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ABSTRACT
Noise for continuous-time system simulation is relevant for many appli-
cations, whenever time domain results are required. Simulating such
noise raises the need to consistently shape the frequency content of
the signal. However, the methods for this task are not obvious and form
filters are often used as approximate state space implementations. In this
article, we address the problem with a new method which relies on
directly using the specified power spectral density for a convolution
filter. For the example of railway track irregularities, we explain how to
derive the required filters, implement them in the open-source
AdvancedNoise library, and verify the results. The new method produces
correct results, is very simple to use, and enables new features for time
simulation of physical systems.
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1. Introduction

Modelling stochastic signals is of interest in a wide range of applications, such as sensor model-
ling, aerodynamic turbulence, and rail irregularities. Previous Modelica libraries, like the Statistics
library [2], allow to precisely define statistical properties of such signals. However, other proper-
ties of the noise signals, for example, the underlying random number generator or the signal’s
frequency content could not be modelled as conveniently. A Modelica Noise library has thus
recently been released in order to enable the engineer to conveniently and consistently define
noise signals [3]. A subset of sampled noise generators and standard distributions was integrated
in the Modelica standard library 3.2.2. The remaining functionality is available in the
AdvancedNoise library.1

In this article, we extend the capabilities of the libraries with a general method to shape the
frequency content of the noise signals. We do so using the popular example of railway track
irregularities. Due to the importance of track irregularities, there is a vast amount of literature on
the subject. See in particular the overview paper by Haigermoser et al. [4] and its extensive
reference list of 165 publications. The irregularities may be included in a time domain simulation
by replaying measured data (see [5]). The alternative way is to describe the irregularities
statistically using a power spectral density (PSD). There are a few overview papers on realizing
a stochastic signal representing a given PSD, for both a more general case [6] and for the specific
track irregularity application [7].

One class of realizations uses orthogonal basis functions [7,8]. A natural choice for this
approach is to use the cosine function with different frequencies, as it has a direct correspondence
with the frequency content in the PSD via the Fourier transform (FT). Different signals for the

CONTACT Andreas Klöckner andreas.kloeckner@dlr.de Institute of System Dynamics and Control, DLR German
Aerospace Center, Oberpfaffenhofen, Germany
This article is an improved version of the article ‘How to Shape Noise Spectra for Continuous System Simulation’ from the 11th
International Modelica 2015 Conference. Some parts are reproduced in this article.

The results of this article can be reproduced using the code made available on http://dlr-sr.github.io.
© 2017 Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2017
VOL. 23, NO. 3, 284–300
http://dx.doi.org/10.1080/13873954.2017.1298622



same PSD can be generated by choosing random phase shifts for each cosine component. The
periodicity of the signal can be countered by varying the phase shifts at the boundary of the
periodic signal. The same effect may be achieved by varying the amplitude of the cosine
components, if their statistical mean is preserved. A desired signal may also be formed using
different orthogonal basis functions, such as square waves or other wavelets.

A more pragmatic approach is to use shape filters: Linear time invariant (LTI) systems driven
by white noise. Typical multi-body simulation software uses this approach (e.g. [9]) and excellent
theory is available (e.g. [6]). In order to correctly simulate the system behaviour, stochastic
integration schemes should be used. However, these are usually not efficient to use practically
or they are simply not available in many tools. Sampled implementations are thus used frequently
as approximations of the continuous case.

Another approach is fractional-order modelling [10], which allows to simulate also non-
rational transfer functions, such as 1=f α noise [6]. Additionally, the noise can be modelled as a
weakly correlated sample sequence, which only considers the correlation of a noise sample with its
immediate predecessor [7].

All of the methods described above may generate the signal either in a pre-processing step or
online during the simulation. Generating noise signals online includes the signal’s statistics in the
simulation itself, and not in an additional pre-processing step. However, generating the signals
online is either very demanding, for example, by evaluating many basis functions in each time
step; or it is limited to discrete implementations, which require events to be generated in
continuous system simulations.

The AdvancedNoise library provides a new class of random number generators for this
purpose: DIRCS Immediate Random with Continuous Seed allows to generate random numbers
directly from an input signal without internal states. It thus eliminates the need for time-events
and can be used to generate a random signal directly from the time variable. This has been shown
to positively affect the simulation performance [11]. Additionally, it allows to define noise signals
in dimensions other than the time, which is advantageous in several applications. Rail irregula-
rities, for example, are typically defined with respect to the location on the track. Turbulence
models used in aviation also assume a static wind field flown through by the aircraft.

A remaining problem is to choose a proper linear shape filter. In the case that the PSD is a
rational function with respect to the squared frequency, a spectral factorization of the PSD can be
derived analytically. See Liepmann [12] for an aeronautical example. However, typical PSDs are
specified as non-rational functions or even tabulated data. If the system excited by the noise signal
is also an LTI system, the tabulated data can be applied in the frequency domain by multiplying
the PSD with the squared transfer function of the model. See Frederich [13] for a railway
application and [14] for a typical aircraft application. In the most general case, the PSD must
be approximated by a suitable function, which is then translated into an LTI filter.

In summary, it is not at all obvious how to parameterize the frequency properties of a noise
signal. The main contribution of this article is thus to provide a general and systematic
method to shape the frequency content of such signals, directly using the specified PSD.
The method will turn out to be simple to use and to be applicable to almost any kind of noise
spectrum. Combining a discrete convolution algorithm with the DIRCS generator, this method
is used to correctly and efficiently generate shape-filtered noise as a function of arbitrary input
signals.

The article is structured as follows:

● Section 2 summarizes how noise is typically specified, using the example of rail irregularities.
● In Section 3, we shortly summarize the process of noise generation and define the basic

properties of the generator.
● Starting from a given PSD, we rigorously derive a way to shape this frequency content onto a

noise signal in Section 4.
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● In Section 5, we implement the approach and verify that it yields the same results as
conventional methods.

● Section 6 finally summarizes the approach and the results.

2. Specification of railway track irregularities as a noise signal

Besides safety and operating efficiency, it is an essential goal of railway vehicle design to provide
an accepted level of vibration comfort. In order to take human perception into account, different
methods and standards exist for passenger comfort assessment. However, all of these rely on the
accelerations experienced by the passengers as input information.

From a vehicle dynamical point of view, these accelerations are the result of forced vibrations
of the vehicle/track system that is excited by track irregularities. In [13], a large number of track
measurements are analysed and representative PSDs for good, average and bad tracks are
introduced, see Figure 1. Note, these numbers quantify the irregularity per meter track length,
that is, with respect to the spatial frequency (unit: 1/m). They have to be transferred into the time
domain by taking the vehicle speed into account, see for example, [15].

Regarding the vehicle/track system that is excited by the track unevenness, we confine
ourselves to vertical dynamics and use the simplified quarter car model shown in Figure 2. The
excitation input is introduced as a variable track height u defined as a stochastic function of the
longitudinal track position. The wheel/rail contact is represented by a stiff but linear spring/
damper system. The rail and its support constitute a dynamical subsystem on the track side of the
model; the suspension and the car body form the vehicle subsystem. The acceleration of the car
body a is the output quantity of the model. A Bode diagram of the considered system is depicted
in Figure 3. It describes the output/input relationship in the frequency domain.

Here, the model is defined linear to serve as a reference. The equations of motion read

M€z þ D _z þ Kz ¼ h€u ;

where u denotes the track irregularity. The vector of motion coordinates z consists of the spring
lengths from mass to mass, that is,

z ¼ zt zw zbð ÞT:

The mass, stiffness and damping matrix as well as the excitation influence vector h are defined
using the parameters compiled in Table 1 as follows:

Figure 1. Representative track irregularity PSDs [13].
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Figure 2. Simplified quarter car model of a railway vehicle in Modelica.
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M :¼
mt þmw þmb mw þmb mb

mw þmb mw þmb mb

mb mb mb

0
@

1
A ;

K :¼ diag ct; cw; cbf g ;

D :¼ diag dt; dw; dbf g ;

h :¼ � mw þmb mw þmb mbð ÞT :

Presuming a constant running speed v of the vehicle, the PSD of the track irregularity can be
transferred from the spatial frequency to the temporal frequency domain by scaling the spatial
frequency with v. The acceleration response of the car body can then be evaluated directly in the
temporal frequency domain ([16], Ch. 6). This solution allows for comparison and validation with
results obtained from time domain simulations in Modelica. Figure 4 presents the pure frequency
domain results that are based on the excitation by a track of all three qualities.

The results presented in this article are confined to linear systems in order to validate the time
domain simulation approach with a well know frequency domain solution. However, this limita-
tion can be dropped, once the results from time domain simulations with appropriately shaped
noise spectra are validated. Time domain simulations are then available for non-linear systems,
are capable of running with variable speed and may consider singular disturbances such as
running over railway switches as well.

Figure 3. Amplitude response from track irregularity (in m) to body acceleration (in m/s2).

Table 1. Exemplary quarter railway car parameters.

mt 0.165×103kg
Track and track bed ct 7.50×107N m–1

dt 9.40×107N s m–1

mw 1.25×103kg
Contact and wheel cw 9.90×108N m–1

dw 1.00×105N s m–1

mb 6.75×103kg
Suspension and car body cb 1.75×105N m–1

db 1.05×104N s m–1
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3. Review of general noise parameters

The general degrees of freedom in parameterizing noise have been described in detail earlier [3].
A noise signal can be specified in three steps:

(1) Select a random number generator, which generates uniformly distributed random num-
bers with certain statistical properties, such as subsequent numbers being independent
from each other.

(2) Transform the uniformly distributed random numbers in order to match a given prob-
ability density function, such as for a normal distribution.

(3) Interpolate the resulting stream of correctly distributed random numbers.

The random number generators of the xorshift family [17] have been included in the Modelica
standard library with its last release 3.2.2.2 These generators have very strong statistical and
computational properties and are thus used in the library without exception.

In all cases, where unsampled random numbers are required, the DIRCS generator is used.
This random number generator does not require a state but generates a random number directly
from a double input signal. To this end, the xorshift64* algorithm is first initialized with the
double input signal casted to two integer values. Due to the good startup characteristics of the
xorshift64* generator, a raw, uniformly distributed random number is obtained after a single
iteration. In this way, high quality random numbers are produced with a low computational
effort, for arbitrary input values, and without the need for sampling.

The standard normal distribution is chosen for all random numbers generated in this work. This
does not allow to reproduce effects commonly found in measurement noise, such as discretization.
However, the choice is reasonable when complex filters are used to shape the actual noise signal to be
used in the simulation. Typical filter parameterizations for rail irregularities, for example, assume
standard normal distributions of their input signals [9]. Additionally, the subsequent interpolation
relies on computing the weighted sum of consequent random numbers. Following the central limit
theorem, the result will inevitably be shaped towards the normal distribution.

In previous work, we have described three distinct interpolation functions for noise signals.
These include piece-wise constant and linear interpolations as well as a smooth interpolation
using the sinc function. The interpolations yield a continuous-time random signal rðtÞ by
computing the sum of consequent random numbers wi, weighted with a real-valued kernel
function kðtÞ:

Figure 4. PSD of the body acceleration a for different track irregularities at a velocity of v ¼ 100m=s.
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rðtÞ ¼
Xt=Δtb cþn

i¼ t=Δtb c�n

wi � kðt � iΔtÞ: (1)

In order to interpolate the random numbers, the kernel function is constrained by

kðiΔtÞ¼! 1 if i ¼ 0
0 if i� 0

:

�
(2)

In these equations, Δt is the sample period of the random numbers and the interpolation base
n has to be chosen according to the selected kernel kðtÞ.

The smooth interpolation using the sinc function is already tied strongly to the frequency
content of an ideal band-pass filter. However, for the more general case of a given PSD, the final
interpolation step has to be replaced by a more powerful approach relaxing the interpolation
constraints as described in the following sections.

4. Application of a given PSD to a noise signal

As already explained in Section 2, instead of (band-limited) white noise, coloured noise is
required for most practical applications. The required frequency content of the noise signal is
usually specified by a given PSD Φðf Þ. In order to apply this PSD to a raw white noise signal with
piece-wise constant interpolation a linear form filter is typically applied ([9], VIII-TE:8). This
filter Hðf Þ defines a mapping in the frequency domain between the white noise input vector wðtÞ
and the coloured noise output vector rðtÞ:

Rðf Þ ¼ Hðf ÞWðf Þ; (3)

where Rðf Þ and Wðf Þ are the FT of rðtÞ and wðtÞ. White noise is defined by its flat PSD of
Wðf Þ;1. If the filter Hðf Þ is applied to white noise, the PSD of the coloured noise is thus simply

Φrðf Þ ¼ Rðf Þ2;Hðf Þ2: (4)

In order to shape coloured noise to a given PSD, the required filter is hence constrained by

Hðf Þ2 ¼! Φðf Þ: (5)

In practice, the filter is typically applied by fitting a rational transfer function on Φðf Þ which is
then simulated as an additional linear block in the model (see Section 4.1). An alternative
exploiting the interpolation kernel from Equation (1) is proposed in Section 4.2.

4.1. Using a transfer function

Before the approximation of a given PSD with a rational transfer function is explained, important
properties are briefly repeated. For the approximation, the filter Hðf Þ is restricted to rational
functions which are usually expressed with respect to the Laplace variable s ¼ dþ 2πj f , that is,

HðsÞ ¼ NðsÞ
DðsÞ ¼

Pnz
k¼0

aksk

Pnp
l¼0

blsl
: (6)

The coefficients ak of the numerator NðsÞ and the coefficients bl of the denominator DðsÞ are
real numbers. Both, the numerator and denominator can be factorized, which leads to
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HðsÞ ¼ anz
bnp

�

Qnz
k¼1

ðs� zkÞ
Qnp
l¼1

ðs� plÞ
: (7)

Every zero zk and every pole pl is either a real number or two zeros (or poles) are each a
complex conjugate pair. A necessary condition to express HðsÞ in a state space representation is
that HðsÞ is proper, that is, the number of poles np is greater than or equal to the number of zeros
nz. If the real parts of all poles and zeros are negative, a transfer function is called minimum
phase. 3

Because a suitable transfer function HðsÞ cannot be analytically computed from a given PSD
Φðf Þ in general, a least squares fit is performed:

min
ak;bl

Xnf
i

Hð2πj f Þj j �
ffiffiffiffiffiffiffiffiffiffi
Φðf Þ

p� �2
: (8)

The coefficients ak and bl are chosen as decision variables because they are real numbers and
independent from each other. In order to ensure that the filter is proper, nz ¼ np � 1 is chosen.
The optimization is pursued with MOPS (see [18]) and a Levenberg-Marquardt algorithm is used.

Finally, the minimum phase requirement is fulfilled by a subordinate step. To that end, the
zeros zk and poles pl of the optimal solution are computed. Afterwards, the real part of every pole/
zero is mirrored into the left half plane, for example,

�pi ¼ �ReðpiÞ þ ImðpiÞ: (9)

Note that the latter operation alters only the phase but not the amplitude of HðsÞ.
Figure 5 compares the reference PSD to the PSDs of the fitted first- and second-order filters. It

can be seen that the second-order filter is a very good approximation of the average track
irregularity. The second-order filter is thus used to implement the conventional state-space
form filter.

4.2. Using the interpolation kernel

The filter or transfer function is typically implemented using continuous-time states in Modelica.
This approach has two major drawbacks: First, expressing the filter in the time domain limits the
simulation to a fixed velocity in order to map the location to a time domain filter. Second, the
additional states of the filter require the raw noise signal to be generated accurately using events,

Figure 5. Approximation of the average track irregularity PSD with a first-order and a second-order filter. The second-order
filter shows a good fit to the reference.
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which considerably slows down simulation, even if only low accuracy is required. In this article,
we introduce a different approach to shaping the frequency content of the noise signal using the
interpolation kernel kðtÞ from Equation (1) and the impulse response function (IRF) of a generic
form filter.

4.2.1. Efficient convolution with the IRF
The idea is based on the convolution theorem. It relates the continuous-time integration of the
filter states to a convolution integral of the raw noise signal wiðtÞ with the filter’s IRF hðtÞ.
Exploiting the piece-wise constant noise signal, this approach can be further reduced to a sum of
weighted random numbers wi

4:

Rðf Þ ¼ Wðf ÞHðf Þ

rðtÞ ¼ wiðtÞ � hðtÞ
¼
ðþ1

�1
wiðtÞ � hðt � τÞdτ

¼
Xþ1

i¼�1
wi �

ððiþ1ÞΔt

iΔt
hðt � τÞdτ

 !
: (10)

The weights in Equation (10) are specified by the integral of the IRF hðtÞ. This integral can also
be expressed by differences in the step response ςðtÞ of the filter. Assuming a strictly stable filter,
the step response will converge to fixed values for t ! �1 and the convolution can finally be
approximated using a truncated sum:

rðtÞ ¼
Xþ1

i¼�1
wi ς t � ðiþ 1ÞΔtð Þ � ς t � iΔtð Þð Þ

�
Xt=Δtb cþn

i¼ t=Δtb c�n

wi � ς t � ðiþ 1ÞΔtð Þ � ς t � iΔtð Þð Þ: (11)

Note the similar structure of Equations (11) and (1). In our convolution approach, we
substitute the interpolation kernel kðtÞ from Equation (1) by a generalized kernel function in
terms of a filter step response:

kðtÞ ¼ ς t � ðiþ 1ÞΔtð Þ � ς t � iΔtð Þ: (12)

The generalized kernel does not fulfil the constraints from Equation (2). Hence, the resulting
noise signal also does not interpolate the random samples: rðiΔtÞ�wi. Instead, the random
numbers are filtered according to the given PSD.

Note also that, if the generalized kernel kðtÞ is tabulated and interpolated, the convolution can
be further reduced to a discrete convolution with fixed multipliers ki ¼ kðiΔtÞ and subsequent
interpolation. This simplification improves the simulation performance notably, as the kernel kðtÞ
does not need to be evaluated during the simulation:

rðtÞ �
Xt=Δtb cþn

i¼ t=Δtb c�n

wi k t=Δtb c�ið ÞΔtð Þ þmodðt;ΔtÞ
Δt

k t=Δtd e�ið ÞΔtð Þ � k t=Δtb c�ið ÞΔtð Þ
� �� 	

¼
Xn
i¼�n

w t=Δtb cþik�i þmodðt;ΔtÞ
Δt

Xn
i¼�n

w t=Δtb cþi k�ðiþ1Þ � k�i
� �

: (13)
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Using the convolution approach described above, all continuous and discrete states can be
eliminated from the noise generation. This was shown before to be advantageous for the simula-
tion performance of complex system models [11]. Additionally, an arbitrary PSD can directly be
used to shape the noise signal, if the step response of a corresponding filter is known. The
derivation of such a step response is shown in the next section.

4.2.2. Computation of the IRF
As we have seen, only a suitable IRF is required to shape the desired frequency content. This IRF
can easily be obtained from the transfer function derived in Section 4.1. However, in order to
avoid the approximation with a rational function, the IRF is directly computed from the tabulated
PSD using the framework of FT and inverse Fourier transform (iFT). The resulting IRF is then
numerically integrated in order to yield the step response.

Because the PSD describes only the amplitude of the filter and because the filter need not be
realized in state space representation it is possible to use the phase as an additional degree of
freedom. Here, two different phases are considered: zero phase and minimum phase.

4.2.2.1. Zero phase. First the zero phase case is considered. For this case all phases are set to
zero. The FT of the interpolation kernel is hence simply

Kðf Þ ¼
ffiffiffiffiffiffiffiffiffiffi
Φðf Þ

p
: (14)

However, for a correct application of available FT algorithms, the frequency samples must be
chosen carefully: In order to yield a real valued kðtÞ, Kðf Þ ¼ conjðKð�f ÞÞ must hold. It is further
helpful to remember that – because time and frequency are both discretized – Kðf Þ and kðtÞ are
periodically repeated. This is illustrated in Figure 6 for a simple example and the correct samples
are marked.

Figure 6. The selection of the correct samples for the iFT and Hilbert transform is illustrated in the frequency domain. The
given amplitude data ( ) is mirrored at f ¼ 0 and periodically repeated ( ). Afterwards, the highlighted samples ( ) are
chosen. In the lower plot, the zero phase ( ) and the minimum phase ( ) are depicted.
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After the iFT, the resulting kðtÞ is periodically repeated, too. This allows to chose the correct
samples as depicted in Figure 7. As it can be further seen, the zero phase yields a non-causal IRF
which is symmetric to t ¼ 0.

4.2.2.2. Minimum phase. Second, the minimum phase case is considered. In this case, only the
amplitude of the FT of the interpolation kernel is given by the PSD:

Kðf Þj j ¼
ffiffiffiffiffiffiffiffiffiffi
Φðf Þ

p
: (15)

The minimum phase ffðKðf ÞÞ can be computed using the Hilbert transform (HT). For the HT,
the same samples must be chosen as for the iFT. The resulting minimum phase is depicted in
Figure 6. Afterwards, the full FT of the interpolation kernel is given by

Kðf Þ ¼ Kðf Þj j expðj ffðKðf ÞÞÞ: (16)

The transformation into the time domain is subsequently performed in the same way as for the
zero phase case. As it can be seen in Figure 7, the minimum phase filter is causal, that is, its IRF is
non-zero only for non-negative times t � 0.

Figure 8 compares IRFs for the average track irregularities as obtained from the procedure
outlined above. First, the IRF of the fitted second-order filter is evaluated by simulation and by
iFT of the PSD shown in Figure 5. Both results are essentially the same, showing the correct iFT
application. The IRFs obtained directly from the given PSD are also shown. The minimum phase
IRF is very similar to the fitted filter’s IRF, underlining the good fit of the filter. The zero phase
IRF is non-causal, as it is non-zero for negative times.

Figure 7. Sample selection in the time domain: The resulting IRF for the zero phase (upper plot) and minimum phase (lower
plot) are depicted. The results from the iFT ( ) are periodically repeated ( ) in order to chose the correct samples ( ).
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5. Results

The form filters for average track irregularities are implemented using the AdvancedNoise library
according to the procedures outlined above. Using the Dymola 2016 RC2 simulation tool with its
DASSL solver [19], the different steps of the implementation are then verified. To this end, the
following simulation experiments are presented:

(1) The minimum phase convolution is verified against a state space filter implementation
with identical white noise input.

(2) The white noise input of the state space implementation is exchanged by an independent
noise source not using the DIRCS algorithm.

(3) The minimum phase and zero phase IRFs are compared to each other.
(4) The quarter car model of the railway vehicle is fed with the zero phase noise convolution

filter and compared against the standard frequency domain solution.

5.1. Convolution verification

Figure 9 shows a comparison of the fitted second-order filter’s state space implementation with its
minimum phase convolution implementation. Both filters are driven by identical white noise gener-
ated with the DIRCS generator directly from the position on the track. The raw random numbers are
generated with a sample period of Δx ¼ 0:4m. In order to produce white noise in the spatial domain,
a standard deviation of σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5m=Δx
p

is chosen. It can be seen that the white noise spectrum has
indeed a spectral density of 1; except for its random nature. The shape of the white noise spectrum
directly corresponds to the shape of the track irregularity PSDs. Both irregularity PSDs can be seen to
be identical. This is also the case for the actual simulation output u of the track irregularity.

5.2. Space domain noise verification

In the second step, the minimum phase convolution implementation is compared to a traditional
state space implementation fed by a time domain sampled noise. In order to yield comparable
results, the time domain noise is sampled with Δt ¼ Δx=v and the train is running at a speed of
v ¼ 100m=s. The standard deviation of the normal distribution is kept the same. Figure 10
compares both results to the reference. Good agreements can be observed in both time frequency

Figure 8. Comparison of different IRF: The IRF of the second-order filter is obtained by simulation ( ) and by iFT ( ). An
excellent agreement can be recognized. Additionally, the minimum phase ( ) and zero phase ( ) IRF are depicted.
These correspond directly to the specified PSD.
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domain and spatial frequency domain PSDs. The time frequency and spatial frequency PSDs
differ only by the constant running velocity of the train.

5.3. Minimum and zero phase filters

The comparison of the minimum phase and zero phase convolution implementations can be seen
in Figure 11. The white noise generator is DIRCS in both cases and the sample periods are both
Δx ¼ 0:4m. Both IRFs are saved in a tabulated form with a sampling period of 0.1m. Both
implementation variants agree very well with the reference in the low frequencies. At very high
frequencies, the influence of the two sampling periods is marked with vertical lines. Characteristic
marks on the PSDs can be seen both for the sampling of the white noise at 2.5/m and for the
sampling of the IRFs at 10/m. The respective sampling periods must thus always be chosen high

Figure 9. The identical white noise (upper plot) is applied to the second-order filter by simulation ( ) and by convolution
( ). The PSDs of both implementations (middle plot) are identical and correspond well with the reference PSD ( ). As it
can be seen in the lower plot, the signals are also identical.
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enough to resolve all relevant effects. Another characteristic to be taken into account is the
portion of the PSD covered by the resolution [8].

5.4. Quarter car railway vehicle

Finally, the zero phase convolution implementation is integrated with the quarter car model of
a railway vehicle running at v ¼ 100m=s. Figure 12 compares the acceleration of the car body
from this simulation to the well trusted frequency domain solution. A very good agreement
can be seen.

Figure 10. The PSD of the track irregularity from simulation ( ) and from convolution ( ) are compared in the time
frequency domain (upper plot) and in the spatial frequency domain (lower plot). Both agree very well. In the spatial frequency
domain, an excellent agreement with the reference ( ) can also be seen.

Figure 11. The PSD resulting from the minimum phase ( ) and from the zero phase ( ) iFT agree well with the
reference ( ) at low frequencies. At high frequencies, effects of sampling the white noise ( ) and of sampling the IRF
( ) become visible.
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6. Conclusions

In this article, we show how to consistently shape a noise signal to match a given frequency
content specified by a PSD. The method is introduced at hand of the quarter car model of a
railway vehicle, for which well trusted reference solutions are available.

Our method uses the non-recursive random number generator DIRCS. It generates normally
distributed random numbers directly from the current location on the track. We then shape the
frequency content of the random numbers using a convolution with the impulse response of a
form filter. It is shown that the IRF of the form filter can be directly generated from the given PSD
using the iFT. In summary, our method consists of the following steps:

(1) Obtain a PSD Φðf Þ for the desired noise signal.
(2) Chose the appropriate sampling period Δx ¼ 0:5=fmax according to the highest frequency

fmax to be contained in the noise signal.
(3) Convert the PSD to a zero-phase step response ςðxÞ with sampling period Δx according to

Paragraph 4.2.2.1.
(4) Generate random numbers wi with sampling period Δx using the DIRCS generator and a

normal distribution with standard deviation σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5=Δx

p
.

(5) Apply the convolution of the random numbers with the step response according to
equation (13).

The method is implemented in the open-source Modelica AdvancedNoise library and validated
against the given spectrum. It is then used to excite a linear quarter car model running at a
constant speed. Results obtained with our method agree very well with the standard solutions
based on frequency domain computations.

Three fundamental error sources are to be addressed for a discrete convolution approach [6]:
the effects of windowing and sampling during the PSD estimation are assumed to be solved
beforehand, because the PSD is the input data to our method. The aliasing effect of a limited
frequency range can approximately be solved by selecting a suitable discretization, which is able to
cover all relevant effects.

Our method is thus shown to produce correct results in the example of a linear railway car
model running at constant speed. Additionally, it can be employed not only for linear models but
also for non-linear models, vehicles running at varying speed, or in more complex scenarios
involving, for example, singular disturbances. Moreover, the method proposed in this article is
straightforward to use and can also be applied to a variety of other problems, such as turbulence
or street roughness.

Figure 12. Frequency domain solution is compared ( ) to simulation results ( ).
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In the presented example, the zero-phase convolution variant requires approximately 10 times
the computation time as compared to the state-space filter implementation. However, the
performance depends strongly on the system driven by the noise signal and the required accuracy
[11]. The number of required steps to integrate the model is reduced by a factor of 10 using the
convolution approach. More complex, non-linear models will benefit more from the removed
sampling and the reduced number of required steps. The same holds if the number of steps can
even further be reduced by accepting a lose tolerance.

In summary, we suggest to prefer the proposed convolution approach if in particular one of the
three following circumstances is given: (a) it is intended to simulate a very complex system with
strong performance penalties due to events. (b) It is required to consider an unusual spectrum, for
example, given in different dimensions than the time. (c) It is difficult to approximate the given
spectrum by an LTI transfer function since, for example, sharp edges or discontinuities are
involved. In other cases, the conventional approach of driving a fitted linear filter with white
noise is the straightforward alternative to our convolution approach.

The current implementation is based on the open-source AdvancedNoise library. This makes
the method available to a wide audience and also gives room for further improvements.
Contributions by the community are highly welcome. Since our implementation of the convolu-
tion is only fairly optimized, further developments should take into account the runtime perfor-
mance of the approach. Extensions of the method itself could possibly be found in higher
dimensional noise spectra, correlated noise, or additional effects such as discretization.

In further research, correlated and multi-dimensional noise will be considered. For example,
the introductory railway application can be extended to consider two parallel tracks. In this case, it
is to be expected that the left and right track irregularities are correlated in the low frequency
range, but the correlation is decreasing for higher frequencies as it explicitly has been shown in
road applications [20]. An example for multi-dimensional noise is to shape a surface like a
parking area which can be used in arbitrary ways by a car.

Notes

1. https://github.com/DLR-SR/AdvancedNoise
2. see https://github.com/DLR-SR/Noise
3. Minimum phase means that both the filter and its inverse are stable and causal.
4. The notation Rðf Þ ⊷ rðtÞ denotes an FT pair.
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