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Abstract

For on-orbit autonomous grasping of an uncooperative spacecraft using visual servo
control of a robotic manipulator, it is imperative that the pose estimation algorithm
provide accurate estimates of relative motion parameters from the noisy vision measure-
ments. These non-uniformly sampled measurements have variable noise characteristics
and represent a past state owing to the processing time. In this thesis, an event-driven
and Out of Sequence Measurement (OOSM)-capable Extended Kalman Filter (EKF)
observer with adaptive behavior is derived for estimating motion, inertial and geomet-
ric characteristics of an uncooperative Target spacecraft with an objective of grasping
while using the measurements of the kind mentioned above. Observability and stability
analyses have been presented with conclusions about target inertia and geometry that
affect the estimation process. Special focus has been laid on the vision sensor’s noise
and time-response characteristics to improve the estimator’s robustness and optimality.
Robustness is analysed in terms of convergence, immunity towards outliers and adap-
tive behaviour in the face changing noise characteristics. The adaptive behaviour in
the EKF is achieved using a Variational Bayesian (VB) approach and an assessment is
presented for a step-change in noise characteristics. A nonlinear state-space model for
relative dynamics between the OOS’s end-effector and the tumbling target have been
derived which incorporate orbital dynamics and manipulator’s servoing motion. In order
to avoid rank-deficiency variances for the attitude quaternion, a Multiplicative Extended
Kalman Filter (MEKF) approach with a reduced state-vector is used. The small angu-
lar rotation and the Gibbs vector were used as candidates and an evaluation of both of
these representations is provided. A Software In Loop (SIL) has been developed which
allows fast prototyping of estimation/control algorithms for the grasping problem using
an eye-in-hand topology for position-based servo control.
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Chapter 1: Problem Definition

1.1. Introduction

Teleoperated Space Robotic systems have been successful in the past and there has been
an increased interest for developing an analogous autonomous capability in such an
OOS. The concept was first mentioned by National Aeronautics and Space Administra-
tion (NASA) in the Automation, Robotics and Machine Intelligence Systems (ARAMIS)
in 1980s and since then, several demonstration missions like Engineering Test Satellite
(ETS)-VII, Orbital Express and Robotic Refueling Mission (RRM) have corroborated
it. Robot Technology Experiment (ROTEX) and ETS-VII proved to be quintessential
in key robotic technologies in microgravity environment. Deutsche Orbitale Servicing
Mission (DEOS) developed by DLR and Astrium GmbH was pivotal in steering this ap-
plication towards capture of noncooperative spacecraft as mission objectives. Although
equipped with Global Positioning System (GPS), the relative navigation in this instance
was planned with a vision-based system.

Because of the maturity in technologies employed in DEOS, it is one of the most
promising solutions in Active Debris Removal (ADR) as well. Inevitably, the future
of On-orbit Servicing and ADR using space robots are conflated [Lieuwen2016]. A
simplified objective of an OOS is to capture a cooperative spacecraft having known
mass properties and motion about its mass center. This is analogous to catching a ball
on earth whose mass properties are well known, for instance, a tennis ball. In contrast,
a ADR mission involves capturing an unknown object with unknown mass properties
and significant tumbling motion. Drawing on the ball’s analogy as before, in this case,
the impact is unpredictable because of the uncertainties. A servicer should be able to
determine the relative pose of the target with respect to itself, de-tumble it and aid
de-orbiting. Of course, a fundamental requirement for this is to ensure accurate and
precise relative navigation [Palmerini2016].

Even though telepresence is a proven alternative, autonomy is a desirable option be-
cause of the communication time-delay involved in remote control from ground stations
on earth [Aghili2013]. In order to achieve a higher degree of autonomy in servicing
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and ADR tasks, it is important to have accurate estimates of the torque-free motion
parameters of target spacecraft.

Hence, it becomes imperative to be able to reconstruct [Palmerini2016] these param-
eters in order to aid the servoing process in the Pre-Grasping phase while using noisy
information from sensors. The primary focus of this thesis is to develop the estimator
and analyze the estimator behavior in the scenario of space-based visual servoing for
grasping uncooperative targets.

1.2. Literature review and discussion

Visual servoing techniques have been successfully employed in terrestrial applications
since 1980s, as has been surveyed by Hutchinson, Hager, and Corke in [Hutchinson1996].
Space manipulator visual servoing though is presently a pertinent area of research in the
leading space agencies around the globe [Lieuwen2016]. In contrast to terrestrial visual
servoing techniques, for space applications, free-flying or free-floating kinematics/dy-
namics of the servicer have to be considered. The motion controller for such a space
manipulator had already been discussed by Umetani and Yoshida in [Umetani1989]
by 1990. In 1993, [Dubowsky1993] presented the analytical virtual manipulator for
planning and control of a robotic manipulator in space.

Prior to that, the Clohessy-Wiltshire [Clohessy1960] equations (1960) were one of
the earliest linearized models for the relative translational dynamics between chaser and
target. The model was approximated to the first order effects and is used commonly for
rendezvous and docking applications. It is natural that these equations are also common
to the relative motion dynamics between OOS and Target.

As recent as 2016, Palmerini, Sabatini, and Gasbarri in [Palmerini2016] have men-
tioned some of the challenges faced with such an On-Orbit Servicing mission, especially
concerning uncooperative targets. According to them, vision-based navigation is one of
the appealing choices for aiding uncooperative target-grasping. In other words, machine
vision techniques are employed for closed-loop control of the the space robotic manipu-
lator. Irrespective of sensor selection, however, it is imperative for the OOS to employ
an estimation scheme which is able to use the noisy sensor data to predict the relative
kinematics for servoing.

Since the relative kinematics and dynamics of such a system is nonlinear, EKF is
often a suitable candidate [Palmerini2016]. This had been demonstrated by Aghili and
Parsa in various instances of their work like [Aghili2007], [Aghili2009] and [Aghili2012].
Furthermore, the target maybe uncooperative not just in the context of attitude-control
but also that its geometry and mass properties maybe unknown. Hence, any estima-
tor should also perform parameter identification along with state estimation for servo-
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ing. Previously, such an approach had been identified in [Aghili2009] and [Aghili2007].
However, the authors have not performed an observability analysis. From studies based
on Kalman filters, [Boutayeb1997] and other observers, [Birk1988], it is clear that an
observability analysis should precede the design. An observability analysis for nonlin-
ear systems, like the relative motion between OOS and Target, was shown by Hermann
and Krener in [Hermann1977] (1977). Subsequently, there were other techniques like
the Observability Gramian, [Krener2009] which provided degrees of observability of a
nonlinear system. These studies provide a qualitative and quantitative intuition to the
performance of estimators developed by [Aghili2009].

The relative orientation is modeled using a multiplicative quaternion so that it can
be used by a stochastic estimator, EKF. This has been documented adequately in [Lan-
dis2003], [Landis2004] and [Lefferts1982]. Aghili and Parsa employed the small rotation
approximation as suggested in [Lefferts1982]. From the theory in the three references
above, the Gibbs vector attitude error representation is more robust since it is able to
represent an angular axis rotation error of up to 180◦.

In an estimation scheme based on vision-measurements, there are some quintessential
challenges which have to be surmounted. Firstly, the sampling rate of a vision-based
sensor (pose-estimator) is non-uniform. Secondly, due to occlusion or indequate lighting
conditions, the probability of outliers in measurements is higher than what a Gaus-
sian distribution would allow. In [Alcantarilla2016], Alcantarilla and Woodford has
explained noise characteristics of measurements based on vision algorithms. Addition-
ally, as shown in [Aghili2009], the error characteristics are state-dependent. Hence, it is
imperative for an estimator to have an adaptive response to vision-based measurements.

For implementing a noise-adaptive behavior, the different topologies can be found in
[Mehra1970]. [Aghili2009] used a finite memory covariance-matching technique. Among
Bayesian approaches, several methods based on VB have been used in the past like
[Särkkä2009], [Särkkä2013], [Piché2012] and [Roth2013]. All these methods are like
the Iterated Extended Kalman Filter which uses an iterated update like Expectation-
Minimization to adapt to the residual disturbance.

For outlier robustness in an estimator, the Mahalanobis distance as a discriminating
function was proposed in [Chang2014]. Chang chose to manipulate the noise error
covariance based on optimization techniques to achieve robustness against outliers. The
disadvantages of this method have been narrated by Da Ren in [Da Ren1994] and an
alternative - State Chi-Square Test (SCST) - has been suggested. In any case, it is clear
that χ2-test is a suitable way to test for outliers.

For an EKF, convergence is a major problem for uncertain initial conditions [Boutayeb1997].
In the current problem of space-based estimation, the initial conditions are uncertain
with no prior on the degree of uncertainty. Since the advent of the Kalman Filter in
1960s, few studies have focused on convergence from condition of no knowledge. Out of
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these, the convergence studies and suitable actions to ensure convergence in EKF has
been discussed with examples in [Perea2007] and [Boutayeb1997]. Along with Jazwin-
ski’s work, it becomes clear that suboptimal methods have to be adopted to ensure
convergence despite unknown initial conditions.

For implementing such a complicated system on hardware, it is important to perform
SIL and Hardware In Loop (HIL) tests. An instance of such a SIL is given in [Hos-
seini2016] for an octorotor. At the time of writing this thesis at DLR, a SIL testbench
was simultaneously developed so that the algorithms for estimation and control can be
seamlessly tested before implementation.

1.3. Brief outline of the thesis

In the chapter 1, sections 1.4 and 1.5, the model [Aghili2009] used in the thesis has
been derived. A comparative study is made in section 1.5.2 to evaluate attitude error-
representations [Landis2003], [Landis2004], [Lefferts1982]. At the end of this chapter,
three models have been derived for further analysis.

In chapter 2, detailed observability analyses have been performed and suitable con-
clusions in regards to the Target spacecraft have been made. The relevant derivations
and explanations for nonlinear observability studies have been provided in this chap-
ter. After satisfying observability criterion, Chapter 3 is a continuity towards design of
EKF observers. In this chapter the state estimates and errors have been presented. In
[Aghili2007] and [Aghili2009], an approximation for the deriving the state-transition
matrix from the system matrix has been used. From the perspective of a realtime
estimation, this is an apt choice. In this work, the approximation was dropped for imple-
menting a non-singular representation. Although, a rudimentary Padé’s approximation
[Arioli1996] was used for the fruition of the work in this thesis, the reader is referred to
[Moler2004] for more computation-efficient solutions.

In chapter 4, convergence studies have been performed in 4.1. Appropriate steps to
ensure convergence have been laid out with results. In order to ensure the convergence
of the estimator, a Bump (B-)-EKF [Perea2007] strategy was put in place. It is demon-
strated that without this strategy, the estimator is more likely to diverge as suggested
by the authors. The following section outlines steps taken to improve robustness of the
EKF design with an adaptive system. In this chapter, a VB approach was adopted to
derive the noise covariance from the approximated a posteriori distribution. In the latter
part, for the purposes of this thesis, Outlier-Rejection was performed using a χ2 p-value
on the residual after convergence. Results have been accordingly shown.

In chapter 5, implementation details have been detailed. Specially pertaining to
vision-based systems, an EKF has to be designed as multi-rate, event-driven and OOSM-
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enabled. The results of such an implementation have been detailed. It has also been
emphasized that for dynamic systems, the vision system’s inherent delay in reporting
cannot be ignored.

In the appendix section, chapter A gives implementation details about simulating an
asynchronous camera. The details of the SIL test being developed for the thesis has
been explained. The steps taken and the results have been pointed out.

Three models were implemented in MATLAB for the problem demonstrated in figure 1.1
(explained in the next section) and the comparative results with different approaches
have been presented. A reduced-state observer is implemented in Simulink which
demonstrated asynchronous, mutli-rate operation for hardware implementation on the
OOS-SIM at DLR. As a part of the thesis implementation, a client-server software was
developed to link Simulink-MATLAB with V-REP [Rohmer2013] and visualize the resul-
tant motion. Since pose-estimation itself is not in the scope of this thesis, an AprilTag
[Olson2011] based pose-estimator is employed which is then used in the architecture de-
fined above. A UR5 Robot was configured in the V-REP environment and an elementary
inverse-Jacobian position-controller was implemented which shall be used for performing
estimation during manipulator motion. The present volume of work naturally leads to
this. The asynchronous behavior of the optical sensor was implemented using SimEvents
toolbox [Gray2007] in Simulink. A complete Software-in-loop demonstration is made
whose details will be provided in the latter sections.

1.4. Defining the Model

As a convention, vectors are indicated by boldface symbols of lowercase alphabet and
so are quaternions, but with an overline (.̄). Matrices will be indicated with boldface
symbols of the uppercase alphabet. Figure 1.1 is a diagrammatic representation of the
scenario in which an On-Orbit Servicer is approaching the Target spacecraft on a similar
orbit. The axes triads have been color-coded for ease of comprehension. The initial
orbital frame of the Servicer’s base {O} is a Local Vertical Local Horizontal (LVLH)
frame which rotates about the orbit and points along the position vector from Earth
centre towards Servicer mass center. The z-axis points along the angular momentum
vector and y-axis completes the triad. After the base-perturbation due to manipulator
motion, the LVLH frame shifts to {A}. The relative pose of this frame with respect to
{O} is indicated by position ro and an orientation quaternion, γ̄. The camera is assumed
to be mounted on the end-effector and the camera frame {Aee} is also an LVLH frame
with it’s z-axis perpendicular to the image plane, x-axis to the right of image center and
the y-axis completing the triad. We express the relative orientation of the end-effector
{Aee} with respect to the current base-frame {A} by a quaternion, ∋̄, and its relative
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Figure 1.1.: Body diagrams of servicer and tumbling spacecraft

position as ρc. Like [Aghili2009], the Target body frame {B} is the oriented parallel
to the principal axes of inertia and is centered at the mass center of the Target. The
feature/grasping plane (marked by grey) that is visible to the camera lies in {C} at the
feature center. The relative pose of the grasping frame {C} with respect to body frame
{B} is given by position ρt and an orientation quaternion η̄. The Target is assumed to
be have to torque-free motion in space characterized by an angular velocity ω expressed
with respect to {A} in the Target body frame. Moreover, {A} is the Orbital Reference
Frame and is non-inertial.

The Target spacecraft has a relative position r and an orientation quaternion q̄ with
respect to the Servicer’s base. As in [Aghili2009], {A} is assumed to be located at the
mass center of the Servicer. One of the primary advantages of this representation that
has been advocated by Aghili and Parsa in [Aghili2009] and [Aghili2007] is decoupling
of translational and rotational dynamics. Additionally, the expression of rotational dy-
namics in body frame is convenient since the Inertia Matrix can be assumed to diagonal
and constant. This also simplifies the quaternion calculations since the error dynamics
for q̄ and η̄ are expressed in the Target’s body frame. This aspect will become clear
once the attitude error dynamics are derived in section 1.5.2.
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Figure 1.2.: Simulated scenario of the grasping problem at DLR’s OOS-simulator

1.5. Deriving the Model

1.5.1. Attitude

The fundamental representation of attitude/orientation is a 3× 3 matrix that belongs
to the special orthogonal group, SO(3). Due to the problem of storage and constraints,
a lower-dimensional representation is employed, as enunciated in [Landis2003] [Lan-
dis2004]. In this thesis, the following derivations are made from quaternion representa-
tions of attitude/orientation.

A quaternion representation of rotation is a R4 vector given as [Trawny2005],

q̄ =

(
k̂ sin(θ/2)
cos(θ/2)

)
=


q1

q2

q3

q0

 =

[
qv

q0

]
(1.1)

where θ is the angle of rotation around an axis whose orthogonal basis in reference
frame is given by a R3 vector k̂ and the subscripts v and 0 indicate the vector and scalar
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components. This representation is the same as used in [Aghili2007], [Aghili2009] and
[Trawny2005]. The algebra rules that have been used are described below.

A quaternion multiplication between two R4 vectors p̄ and q̄ is indicated by two
operations, ⊗ and ⊛ which are defined as,

p̄ ⊗ q̄ =

[
−⌈pv⌉+ p0I3 pv

−pT
v p0

] [
qv

q0

]
(1.2a)

p̄ ⊛ q̄ =

[
⌈pv⌉+ p0I3 pv

−pT
v p0

] [
qv

q0

]
(1.2b)

where ⌈a⌉ is the skew-symmetric matrix of the form

 0 −a3 a2

a3 0 −a1

−a2 a1 0

.

Let R(p̄) and R(q̄) be two attitude matrices corresponding to p̄ and q̄ respectively,
then the attitude matrix composition R(r̄) = R(p̄)R(q̄) is given by a quaternion r̄,

r̄ = q̄ ⊗ p̄ = p̄ ⊛ q̄ (1.2c)

where R(.) is the attitude matrix that transforms a body-referenced vector to world
coordinates.

A rotation quaternion has a conjugate property which in terms of rotation implies an
inverse rotation which is given by q̄∗,

q̄∗ =
[
−qv

q0

]
(1.2d)

which has the property q̄ ⊗ q̄∗ = q̄∗ ⊗ q̄ =
[
0 0 0 1

]T.
An attitude matrix R(q̄) is defined as,

R(q̄) = (2q0 − 1)I3 + 2q0⌈qv⌉+ 2qvqT
v (1.2e)

More detailed properties and derivations are provided in [Trawny2005] and [Diebel2006].
The time-derivative of the quaternion with respect to the world-frame is related to

the angular velocity (expressed in body frame) as given by,

˙̄q(t) =
1
2

ω̄ ⊗ q̄(t) (1.2f)

where ω̄ is simply
[

ω(t)
0

]
.
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Remark 1. In (1.2f), ω is the angular velocity of the Target with respect to the Servicer
in the Target’s body frame. It should be noted though that in orbit, the angular motion
of the Servicer due to Attitude Control in the Target’s frame needs to be accounted for.
Additionally, if the robotic manipulator moves, it will also create a disturbance in ω by
virtue of reaction forces.

So, ω in (1.2f) can be expanded for this scenario as follows,

ω = ωt −ωn −ωbase (1.2g)

where ωt is the angular velocity of the Target with respect to Servicer, ωn is the
angular velocity of Servicer in orbit and ωbase is the Servicer base motion due to robotic
manipulation or attitude control.

In this thesis, an assumption of is made that there is no robotic manipulator motion.
In that case, ω = ωt −ωn.

In [Aghili2009], the AOCS is assumed to make the Servicer turn at the mean motion
rate in orbit. It is easy to see that, ωn can be found by expressing the orbital velocity
vector in the Target frame. For this, the quaternion transformation can be used as
follows,

ω̄n = q̄ ⊗ n̄ ⊗ q̄∗ (1.2h)

where n̄ =
[
nT 0

]T and n =
[
0 0 n

]T. By using (1.2h), (1.2g) and (1.2f) and
dropping the explicit representation for functions of time, we derive,

˙̄q =
1
2

ω̄t ⊗ q̄ − 1
2

q̄ ⊗ n̄ ⊗ q̄∗ ⊗ q̄ (1.2i)

=
1
2

ω̄t ⊗ q̄ − 1
2

q̄ ⊗ n̄ (1.2j)

=
1
2

ω̄t ⊗ q̄ − 1
2

n̄ ⊛ q̄ (1.2k)

=
1
2
(ω̄t ⊗−n̄⊛)q̄ (1.2l)

(1.2m)

In [Umetani1989, eq. 18], the unknown Servicer attitude angles (ϕS =
[
α β γ

]T)
have been derived using Momentum Conservation principle.

ϕ̇S = −IS
− IMϕ̇M + IS

−L0 (1.2n)

where, ϕm =
[
θ1 ... θn

]T are the joint angles, L0 is the initial Servicer momentum and,
IS and IM are the inertia for Servicer body and Manipulator respectively. (1.2n) can
be related to Servicer’s angular rates ωbase expressed in {A}. But, one must take into
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account that in [Umetani1989], the authors have assumed an inertial frame as reference.
In [Rouleau2006], the authors have mentioned several servoing tasks which can cause
a Servicer base perturbation. These include, tracking visual features in field-of-view,
translational alignment and capture/grasp.

The solution to (1.2f) by integration gives us the quaternion at a given time which
under basic assumptions for ω can be solved in a closed-form. In [Trawny2005, ch.1.6.1,
p.12], Trawny and Roumeliotis have derived the zeroth and first order quaternion inte-
grators. In this thesis, it is assumed that ω remains piecewise constant over a sampling
period, ∆T. Therefore, the zeroth-order quaternion is used in the following form. In
[Landis2003], it has been stated that the skew-symmetric ω̄⊗ preserves the unit-norm
constraint of quaternions.

q̄(k + 1) = e
1
2 ω̄⊗∆T q̄(k) (1.2o)

The equation (1.2o) can be further approximated as given in [Trawny2005] or in
[Aghili2009] using a Taylor Series. In this thesis, only (1.2o) has been used for deriving
the attitude expression.

In the case of a very small angular rotation δθ, the differential quaternion can be
written as,

δq̄ =

[
δqv

δq0

]
= lim

δθ→0

[
k̂ sin(δθ/2)
cos(δθ/2)

]
(1.2p)

≈
[ 1

2 δθ

1

]
(1.2q)

⇒ δq̄ = δq̄(δθ) (1.2r)

The three Rodrigues parameters or the Gibbs Vector has been defined succinctly in
[Landis2003] as,

g =
qv

q0
=

k̂ sin(θ/2)
cos(θ/2)

= k̂ tan(θ/2) (1.2s)

g is a projection of the SO(3) quaternion onto a thee-dimensional Eucledian space. The
vector is infinite for a rotation of 180◦.

1.5.2. Multiplicative Quaternion

The nonlinear quaternion expression in multiplicative form given a unit reference quater-
nion q̄re f and a small error quaternion δq̄ which represents a rotation from q̄re f to true
quaternion q̄ is given as,

q̄(t) = δq̄ ⊗ q̄re f (1.3a)

δq̄ can be parametrized as δq̄(a) where a represents a vector in the body-frame coor-
dinates. In an attitude observer, the unconstrained estimate of a is computed and the
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Figure 1.3.: Attitude error representations in an MEKF red -twice Gibbs vector, blue -small angle

equation (1.3a) is used to extract the estimate of attitude quaternion. This is shown as
follows,

ˆ̄q(t) = δq̄(â)⊗ q̄re f (1.3b)

(1.3b) provides a way of computing attitude estimates without having to explicitly
normalize the quaternion since it preserves the unit-norm constraint. This representation
of attitude errors is often known in literature [Landis2003], [Landis2004] as the MEKF.

Remark 2. In the MEKF attitude observer, a three dimensional Euclidean vector a is
estimated using some form of linear injection. This vector corresponds to the attitude
error δq̄ and the correct attitude q̄ is obtained simply by multiplicative correction as
shown in (1.3b).

Remark 3. It is worth pointing out that the covariance matrix for a full-state quaternion
is singular due to the unit-norm constraint as discussed in [Lefferts1982]. Representing
attitude as a reduced-dimension vector is one of the effective ways to surmount this
singularity.

Several authors have provided different expressions for a in [Landis2003] through
attitude errors. In this thesis, two methods have been explored. Small-angle rotation
(Leffert’s method) as shown in [Shuster1993] and [Lefferts1982] is one of the trivial
parametrizations and Twice Gibbs Vector is an alternative as suggested in [Landis2003].
These are shown in the equations below.
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δq̄(al) =

[
al
1

]
(1.3c)

δq̄(ag) =
1√

4 + |ag|2

[
ag

2

]
(1.3d)

where al =
1
2 δθ = δqv and ag = 2δqv

q0
. From (1.3c) and (1.3d), it is evident that the

Leffert’s method has a major drawback that it will fail if an unconstrained estimate is
produced such that |al | > 1. The alternative Twice Gibbs Vector appears to be a more
robust representation. This has also been advocated by Landis in [Landis2003].

In [Landis2003, eq. 36] the quaternion error vector ȧg propagation has been defined.
Considering only the linear terms in this, for the Twice Gibbs vector representation, we
get,

ȧg ≈ −ω̂× ag + δω (1.3e)

This expression is similar to the one derived by [Aghili2009, see App. A]

ȧl ≈ −ω̂× al +
1
2

δω (1.3f)

where ω̂ is piecewise constant as mentioned in the 1.5.1 section. The difference between
the expressions is self-explanatory and can be generalized as,

ȧ = fa(a, δω) (1.3g)

Since the orientation quaternion is expressed as a three-dimensional vector a, the
measurement must be a similar expression. In case the measurement is a set of vector
observations, [Landis2003] provides a model that can be readily used. If the measure-
ment is a quaternion expression itself, one has two choices.

If the measurement is of the form r̄ = p̄ ⊗ q̄ and the state to be estimated is q̄, an
equivalent expression of a has to be derived from which the residual can be computed
during the update stage of estimation. In [Landis2003], [Landis2004] and [Shuster1993],
it has already been mentioned that the vector quantity a is reset after an update and is
set only when a measurement arrives. Hence, in the event of an incoming measurement,
(1.3b) is rewritten as δq̄(â) = ˆ̄q ⊗ q̄∗re f . The measurement is modified as,

δq̄(ă) = p̄∗ ⊗ r̄ ⊗ q̄∗re f

= p̄∗ ⊗ p̄ ⊗ q̄ ⊗ q̄∗re f
(1.4)

By using the relations given in 1.3c and 1.3d, a prediction â and a measurement ă is
obtained which can be used in the estimator as an output injection.
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Figure 1.4.: Comparison of true and MEKF states using small angle and Twice-Gibbs vector

An alternative is to simply set ă = 0.
Since (1.2o) conserves the unit-norm property, it is the best candidate for q̄re f .

q̄re f (k + 1) = e
1
2 ω̄⊗∆T q̄re f (k) (1.5)

This method has also been employed in [Aghili2009] and [Aghili2007].

1.5.3. Attitude Dynamics

Following the authors in [Aghili2009] and [Aghili2007], the rotational dynamics are
expressed in terms of inertial ratios p by modifying the Newton-Euler equations for
torque-free motion. [Aghili2009, see App. B]

ω̇ = ψ(p, ω) + J(p)ϵτ (1.6a)

where ψ(p, ω) =

pxωyωz

pyωxωz

pzωxωy

, J(p) =

1 0 0
0 1−py

1+px

0 0 1+pz
1−px

 and p =


Iyy−Izz

Ixx
Izz−Ixx

Iyy
Ixx−Iyy

Izz

 and ϵτ is the

disturbance torque.
Linearizing about a nominal point ω gives

d
dt

δω = M(ω)δω + J(p)ϵτ (1.6b)

where M(ω) = ∇ωψ =

 0 pxωz pxωy

pyωz 0 pyωx

pzωy pzωx 0



13



Chapter 1. Problem Definition

Similarly, linearizing about a nominal state-space point, ω and p gives,

d
dt

δω = M(ω, p)δω + N(ω)δp + J(p)ϵτ (1.6c)

Remark 4. (1.6b) is used when the state-estimate for attitude dynamics/kinematics
is defined as x⃗a =

[
aT ωT

]T whereas, (1.6c) is used when state-estimate includes the
inertial ratios p as well, x⃗a =

[
aT ωT pT

]T. In the latter case, the inertial properties of
the tumbling Target are either completely unknown or uncertain. The dynamic equation
for this case is

ṗ = 0 (1.6d)

1.5.4. Translational motion

The linear time-evolution of relative position between two bodies around a central body
is given by the Hill-Clohessy-Wiltshire (HCW) equations [Clohessy1960]. Under the
assumptions that the Target body is in a reasonably circular orbit (eccentricity, e ≈ 0),
the Earth being spherical and insignificant contribution from nonlinear terms, the HCW
equations give closed-form solutions for relative position of a follower (Target) with
respect to leader (Servicer). In figure 1.1, {A} is the defined Hill frame and r is the
solution to the HCW equations whose components are are given as,

ẍ− 2nẏ− 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(1.6e)

where n is the mean motion of the Servicer spacecraft in its orbit of radius re around
Earth, x is directed radially outwards from Earth, y is in-plane tangential to the orbit
and z is parallel to the angular momentum vector of the Servicer.

Remark 5. It is important to point out that if the robotic manipulator configuration on
the Servicer changes, re will be perturbed. In figure 1.1, this perturbation is indicated in
change of orbit from {O} to {A}. In this thesis, like in [Aghili2009], robotic manipulator
is assumed to be fixed.

The translation motion r of the Target is given in [Aghili2009] as

r̈ = −2n× ṙ− n× (n× r) +
(
− µe

re + r
||re + r||3 + n2re

)
+ ϵ f (1.6f)
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where µe is the gravitational parameter of Earth, ϵ f is a force perturbation, the angular
rate n is given by

√
µe

|re|3
and re =

[
as 0 0

]T with as as the semi-major axis or radius
of the orbit.

In [Aghili2009] and [Aghili2007] the linearization for the translational component is
done about r = 0 which holds true for the time-interval of a grasping manoeuvre. So,
the corresponding state x⃗r =

[
r ṙ

]
is linearized to,

d
dt

δx⃗r =

[
O3 I3

K(n) −2⌈n⌉

]
(1.6g)

where K(n) has been defined in [Aghili2009] as

3n2 0 0
0 0 0
0 0 −n2

 and n =
[
0 0 n

]T.

1.5.5. Target geometry

It is quite probable to face a sceneario in which the Target’s geometrical parameters
are uncertain or unknown. Usually, model-based pose estimation [Drummond2002]
techniques use a Computer-Aided Design (CAD)-model to compute pose of the Target
body. If the model is unavailable, a feature-based pose estimation scheme [Pi2015] may
be employed. In this case, however, the pose of the grasping point is an unknown. The
dynamics of the grasping point pose are unchanging in time. With ρt as the position
and η̄ as the orientation quaternion in the body-frame {B}, the time-derivatives of pose
states, x⃗θ =

[
ρT

t η̄T
]Tis given by,

˙⃗xθ = 0 (1.7a)

1.6. Measurement Model

The measurement comprises of pose-estimates from a camera which is mounted on the
end-effector as shown in figure 1.2. Since, we assume no manipulator motion, {A} and
{Aee} are essentially the same. The pose-estimates may be based on a CAD-model,
features or fiducial markers like AprilTags. The On-Orbit Simulator at DLR uses a
redundant monocular odometry system based on CAD model. In this thesis, for simula-
tion using V-REP, AprilTags were employed. Since, the pose determination using visual
features is not in the scope of the problem discussed here, the source is not significant.

The measurement comprises of the position vector rc as observed from {Aee} ≡ {A}
to the grasping frame {C}, as shown in figure 1.1. The orientation quaternion of the
grasping frame as observed from the camera frame is denoted as µ̄. So, the output
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function is described as,

y :
{[

rc

µ̄

]
=

[
ρc(θ) + r + R(q̄)ρt

η̄⊗ q̄ ⊗ ∋̄(θ)

]
(1.8)

where θ is a set of manipulator parameters and ρt is expressed in the Target body frame
{C}.

Going by above assumption, the the Measurement model can be expressed with con-
stant ∋̄ and ρc as in [Aghili2009].

y :
{[

rc

µ̄

]
=

[
ρc + r + R(q̄)ρt

η̄⊗ q̄

]
(1.9)

Rewriting the observation equations in terms of noisy measurements,

yk = hk(r̆ck , ˘̄µk)
.
=

[
rck − ρc

(η̄∗k ⊗ ˘̄µk ⊗ q̄∗k )v

]
(1.10)

Based on the equations derived above, three state-space definitions for a system s
(/"s/, Devanagari) were investigated which are defined as

s1 : X⃗ =
[
q̄T ωT rT ṙT

]T (1.11)

s2 : X⃗ =
[
q̄T ωT pT rT ṙT

]T (1.12)

s3 : X⃗ =
[
q̄T ωT pT rT ṙT ρT

t η̄T
]T (1.13)

s1 is a pose model wherein, the Target’s inertial ratios and geometric parameters are
assumed to be known. In s2, the inertial ratios are uncertain while s3 represents the
full-order dynamics of the system. All the above equations can be formed by simply
using the relationships given in (1.2f), (1.6a), (1.6d), (1.6f) and (1.7a).
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Chapter 2: Observability

2.1. Dynamic Systems

From the theory of dynamic systems that have been investigated in [Hermann1977], we
know that a time-varying deterministic system s (/"s/, Devanagari) can be modeled as
a state-space representation as follows,

s :
{

ẋ(t) = f (t, x(t), u(t))
y(t) = h(x(t), u(t))

(2.1a)

We assume that in the system s, states x(t) ∈ X, observation y(t) ∈ Y and control in-
puts u(t) ∈ U, with X, U and Y being sufficiently continuously differentiable manifolds
of dimensions n, nu and p respectively, where f : X×U −→ X, h : X −→ Y, the state-
space X = Rn, input space U = Rnu , and the observation space, Y = Rp. The system
s evolves from time, t = t0 with an initial state x(t = t0) = xt0 and the sequences of
inputs and outputs in time t ∈ (t0, t f ] are denoted as {u}t f and {y}t f respectively.
The system in (2.1a) is a generic nonlinear representation. If the system is completely
linear but time varying, as is the case for linearized systems, we get the form,

s :
{

ẋ(t) = Atx(t) + Btu(t)
y(t) = Htx(t) + Dtu(t)

(2.1b)

where system matrix At ∈ Rn×n, input matrix Bt ∈ Rn×nu , output matrix Ht ∈ Rp×n

and feedthrough matrix Dt ∈ Rp×nu .
If the model in (2.1b) is time-invariant, it can be represented as a Linear Time Invariant

(LTI) system in a further simplified form,

s :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Hx(t) + Du(t)

(2.1c)

where the matrices, A, B, C, and D carry the same definitions as in (2.1b).
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2.2. Observability Problem

In [Liu2002], Liu, in his thesis, has provided some theoretical definitions which we are
going to mention here for developing the the theory.

Definition 2.1. The initial state xt0 is observable if after some some finite time τ and
any t f > τ, the output sequence {y}t f and input sequence {u}t f uniquely determines
xt0 .

The Observability problem, as explained in [Anguelova2004], is an investigation of
the existing relationships of the state variables with the derivatives of the inputs and
outputs of the system which ensures their uniqueness in a local neighbourhood. In
[Anguelova2004], Anguelova further explains that in the absence of such a relationship,
there can be multiple solutions that produce the same output for every input and hence
the states cannot be reliably observed from experimental measurements.

Definition 2.2. Any arbitrary state (like current-state) xt f is said to be reconstructible
if after some some finite time τ and any t f > τ, the output sequence {y}t f and input
sequence {u}t f uniquely determines xt f .

It is important to note that if there are no input disturbances to s, observability is a
sufficient condition for reconstructability. Furthermore, the observability problem must
be satisfied in some abstract form for ensuring correct state estimates from experimental
measurements.

Remark 6. Under the assumption that the models employed in this thesis do not have
any inputs, we need to determine the Observability to establish reconstructability.

While definitions 2.1 and 2.2 in [Liu2002] have described the observability problem
from the perspective of linear systems, we are interested in the same problem in nonlin-
ear systems. The theoretical basis for such an approach can be found in [Hermann1977]
which shall be explained in brief.Hermann and Krener have described two possible defi-
ciencies of the state space X. In the first kind, X maybe too trivial which results in the
observer tracking incorrect trajectories in the state space. To understand this, we should
look at the state space X in (2.1) as a union of the state spaces spanned by the dynamic
states and constant parameters. To simplify the problem, let us assume that the system
has no measurable external input, u(t) = 0, and is not explicitly time-dependent.

s :
{

ẋ(t) = f (xs, θ)

y(t) = h(xs, θ)
(2.2)

The model defined in (2.2) is additionally parametrized by a constant unknown vector
θ and dynamic states xs in comparison to (2.1) and x = [xT

s θT]
T. In the state space
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deficiency of the first kind, we refer to a reduced order Observer system, where some or
all of θ are assumed to be known. In case, there is an error in this prior knowledge, the
state vector x̂ will converge to incorrect values in X. On the other hand, if the state
space X is too complex, it becomes increasingly difficult to distinguish between similar
states for the same output observations. At this point, it is important to put forth some
definitions based on [Hermann1977], in the absence of inputs.

Definition 2.3. In the dynamic system s, given by (2.1), two initial states x0, x1 ∈ X

are indistinguishable if
y(x0, t) = y(x1, t) ∀ t ∈ [t0, t f ]

where I is an equivalence relation on X, and is denoted as x0Ix1.

Definition 2.4. The dynamic system s is said to be observable at x0 if I(x0) = {x0}
and, it is observable if I(x) = {x} ∀x ∈ X.

Observability is a global concept and hence the trajectories spanned in X could be
tediously long and traversed over a long time to ensure that it is satisfied by indistin-
guishability in 2.4. Hence it is prudent to provide more locally specific definitions which
serve the same purpose.

Definition 2.5. In the dynamic system s, two initial states x0, x1 ∈ U and U ⊂ X are
U-indistinguishable if the state trajectories, x0(t), x1(t) ∈ U and

y(x0, t) = y(x1, t) ∀ t ∈ [t0, t f ]

where IU is a relation (not equivalence) on U, and is denoted as x0IUx1.

Definition 2.6. The dynamic system s is said to be be locally observable at initial state
x0 if for every open neighbourhood U of x0, IU(x0) = {x0}; and it is locally observable
if it is so ∀x ∈ X.

In practice, it is sufficient to distinguish x0 from its immediate neighbours and hence
a weaker definition can be given.

Definition 2.7. The dynamic system s is said to be be weakly observable at initial
state x0 if there exists a neighbourhood U of x0 such that I(x0) ∩U = {x0}; and it is
weakly observable if it is so ∀x ∈ X.

The definition in 2.7, like 2.3 also suffers from possibly tedious trajectories and large
time-intervals before the indistinguishability relation is satisfied.

Definition 2.8. The dynamic system s is said to be be locally weakly observable at
initial state x0 if there exists an open neighbourhood U of x0 such that for every neigh-
bourhood V of x0 contained in U, IV(x0) = {x0}; and it is locally weakly observable if
it is so ∀x ∈ X.
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In [Hermann1977], the authors have provided a taxonomical relationship between
different forms of observability as follows:
s : Locally Observable ⇒ s: Observable
⇓ ⇓
s : Locally Weakly Observable ⇒ s: Weakly Observable

The main importance of the definition 2.8 is that it lends to a simple algebraic test -
The Observability Rank Condition (ORC) - which can be used to indicate a notion of
observability.

For simple Linear Time Invariant (LTI) systems, the aforementioned definitions of
observability are all equivalent.

An alternative approach to the Observability problem has been given in [Kou1973]
where the authors have provided tests based on ratios and positive semi-definiteness of
Jacobian of Output mappings (Observability Matrix); however, the methods are diffi-
cult for complicated systems to derive. In [Zhirabok2012], Zhirabok and Shumsky have
introduced a new approach to nonlinear observability study by fragmenting the system
into a linear and nonlinear part. The observability study is then extended to the nonlin-
ear parts only if the linear parts are unobservable. The current work does not explore
this approach but this is a germane topic for future study. In [Anguelova2004], it was
mentioned that if the system is not observable, the state estimates do not converge to
correct trajectories. It is important to cite Detectability as a weaker concept which en-
sures convergence by virtue of stability of unobservable modes of a Linear System. An
analogous concept for nonlinear systems of Output-to-State stability has been discussed
in [Sontag1997] which is based on identifying the Lyapunov function. In this thesis,
this method was not investigated since the models were too complex and moreover, all
studies were made under observable conditions.

2.3. The Observability Rank Condition

This section describes the observability evaluation by investigating the local distinguisha-
bility property using the Observability Rank Condition (ORC) as introduced before.

We define the Lie differentiation of C∞ function ϕ on X by a vector field v on X as,

Lv(ϕ)(x) :=< ∇x(ϕ), v >

here, <> defines the inner product and dϕ is the gradient operator on scalar function
ϕ.

We redefine (2.1) to drop the explicit time-dependence and assume control inputs,
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u = 0.
s :
{

ẋ(t) = f (x(t))
y(t) = h(x(t))

(2.3)

In the previous section, it was mentioned that the observability problem is aimed at
finding relationships between states and derivatives of outputs and inputs of the system
s. The first time-derivative, Y1 of the output y in (2.3) can be found as follows

Y1 =
dh
dt

=
∂h
∂x

.
dx
dt

=
∂h
∂x

.ẋ

=< ∇x(h), f > = L f (h)

by replacing Lie Derivative defined above for the function ϕ as f and v as h. Similarly,
taking mth time derivative of the output function,

Ym =
dmh
dtm =

dm−1L f (h)
dtm−1 =

dm−2

dtm−2

(
dL f (h)

dt

)
=

dm−2

dtm−2 (L f .L f (h)) = L f
mh

Hence, we see that the time-derivatives of the observation function are nothing but the
Lie differentials of the same order.

In [Hermann1977] and in [Anguelova2004], the ORC has been defined as,

O∞ =


∇x(h)
∇xL f (h)

...
∇xLn−1

f (h)
...

 (2.4a)

where, the Observability matrix in (2.4a) is the local infinite dimensional matrix for
the nonlinear system. If rank(O∞) is equal to n, the system is locally weakly observable.
Since no bound is provided for the number of Lie Derivatives to be computed, it is im-
practical for sophisticated systems. In [Anguelova2004], Chapter-4, it has been proven
that for control affine systems, only n− 1 derivatives have to be computed for a state
vector of dimension n. Furthermore, in case the state x = [xT

1 , xT
2 , ...xT

n ]
T, where xi is a

vector representing a measurable quantity in all its dimensions, it is sufficient to find n
Lie derivatives and determine On.

On =


∇x(h)
∇xL f (h)

...
∇xLn−1

f (h)

 (2.4b)
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The system is said to be locally weakly observable when rank(On) is n.

Remark 7. Since, we are concerned with no-input systems, we can assume our system
to be input-affine and hence applying n− 1 derivatives is sufficient to determine Observ-
ability using (2.4b). In order to construct the matrix, a symbolic tools like sympi and
MATLAB Symbolic Toolbox can be employed.

2.4. Unobservability

In the previous section, it was established that observed nonlinear dynamics are observ-
able only if the mapping from an initial condition, xt0 to the output trajectory are unique.
To establish this mapping, ORC provides a simple algebraic test. However,the computa-
tion of (2.4b) for sophisticated state-space models is tedious and time-consuming, even
on a symbolic tool. In [Krener2009], Krener and Ide have derived two metrics, namely,
local unobservability index, κi and local condition number, κn which measure the degree of
observability of the system. Hence, apart from obtaining the binary test of observability
using ORC, we obtain a measure of the ease with which states can be observed/esti-
mated. Questions pertaining to observability quality were raised for the first time by
Griffith and Kumar in [Griffith1971].

In the following section, the metrics, κi and κn will be explained as measures of ob-
servability. Since, the derivation of these metrics is based on the linearized model, this
section begins by deriving the linearized model using truncated Taylor Series which takes
the form (2.1b).

2.4.1. Linearization of nonlinear system

In section 2.1, it was mentioned that a time-varying system of the form (2.1b) is obtained
by approximating a nonlinear system, (2.1a), as a linearization about a point in state-
space. Working under the no-input assumption, the system is reduced to the following
form, if it is linearized about the initial state xt0 ,

s :
{

δ̇x(t) = Atδx(t)
δy(t) = Htδx(t)

(2.5)
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where,

At =
∂ f (x(t))

∂x

∣∣∣∣
x=xt0

Ht =
∂h(x(t))

∂x

∣∣∣∣
x=xt0

δx(t) = x(t)− xt0

δy(t) = y(t)− h(xt0)

Remark 8. The mapping from xt0 to {y}t is approximated by the mapping from δxt0

to {δy}t which is the tangent space of the original state-space.

According to [Krener2009], the local singular values at xt0 of the system defined by
(2.1a) are the same as its tangent linear mapping defined in (2.5). For distinguishability,
all the singular values should be high.

2.4.2. Measures of Unobservability

In this subsection, a brief description of the singular value metrics [Krener2009] as
measures of unobservability have been described.

Definition 2.9. Local Unobservability index, κi: The reciprocal of the smallest local
singular value.

κi =
1√
λmin

If this value is very high, the measurement noise of the estimation scheme will have a
large impact on Estimation error.

Definition 2.10. Local Estimation Condition Number, κn: The ratio of the largest and
the smallest local singular value.

κn =

√
λmax

λmin

A large value for this metric indicates sensitivity to the initial condition. In other
words, a small change in the initial state can radically change the direction of estimation
in the state-space.

The metrics described above can be derived from the Observability Gramian, Go at
xt0 of the time-varying system described in (2.5). In [Krener2009], a simpler method
has been employed to compute Go. In the models employed in this thesis, however, the
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conventional form of the Gramian is computed in order to obtain κi and κn. For the
system defined by (2.5), the Gramian at xt0 for t ∈ [t0, t f ] is,

Go =
∫ t f

t0

Φ(t, τ)T H(τ)T H(τ)Φ(t, τ)dτ (2.6)

where Φ(t, t0) is the state-transition matrix associated with the homogeneous equation
(2.5). In [Krener2009, eq. 4], the formula for the empirical observability gramian
has been provided. The empirical observability approaches the true gramian if the
displacement along the state-space basis is small. In this thesis, an analysis of the
aforementioned measures of unobservabilty is performed for the systems.

In [Krener2009], it has been mentioned that scaling of parameters should be performed
but it is not necessary for the models discussed in this thesis. Furthermore, κi should be
a non-increasing function of time and κn should be atleast bounded for stability of the
estimator.

2.5. Observability analysis

2.5.1. System s1

In chapter 1, s1 was derived to have the state-space as,


˙̄q

ω̇

ṙ
r̈

 =


1
2 ω̄ ⊗ q̄(t)

ψ(ω)

ṙ

−2n× ṙ− n× (n× r) +
(
− µe

re+r
||re+r||3 + n2re

)
 (2.7)

For short time observability analysis, we can assume zero-acceleration for the model
and ignore the effect of the HCW equations. Hence,

s1 :


Ẋ =


˙̄q

ω̇

ṙ
r̈

 =


1
2 ω̄ ⊗ q̄(t)

ψ(ω)

ṙ
0


y =

[
rc(q̄, r)
µ̄(q̄)

]
, q̄T q̄ − 1 = 0

(2.8)

It is important to note that q̄T q̄ − 1 = 0 is added to the above output equation [Saba-
tini2011] to ensure the quaternion constraint.
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Taking the ORC of the system, we get,

O2 =



Θ(q̄) O3,3 I3,3 O3,3

η̄⊗ O4,3 O4,3 O4,3

2q̄T
O1,3 O1,3 O1,3

Θq(q, ωt) O3,3 O3,3 I3,3
1
2 η̄⊗ ω̄⊗ 1

2 η̄⊗ q̄⊛ O4,3 O4,3

O1,4 O1,3 O1,3 O1,3


(2.9)

where, Θ(q, p) = ∇q(R(q̄)p) =
[
−2q0⌈p⌉+ 2(⌈p⌉⌈qv⌉ − 2⌈qv⌉⌈p⌉) 2⌈qv⌉p

]
and

Θq(q̄, p) = ∇q(Θ(q, p) 1
2 ω̄ ⊗ q̄) The dashed lines indicate the Jacobian dependent on

the next Lie Derivative. In this case, only the first derivative was sufficient.

Remark 9. Since, the ⊗ and ⊛ operators produce full rank matrices under all conditions
for a quaternion, the ORC for the system above comes out as 13 and hence is always
observable. This system is able to distinguish states even if the Target is stationary.

2.5.2. System s2

Following the same course as the previous section, we derive the ORC for system s2

defined in (1.12).

s2 :


Ẋ =


˙̄q

ω̇

ṗ
ṙ
r̈

 =


1
2 ω̄ ⊗ q̄(t)

ψ(ω)

0
ṙ
0


y =

[
rc(q̄, r)
µ̄(q̄)

]
, q̄T q̄ − 1 = 0

(2.10)

O3 =



Θ(q̄) O3,3 O3,3 I3,3 O3,3

η̄⊗ O4,3 O4,3 O4,3 O4,3

2q̄T O1,3 O1,3 O1,3 O1,3

Θq(q) O3,3 O3,3 O3,3 I3,3
1
2 η̄⊗ ω̄⊗ 1

2 η̄⊗ q̄⊛ O4,3 O4,3 O4,3

O1,4 O1,3 O1,3 O1,3 O1,3

Γq(q̄, p, ω) Γω(q̄, p, ω) Γp(q̄, ω) O3,3 O3,3

ζq(ω, p) ζω(q̄, p) ζ p(q̄, ω) O4,3 O4,3

O1,3 O1,3 O1,3 O1,3 O1,3


(2.11)

Remark 10. The ORC is found to be 16 which is full rank when all three components
of ω are non-zero. For a pure spin-system, the rank is found to be 13. Even for ω
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with two non-zero components, the rank is 14. Hence, it is evident that the system s2 is
observable only if the Target is exhibiting purely tumbling motion. It is evident from the
ORC that the matrices in the lowest section become rank deficient when ω has either
one or more components as 0.

2.5.3. System s3

For the full-state dynamics, the calculation of the system is defined as follows.

s3 :



Ẋ =



˙̄q
ω̇

ṗ
ṙ
r̈
ρ̇t
˙̄η


=



1
2 ω̄ ⊗ q̄(t)

ψ(ω)

0
ṙ
0
0
0


y =

[
rc(q̄, r, ρt)

µ̄(q̄, η̄)

]
,

q̄T q̄ − 1 = 0

η̄T η̄− 1 = 0

(2.12)

The ORC calculation for this system is a little more convoluted than the previous
ones. But, we can draw many of the sub-matrices from them.

O4 =

Θ(q̄, ρt) O3,3 O3,3 I3,3 O3,3 R(q̄) O3,4
η̄⊗ O4,3 O4,3 O4,3 O4,3 O4,3 η̄⊛
2q̄T O1,3 O1,3 O1,3 O1,3 O1,3 O1,3
O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 2η̄T

Θq(q̄, ρt, ω) Θω(q̄, ρt) O3,3 O3,3 I3,3 Θρt(q̄, ω) O3,4
1
2 η̄⊗ ω̄⊗ 1

2 η̄⊗ q̄⊛ O4,3 O4,3 O4,3 O4,3
1
2 ω̄ ⊗ q̄⊛

O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4
O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4

Γq(q̄, p, ω, ρt) Γω(q̄, p, ω, ρt) Γp(q̄, ω, ρt) O3,3 O3,3 Γp(q̄, ω, p) O3,4
ζq(ω, p, η̄) ζω(q̄, p, η̄, ω) ζ p(q̄, ω) O4,3 O4,3 O4,3 ζη(q̄, ω, p)
O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4
O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4

Λq(q̄, p, ω, ρt) Λω(q̄, p, ω, ρt) Λp(q̄, ω, ρt) O3,3 O3,3 Λp(q̄, ω, p, ρt) O3,4
Φq(ω, p, η̄, ρt) Φω(q̄, η̄) Φp(q̄, ω, p) O4,3 O4,3 O4,3 Φη(q̄, ω, p)

O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4
O1,4 O1,3 O1,3 O1,3 O1,3 O1,3 O1,4


(2.13)
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Remark 11. The ORC as defined in (2.13) is found to be of rank 23 when evaluated
using a symbolic toolbox. Evidently, the ORC is deficient and has a rank of 14 when
there is no angular velocity for the Target. For pure spin, the rank increases to 18. Even
for two axis of non-zero values in ω, the rank is 22 and achieves full rank only when there
is purely tumbling motion. Another point worth mentioning is the dependency on the
inertial properties. If two or more principal inertia magnitudes are the equal, the local
observability condition cannot be met even for fully tumbling motion. For instance,
the Target satellite in the European Proximity Operations Simulator (EPOS) facility
at DLR has

[
121 108 108

]
Kg.m2 as its principal inertias. For proper estimation of

the parameters, using the model s3, it does not satisfy ORC. From an observability
perspective, this indicates that for a nearly symmetrical body, the local observability is
not strong enough for estimation.

2.5.4. Degrees of Observability

To enunciate the points made in the above section, two state-space initial conditions
was chosen for two different Target satellites - QuickSat, the Canadian microsatellie and
Target satellite from EPOS, DLR. Apart from the inertia values, the rest of the initial
conditions were fixed for both turns.

s1 s2 s3

Principal Inertias κi κn κi κn κi κn[
4 8 5

]
0.227 277892.965 0.9031 1227418.315 0.983 1598962.639

QuickSat:[
121 108 108

]
0.248 304408.960 0.258 350950.523 0.689 1121365.622

EPOS-DLR

Table 2.1.: Degrees of Observervability (80 seconds)

The emgr Empirical Gramian Framework developed by Himpe in [Himpe2016] was
used for computing the Observability indexes. The function was invoked with the fol-
lowing parameters: handles for the nonlinear models given by si, an observation time
of 80 seconds, an initial condition perturbation of 0.001 and the initial state sequence as
linear.

The same test was run for 30 seconds and the results have been tabulated in 2.2. By
comparing it with the results in 2.1, it is clear that the total integration time plays a ma-
jor role in determining the gramian properties as described in section 2.4. Additionally,
the order of observability is s1 > s2 > s3. Also, if one looks at the κi values carefully,
the change in going from either s1 or s2 to s3 increases the magnitude considerably.
Furthermore, this increase is much higher for the partially symmetric satellite at EPOS-

32



Chapter 2. Observability

s1 s2 s3

Principal Inertias κi κn κi κn κi κn[
4 8 5

]
0.393 3299341.693 1.660 1404030.636 1.811 1832907.735

QuickSat:[
121 108 108

]
0.410 311120.016 0.420 354099.687 1.118 1127869.609

EPOS-DLR

Table 2.2.: Degrees of Observervability (30 seconds)

DLR than for the QuickSat. This corroborates the ORC criterion derived above in the
previous section for nearly symmetric bodies. In fact, the results of the above steps re-
peated for a completely symmetric body resulted in the following values for κi: 0.401344,
0.412574 and 3537.228345 for a period of 30 seconds. Hence, it has been analytically
and experimentally proven than the model s3 is sensitive to Target symmetries. Such
an observability analysis is extremely important since poor observability can cause in-
stability in estimators. In the Extended Kalman Filter (EKF), the problem of apparent
divergence is well known. In later sections, this finding will be used to demonstrate that
a system s3 with symmetry will diverge.
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Chapter 3: Observer/Estimator

3.1. Observers/Estimators

In typical control systems, it is realistically not possible to measure all the states of the
corresponding dynamic model given by (2.1). So, an observer, as defined in [Hautus1980]
and [Primbs1996], is usually employed whose nonlinear dynamics are computed as the
system ŝ,

ŝ :
{ ˙̂x(t) = f (t, x̂(t), u(t)) + K(ŷ(t)− y(t))

ŷ(t) = h(x̂(t), u(t))
(3.1a)

For a linear (time-varying or invariant) system,

ŝ :
{ ˙̂x(t) = At x̂ + Btu(t) + K(ŷ(t)− y(t))

ŷ(t) = Ht x̂(t) + Dtu(t)
(3.1b)

where, K ∈ Rn×p and the rest have been defined for (2.1).
As is evident from (2.2), the system ŝ assumes the same input controls and output

observations as that of the original system given in (2.1) but is different in that, it
assumes that the true dynamic states x are uniquely identified by the observed states
x̂. For this, a fundamental requisite is that x̂ must asymptotically approach x either for
all possible initial states x(0) = x0 or for a fixed initial state like x(0) = 0. According
to Primbs in [Primbs1996], (3.1) is of the form where linear output injection is used.
There has been extensive study for designing Observers for Linear Systems and has
proven extremely effective for Observer-based Controllers. For non-linear Systems like
(2.1a), EKF has proven to be immensely successful. It is based on linear output injection
or the method of Extended Linearization. Figure 3.1 protracts a block diagram of this
design philosophy. Other approaches like Lyapunov-based or Lie-Algebra-based observer
designs can also be employed. The merits of each of these methods has been discussed
in [Primbs1996]. In the current thesis work, the primary area of focus is Linear Output
Injection which can be used through Extended Linearization in the Kalman Filter or in
the Luenberger Observer [Birk1988].

35



Chapter 3. Observer/Estimator

s :

ẋ(t) = f (x(t), u(t)) y(t) = h(x(t), u(t))

+

−

ŝ :

˙̂x(t) = f (x̂(t), u(t)) + K(y− ŷ) ŷ(t) = h(x̂(t), u(t))

u y

ŷ

x̂

K(t)

Figure 3.1.: Observer (Linear Output Injection) block diagram

3.1.1. Error Dynamics

Denoting the error in the state estimate as x̂− x, the error dynamics can be computed
by subtracting the state equations in (2.1) and (3.1). For simplicity, the error dynamics
is first analyzed for the Linear System, by subtracting (2.1b) from (3.1b).

ė = (At + KHt)e (3.2a)

The idea of observer design is to place the eigen values of (At + KHt) in the left-half
of the complex plane resulting in decaying dynamics. The underlying assumption is
that the (At, Ht) pair are observable. Of course, the convergence rates of the states
depends on the magnitudes of the eigen values. Adopting a similar approach, taking the
difference of (2.1a) from (3.1a) after dropping time-dependence gives the nonlinear error
dynamics as,

ė = f (x̂, u)− f (x, u) + K(h(x̂, u)− h((x, u))

= f (x + e, u)− f (x, u) + K(h(x + e, u)− h(x))

≈ (∇x f (x) + K∇xh(x))e

(3.2b)

It has been mentioned in [Primbs1996] that (3.2b) is dependent on the true state
which is unknown and time-dependent. In the ubiquitous Kalman Filter for nonlinear
systems, (3.2b) is solved by linearizing around the current estimate. This means,

ė ≈ (∇x f (x̂) + K∇xh(x̂))e (3.2c)
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It is therefore evident that (3.2c) is largely dependent on the observer gain K and the
linearization points. This is one of the seminal reasons for the divergence problems in
the Kalman filters and will be discussed in detail later.

A similar approach with linear output injection can be applied to Luenberger Ob-
servers wherein the observer gain K can be set by simple pole placement techniques.

Typically, nonlinear observers are designed by employing a coordinate transformation
which allows linear output injection or using nonlinear output injection. The current
study does not investigate these kinds of observers but paves way for further investigation.
These techniques are documented in [Primbs1996], [Krener1983] and [Zeitz1987].

3.2. Kalman Filter

Kalman filter [Kalman1960] is the workhorse observer design in engineering applications
like aerospace, robotics, navigation et al. In his seminal paper Kalman has defined
the optimal estimation problem as: Given a vector-valued random process {x(t)} and
observed random variables, {y}t0 :t where y(t) = Mx(t), find an estimate x̂(t) which
minimizes the expected loss function(L), E[L(||x(ti)− x̂(ti)||)] .

Theorem 3.1. According to the [Kalman1960, th. 2], if the random processes, {x1(t)},
{x2(t)} and {y(t)} are gaussian and the loss function is considered L(ϵ2), the optimal
estimate is given by the Conditional Expectation or the Orthogonal Projection.

x∗1(t) = E[x1(t)| {y}t0 :t] (3.3)
where x1 is the state being estimated, x2 is the noise affecting observations, {y}t0 :t is

the observation sequence and ϵ = x− x∗.
A few important points from this work which are relevant to this thesis are worth

pointing out.

1. Since in practice it is difficult to ascertain to what degree of approximation a
random process of physical origin is gaussian, it is hard to decide whether Theorem
2 has very broad or very limited significance.

2. Linear functions (and therefore conditional expectations) on a gaussian random
process are gaussian random variables. [Kalman1960, th. 5(a)]

Considering dynamic model (2.1) as defined in 2, the derivation for the Optimal estima-
tor proceeds as follows. Firstly, the discretized model as in [Kalman1960] is considered
and let us assume that instantaneous perturbations for the system are vector w, and for
the measurement as v.

s :
{

xk+1 = Akxk + Gkwk
yk = Hkxk + vk

(3.4)
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where apart from the system parameters defined previously, wk ∈ Rn, vk ∈ Rp

and E[wk] = E[vk] = 0 and the joint covariance is given as E

[ (
wk
vk

) (
wT

k vT
k

) ]
=[

Qk 0
0 Rk

]
.

The initial state is given as normal/gaussian distribution, x0 = N [x̂0, Σ0].

Remark 12. The initial state’s probability distribution cannot always be known. In
literature, many authors have resorted to using high values of Σ0 to overcome this lack
of system knowledge to ensure stability. Other optimal methods may be used but they
are not in the scope of this thesis.

The philosophy of optimal estimation is to propagate the probability distribution
p(xk| {y}t0 :t) while satisfying an optimality condition and the Kalman Filter achieves
this by minimizing the mean-squared-error and propagating the first two moments of
the distribution.

3.2.1. Kalman filter dynamics

1. Prediction: Applying conditional expectation on (3.4) based on Theorem 3.1, and
knowledge about previous state’s posterior probability distribution inN [x̂(k|k), Σ(k|k)]
we get the optimal state at any time kp where, kp > k.

x̂(kp|k) = E[xkp | {y}
1:kt] = E[Φ(k, kp)xk +

kp−1

∑
i=k

Φ(i, kp − 1)Giwi| {y}1:kt]

= Φ(k, kp)E[xk| {y}1:kt] +
kp−1

∑
i=k

Φ(i, kp − 1)GiE[wi| {y}1:kt]

= Φ(k, kp)x̂k

(3.5)

where Φ(k, k + np) = Ak+np−1...Ak is the state transition matrix from k to kp. At
this point, the errors for the estimator can be defined as

• Prediction error: x̃(kp|k) = xkp − x̂(kp|k)
• Filtering error: x̃(kp|kt) = xkp − x̂(kp|kt), where kt is the time at which the

measurement was made but was available at kp for fusion.

Taking the variance of the Prediction,

Σ(kp|k) = E[x̃(kp|k)x̃(kp|k)T| {y}1:kt] (3.6)
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= E

[(
Φ(k, kp)x̃(k|k) +

kp−1

∑
i=k

Φ(i, kp − 1)Giwi

)
(

Φ(k, kp)x̃(k|k) +
kp−1

∑
i=k

Φ(i, kp − 1)Giwi

)T]

In the equation above, E[x̂kwT
i ] = 0, E[wiwT

j ] = 0 and E[xkwT
k ] = 0. Hence,

Σ(kp|k) = Φ(k, kp)E[(x̃(k|k))(x̃(k|k))T]Φ(k, kp)
T

+ Gkp E[(wkp)(wkp)
T]GT

kp

+
kp−1

∑
i=k

Φ(i, kp)GiE[wiwT
i ]G

T
i Φ(i, kp)

T

= Φ(k, kp)Σ(k|k)Φ(k, kp)
T + Gkp Qkp GT

kp

+
kp−1

∑
i=k

Φ(i, kp − 1)GiQiGT
i Φ(i, kp − 1)T

(3.7)

2. Output prediction: The conditional expectation of the observation/output equation
at any time kt > k is given as,

E[ykt | {y}
1:kt] = E[Hkt xkt + vkt | {y}

1:kt]

= Hkt E

[
Φ(k, kt)xk +

kt−1

∑
i=k

Φ(i, kt − 1)Giwi

]
+ E[vkt | {y}

1:kt]

= Hkt Φ(k, kt)x̂(k|k) = Hkt x̂(kt|k)

(3.8)

At time kt, let the prediction error for measurement be given by ỹ(kt|k) as

ỹ(kt|k) =ykt − ŷ(kt|k)

= Hkt

[
Φ(k, kt)xk +

kt−1

∑
i=k

Φ(i, kt − 1)Giwi −Φ(k, kt)x̂(k|k)
]
+ vkt

= Hkt Φ(k, kt)x̃(k|k) + Hkt

[ kt−1

∑
i=k

Φ(i, kt − 1)Giwi]

]
+ vkt

(3.9)
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Taking covariance of this equation,

E[ỹ(kt|k)ỹ(kt|k)T| {y}1:kt ] = Hkt Φ(k, kt)E[x̃(k|k)x̃(k|k)T]Φ(k, kt)
T HT

kt

+ Hkt Gkt E[wkt w
T
kt
]GT

kt
HT

kt

+
kt−1

∑
i=k

Φ(i, kt)GiE[wiwT
i ]G

T
i Φ(i, kt)

T + E[vkt v
T
kt
]

= Hkt Φ(k, kt)Σ(k|k)Φ(k, kt)
T HT

kt
+ Hkt Gkt Qkt G

T
kt

HT
kt

+
kt−1

∑
i=k

Φ(i, kt)GiQiGT
i Φ(i, kt)

T + Rkt

= Hkt Σ(kt|k)HT
kt
+ Rkt

(3.10)

Remark 13. The main reason for deriving the Prediction dynamics in this way is
to provide the optimal state estimation (prediction) in a multi-rate implementation,
where the sensing rate is much slower than that of controller. These equations
provide the probability distribution of the state at any given time kp, kt > k.

In the same vein, we can derive the joint covariance of state xk and measurement
ykd , where kd < k, as

E[xkyT
kd
| {y}1:kd ] = E[xkxkd ]H

T
kd
= Ukd,k HT

kd
(3.11)

3. Filtering: Filtering is the process of deriving the posterior probability distribution
of the state which is of the form p(xk| {y}1:kd). This formalism is slightly different
from the conventional [Ribeiro2004] approach to deriving filter equations because
the intention in this thesis was to implement a multi-rate estimator with a OOSM.
In [Zhang2005], Zhang, Li, and Zhu have described an OOSM as a measurement
produced at time kd prior to current time k, at which another current measurement
is available. The problem then is to perform optimal state estimation with delayed
state measurements.
In the context of this thesis or any estimator-based on vision system, this is a
pertinent problem. A pose-determination system is an image-processing algorithm
which takes an unspecified amount of time. So, if the camera records images at
kd and the pose is available at k, the optimal estimator ought to perform a state
estimation with respect to the state at kd and not k.

Theorem 3.2. If x and y are two gaussian random variables, whose probability
densities are given by p(x) = N [x|µx, Σx], p(y) = N [y|µy, Σy], and their joint
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distribution is given as
(

x
y

)
= N

([
µx

µy

]
,
[

Σx Σxy

Σyx Σy

])
then the marginal distri-

bution p(x|y) ≡ N
(

µx + ΣxyΣ−y (y− µy), Σx − ΣxyΣ−y ΣT
xy

)
Based on Theorem 3.2, the posterior distribution of state xk+1 can be computed
based on a measurement yk+1. Formulating the problem in terms of the joint
distribution in Theorem 3.2 by using (3.11) for the predicted state as the last
optimal state, we get(

xk+1
yk+1

)
= N

([
x̂(k + 1|k)

Hk+1 x̂(k + 1|k)

]
,
[

Σ(k|k) Σ(k + 1, k)HT
k+1

Hk+1Σ(k + 1, k)T Hk+1Σ(k + 1|k)HT
k+1 + Rk+1

])
(3.12)

By simply applying the marginal distribution equations, and simplifying the pos-
terior covariance, we get the commonly known Kalman filter update,

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kk+1(yk+1 − Hk+1 x̂(k + 1|k))
Kk+1 = Σ(k + 1|k)HT

k+1(Hk+1Σ(k + 1|k)HT
k+1 + Rk+1)

−

Σ(k + 1|k + 1) = (In,n − Kk+1Hk+1)Σ(k + 1|k)
(3.13)

where Kk+1 is the Kalman gain computed at k + 1.
Similarly, based on Theorem 3.2, the posterior distribution of state xk can be
computed based on a measurement ykd . Formulating the problem in terms of the
joint distribution in Theorem 3.2,(

xk
ykd

)
= N

([
x̂(k|k)

Hkd x̂(kd|k)

]
,

[
Σ(k|k) Ukd,k HT

kd

HkdUT
kd,k Hkd Σ(kd|k)HT

kd
+ Rkd

])
(3.14)

where Ukd,k = E[xkxT
kd
] is the covariance term between the states at different time

instants. So, the marginal distribution’s mean according to Theorem 3.2 is given
by

x̂(k|k, kd) =x̂(k|k) + Ukd,k HT
kd

(Hkd Σ(kd|k)HT
kd
+ Rkd)

−(ykd − Hkd x̂(kd|k))
(3.15)

The state error covariance is,

Σ(k|k, kd) = Σ(k|k)− Kkd Skd KT
kd

(3.16)

where the Kalman gain Kkd = Ukd,k HT
kd
(Hkd Σ(kd|k)HT

kd
+ Rkd)

− and
Skd = Hkd Σ(kd|k)HT

kd
+ Rkd .
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Remark 14. In (3.15) and (5.8), Σ(kd|k), x̂(kd|k) are optimal estimates at time kd while
satisfying the optimality condition at k. The relevant equations will be discussed later.

Remark 15. The Kalman filter satisfies the optimality condition implicitly that ∂
∂Kk

trace(Σ(k|k)) =
0 which minimizes the squared error.

Remark 16. The residual random variable ek = yk − Hkxk is a zero-mean process,
E[ek] = 0 with a variance as derived above. It raises an important question about the
situations in which this assumption may not be satisfied.

• When x̂(0| − 1) ̸= E[x0], the observer is in convergence, and prediction errors will
be large.

• When E[wkwT
k ] ̸= Qk, the process is perturbed by an unknown noise or by as-

sumption deficiencies like nonlinearity.

• When E[vkvT
k ] ̸= Rk, the measurement is perturbed by an unknown noise or

outliers.

3.3. Bayesian Optimal Filter

Since the Kalman filter is based on propagation of probability distributions, a discussion
on a general approach to Bayesian Filtering is warranted. Under the assumption that
the probability distribution of the previous estimate p(xk−1| {y}1:k−1) is known, the
conditional joint distribution of the current state xk and the previous xk−1 is given by
the Markovian property.

p(xk, xk−1| {y}1:k−1) = p(xk|xk−1)p(xk−1| {y}1:k−1) (3.17)

• Prediction: Marginalizing over xk−1 gives the Chapman-Kolmogorov (CL) equation
which generates the prior distribution.

p(xk| {y}1:k−1) =
∫

p(xk|xk−1)p(xk−1| {y}1:k−1)dxk−1 (3.18)

• Update: The measurement likelihood from the state-space model is given by p(yk|xk).
Simply applying Bayes’ theorem, the posterior probability distribution is obtained
as,

p(xk| {y}1:kt) = p(yk|xk)p(xk| {y}1:k−1) (3.19)

Remark 17. The Kalman filter performs Bayesian filtering under the assumption of
gaussian models with mean and variance as relevant statistics [Ribeiro2004].
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3.4. Extended Kalman Filter

The EKF is a nonlinear estimator with linearized dynamics. This is applicable to state
estimation of a nonlinear model (2.1a), as mentioned in Chapter 2. Considering the
perturbations as in the previous section, the model in discretized form is written as,

s :
{

xk+1 = fk(xk) + Gkwk
yk = hk(xk) + vk

(3.20)

In light of the derivations made in the previous sections, the stochastic propagation for
a Bayesian filter for the nonlinear system (3.20) under gaussian assumption needs the
following statistics, [Wu2006]

x̂(k + 1|k) = E[ fk(xk)]

Σ(k + 1|k) = E[x̃(k + 1|k)x̃(k + 1|k)T] + Qk

ŷ(k + 1) = E[hk+1(xk+1)]

Σy(k + 1|k) = E[ỹ(k + 1|k)ỹ(k + 1|k)T] + Rk

Σxy = E[x̃(k + 1|k)ỹ(k + 1|k)T]

(3.21)

In [Wu2006, p.2914], the authors have made a detailed study on the approximation
method for Gaussian filter variants. In accordance to the theory presented, applying
(3.18),

x̂(k + 1|k) =
∫

fk(xk)N [x̂(k|k), Σ(k|k)]dxk

Σ(k + 1|k) =
∫ (

fk(xk)− x̂(k + 1|k)
)(

fk(xk)− x̂(k + 1|k)
)T

N [x̂(k|k), Σ(k|k)]dxk

(3.22)

These equations cannot be solved analytically for nonlinear models. Hence, an ap-
proximation is made in different schemes like the Unscented Kalman Filter, EKF and
so forth. For the EKF, the assumption is made as follows.

Assumption 1. The resultant probability distribution is unimodal and the integrand
for state mean resolves to fk(x̂(k|k)).

Assumption 2. The resultant covariance is approximated by Jacobians as described in
[Wu2006] obtained after Taylor approximation.

A detailed derivation of the EKF by gaussian approximation is provided in [Ribeiro2004]
which proceed from the aforementioned equations. The final equations relevant for this
thesis are,
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• Predict:

x̂(k + 1|k) = fk(x̂(k|k))
Σ(k + 1|k) = FkΣ(k|k)FT

k + Qk
(3.23)

• Update:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kk+1(yk − Hk+1 x̂(k + 1|k))
Σ(k + 1|k + 1) = (In,n − Kk+1Hk+1)Σ(k + 1|k)

Kk+1 = Σ(k + 1|k)HT
k+1

(
Hk+1Σ(k + 1|k)HT

k+1 + Rk+1

)−
where, Fk = ∇x fk(xk)

∣∣∣∣
xk=x̂(k|k)

,Hk+1 = ∇xhk+1(xk+1)

∣∣∣∣
xk+1=x̂(k+1|k)

x0 ≡ N [x̂(0|0), Σ(0|0)]
(3.24)

3.5. Design of EKF

3.5.1. Process

In chapter 1, model equations were derived which are mostly of nonlinear form. Hence,
EKF presents a suitable candidature as shown in [Aghili2009]. In contrast to the three
models that were derived, the dynamic model for the EKF employs the 3-parameter form
of a quaternion as shown in the section about MEKF 1.5.2. Hence, the corresponding
state space models for EKF are given by,

s1 : x =
[
aT ωT rT ṙT

]T ∈ R12 (3.25)

s2 : x =
[
aT ωT pT rT ṙT

]T ∈ R15 (3.26)

s3 : x =
[
aT ωT pT rT ṙT ρT

t bT
]T ∈ R21 (3.27)

where a = (q̄ ⊗ q̄∗re f )v and b = (η̄∗re f ⊗ η̄re f )v express the attitude errors using a 3-
vector parametrization. While the former is an expression for the errors in body frame,
the latter is the expressed in inertial frame. Although, it is not explicitly mentioned by
[Aghili2009], one of the major advantage of the problem formulation in [Aghili2009] is
that both the attitude errors can be operated on the Target’s body frame.

The dynamic equations and linearized forms of all the vectors have been derived in
1. Rewriting the equations as a discrete-linear form, we get xk+1 = Φ(k, k + 1)xk + ϵk
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where Φ = diag(Φr, Φt, I6). Such an expression is possible because of decoupling of
translational and rotational dynamics.

As mentioned in chapter 1, the matrix exponential required for Φ(k, k + 1) was com-
puted using Padé’s approximation and not in the method specified in [Aghili2009]. Also,
the exponential was needed only for the rotational component, Φr, since the translational
component can be simplified to a discrete-linear system.

For a small circular orbit, ignoring higher order terms,

Φr(k, k + 1) = eFr∆T (3.28)

where Fr contains linearized equations for rotational states defined in chapter 1.

Φt(k, k + 1) =
[

I3,3 Φt12

O3,3 Φt22

]
(3.29)

The sub-matrices have been described in [Aghili2009] as, Φt12 =

t nt2 0
0 t 0
0 0 t

 and

Φt22 = I3,3 − 2⌈n⌉t.

Assumption 3. In 0 < t < ∆T, nt≪ 1, which means that the orbit is small.

The process noise is modeled to account for torque and force disturbances due to
gravity gradient, Earth’s oblateness, air-drag and other perturbing accelerations. In
this thesis, the same set of equations from [Aghili2009] for Process noise has been used.
From (1.6a) and (1.6f), we get the relevant perturbation elements whose variances are
given as follows.

Γτ = E[ϵτϵT
τ ] = σ2

τI3

Γ f = E[ϵ f ϵT
f ] = σ2

f I3
(3.30)

Since, the equations for rotational and translational dynamics are decoupled, Qk =

diag(Qrk , Qtk , Qθk). The detailed equations can be referred from [Aghili2009, p. 541].

3.5.2. Observation/Measurement

In chapter 1, an observation model was presented in terms of the noisy measurements
from the vision sensor. Expressing this in terms of state model defined in (3.27), the
model can be represented as,

yk = hk(xk) + vk =

[
h1(xk) + v1

h2(xk) + v2

]
=

[
rk + R(q̄k)ρtk

(a⊗ b)

]
(3.31)
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In order to derive the Jacobian, we find the gradient of the functions h1 and h2 with
respect to the states.

∇rh1(xk) = I3,3 (3.32)

Assumption 4. The following observation equation holds for small attitude errors,
||δq̄v|| ≪ 1 and δq0 ≈ 1.

During convergence of the filter, this assumption is not guaranteed. That apart, the
attitude matrix R(.) can be simplified as,

R(q̄k) = R(δq̄k ⊗ q̄re f ) = R(q̄re f )R(δq̄k) ≈ R(q̄re f )(I3,3 + 2⌈δqv⌉) (3.33)

where ⌈.⌉ is the skew-symmetric form of a vector. Hence,

h1(xk) = rk + R(q̄re f )(I3,3 + 2⌈δqv⌉)ρtk

⇒ ∇δqv h1 = ∇δqv 2R(q̄re f )⌈δqv⌉ρtk = −2∇δqv R(q̄re f )⌈ρtk⌉δqv

= −2R(q̄re f )⌈ρtk⌉
(3.34)

∇ρt h1(xk) = R(q̄re f ) (3.35)

h2(xk) = (δη̄k ⊗ δq̄k)v = (δq̄k ⊛ δη̄k)v (3.36)

By simply using the multiplication operators and performing derivatives for small angle
rotations assumption, one obtains,

∇δqv h2 = −⌈δηv⌉+ δη0I3,3

∇δηv h2 = ⌈δqv⌉+ δq0I3,3
(3.37)

Based on (3.32), (3.34), (3.36) and (3.37), the linearized model for the observation can
be created for the three system models defined in 1. For s3, the full state measurement
model is given as,

Hk =

[
−2R(q̄re f )⌈ρtk⌉ O3,6 I3,3 O3,3 R(q̄re f ) O3,3

−⌈δηv⌉+ δη0I3,3 O3,6 O3,3 O3,3 O3,3 ⌈δqv⌉+ δq0I3,3

]
(3.38)

The attitude error scalars δq0 and δη0 can be found by using the unit-norm quaternion
constraint. In accordance to the convention mentioned above, a = δqv, where any of
parametrization in 1 can be used.
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For the systems s1 and s2, the only difference is δη̄ =
[
0 0 0 1

]T at all times.
In [Aghili2009], the measurement error covariance is said to be state-dependent be-

cause of the unit-norm constraint on quaternion with additive noise. The covariance is
defined as,

Rk = E[vkvT
k ] = diag(Σr, Tµk Σµk TT

µk
) (3.39)

where, Σµk , Σr are the noise covariances for the position and orientation respectively of
the vision system and Tµk =

[
I3,3 O3,1

]
η̄∗k ⊗ q̄∗k⊛

Remark 18. It is important to note that the EKF process is a reduced vector xk and
has to be computed on measurement arrival. X k is computed using the the quaternion
attitude expressions in 1.5.2. The equations are explicitly given in [Aghili2009, eq. 48]
to generate the full-state estimate.

3.6. Simulation

For all the simulations performed in order to validate the EKF models defined in the
previous section,hereon, the following precursor data is used.

Principal Inertias [Kg.m2]
[
4 8 5

]T

Grasping point Position, ρt [m]
[
0.2 0.1 0.05

]T

Grasping point Quaternion, η̄
[
0.12 0.05 −0.15 0.98

]T

Camera position, ρc [m]
[
0 0 0.9

]T

Camera orientation, ∋̄
[
0 0 0 1

]T

Sampling time, ∆T [sec] 0.1
Mean motion, n [ rad

sec ] 0.0012
Camera position covariance, Σr [m2] 3e−3I3,3

Camera quaternion covariance, Σµ 3e−3I4,4

Perturbation torque, ϵτ [N.m] 0
Perturbation force, ϵ f [N] 0

Table 3.1.: System data
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3.6.1. Estimation for s1

The initial system state for s1 is chosen as
x0 = [ 0.5625 0.7875 0.2250 0.1125 0.5 −0.1 −0.7 2.5 1 −1 0.01 −0.01 0.02 ]T

Total time, t [sec] 60
Initial state estimate, x̂(0|0) 012,1

Initial state covariance estimate, Σ(0|0) I12,12

Table 3.2.: s1 EKF settings
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Figure 3.2.: s1: Estimated pose measurements

• Figure 3.2 shows the noisy measurements and the estimated measurements from
the state.

• It can be seen in 3.3 that the velocities, both linear and angular, are noisy. This
is natural since the estimator does not directly sense velocity.

• Figure 3.4 is the relative pose between the centers of mass of the Servicer and the
tumbling Target.

• Figure 3.5 demonstrates errors in the estimator. Using the Mahalanobis distance,
the current operating health of the filter can be gauged. A high d(k + 1|k) will
indicate an uncertain process input while a high d(k|k) is indicative of either out-
liers or changing noise characteristics of observations. The Mahalanobis distance
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d for a normal distribution X ≡ N [µ, Σ] is given as follows,

d2 = (X − µ)TΣ−(X − µ) (3.40)

In (c), there are three traces which are defined as follows,

Σ(k + 1|k) = FkΣ(k|k)FT
k + Qk

CRB(k + 1|k) = F kΣ(k|k)F T
k + Qk

Σ(k + 1|k + 1) = (In,n − Kk+1Hk+1)Σ(k + 1|k)
CRB(k + 1|k + 1) = (In,n − Kk+1Hk+1)CRB(k + 1|k)

where, Fk = ∇x fk(xk)

∣∣∣∣
xk=x̂(k|k)

,Hk+1 = ∇xhk+1(xk+1)

∣∣∣∣
xk+1=x̂(k+1|k)

F k = ∇x fk(xk)

∣∣∣∣
x=xk

,Hk+1 = ∇xhk+1(xk+1)

∣∣∣∣
x=xk+1

(3.41)

where CRB is the Cramer-Rao Bound and is differentiated from the State er-
ror covariance in that, the linearization takes place at the true state-space. In
[Havlík2015], Havlík and Straka have used a third matrix, Square Error Matrix,
Π(k|k) = E[x̃(k|k)x̃(k|k)T]. These matrices are a good indicator of estimator con-
vergence and also the sensitivity to approximation.

• In the figure 3.5, d) is simply the squared-error of the state, x̃(k|k)T x̃(k|k) or the
Eucledian distance.

• In [Aghili2009], the position and orientation error formulae have been given for
the observations. In e) and f ), these formulae have been put to use to judge the
accuracy of the estimator.
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ṙx
ṙy
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Figure 3.3.: s1: a)angular velocity, and b)position rate
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Figure 3.4.: s1: Orientation and Position
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Figure 3.5.: s1: Errors in Estimation a)Prediction Mahalanobis distance b)Filtering Mahalanobis distance
c)Traces of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Error
e)Position Error and f)Orientation error

3.6.2. Estimation for s2

Similarly the model without prior knowledge about inertias of the Tumbling satellite is
estimated with the initial system state for s2 chosen as
x0 = [ 0.5625 0.7875 0.2250 0.1125 0.5 −0.1 −0.7 0.75 0.125 −0.8 2.5 1 −1 0.01 −0.01 0.02 ]T

Total time, t [sec] 150
Initial state estimate, x̂(0|0) 016,1

Initial state covariance estimate, Σ(0|0) I15,15

Table 3.3.: s2 EKF settings

• In figure 3.7, it is evident that the velocities and the inertia estimates are noisy
but it is important to note that the estimator was able to start from a state of
no-prior information and converge.

• In figure 3.9 b), an important observation can be made that Σ(k|k) is not as ideal
as the CRB(k|k) as was in the previous system.

• Additionally, it is clear that the squared-error matrix Π(k|k) and orientation errors
in f ) are more variable. This is dependent on the tuning parameter for process p.
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Figure 3.6.: s2: Estimated pose measurements
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ṙ

-0.05

0

0.05

ˆ̇rx
ˆ̇ry
ˆ̇rz
ṙx
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Figure 3.7.: s2: a)angular velocity, inertial ratios and b)position rate
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Figure 3.8.: s2: Orientation and Position
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Figure 3.9.: s2: Errors in Estimation a)Prediction Mahalanobis distance b)Filtering Mahalanobis distance
c)Traces of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Error
e)Position Error and f)Orientation error
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3.6.3. Estimation for s3

It has been previously stated that in the full-state estimator, along with unknown iner-
tias, grasping point pose has to be estimated from a sequence of camera measurements.
s3 chosen as
x0 = [ 0.5625 0.7875 0.2250 0.1125 0.5 −0.1 −0.7 0.75 0.125 −0.8 2.5 1 −1 0.01 −0.01 0.02 0.2 0.1 0.05 0.12 0.05 −0.15 0.98 ]T

Total time, t [sec] 200
Initial state estimate, x̂(0|0) 021,1

Initial state covariance estimate, Σ(0|0) I21,21,


Σ(0|0)[7 : 9, 7 : 9]
Σ(0|0)[16 : 18, 16 : 18]
Σ(0|0)[19 : 21, 19 : 21]

 = 0.05I3,3

Table 3.4.: s3 EKF settings
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Figure 3.10.: s3: Estimated pose measurements
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Figure 3.11.: s3: a)angular velocity, inertial ratios, and b)position rate
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Figure 3.12.: s3:Orientation and Position

55



Chapter 3. Observer/Estimator

(a)
0 20 40 60 80 100 120 140 160 180 200

ρ
t

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

ρ̂tx

ρ̂ty

ρ̂tz

ρtx

ρty

ρtz

(b)
0 20 40 60 80 100 120 140 160 180 200

η

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

η̂1

η̂2

η̂3

η̂0

η1

η2

η3

η4

Figure 3.13.: Grasping point a)Position b)Orientation
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• The full-state estimator takes longer to settle or converge to the correct state values.
This is evident from Π(k|k) and x̃T x̃ curves. It is interesting to note though that
the Mahalanobis distances a) and b) are still consistent. This implies that the
state estimates and their Covariances are propagating equivalently. Failure to do
this causes divergence in the Kalman filter.

• The estimates for grasping point pose: {ρt, η̄} is very noisy and is largely dependent
on the values of p.

• It is worth pointing out that the full-state estimator is more likely to be success-
ful when there are uncertainties about inertia ratios and Target geometry. The
sensitivity analysis has not been performed in this thesis.
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Chapter 4: EKF Robustness

4.1. Divergence of the EKF

Although it was shown in the previous chapter that the EKF converges to its true states
in a Minimum squared Error (MSE) sense, there are some other aspects that are worth
shedding light on to.

Firstly, the filter for the system s3 is a highly sensitive one because of the presence
of parameter identification problem for three states:

[
pT ρT

t η̄T
]T. An uncertainty

in the statistical details of these states can cause failure of convergence or divergence.
Admittedly, at the onset of the estimation process, the statistical details are unknown.

In [Fitzgerald1971], Fitzgerald has described the terms: True divergence and Appar-
ent divergence.

Divergence: The phenomenon during the process of stochastic estimation, which is
observed if the higher-order moments (like variance) of the estimator and the real system
are inconsistent. The estimated mean does not track the true state due to this.

It is tacitly understood that such a problem can occur in EKF with high likelihood
since the second-moments are based on an assumption of linearized system. Especially
when the filter is converging, the effect of nonlinearities is extremely high. In [Jazwin-
ski2007, p. 358], Jazwinski has mentioned that it is essential to account for nonlinearities
during the convergence phase. It has been suggested that the second moments should
be compensated for, either by using a second-order truncation EKF or by using an iter-
ation for the update. In either case, the EKF used in [Aghili2009] is likely to fail in the
situation that the initial state is unknown in value or variance.

Apparent Divergence: This leads to a situation in which the higher-order moments
are inconsistent but the inconsistency remains constant over time. This means that the
state errors remain bounded and the estimator converges to another state-space with
the corresponding stochastics.

It is important to note here that, for a system with low observability, the estimated
states may be unique deterministically, but the stochastics or rather the assumption of
it, may lead to multiple solutions for the same output as shown in 4.1, 4.2, 4.3, 4.4, 4.5.
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Figure 4.1.: s3: Convergence of output
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Figure 4.2.: s3: Divergence in angular velocity
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Figure 4.3.: s3: Divergence in pose relative to mass centers
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Figure 4.4.: s3: Divergence in grasping point a)position b)orientation
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Figure 4.5.: s3: Errors in Estimation a)Prediction Mahalanobis distance b)Filtering Mahalanobis distance
c)Traces of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Error
e)Position Error and f)Orientation error

• In figure 4.1, it is clear that the observation function is being successfully tracked.
In fact, in the figure 4.5 e) and f ), the position and orientation errors are the same
as in the case of convergence. Hence, the residual yk − h(x(k + 1|k) cannot be
directly used as a gauge to determine divergence.

• From several passes of the EKF, it was observed that the exact states that diverged
was not fixed. In this instance, ω in 4.2, q̄ in 4.3 and, ρt and η̄ in 4.4 have diverged.

• From 4.5, it is seen that the measurement Mahalanobis distances a) and b) are
low. But, there is divergence observed c) and d). trace[Π(k|k)] is comparatively
higher but remains constant and so does the Eucledian error, x̃(k|k)T x̃(k|k).

Convergence of a EKF is a function of the eigenvalues of the system during conver-
gence. It is natural that after convergence, the Kalman gain drops to nearly steady
values and the eigenvalues are very close to the origin. In effect, the more negative
these eigenvalues are during convergence, the faster the estimator converges. In 4.1, the
minimum eigenvalue for Fk −Kk Hk for the linearized system has been shown for systems
s1 and s3. For s1, the minimum eigenvalue starts of with much higher negative value
as compared to the system s1. This indicates high sensitivity to not just noise but also
the direction of propagation of the estimator in the state-space. In [Boutayeb1997],
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Boutayeb, Rafaralahy, and Darouach have derived minimum conditions for convergence
of an EKF. αk and βk are orthogonal matrices that are introduced as premultipliers for
the linearized process and measurement models. In the concluding remarks, they have
observed that these matrices are unknown and it is the selection of Rk which ensures
the following.

αk+1 ∈ [1−
√

1− ∆k+1, 1 +
√

1− ∆k+1]

βk+1 ∈ [−1, 1]

where ∆k+1 = λmax(Rk+1)λmax

(
R−k+1HkR(k+ 1|k)ΣHT

k+1(HkΣ(k+ 1|k)ΣHT
k+1 +Rk+1)

−
)

The generic form for measurement noise is given as,

Rk+1 = µRHkΣ(k + 1|k)ΣHT
k+1 + ζI (4.1)

where µR and ζ are multipliers. A very similar formulation is provided in [Perea2007]
as B-EKF 1. Perea et al. have described the problem of divergence and corroborated
Jazwinski’s postulation in [Jazwinski2007] that the EKF overestimates it’s own ability
in reducing the state variance. Jazwinski has suggested using multiple iterations during
convergence. In this thesis, the B-EKF 1 has been employed to ensure convergence of the
estimator which shows the least error according to the study in [Perea2007]. The formula
has been modified as 4.1 since a rigorous mathematical proof is given in [Boutayeb1997].
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µR = 5 and ζ = 0.01 was used for these simulations. In [Boutayeb1997], no closed
formulation is found to relate ∆k+1 with Rk+1. In [Perea2007], it has been mentioned
that any approach to find the multiplier depends on the initial state error but no such
method is known. By the parameters selected here, it was only ensured that ∆k ≤ 1
[Boutayeb1997] as shown in 4.1(d). In 4.1, the error square matrix traces have been
plotted with and without the convergence compensation. It is clear that B − EKF1,
although slower than the ideal estimator with CRB converges successfully while the one
used in [Aghili2009] diverges for the same initial conditions when intitial conditions are
uncertain.

4.2. Adaptive EKF

The system definition for an EKF cannot be providred a priori for most systems. Within
certain limits, it is possible to induce non-optimal behavior during operation to improve
quality of the system specification [Gelb1974, p. 317]. In [Mehra1970], Mehra for the
first time presented a classification of such adpative methods.

In the chapter 3.2, the residual, ϵk = yk − h(xk) is defined as a zero-mean gaussian
process. Gelb in [Gelb1974] has explained how a sequence of residuals {ϵ}1:k can be
used to determine either the process or the measurement noise covariances.

In the system defined by (1.13), a vision sensor is utilized which produces a pose
estimate based on an internal optimization. As a result, the a prior measurement noise
covariance matrix Rk is irrelevant. In [Aghili2009] and [Aghili2007], the author has
maintained that the noise covariance matrix has to be estimated because of variable
lighting conditions and occlusion. The methodology employed is covariance matching
[Mehra1970]. In such a design, the selection of the window size (m) is a critical design
criterion for responsiveness and has not been discussed in [Aghili2009]. Additionally, it
was not clear how the system would behave when the noise characteristics changes. In
contrast to [Aghili2009], a Bayesian approach [Mehra1970] is employed in this thesis
and evaluated for changing noise covariances. Furthermore, it was also mentioned in the
system definition that the measurement errors for orientation is state-dependent.

4.2.1. Variational Bayesian

VB inferencing is an approximate method that is used to express the posterior distri-
bution in a tractable manner. For the purpose of Kalman filtering [Kalman1960], it is
known that the posterior of the state has to be gaussian for the assumptions to hold true.
As early as in 1970, in [Mehra1970], the approach to estimate Rk using an Inv−Gamma
disribution was already mentioned. In [Piché2012], a Student-t distribution is assumed
on the measurement function. Although this is a very effective representation of a vision
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Figure 4.7.: s1: angular and linear velocities affected by change in measurement noise characteristics
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c)Traces of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Error
e)Position Error and f)Orientation error; change in measurement noise

system, there are many parameters that need to be tuned a priori. In [Roth2013], the
problem of determining Student− t distribution parameters and other approximations
have been discussed. This method is very elegant to specify the initial state as uncertain
in both mean and variance. Despite being amenable to the problem of nonlinear estima-
tion, this method was not pursued due to the dependency on multiple initial statistical
parameters. In [Särkkä2009], an Inv− Gamma distribution is assumed on the diagonal
elements of the measurement noise covariance matrix. This methodlogy is employed
here for adapting the measurement noise covariance.

In section 3.3 of the chatper 3, the Bayesian Filtering sequence was mentioned. The
only difference in the adaptive case is that the both the prior (CK) and the posterior
distributions will comprise of the measurement noise covariance distribution parameters.
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• Prediction: CK equation

p(xk, Rk) =
∫

p(xk|xk−1)p(Rk|Rk−1)p(xk−1, Rk−1| {y}1:k−1)dxk−1Rk−1 (4.2)

• Update: Bayesian equation

p(xk, Rk| {y}1:k) ∝ p(yk|xk, Rk)p(xk, Rk| {y}1:k−1) (4.3)

VB methods rely on reasonable approximations to solve the Bayesian filtering problem.
In a formulation like [Särkkä2009], we assume that the previous state and measurement
noise is known with a distribution which the product of the Normal state distribution
and Inv− Gamma measurement covariance distribution.

p(xk−1, Rk−1| {y}1:k−1) = N
(

xk−1|x̂(k− 1|k− 1), R̂(k− 1|k− 1)
)
×

d

∏
i=1

Γ−(r2
k−1|α, β)

(4.4)
where N (.) and Γ−(.) indicate the Normal and the Inv− Gamma distributions.

• Inv−Gamma is one of the conjugate prior distributions for a Gaussian distribution
and it is common to model variances with it.

• The linear dynamics of the state and measurement noise variances are independent
and hence the propagation equations are decoupled.

• In [Särkkä2009], an assumption on pk(rk|rk−1) is made that the propagation main-
tains the same distribution. From the perspective of the vision system, the opti-
mization cost or the reprojection errors can be used to compute this quantity. This
is a subject for another study and has not been explored heretofore.

• The joint distribution of the prediction step is given by,

p(xk, Rk| {y}1:k−1) = p(xk| {y}1:k−1)p(Rk| {y}1:k−1)

N
(

xk|x̂(k|k− 1)
) d

∏
i=1

Γ−(ri,k|αi,k, βi,k)
(4.5)

• The coupling of the probability distributions happens due to the likelihood function
p(yk|xk, Rk) and an approximation has to be made on the posterior. For this
purpose the Kullback-Leibler divergence is minimized.
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• The purpose of VB is to find a joint distribution Q(x; θ) over hidden variables
of current state and noise covariance. The mean-field form assumes independence
between the various variables. This means, Q(x; θ) = ∏iQi(xi; θi).

• If P(x) is the true joint distribution, the KL operator gives us the amount of dissim-
ilarity between P(x) and Q(x; θ). The reader is referred to [Fox2012] which gives
the required equations for minimizing KL-divergence. This technique is common
for other distributions like Student-t, Inverse-Wishart et al.

KL[Q(x)||P(x|D)] =
∫

dx.Q(x)ln
Q(x)
P(x|D)

] (4.6)

where Q(x) is the product of constituents as mentioned above.

Remark 19. Q approximates a joint distribution but Qi is a poor approximation to
true marginals Pi.

The equations have been derived in [Särkkä2009] for a linear system. For a nonlinear
system, the algorithm is given below in 1
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Figure 4.9.: s1: Estimated pose measurements after VB-EKF

• In figure 4.9, the scenario protracted is that the noise for all channels in the model
start as yk ≡ N [0, 1e−4I6,6] which at time, t = 50 changes to yk ≡ N [0, 5e−3I6,6].
This is show in 4.9 where the measurements become more noisy after 50 seconds.
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Algorithm 1 VB-EKF
1: procedure Predict
2: x̂(k + 1|k)← x̂(k|k) +

∫ t1
t0

f (x̂(k|k))
3: Σ(k + 1|k)← FkΣ(k|k)FT

k + Qk
4: α̂k+1,i ← ρiαk,i ∀ i ∈

[
1 d

]
5: β̂k+1,i ← ρiβk,i ∀ i ∈

[
1 d

]
6: procedure Update(Set x̂0(k+ 1|k+ 1)← x̂(k+ 1|k), Σ0(k+ 1|k+ 1)← Σ(k+ 1|k),

α0
k+1,i ←

1
2 + α̂k+1,i, β0

k+1,i ← β̂k+1,i)
7: for n ← 1 to N do
8: R̂n

k+1 ← diag[
βn

k,1
αn

k,1
...

βn
k,d

αn
k,d
]

9: Kn
k+1 ← Σn(k + 1|k)HT

k+1

(
Hk+1Σ(k + 1|k)HT

k+1 + R̂n
k+1

)−
10: x̂n(k + 1|k + 1)← x̂(k + 1|k) + Kk+1(yk+1 − h(x̂n(k + 1|k + 1)))
11: Σn(k + 1|k + 1)← (I − Kn

k+1Hk+1)Σn(k + 1|k)
12: βn

k+1,i ← β̂k+1,i +
1
2 (yk − h(x̂n(k + 1|k + 1))2

i +
1
2 (Hk+1Σ(k + 1|k + 1)HT

k+1)ii ∀ i ∈
[
1 d

]
13: Hk+1 ← ∇xh(xk+1)

∣∣∣∣
x=x̂n(k+1|k+1)

14: Set β̂k+1,i ← βN
k+1,i, x̂(k + 1|k + 1)← x̂N(k + 1|k + 1), Σ(k + 1|k + 1)

← Σn(k + 1|k + 1)

• The tuning values used for the simulation studies were

α0 = 0.1[1]6,1

β0 = 0.06[1]6,1

ρ = 0.75

N = 2

According to [Särkkä2009], a high value for ρ makes the noise adapting responsive.
Based on the values above, the initial covariance elements are β

α = 1.67 which is
considerably high.

• It is worth noting here that initializing the EKF with an unknown noise covariance
acts as converging manipulation. Since, Rk is very high in the beginning, it has
the same effect as the B-EKF in terms of convergence. Despite this, in figure
4.10, it can be seen that the velocity estimates remain immune to change in noise
characteristics. In figure 4.11 e), it is seen that the although the trace of error
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Figure 4.10.: s1:angular and linear velocities with VB-EKF
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Figure 4.11.: Errors in Estimation a)Prediction Mahalanobis distance b)Filtering Mahalanobis distance c)Traces
of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Error e)Position
Error and f)Orientation error

square matrix Π(k|k) increases, it is within the estimated Σ(k|k) and the theretical
CRB. Moreover, except the peak, the Mahalanobis distances for the residual ϵk a)
b) before and after filtering remain consistent. This implies that the increase in
residuals due changing noise characteristics is compensated by a change in Rk

• In figure 4.12, the diagonal elements have been plotted for the scenario. The filter
was able to track the variance changes but there are still some errors in the variance
estimates. This is expected since the approximation and nonlinear errors have not
been modeled into the Process noise covariance and are likely to be estimated into
R̂k.
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Figure 4.12.: s1:Measurement Noise Covariance, Rk

4.3. Outlier rejection

In the current system for the Servicer, the vision system is based on feature-matching
and results in outliers in specific conditions. In this case, for the estimation scheme,
it is essential to have an outlier detection/rejection scheme. This is attributed to the
fact that the distributions are assumed to be gaussian and a higher density of outliers
belies this. This problem becomes even more pertinent in vision systems as mentioned
before. In [Alcantarilla2016], the non-gaussian nature of odometry algorithms has been
discussed in detail.

The reprojection error or an optimization cost, J(θ), can be used to detect outliers in
advance. In this thesis, this was not considered and an outlier system was built into the
measurement update equation.

In the previous sections, the residual has been discussed extensively.

ϵ = yk − h(x̂(k + 1|k))
E [ϵ] = 0

E [ϵϵT] = Hk+1Σ(k + 1|k)HT
k+1 + Rk+1

It is known that the squared Mahalanobis distance (d2(ϵ)) has a χ2-distribution. In
figure 4.13, the residual ϵ for the s1 estimator was fit to a χ2 distribution. The fit
was found to be nearly χ2 with a scale parameter β = 2.87. Under the Kalman fitler’s
gaussian zero-mean assumption for the residual, the Mahalanobis distance is computed
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as,
d2(ϵ) = ϵT(HkΣ(k + 1|k)HT

k + Rk)
−ϵ (4.7)
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Figure 4.13.: s1:χ2 − f it for the residual ϵ

If d2(ϵ) ≤ χ2(α), Measurement yk is acceptable. Otherwise, yk is rejected and K ← 0
A similar Filtering method was explained in Chang in [Chang2014]. In his work,

scaling factors are employed for manipulating Rk. In order to avoid tampering with Rk
which is also derived through Bayesian Inferencing, a simpler approach of rejecting the
measurement altogether is used. The simulations results are shown below.
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Figure 4.14.: s1:Estimated and Measurements of Pose affected by outliers

• In 4.14, the pose measurements that are affected with outliers are shown. In this

71



Chapter 4. EKF Robustness

(a)
0 10 20 30 40 50 60 70 80 90 100

d
[e

k
(k

+
1|
k
)]

0

50

100

(b)
0 10 20 30 40 50 60 70 80 90 100

d
[e

k
(k
|k
)]

0

50

100

(c)
0 10 20 30 40 50 60 70 80 90 100

tr
a
ce

0

0.02

0.04

0.06
Σ(k|k)
CRB(k|k)
Π(k|k)

(d)
0 10 20 30 40 50 60 70 80 90 100

x̃
(k
|k
)T
x̃
(k
|k
)

0

0.05

0.1

0.15

0.2

(e)
0 10 20 30 40 50 60 70 80 90 100

e
[m

]

0

0.1

0.2

0.3

0.4

(f)
0 10 20 30 40 50 60 70 80 90 100

e
[d
e
g
]

0

5

10

15

20

Figure 4.15.: s1:Errors in Estimation a)Prediction Mahalanobis distance b)Filtering Mahalanobis distance
c)Traces of State covariance, Cramer Rao Bound and the Squared Error matrix d)Squared Er-
ror e)Position Error and f)Orientation error; for EKF due to outliers in measurement

example, the outliers have been generated by setting randomly selected samples
to 0 across all channels of measurement. This replicates a typical situation like a
packet-loss or failure of Pose-detection system.

• In effect, an EKF converges to a steady-state wherein even highly variable residual
ϵ has substantially minimal effect. But as shown in figure 4.15, the estimate error
measures are too high for servoing purposes.

• In 4.16, the outlier-robust EKF was able to reject all the outliers with p− value =
0.6. The χ2 distribution was assumed to have a degree-of-freedom as 6, which is
the same as the number of measurement channels.

Remark 20. It is important to point out that the threshold selection in this study
was arbitrary and a rigorous Receiver Operating Characteristic (ROC) analysis has to
be performed. It was observed that the threshold changes with varying measurement
noise characteristics. So, the VB-EKF and the Outlier-Robust EKF have to be operated
together, which is an open area for future work.
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Chapter 5: Implementation

5.1. Multi-rate & Event-driven Implementation

The equations pertaining to the multi-rate implementation were derived in the chapter
3.2 in 3. The main integrator/predictor/controller was run at a sampling time, ∆ti = 0.01
seconds. Camera-based systems are typically slower and the reference system at DLR
was operating at 0.1 seconds. Evidently, for accurate and responsive servo control, the
estimator is required to produce accurate state-estimates from slow-sampled measure-
ments. This point has been adequately emphasized by Palmerini, Sabatini, and Gasbarri
in [Palmerini2016] concerning grasping assistance. Furthermore, vision systems are not
uniformly sampled and hence the time− o f − arrival is not deterministic. Hence, in this
thesis, a trigger-based Kalman filter was designed. Figure 5.1 demonstrates this where
the number of samples generated are incrementing randomly in a range, δt ∈

[
0.6, 0.9

]
.

The benefits of this approach to vision systems was first discussed in [Sridhar1993].

Figure 5.1.: Number of samples generated in vision systems, non-uniform

Another significant point that strikes out in vision systems is that, at the time-of-
arrival, the measurement is a function of a past state. That is, yk = h(xk−τ), where τ is
the the number of samples back in history where the state was recorded. This scenario
has been delineated in figure 5.2.
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Figure 5.2.: Out of Sequence Vision Measurements

Hence, after the update is made, a corresponding state propagation has to be per-
formed, so that the controller operates with the most recent state estimate. Particularly,
in systems with high dynamics, this can cause large estimation errors. As an alternative,
one can take a look at [Julier2005] and [Alexander1991] where the fusion of time-delayed
measurements has been derived. For a state-propagation, one must set K ← 0 in the
equations derived in the above works.

x̂(kd|kd) = x̂(kd|kd − 1) + K
(

ykd − h(x̂(kd|kd − 1)
)

(5.1)

x̂(k|kd) = x̂(kd|kd) +
∫ k

kd

f (x̂(kd|kd)) (5.2)

where kd = k− τ.
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Figure 5.3.: estimates: a), b), c) and d)→ orientation quaternion µ̄ and e), f) and g)→ position rc of the Target
grasping center with respect to Seriver end-effector

Figure 5.4.: estimates: a), b), c) and d) → orientation quaternion q̄ and e), f) and g) → angular velocity ω
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Figure 5.5.: estimates: a), b), c) → position vector r while d), e) and f) → linear velocity ṙ of the Target mass
center with respect to Servicer mass center

(a) Mahalanobis distance, d(ϵ) (b) log[trace(Σ(k|k))]

Figure 5.7.: EKF switching in presence pf outliers

78



Chapter 5. Implementation

• The sequence of figures from 5.3 to 5.7 show the results from a single pass of
the Multi-rate Event driven EKF for the nonlinear system s1. The theory from
previous sections about outlier rejection, multi-rate fusion et al have been employed
in this section.

• In the scenario, the first measurement arrives at t = 3 seconds. In t ∈
[
50, 60

]
,

a possible occlusion is simulated. The measurement is infested with quite a few
outliers too.

• In the time t ∈
[
50, 60

]
, the state estimates start deviating mainly due to integra-

tor sampling time and integrator type. A higher sampling rate provides a longer
feasible time-interval in which the measurements may be absent before the EKF
starts becoming erroneous.

• The velocity ṙ estimates are poor since this quantity is not directly sensed.

• Based on the theory in the previous chapter, it is easy to see the effectiveness of
Mahalanobis distance as a discriminator function for multivariate systems. All the
outliers have been rejected in the time period.

5.2. Multiple-sensor fusion

In the previous section, it was made clear that vision systems inherently come with
a delayed state measurement and the results were obtained for a single-sensor system.
For the purpose of grasping uncooperative targets, multiple sensors may be employed
for relative navigation, as mentioned in [Palmerini2016]. Hence, the requirement is to
perform multiple-fusion using the EKF. One of the seminal works in multi-sensor fusion
is found in [Willner1976]. Willner, Chang, and Dunn have discussed several strategies
that can employed. The strategy employed in this thesis is the Parallel filter in which
the measurement updates occur independently. No particular performance difference
was found in context of EKF whether Parallel or Sequential strategy was chosen.

For Parallel update

x̂(k + 1|k + 1) = x̂(k + 1|k) +
n

∑
i=1

Ki(zk+1 − hi(x̂(k + 1|k))

Ki = Σ(k + 1|k)HT
k+1,iS

−
k+1,i

Σ(k + 1|k + 1)− = Σ(k + 1|k)− +
n

∑
i=1

HT
k+1,iSk+1,i HT

k+1,i

(5.3)

79



Chapter 5. Implementation

The following sampling data was used to simulate the multiple-sensor fusion scenario.

Integration Time , ∆ti = 0.01seconds
Sampling Time for sensor A, ∆t1 = 0.05seconds
Sampling Time for sensor B, ∆t2 = 0.1seconds

Transmission delay for sensor B, δtd = 0.09

For the purpose of this thesis, the two sets of measurements were taken as both differently
sampled time-series of the same sensor.
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Figure 5.8.: s1:Errors in Estimation a)Traces of State covariance, Cramer Rao Bound and the Squared Error
matrix b)Squared Error c)Position Error and d)Orientation error; for EKF in multi-rate Parallel
update operation and no delay
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Figure 5.9.: Angular velocity ω and Linear velocity ṙ in multi-rate Parallel update operation and no delay

It was previously mentioned that measurements reported by the vision systems are
representative of a past state. In single sensor systems, as in, section 5.1, this was not
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a problem as a state propagation produced the optimal state. In a system with sensors
having different transmission delays, τ, the update mechanism becomes a little more
convoluted. It would be prudent to point out that in system with rapid dynamics, this
can cause large estimation errors.

The mathematical foundation of such measurement updates have been found by Julier
and Uhlmann, Alexander and Zhang, Li, and Zhu. Zhang, Li, and Zhu termed this
situation with transmission delays as an OOSM. From the ones in [Zhang2005], the
Algorithm-1 Global update equations were employed in this thesis. This was based
on the assumption that timestamps of measurement capture and reporting are well
known. This is akin to vision systems in which the camera’s image capture and the
vision systems’ pose estimate timestamps are likely to be known. Failure to account for
the Out of Sequence Measurements can lead to large errors as shown in 5.10 as compared
to 5.8.
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Figure 5.10.: s1:Errors in Estimation a)Traces of State covariance, Cramer Rao Bound and the Squared Error
matrix b)Squared Error c)Position Error and d)Orientation error; for EKF operated without
considering OOSM
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Figure 5.11.: s1:Errors in Estimation a)Traces of State covariance, Cramer Rao Bound and the Squared Error
matrix b)Squared Error c)Position Error and d)Orientation error; for EKF operated without
considering OOSM

It is interesting to note the oscillating behavior in the velocity in figure 5.11 in contrast
to the expected response in 5.9. This provides us with sufficient reason to develop an
EKF which is enabled for OOSM to avoid these errors when performing multiple sensor
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update in the EKF.

5.2.1. Optimal Update for Mulitple sensors

In 3.15 and 5.8, we had already built the mathematical foundation of using time-delayed
measurement to update the current state estimate. Following Zhang, Li, and Zhu’s work,
the formulae on Algorithm-1 are employed in this thesis.

x̂(d|k− l) = x̂(k− l|k− l) +
∫ d

k−l
f (x̂(k− l|k− l)

Σ(d|k− l) = Φ(k− l, d)ΣΦ(k− l, d)T + Qk−l,d

(5.4)

Equation (5.4) nominally propagates the system as soon as it receives the event for
camera’s captured image. Subsequently, an initialization of the recursion is made as
given in [Zhang2005].

x̂(d|k− l + 1) = x̂(d|k− l)+

ΣΦ(d, k− l + 1)T Hk−l+1S−k−l+1(yk−l+1 − h(x̂(k− l + 1|k− l)

Σ(d|k− l + 1) = Σ(d|k− l)−
Σ(d|k− l)Φ(d, k− l + 1)T Hk−l+1S−k−l+1Hk−l+1Φ(d, k− l + 1)Σ(d|k− l)

Uk−l+1,d = (I − Kk−l+1Hk−l+1)Φ(d, k− l + 1)Σ(d|k− l)
(5.5)

Thereafter, the following recursion continues until the measurement arrives.

x̂(d|n + 1) = x̂(d|n)+
Un,dΦ(n, n + 1)T Hn+1S−n+1(yn+1 − h(x̂(n + 1|n))

Σ(d|n + 1) = Σ(d|n)−
Σ(d|n)Φ(n, n + 1)T Hn+1S−n+1Hn+1Φ(n, n + 1)Σ(d|n)

Un+1,d = (I − Kn+1Hn+1)Φ(d, n + 1)Σ(d|n)

(5.6)

As soon as the measurement arrives, the optimal state is obtained as a linear combi-
nation of the current state and the measurement residual as given in (3.15),

x̂(k|k, kd) =x̂(k|k) + Ukd,k HT
kd

(Hkd Σ(kd|k)HT
kd
+ Rkd)

−(ykd − Hkd x̂(kd|k))
(5.7)
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The state error covariance is,

Σ(k|k, kd) = Σ(k|k)− Kkd Skd KT
kd

(5.8)

where instead of d, the delay is shown as kd. The total OOS time for the measurements
in the following simulation is 0.09 seconds, which still manages to affect the velocity
estimates as we witnessed before. On applying the above set of equations as an OOSM
component which remains live in the period, k− l + 1 < n < k, the following results are
obtained.
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Figure 5.12.: s1:Errors in Estimation a)Traces of State covariance, Cramer Rao Bound and the Squared Error
matrix b)Squared Error c)Position Error and d)Orientation error; Errors reduced due to OOSM
update
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Figure 5.13.: ω and ṙ: Improved estimates due to OOSM

• From 5.13, it is clear that the introduction of OOSM to the algorithm makes the
state current and hence is more accurate.
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• The difference is glaring in the figure 5.2.1. trace[Π(k|k)] is simply the covariance
between the residuals. The squared-error is also higher when OOSM is not being
employed.

Remark 21. Of course the impact of the OOSM depends on the noise characteristics
of the constituent sensors of the system. If the overall noise floor is high, the effect of
not using OOSM is small. However, for precise relative navigation, it is important to
consider time-aspects like this to increase the overall accuracy of the estimator.
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Chapter 6: Future work and discussion

In this thesis, an estimator was designed with robust features for pose estimation. How-
ever, there are some natural extensions to this volume of work that need to be pursued.

• In chapter 2, the observability analysis can be extended to studying sensor place-
ment strategy so that the manipulator’s end-effector positioning can aid the pro-
cess of estimation. In [Hinson2014], Hinson has made a similar study in his PhD
dissertation based on ideas shared in this thesis.

• Also, once the states and parameters have been estimated in s3, a balanced trun-
cation technique can be used to reduce the state-space to s2 and s1 sequentially.
In [Sandberg2002], Sandberg has provided detailed results for truncation of state-
space in time-varying systems. For a nonlinear observer like the EKF, these results
are directly usable.

• As observers for nonlinear systems, the Unscented Kalman Filter and the Particle
Filter have not been used for comparison. These comparisons will yield intuition
into the usability of the EKF for realtime systems.

• In chapter 1, the measurement model was defined with manipulator motion. The
equations of motion of the robot base due to actuation of the robot are given
by the generalized Jacobian as explained in [Umetani1989]. The model used in
this thesis should be improved with manipulator motion, so that the estimates are
produced even when the end-effector and base change their poses relative to the
inertial frame. The observation equation can be modified as given in (1.8).

• Such an extension also yields a multiple sensor fusion problem as discussed in
chapter 5. The measurement vector from the joint angles or Global Navigation
Satellite System (GNSS) can be used to improve the estimates. The results derived
in that chapter were intended for such utility. This is a direct extension of the
current volume of work.
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• There was no theoretical study made on the integrator choice for the state propa-
gator of the EKF. The standard Euler integration technique was used across the
breadth of this thesis. Numerical stability of the EKF is important for convergence
[Fitzgerald1971].

• At present, the SIL implementation is incomplete. The work has to be expanded
to incorporate the free-floating dynamics. This will greatly reduce the amount of
time taken to test control/estimation algorithms. Also, at DLR, such a system
would yield a testbench for basic tests before the the code is uploaded on to the
OOS-simulator.

• Although the VB-adpative system implemented in this thesis in chapter 4 is fully
functional, it is advisable to directly use the cost function or reprojection errors
from the vision-system as functional parameters for the measurement covariance
matrix. This will yield faster dynamic response for the estimation of the covariance
matrix.

• In this thesis, the pose measurements from the vision system are directly used for
the estimation problem. It is also an extension to combine the pose-estimation
scheme directly with the EKF derived here. In such a case, the measurement
vector would be a feature-set and the vision system can aid directly from the EKF
state estimates.

• Since the state error covariance matrix is a measure of accuracy of the estimation
scheme, this can be used directly for creating shared autonomy arbitration for the
purpose of grasping.

In the end, based on error timeseries presented for the different models, it can be
concluded that the visual servoing module of the OOS will benefit from an estimating
scheme for the purpose of grasping. The code developed during the thesis was installed in
the OOS-simulator at DLR. The results will be published later. Based on theoretical and
simulation studies pursued in this thesis, the servoing tasks should demonstrate stability
during times of occlusion, outliers in vision-system or other contingencies which can
cause the feedback mechanism of the controller to fail. In the pre-grasping phase, the
convergence mechanisms will ensure that the parameter identification problem does not
cause an estimation failure. Hence, the problems of On-orbit servicing and ADR can be
addressed as a common one. The OOSM update has created a framework for multiple
sensor fusion for future extension work by adding more sensor units. Additionally, it
was shown that this ensures that the state remains current with minimum squared error
as compared to without it. Additionally, the model developed in the first chapter acts
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as foundation for performing estimation during manipulation, which will be pursued as
the next step forward.
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Appendix A: SIL

A.1. SIL for the Robotic manipulator

A SIL can be viewed as a simulation-based evaluation of software algorithms. As a part
of the thesis work, a SIL solution for the problem of uncooperative Target grasping was
developed. The simulations were developed using MATLAB as a proof of concept but for a
hardware target implementation, the program for s1 was developed on Simulink. This
program is implemented in On Obrit Servicer simulator for the purpose of accurate pose
estimations at DLR, Oberpfaffenhofen.

(a) EKF for s1 (b) OOSM for camera delays

(a) EKF predictor for s1 at 100Hz (b) EKF asyncrhonous measurement update
at [0.18, 0.22] seconds
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In this thesis, the estimation and control algorithms were written in MATLAB/Simulink.
In figure A.1, the EKF and the OOSM blocks, and in A.1, the Predictor/Update blocks
have been shown. The predictor works at the controller rate, which is 100Hz for simula-
tions and 1KHz for hardware. The camera captures uniformly every 0.1 second but the
vision system has a transmission delay because of computing time.

A.1.1. Camera simulation using simEvents

The vision system as a measurement device is asynchronous in its data reporting.
The camera’s functining was simulated in simEvents which is a Simulink toolbox

that provides Discrete-event simulation engine for analyzing event-driven models, like
the EKF.

(a) Camera/Vision system

• The camera itself was simulated by a constant pulse running at 10Hz, which gener-
ated the discrete-event entities in simEvents. The reader is referred to [Gray2007]
for more details about the software.

• As soon as an attribute (computed pose), is set to the entity, a function call named
cam_start_time is generated which triggers the OOSM to start running its recur-
sion.

• The vision system’s indeterminate delay is modeled using the server block. By
attaching an Event based Random number to its input, the camera pose data is
delayed in the range of 0.08 to 0.12. This is similar to typical observations of the
vision system on the Servicer simulator at DLR. This is shown in figure A.4.

• Once the server has dispatched the entity, another function call named meas_trigger
is generated which is when the measurement is available, as shown in figure A.5.
At this point OOSM must terminate and perform the update as explained in the
previous chapter.

A.1.2. Dynamic Simulation

The environment dynamics were simulated using V-REP which is a standard testbed
for such simulations as in [Rohmer2013]. In [Ivaldi2014], the authors have made a
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Figure A.4.: Trigger generation for image capture

Figure A.5.: Trigger generation for available measurement

comprehensive study on simulation software for dynamics. V-REP was chosen because of
its flexibility, off the shelf CAD models and active user support community.

• A UR5 (universal robot) was configured with DH-parameters in V-REP for forward
kinematics.

• A simple resolved-rate motion-controller was designed for the UR5.

• A vision-sensor was mounted on the end-effector of the robot as shown in figure
A.6 a). The software does not provide the internal calibration matrix of the vision
sensor. As a result, a Checkerboard calibration was performed with a 10× 7-board
as shown in c) and d) in figure A.6. The intrinsic camera matrix was found to be,

Ki =

442.3313 0 0
0 442.0068 0

344.017 284.6112 1

 (A.1)

with mean reprojection error of 0.1956.
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• The CAD model of the OOS-Target was imported and the scene was created,
as demonstrated in figure A.6 a) which could be manipulated remotely using
MATLAB/Simulink.

• At the time, there was no dedicated client-server software to connect to V-REP
directly from Simulink but there is support for MATLAB. A System Object was
developed which could allow a V-REP-SIMULINK client-server connection for
SIL simulations.

(a) UR5 mounted with vision sensor, V-REP (b) UR5 servicer with OOS-SIM-Target

(c) Calibration instance: 1 (d) Calibration instance: 7

Figure A.6.: V-REP environment

In [Hosseini2016], a similar prototyping was performed for an Octorotor using MATLAB
and ADAMS.
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Figure A.7.: V-REP-SIMULINK client-server

A.1.3. Pose estimation

Although the thesis is titled around pose estimation, the aspects of machine vision are
off the scope of this work. At DLR, the vision system is a monocular odometry system.
For the purpose of SIL, AprilTags were attached to the Target model which could be
identify the pose of the body using a C++ library. A mex-function was written to perform
this simple task.

AprilTag-C++

MATLAB|Simulink Controller/Estimator

Dynamic model OOS-SIM

Figure A.8.: SIL block-diagram

Finally, a SIL framework was setup which will enable evaluation of estimation and con-
trol algorithms, especially those pertaining to grasping bodies that move under torque-
free motion in space. An example of AprilTag is shown on the Target satellite in figure
A.6 b).
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