planar biped with one degree of underactuation. In this
case the coordinate qu can be chosen as qu = θ, and the
swing phase zero dynamics is given by the first equation in
(8), upon substitution of (9), considering y and ẏ equal to
zero, i.e.,

[D11 +D12(
∂hα∗

d

∂θ
)]θ̈ +D12

∂2hα∗

d

∂θ2
θ̇2 +Ω1 = 0. (11)

The set Z := {x = (q, q̇)|y = 0, ẏ = 0} , is then the zero
dynamics submanifold of the full dimensional state space.
Considering perfect tracking of the error y, the parameters in
hα
d are obtained such that a stable periodic orbit is realized

by the zero dynamics (11) as well as by discrete impact
dynamics (2) to satisfy invariance condition ∆(S ∩Z) ⊂ Z .
Such set of parameters α∗, corresponding to a stable periodic
motion with acceptable domain of attraction, are obtained
through optimization (see Section V).

B. Passivity-based Approach

Starting from (6), the following passivity-based command
is proposed

u = D̄ḧα∗

d − ((C̄ + kd)ẏ + kpy) + Ω̄, (12)

where C̄ is obtained such that ˙̄D = C̄ + C̄T . To obtain
such matrix, first notice that, D̄ = D22 − D21D

−1
11 D12 is

symmetric. Assume that the Coriolis/centrifugal matrix C
is chosen such that Ḋ = C + CT . The derivative of D̄ is
obtained as

˙̄D =Ḋ22 − Ḋ21D
−1
11 D12 −D21(

d

dt
(D−1

11 )D12 −D−1
11 Ḋ12).

(13)
Note that, d

dt (D
−1
11 ) = −D−1

11 Ḋ11D
−1
11 , and thus,

˙̄D = Ḋ22 − Ḋ21D
−1
11 D12 +D21D

−1
11 Ḋ11D

−1
11 D12

−D21D
−1
11 Ḋ12

= C22 + CT
22 − (C21 + CT

12)D
−1
11 D12

+D21D
−1
11 (C11 + CT

11)D
−1
11 D12 −D21D

−1
11 (C12 + CT

21)

= C22 − C21D
−1
11 D12︸ ︷︷ ︸

A1

+CT
22 −D21D

−1
11 C12

−CT
12D

−1
11 D12︸ ︷︷ ︸

A2

−D21D
−1
11 C

T
21 +D21D

−1
11 C11D

−1
11 D12︸ ︷︷ ︸

A3

+D21D
−1
11 C

T
11D

−1
11 D12

= A1 +A1
T +A2 +A2

T +A3 +A3
T .

(14)
Finally, C̄ = A1 +A2 +A3.

Applying (12), the closed-loop of the system for actuated
variables is

D̄ÿ + (C̄ + kd)ẏ + kpy = 0. (15)

In comparison with (10), the above closed-loop dynamics
of transverse variables keep specially the inertia matrix of
the system in the closed-loop error dynamics. Clearly, the
system is nonlinear due to the use of inertia matrix. By
the above dynamics, the error y is expected to go to zero
asymptotically. The crucial point is the structure of such
dynamics which is not as in (10). The behavior of the
whole system also depends on the internal dynamics which
is obtained from first equation in (6) substituting q̈a from
(15). In summary, the closed-loop of the system are given
by the following equations

[D11 +D12(
∂hα∗

d

∂θ
)]θ̈ +D12

∂2hα∗

d

∂θ2
θ̇2

−D12D̄
−1((C̄ + kd)ẏ + kpy)) + Ω1 = 0, (θ, y)

−
/∈ S,

D̄ÿ + (C̄ + kd)ẏ + kpy = 0,

(θ, θ̇, y, ẏ)
+
= ∆((θ, θ̇, y, ẏ)

−
), (θ, y)

− ∈ S.
(16)

Note that the hybrid zero dynamics of this system is the
same as the case where linear exponential regulator was used
(Equation (11)). This can be verified by setting y and ẏ to
zero in (16).



IV. LYAPUNOV-BASED STABILITY ANALYSIS

A. General Discussion

The exponential convergence of the transverse dynamics,
is just a sufficient condition to keep the eigenvalues suf-
ficiently small (c.f. Corollary 4 in [10]). The aim of this
section is to provide sufficient conditions for the structure
of the closed-loop dynamics to make the periodic orbit O,
stable and attractive for full-order system.
The stability analysis is mainly based on the conditional
stability theorem proposed in [18] for analysis of the equili-
brium points. Recently, it has been extended to the analysis
of invariant sets, including limit cycles [15]. We also use
some useful concepts related to the stability of the switched
systems, which relies on multiple Lyapunov functions [19].
Both of the theorems are reviewed briefly in the following.

Theorem 2: (Conditional Stability Theorem for Invariant
Set) [15] let Ω be an invariant set for the system ẋ =
f(x), and let V (x) be a continuous function defined in
Bv(Ω) ⊂ χ such that V (x) ≥ 0, ∀x ∈ Bv(Ω), V (Ω) = 0
and V̇ (x) ≤ 0, ∀x ∈ Bv(Ω). If Ω is asymptotically stable
conditionally to the largest positively invariant set M∗ within
M =

{
x ∈ Bv(Ω)|V̇ (x) = 0

}
, then Ω is asymptotically

stable. �
Theorem 3: (Multiple Lyapunov Functions Theorem) [20]

Consider a switched system ẋ = fi(x(t)), i = 1, ..., N , with
each fi globally Lipschitz continuous and fi(0) = 0. Sup-
pose that we have candidate Lyapunov functions Vi(x(t)).
let S be the set of all switching sequences associated with
the system. The system is stable if,

- V̇i(x) ≤ 0, when the i-th subsystem is active.
- Vi is decreasing on the ”switched on” time sequence of

the i-th subsystem. �

Consider the system Σ given by (3). Suppose that the
following hypotheses are met;

1) There exist global coordinates x = (z, η) for x ∈ Rn,
such that z ∈ Rk and η ∈ Rn−k and f(x) has the form

f(x) =

[
f1(z, η)

f2(η)

]
.

2) For Z := {(z, η) ∈ χ|η = 0}, S ∩ Z is a (k − 1) di-
mensional submanifold of Z , and it is hybrid invariant,
i.e. ∆(S ∩ Z) ⊂ Z .

3) System Σ has an asymptotically stable periodic orbit
O contained in Z and transverse to S .

4) The function V (η) > 0, positive definite in η, locally
around Ω = O exists that satisfies the following
conditions;

- It is decreasing along the continuous part of the
dynamics, V̇ (η) ≤ 0, and V (Ω) = 0.

- The sequence of values of V (ηi), where ηi are
measured right after the impact, i.e. on the surface
∆(Si), is a decreasing sequence. In other words,
on switch to the continuous part of the dynamics,
V (η) has less energy than the last switch on.

The above Hypotheses are similar to the ones that are
considered in Theorem 4.6 in [17] for time scale separation
of the transverse dynamics and the HZD. The main difference
is that instead of Lyapunov conditions in Hypothesis 4, f2(η)
is given as a linear dynamics depending on parameter ε > 0
such that, f2(η) = A(ε)η, and lim

ε→0
eA(ε) = 0.

The following proposition is given.
Proposition 4: Under the Hypothesis 1-4, the asymptotic

stability of a periodic orbit of the hybrid restricted dynamics
is transferred to the full-order system.

Sketch of Proof: Z is hybrid invariant and it means that
starting on Z , the states stay on Z even after the impact.
Thus, Ω = O is an invariant set for the full-order system
Σ. By Hypothesis 4, there exists V (η) > 0, such that
V̇ (η) ≤ 0 along the trajectory of the system. Note that, the
function vanishes on the invariant set Ω since on the orbit,
η = 0. The situation provided by the Hypothesis 4 resembles
the conditions in Theorem 3, where a discrete Lyapunov
like function exists for the system. Note that this candidate
may not include all the variables of the system and thus it
is positive semi-definite. Following the conditional stability
theorem, Ω = O is asymptotically stable conditionally
to the largest positively invariant set M∗ = Z within
M =

{
x ∈ Bv(Ω)|V̇ (η) = 0

}
(by Hypothesis 3) and thus

by conditional stability theorem, Ω = O is asymptotically
stable. �

Remark 6: It can be shown that the function f2(η) in
Hypothesis 1 can be replaced by f2(z, η) provided that
f2(z, 0) = 0. In this case the previous results are still hold if
one can find V (z, η) ≥ 0, (positive definite in η) that satisfies
the conditions in Hypothesis 4.

Note that using above proposition, it is still necessary
to check the asymptotic stability of the orbit in lower
dimensional space. This can be performed by a Poincaré
map analysis of the system in the zero dynamics manifold.

B. Stability Analysis of Passivity-based Controller

Lets go back to the closed-loop structure (16). Based
on the notation of the previous section, z = (θ, θ̇) and
η = (y, ẏ) are the states of zero dynamics and transverse
dynamics, respectively. For this system the Hypothesis 1-
3 in Proposition 4 is already satisfied regarding Remark 6.
Consider semi-positive definite function

V (y, ẏ, θ) =
1

2
ẏT D̄(y, θ)ẏ +

1

2
yT kpy. (17)

The time derivative of (17) is given by

V̇ = ẏT (−(C̄ + kd)ẏ − kpy) +
1

2
ẏT ˙̄Dẏ + ẏT kpy,

= −ẏT kdẏ ≤ 0,
(18)

which is negative semi-definite along the continuous part of
the system trajectory. The closed-loop structure of transverse
variables reminds the closed-loop of PD+ controller. In [21]
a strict Lyapunov function has been introduced. As it can
be seen in the next section from some values of kp ≥ k̄p
and kd ≥ k̄d, the second condition of the Hypothesis 4 can



also be satisfied. Thus by Proposition 4, an asymptotically
stable periodic orbit of the hybrid zero dynamics is also
asymptotically stable for the full-order system.

V. SIMULATION RESULTS

For the purpose of this study a seven-link planar biped
robot is chosen. The parameters of the robot are based on
a compliant planar robot currently under development at
DLR (Fig. 1). Each degree of freedom is independently
driven by a DC motor through a mechanism of cable, pulley
and spring [22]. A set of generalized coordinates q =
[xst, zst, qst, q1, ..., q6]

T is assigned to the system starting
from the stance foot as depicted in Fig. 1.

Bezier polynomials of order 3 are chosen to define the
virtual constraints. They are expressed as functions of the
variable θ = −q1 − q2/2. This variable is chosen as the
angle of the hip with respect to the vertical reference.

The ankle torque at stance leg is set to zero to obtain
a periodic orbit of the system. The ankle of the swing leg
is controlled similar to the other actuated joints, following
a Bezier polynomial with proper boundary conditions. The
evolution of the underactuated variable is obtained from
the zero dynamics. The search for a periodic motion is
cast as a constrained nonlinear optimization problem. The
final configuration and velocity (q∗f , q̇

∗
f ) is found such that,

the solution is periodic and the integral-squared torque per
step length, J = 1/L

∫ T

0
||u∗||2dt, is minimized. u∗ is the

torque required to keep the system on the orbit and can be
calculated from (12) considering y and ẏ equal to zero. This
minimization is performed subject to appropriate constraints
and is not mentioned here for the sake of brevity [17]. After
this constrained, offline optimization, a fixed-point solution
x∗ = (q∗f , q̇

∗
f ) ∈ S ∩ Z corresponding to a periodic motion

is obtained. Note that the coefficients of Bezier polynomials
are uniquely related to this fixed-point [3].

In order to verify the proposed approach, the controller
(12) is used, starting from an initial condition off the periodic
orbit. The phase plane related to zero dynamics states as
well as the Lyapunov function (17) accompany with the
position and velocity errors are depicted in Fig. 2 for a
proper set of gains. The discontinuity at the impact is
manifested as a straight line. The decreasing behavior of
this function during the continuous phase of the dynamics
as well as the discontinuous phase (in consecutive impacts)
are clearly seen. The evolution of qi in the phase plane
which are convergent to periodic orbits are not shown for
brevity. The values related to the step length, step period
and average velocity of the biped are reported in Fig. 3. As
it was discussed in the previous section, the behavior of the
transverse dynamics is crucial to the overall stability of the
orbit. Fig. 4 illustrates the same plot as in Fig. 2 with less
gains. V increases after each impact and thus does not satisfy
the conditions of the Lyapunov function in the Hypothesis 4
of the proposed Proposition 4. As a consequence the system
trajectory diverges.

Finally a comparison is made between the controller (7)
and (9) and the passivity-based controller (12). Because
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(Down:) Lyapunov function (17), and error y and ẏ.
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Fig. 5: (Top:) Phase plane for θ − θ̇, for the lineari-
zation controller given by (7) and (9) with the para-
meters kp/ε

2 = diag{600, 600, 600, 1200, 900}, kd/ε =
diag{100, 100, 100, 200, 150}. It finally converges to the
orbit O (depicted by black dash). The red line shows the
convergent orbit of the system. (Down:) Lyapunov function
V (η) = 1

2 ẏ
T ẏ + 1

2y
T kpy, and error y and ẏ.

the nature of two controllers are different with different
closed-loop structures, the gains in (9) is selected as follows.
The numerical value of D̄−1 in a generic configuration
is calculated and its diagonal elements are gathered in a
diagonal matrix. The gains kp and kd are then obtained
by multiplication of this matrix with k̄p, k̄d. Based on this
selection, the simulation is performed and the results are
illustrated in Fig. 5. While the system rapidly converges to
the zero dynamics manifold, the convergence to the orbit O
takes longer than the passivity-based controller in Fig. 2.

VI. CONCLUSION

The stabilization of periodic orbits of the hybrid zero
dynamics relies mainly on the input-output linearization of
the transverse variables with exponential and sufficient rate
of convergence. The main proposition of this paper aims
to alter this condition on the transverse dynamics in terms
of Lyapunov function. Having a stable periodic orbit in an
invariant zero dynamics manifold, sufficient conditions for
the structure of the closed-loop dynamics is proposed to
make the periodic orbit, stable and attractive for the full-
order system. This enables us to use a nonlinear passivity-
based controller and as a consequence a natural transverse
dynamics toward the hybrid zero dynamics manifold. The
proposed approach was effectively verified by simulation on
a seven-link planar biped robot.
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