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Motivation:  

• Theory of collective motion in liquids is active area of research since the 
second half of XX century (starting from neutron scattering measurements)

• In particular, the theory for monoatomic liquids (liquid metals and rare gases) 
has been worked out

• To which extent the developed theories are applicable to complex (dusty) 
plasmas, representing classical systems of strongly interacting particles?

• Alternatively,  using complex (dusty) plasmas is it possible to check the 
accuracy and applicability limits of these early theories?
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Quasi-crystalline (quasi-localized charge) 
approximation (QCA/QLCA)

• Generic expressions for the longitudinal and transverse dispersion relations:

are equivalent to the model of collective motion in liquids by Zwanzig (1967), quasi-
crystalline approximation (QCA) by Hubbard&Beeby (1969), Takeno&Goda (1971). 
Similar expressions occur from the analysis of frequency moments of S(k,).

• In the context of plasma physics QCA is also known as QLCA after Kalman and Golden 
who applied the approximation to one-component-plasma and related charged  
systems
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Application to complex (dusty) plasmas 

• Yukawa interaction potential 

• First applied by Rosenberg and Kalman (1997) in 
the regime of long-wavelengths and weak 
screening

• Kalman et al. (2000) computed g(r) using the 
HNC scheme get results in good agreement with 
MD modeling by Ohta and Hamaguchi (2000)

Chart 4
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How accurately RDF should be known?

• The simplest model which takes into account 
excluded volume effects 

• The integration can be performed analytically

• The parameter R is evaluated requiring 
consistency for energy or pressure 
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Khrapak et al. (2016) 



Long-wavelength regime

• In the long-wavelength regime such a simple approximation is very useful

• Explicit expression for R: Roughly 
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MD data by Ohta and Hamaguchi (2000)



One-component-plasma (OCP) limit

• Again, simple explicit expressions:

• Good accuracy at strong coupling
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Left: Hansen et al. (1974); Right: Schmidt et al. (1997)



Deviations from pure Yukawa interaction in 
complex (dusty) plasmas

• Electron and ion collection  Power-law long-range asymptotes

• Non-linear ion-particle interaction  Variability of the effective screening   
length

• Plasma production and loss  Double-Yukawa interaction potential

• Ion flows  Wake-mediated interaction

• Can QLCA be used to discriminate between different interactions in complex 
plasmas? 

Chart 8



Representative examples of interaction

• Double-Yukawa potentials

• Yukawa + inverse square r
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Fingerprints of interactions: Double Yukawa class
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Long-range asymptote of the interaction potential affects the dispersion at 
long wavelengths, which can be measured experimentally 
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Fingerprints of interactions: Yukawa + 1/r2

Chart 11

Long-range asymptote of the interaction potential affects the dispersion at 
long wavelengths, which can be measured experimentally 
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Is QCA/QLCA equally good for hard and soft 
interactions?

• Systematic study of IPL fluids near the fluid-solid transition

• Agrawal&Kofke (1995) data on coexistence fluid densities of the IPL model 

• MD simulations for a number of IPL exponents (10 ≤ n ≤ 100)

• Analysis: Structure, dynamics, longitudinal mode dispersion
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Structure (RDF) and dynamics (VAF) 

• With increasing the exponent n structure and dynamics tend to HS-like

• Raveche-Mountain-Streett criterion of freezing is not very accurate when potential 
softness varies in a wide range

• More accurate criterion can be based on the height of the minimum of g(r)
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Dispersion of the longitudinal mode

• QCA/QLCA is reasonably accurate only for sufficiently soft potentials 
with  n < 20
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Sound velocities

• Elastic QCA longitudinal sound 
velocity 

overestimates that measured in MD   
experiment and diverges at large n

• Instantaneous sound velocity

Is close to that measured in MD, but 
also diverges  at large n

• The HS sound velocity remains 
finite
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Conclusion

• We have discussed different aspects of describing theoretically collective 
modes in simple fluids with applications to complex (dusty) plasmas

• QLCA/QCA approach

• Simplification based on excluded volume arguments produces useful 
analytical expressions

• Possibility to discriminate between different interactions using the long-
wavelength dispersion relation

• Applicability is limited by sufficiently soft interactions
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