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Abstract 

 

The research carried out during these three years was developed as part of the MolArNet Project, 

supported by the European Commission, which aims at giving a first demonstration of molecular 

Quantum-dot Cellular Automata (QCA) elementary devices as a feasible approach to 

unconventional computation. QCA represent a smart model of alternative nanoscale logic 

devices and consist of an organized array of cells, each containing quantum-dots. Binary 

information can be encoded, without current flow, in the molecular charge configuration of a cell 

and propagated to the next neighbor cell within the array. 

Here we describe the design and synthesis of novel alkyl substituted guanosine-ferrocene 

derivatives, and their self-assembly at the solid/liquid interface on highly oriented pyrolitic 

graphite (HOPG). Supramolecular self-assembly of these derivatives has been accomplished in 

solutions by NMR and CD spectroscopy and on surface by STM and AFM techniques. 

We have shown that supramolecular structures formed by ferrocene-exposing guanosines in 

solutions and at surfaces can be tuned by introducing sterically demanding substituents, ranging 

from G-ribbons to G4 cation-free architectures. This self-assembly is governed by the formation 

of H-bonds between guanosines that dictates the spatial localization of ferrocenes, ultimately 

forming 1D conjugated arrays that may be employed as prototypes of supramolecular nanowires.  

In this thesis we also explored the possibility of using porphyrin derivatives carrying ferrocene 

residues directly connected to the porphin core, as alternative approach to QCA implementation. 

Preliminary electrochemical studies using cyclic voltammetry show that porphyrins can be used 

as a two/four dots cells.  

During the period at the University of Maryland, in the Prof. Jeffery Davis’ research group, I 

worked on the synthesis and characterization of specific dyes, containing azobenzene groups, in 

order to insert them in the guanosine hydrogels. These dyes are capable, in principle, to change 

their conformation in a reversible way, through an external light stimulus. Thus, it could be 

possible to obtain photoresponsive hydrophilic gels, able to break and reform themselves in a 

controlled manner. 
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“Je suis de ceux qui pensent que la science est d’une grande beauté. Un scientifique dans son 

laboratoire est non seulement un technicien: il est aussi un enfant placé devant des phénomènes 

naturels qui l’impressionnent comme des contes de fées.” 

 

“Io sono tra quelli che pensano che la scienza abbia una grande bellezza. Uno scienziato nel suo 

laboratorio non è solo un tecnico: è anche un bambino posto di fronte a fenomeni naturali che lo 

impressionano come un racconto di fiabe.” 

 

Marie Curie 
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I. Nanotechnology 

1.1 Introduction  
“What I want to talk about is the problem of manipulating and controlling things on a small scale. 

As soon as I mention this, people tell me about miniaturization, and how far it has progressed 

today. [...] But that's nothing; that's the most primitive, halting step in the direction I intend to 

discuss. It is a staggeringly small world that is below”. 

 

On December 29, 1959 at the annual meeting of the American Physical Society
1
, the physicist 

Richard Feynman gave a lecture “There's Plenty of Room at the Bottom”, in which he suggested the 

possibility of direct manipulation of individual atoms and molecules as a more powerful form of 

synthetic chemistry in order to create devices and materials without violating the laws of physics. 

He regarded microtechnology as a frontier to be overcome by the development of a new technology 

able to produce assembly and replicate small components. He focused on complex, active, 

nanoscale biological mechanisms as an inspiration for nanoscale technology. Feynman was the first 

to outline a world of technologies that would work and build at the ultimate, atomic scale. He 

viewed this world from a top-down perspective, as the ultimate frontier for miniaturization.  

The term “nanotechnology” was coined a decade later, by professor Norio Taniguchi, during his 

explorations of ultraprecision machining. It wasn't until 1981, with the development of the scanning 

tunneling microscope that could "see" individual atoms, that modern nanotechnology began. 

Thanks to the development of new techniques and instruments, nanotechnology has spread into 

different fields, including chemistry, physics, material science, engineering, and biology.  

Today nanotechnology is one of the most active research areas, that has changed and will continue 

to change vision, expectations and abilities to control the material world. These developments will 

definitely have an impact on the construction industry, particularly the field of construction 

materials. 

Figure 1 illustrates typical biological objects, whose sizes belong to the significant range between 1 

to 100 nm (made of 10 to 10
6
 atoms). 

https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Chemistry
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Figure 1 The size window of nanoparticles in comparison to other familiar bodies. 

 

The interest in nanoparticles of these typical sizes is due to the fact that the magnetic, optical and 

electronic behavior of bulk materials can change when their size approaches the nanometer scale.  

 

1.2 Top-down and bottom-up approaches 

Top-down and bottom-up models are both strategies of information processing, used in a variety of 

fields from computer science to humanistic and scientific theories. The top-down approach plans to 

start with a bulk material and then break it into nanoparticles by mechanical attrition, chemical or 

other form of energy and etching techniques.
2
 This strategy often uses the traditional workshop or 

microfabrication methods, where externally controlled tools are used to cut, mill, and shape 

materials into the desired shape and order. Techniques such as photolithography and inkjet printing 

belong to this category.  

One of the earlier definitions of nanotechnology, given by Drexler
3
, was referred to a bottom-up 

approach:“the control of matter based on molecule-by-molecule control of products and by-

products through high-precision systems as well as the products and processes of molecular 

manufacturing, including molecular machinery.”. Here, organic and inorganic structures are 

constructed atom-by-atom or molecule-by-molecule. In the bottom-up approach, materials and 

devices are built from molecular components, which assemble themselves via molecular 

recognition. Both approaches can be followed in either gas, liquid, supercritical fluids, solid state, 

or in vacuo. Scientists are interested in the ability to control: a) particle size b) particle shape c) size 

distribution d) particle composition e) degree of particle agglomeration (Figure 1.2). 

https://en.wikipedia.org/wiki/Information_processing
https://en.wikipedia.org/wiki/Photolithography
https://en.wikipedia.org/wiki/Inkjet_printing
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Figure 1.2 Schematic nanostructure synthesis and assembly approaches. 

 

One of the most direct effects of reducing the size of materials to the nanometer range is that several 

phenomena become significant, for example statistical mechanical effects or quantum mechanical 

effects. In the "quantum size effect"
4
 the electronic properties of solids are altered with great 

reductions in particle size. This effect does not come into play on going from macro to micro 

dimensions, but can become important when the nanometer size range is reached, typically at 

distances of 100 nanometers or less (or at very low temperature), the so-called quantum scale. Once 

the effect is originated on the nanometer scale, it can operate on a macro level, generating some 

paradoxes like in the Schrödinger's cat experiment or electron tunneling experiment. Most 

fundamental processes in molecular electronics, organic electronics and organic semiconductors 

also originate in the quantum realm. 

In addition, materials reduced to the nanoscale can show different properties compared to those they 

exhibit on macroscale. For instance, opaque substances can become transparent (copper); stable 

materials can turn combustible (aluminium); insoluble materials may become soluble (gold). A 

material such as gold, which is chemically inert at normal scales, can be a potent chemical catalyst 

at nanoscales. Much of the fascination with nanotechnology stems from these quantum and surface 

phenomena that matter exhibits at the nanoscale.
5
 

 

https://en.wikipedia.org/wiki/Physical_paradox
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Electron_tunneling
https://en.wikipedia.org/wiki/Electron_tunneling
https://en.wikipedia.org/wiki/Molecular_electronics
https://en.wikipedia.org/wiki/Organic_electronics
https://en.wikipedia.org/wiki/Organic_semiconductor
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1.3 Nanomaterials 

The concept of nanomaterials could be summarized in the following definition: “Nanomaterials 

represent nanoindustry products in the form of materials containing structural nanoelements that 

substantially improve or cause qualitatively new mechanical, chemical, physical, biological, and 

other properties”
6
. 

Nanomaterials could be categorized with different methods of classification
7
: according to their 

origin (natural or artificial), according to dimensions (from zero to three-dimensional 

nanomaterials) or on their structural configuration (based on the different nature of structural 

nanoelements). In this last classification, nanomaterials can be divided into four categories: 

 Carbon Based Materials 

 Metal Based Materials 

 Dendrimers 

 Composites 

Carbon Based Materials: composed mostly of carbon in several allotropic forms, including 

crystalline, three-dimensional (diamond, graphite and lonsdaleite); two dimensional (graphene), 

one-dimensional (nanotubes, cylindrical form), zero dimensional (fullerene, spherical and 

ellipsoidal forms). These materials demonstrate unique physical and chemical properties such as 

high strength, excellent resistance to corrosion and exceptional electrical and thermal conduction 

and stability. Thanks to these features, they have many potential applications, including improved 

films and coatings, stronger and lighter materials, and applications in electronics (Figure 1.3). 
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Figure 1.3 The common allotropes of carbon occur in different crystallographic forms (Reviews in mineralogy 

and geochemistry; 2013, 75(1), 4). 

 

Metal Based Materials: The power of these nanoparticles is in the chemical binding and conjugated 

properties. These nanomaterials include nanogold, nanosilver, oxides with metal bases (such as 

titanium dioxide, TiO2) and quantum dots (Figure 1.4). A quantum dot is a small semiconductor 

crystal, comprised of hundreds or thousands of atoms, and whose size is on the order of a few to a 

few hundred nanometers. Changing the size of quantum dots changes their optical and electronic 

properties. 

 

 

Figure 1.4 Schematic representations of the different stages during golden QD synthesis (top), and corresponding 

TEM images (bottom). (Reviews: Nature Nanotechnology 10, 170–175 (2015). 
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Dendrimers: nanosized polymers
8
 built from highly branched units, representing a half step 

between molecular chemistry and polymer chemistry. The surface of a dendrimer possesses 

numerous chain ends, which can be tailored to perform specific chemical functions (Figure 1.5). 

Dendrimers are combinable to create hollow cavities where other molecules could be placed (useful 

for biomedical applications, as drug delivery systems) or used as sensors
9
. 

 

 

Figure 1.5 Basic dendrimer components (Nanoscale, 2014,6, 2476-2501). 

 

Composites: multiphase solid material where nanoparticles can combine with other nanoparticles or 

with larger, bulk-type materials to form unique products
10

. Nanoparticles, such as nanosized clays, 

are today added to products ranging from auto parts to packaging materials, to enhance mechanical, 

thermal and flame-retardant properties. The most common examples of these materials are colloids, 

gels and copolymers (Figure 1.6). 

 

 

Figure 1.6 Sol-gel processing routes. 

http://en.wikipedia.org/wiki/Colloids
http://en.wikipedia.org/wiki/Gels
http://en.wikipedia.org/wiki/Copolymers
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1.4 Self-assembly of nanoparticles 

Materials science needs an accessible strategy to fabricate nanomaterials with the fine resolution of 

bottom-up methods and the arbitrary structure of top-down processes. Modern synthetic chemistry 

has reached the point where it is possible to prepare almost any type of molecules, from 

pharmaceuticals products to commercial polymers. In the bottom-up approach this ability is raised 

to the next level, in order to assemble molecules in a specific manner into a supramolecular entity. 

In the framework of nanofabrication by bottom-up synthetic chemistry, self-assembly has provided 

a powerful way of making materials and organizing them into functional constructs designed for a 

specific purpose.  

The strategy of self-assembly allows structures synthesized with bottom-up method in the nanoscale 

to organize themselves into regular patterns or structures by using local forces to find the lowest 

energy configuration. 

Self-assembly of nanoparticles could be useful for a variety of applications. For example, building 

sensors to detect chemical and biological molecules. In addition, it can also be exploited on creating 

computer chips with smaller component sizes, which can then allow more computing power to be 

stored on a chip. Moreover, it can be possible to attach molecules onto specific clusters and 

substrates, such as thiol (-SH) end group on the gold surface
11

. These approaches utilize the 

concepts of molecular self-assembly and/or molecular recognition, which will be discussed in detail 

in the next chapter. 

Despite the top-down methods, bottom-up approaches should be capable of producing devices in 

parallel and at a lower price, but could potentially be overwhelmed as the size and complexity of the 

desired assembly increases. Most useful structures require complex and thermodynamically 

unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on 

molecular recognition in biology, most notably Watson–Crick base pairing and enzyme-substrate 

interactions. The challenge for nanotechnology is whether these principles can be used to engineer 

new constructs in addition to natural ones. 

 

1.5 QCA 

In the electronic industry, common digital circuits have made extensive use of Field-effect transistor 

(FETs),
12

 a semiconductor device used to amplify electronic signals or as electronic switch from 

“on” to “off” state due to encode binary information. Despite vast improvements in integrated 

circuit fabrication technology over the past three decades, the role played by the FETs has 

maintained acceptable performance as current switch.
13

 It is able to use much lower levels of 

current and, as a result, it has enabled far higher degrees of integration to be attained than would 

https://en.wikipedia.org/wiki/Molecular_recognition
https://en.wikipedia.org/wiki/Semiconductor_device
https://en.wikipedia.org/wiki/Electronic_amplifier
https://en.wikipedia.org/wiki/Electronics
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have been possible by any other means. However, these advances are only partial, because also the 

most advanced chips use the same paradigms compared to their precursors. Additionally, the 

current levels of miniaturization are hardly improvable (Moore's Law). Further difficulties have 

arisen by approaching the quantum nanoscale, such as high power dissipation and short-channel 

effects, which lead to performance degradation. Achievement of ever higher levels of integration in 

microelectronics will require a shift from the FET based paradigm to a revolutionary approach to 

computing.
14

 

In order to overcome these limits, new frontiers in nanoscale computing devices have been 

developed. In the ‘90s, Lent
15

 proposed an alternative computational model system, based on 

quantum-dot cellular automata (QCA). This new approach opens the door to applications in the 

fields of micro- and nano-electronics, most notably the construction of a new transistorless method 

for computation, where exchange of information between components no longer relies on moving 

particles along physical communication channels, but uses quantum interactions between 

elementary particles, with advantages in terms of energy consumption, miniaturization and 

performance. 

Each device designed for the representation of data and to perform computational roles must have 

two fundamental properties: 1) kind of "barriers" which allow them to distinguish between two 

states (from state 0 to state 1 for example) and 2) the ability to switch from one state to another and 

vice versa. In digital electronic systems this "barrier" is created from the transistors, which base 

their operation on the state of the electric charge, the QCA instead bases its operation on the space 

disposition. 

The concept of QCA does not refer to a particular technology but rather to a theoretical scheme. 

Devices are composed of cells, each containing quantum-dots. A dot, in this case, is simply a region 

in which charge is localized.
16

 Figure 1.7 illustrates a schematic four-dot QCA cell: a square of 

nanometric dimension where four corners are occupied by four quantum dots which act as charge 

containers. In the model presented by Lent, two electric charges try to occupy the farthest possible 

site with respect to each other in order to minimize their mutual Coulomb interaction.  

 

 

Figure 1.7 A cell with four quantum-dot. White ones are free, while red ones are occupied by electric charges. 
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Since diagonal is the largest distance in a square, there are two possible conditions, as shown in 

Figure 1.8: two degenerate ground states, corresponding to two different types of polarization, P=-1 

and P=+1, which are associated with logic binary states “0” and “1”, respectively. 

 

 

Figure 1.8 Two possible states of QCA: on the left state 0, on the right state 1. 

 

The potential barrier existing between the dots makes it possible the movement of the charges from 

one dot to another only by tunnel effect. Furthermore, displacements from one cell to another are 

not permitted because potential barriers are high enough to prevent inter-cell tunneling.
17

 An 

electrostatic perturbation causes a sudden and highly non-linear switching between the two states of 

the cell. 

The second requirement is the possibility of changing the charge configuration by means of an 

external signal (input), through electron tunneling between neighbouring sites (dots) of the cell. In a 

QCA binary wire (Figure 1.9) the left-most cell, called driver cell, is fixed with a polarization 

representing the ground state configuration. By an external input voltage, the polarization of driver 

cell can be switched and this configuration change propagates to other cells by coulomb 

interactions. 
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Figure 1.9 QCA binary wire. Cells arranged in a line all take on the same value. 

 

This cell-cell interaction is the basis of QCA device operation and binary information can be 

encoded without current flow along the entire array, enhancing logic operations with ultra-low 

power dissipation.
18

 According to spatial organization of the cells different QCA structures can be 

obtained, each with a particular geometry, which can employed to several computer applications. 

Despite the QCA theoretical model is well developed and several papers tried to explore possible 

candidate molecular systems, a practical implementation of the QCA model into a real molecular 

system is still far from being reality. 

 

1.6 Molecular quantum-dot cellular automata 

Since the dot size can ultimately be as small as a single molecule, the QCA architecture offers 

ultrahigh device density, and is predicted to be both faster and more energy efficient than 

conventional complementary metal–oxide–semiconductor technology. Furthermore, molecular 

QCA cells should have state energy difference of two polarizations greater than the thermal energy 

at room temperature. Indeed the energy difference scales inversely with size and at the molecular 

level.
19,20 

QCA devices can be contracted so that a single molecule can act as a QCA cell. Redox 

centers within the molecule can act as quantum dots while molecular bonds form tunneling paths. 

This alternative approach to realize QCA logic gates has many advantages. At first, molecules 

provide QCA cells of uniform size,
21

 with high device density (in the range of 10
11

–10
14

 devices 

cm
−2

). Besides, the intrinsic bistability of the charge configuration results in dipole or quadrupole 
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fields which couple strongly to the state of neighboring molecules. In order to have a practical 

application at computational level, the presence of functional groups or linkers is necessary to 

ensure the anchoring and a proper orientation on a solid surface as well as to set the input signal and 

detect the output signal.  

Several molecules have been investigated as candidates for construction of molecular QCAs. 

Initially, Lent focused on a simple molecular structure, shown in Figure 1.10, first proposed by 

Aviram
22

 and later studied by Hush et al.
23

 The utility of the Aviram molecule is especially 

theoretical because of its instability and its too simple structure (for example, it doesn’t possess 

groups which allow anchoring on surfaces). However, it is suitable to illustrate the basic features 

that molecular units suitable for QCA should possess. 

 

 

Figure 1.10 Two views of Aviram molecule. 

 

Aviram molecule
24

 (1,4-diallyl butane radical cation) consists of two allyl groups connected by a 

butyl bridge. Lent studies related in particular to the molecular cation for which one allyl group is a 

neutral radical and the other is cationic (the molecular anion behaves very similarly). The three-

carbon π-system in the allyl group has a doubly occupied bonding level and a nonbonding level 

which is singly occupied in the neutral allyl radical and unoccupied in the allyl cation. The unpaired 

electron can flip between the nonbonding levels at the opposite allyl end-groups with little changes 

on the molecular geometry. 

This system provides an example of localized states with nonbonding character which can play the 

role of dots for QCA. If the charge is resident in only one end but not the other, the molecule will 

develop a dipole moment, which changes sign when the electron tunnels from one end to the other. 

Because the charged end has one less electron than does the neutral end, it will be helpful to view 

this process as a hole tunneling from one allyl end-group to the other. QCA action is possible 
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because the dipole field from one molecule can cause the dipole moment of a neighboring molecule 

to change sign; this confirms the validity of Aviram molecule as a prototype of molecular QCA. 

 

1.7 Ferrocene fragments for molecular QCA cells 

Ferrocene (Figure 1.11) and its derivatives fit molecular QCA requirements and have been the 

subject of extensive study due to their unique structural, spectroscopic and electrochemical 

properties.
25

 Ferrocene was first prepared in 1951 by Pauson and Kealy,
26

 who reported the reaction 

of cyclopentadienyl magnesium bromide and ferric chloride. Ferrocene is part of the class of 

metallocenes in which interactions between the d-orbitals of the Fe (II) metal centre with the π-

orbitals of the two planar cyclopentadienyl ligands (C5H5-) form the metal-ligand bonds. Thus, all 

the carbon atoms in the cyclopentadienyl rings are bonded equally to the central Fe
2+

 ion.  

 

Figure 1.11 Ferrocene molecule. 

 

Ferrocene exhibits aromatic properties and is thermally very stable. It is also resistant to acidic and 

basic reagents. Oxidation of ferrocene gives a stable cation called ferrocenium.
27

 Substituents on the 

cyclopentadienyl ligands alter the redox potential. Ferrocene derivatives exhibiting multiple 

ferrocene groups, with the potential possibility of producing mixed-valent states, are being actively 

explored for application as molecular diodes. 

From this perspective, another molecular four-dot cell
28

 for the quantum cellular automata has been 

evaluated by Lent and coworkers. X-ray structure determination of this four-dot cell revealed four 

ferrocenes arranged in a square at the corners of a cyclobutadiene linker as shown in Figure 1.12. 

Each ferrocene group acts as a quantum dot, and a Co atom in the center of the square provides a 

bridging ligand which acts as a tunneling path. This molecule has two mobile electrons which 

occupy the antipodal sites due to Coulomb interaction, thus providing two stable charge 

configurations suitable for representing binary information. 

 

https://en.wikipedia.org/wiki/Iron%28III%29_chloride
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Figure 1.12 Left: Self-assembly of 4 quantum dots. Right: The HOMOs of the two stable states of the molecule. 

 

In addition, Lent and coworkers constructed a two units supramolecular system, with the distance 

between two cell centers (Co atoms) fixed as two times of the square lateral length, in order to 

satisfy the second key requirement of a QCA molecule. The electronic charge configuration of one 

molecule responding to its neighboring molecule represents a quadrupole-quadrupole interaction. 

The results support the hypothesis that Coulomb interactions between molecules can be exploited 

for binary information propagation from one molecule to another. The practical application of this 

molecule is not possible because of the absence of appropriate groups for anchoring on a surface, as 

in Aviram molecule. However, further progress in the study of molecular QCA is represented by the 

fact that the coupling between cells is obtained by self-assembly, combining the principles of 

quantum computation with supramolecular chemistry. 

Lent and colleagues have also reported a functionalized molecule containing unsymmetrical mixed-

valence complex (two different redox ferrocene units) and rutenocene.
29

 The molecule was then 

supported in its corresponding oxidized form to a silicon surface through a binding linker, forcing 

the molecular orientation in a certain position. Under an electric field Fe(II)-Ru(III) and the Fe(III)-

Ru(II) cations exchange an electron between the Fe and Ru sites at the potential where metal 

energies are equalized. A compound like this represents an advance toward the effective practical 

application of molecular quantum cells.  

Despite the many challenges that remain, thus far all of the experimental results support the possible 

implementation of QCA at the molecular scale. The use of molecules in quantum computation is 

still developing, however it is clear as this new approach could offer many advantages: further size 

reduction and devices with increasing performance and density. This is accompanied by the 

possibility to operate at room temperature, while with metal dots is necessary to adopt cryogenic 

temperatures. 
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II.   Supramolecular chemistry 

2.1 Introduction 

“The extraordinary and to some extent inexplicable production of urea without the assistance of 

vital functions, for which we are indebted to Wöhler, must be considered one of the discoveries with 

which a new era in science has commenced.”
1
 

 

In 1828, a German chemist Friedrich Wöhler was able to synthesize urea, an organic compound 

found in mammalian urine, by heating cyanic acid and ammonia in vitro.
2
 The simple experiment of 

Wohler had a huge impact in the history of chemistry, overcoming definitely the line between 

organic and inorganic synthesis and consequently the "vitalism" concept
3
 on the functioning of 

living cells on which was based the whole chemistry of the XVIII century. 

Over the years, chemical synthesis has developed different methods in order to build more complex 

molecular structures from smaller molecules, by creating and breaking covalent bonds between 

atoms. The progress of organic synthetic chemistry and polymer chemistry has led to a broad 

spectrum of low and high molecular weight molecules, from dyes to medicines. In all those cases, 

building atoms are linked to each other by covalent bonds. This type of interaction seemed the only 

possible way to synthesize complex organic compounds and for decades the synthetic activity 

moved to the refining of synthetic techniques.  

By taking inspiration from biological systems, synthetic chemists can design new highly 

sophisticated artificial systems, able to respond to external stimuli. However, “chemistry is not 

limited to systems found in biology, but is free to create unknown species and to invent novel 

processes. So the traditional chemistry is increasingly moving towards a new approach, a new 

perspective for the development of supramolecular chemistry.” 

The current definition of supramolecular chemistry was given by Jean-Marie Lehn, who was 

awarded the Nobel Prize in 1987
4
, together with D.J. Cram and C.J. Pedersen, for his studies on the 

chemical basis of “molecular recognition”. He wrote that: “beyond molecular chemistry, supra-

molecular chemistry aims at constructing highly complex, functional chemical systems from 

components held together by intermolecular forces.”.
5
 

Following this definition, a supermolecule is an organized, complex entity that is created from the 

association of two or more chemical species held together and organized by means of 

intermolecular binding interactions. Supramolecular structures are the result of both additive and 

cooperative interactions, including hydrogen bonding, π-π stacking interactions, electrostatic 

interactions (ion-ion, ion-dipole and dipole-dipole), dispersion and induction forces (van der Waals 
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forces) and hydrophobic/solvatophobic interactions. The resulting supramolecule shows properties 

which are different from the sum of the properties of each individual component.  

Individually, the energies involved in the formation of supramolecular aggregates, with the 

exception of the coordination bond, are much weaker than those of covalent bonds. The weak 

nature of the interactions allows automatic adjustments during the assembly process due to its 

reversibility. The reproducibility of these interactions allows us to refer to such systems as self-

organized. 

 

2.2 Self-assembly in supramolecular systems  

As defined by Lehn, self-assembly is the prerogative of those systems which are able to self-

organize spontaneously, to generate a well-defined and ordered supramolecular architecture. The 

constituent units, led by molecular recognition and intermolecular non-covalent interactions, behave 

in a programmed manner, forming complex structures such as layers, membranes, micelles or liquid 

crystals. The importance of self-organization is such that Lehn defines it as “evolutionary drive 

towards more complex forms of matter“
6
 and molecular interactions through non-covalent bonds 

are the foundation of many biological processes: protein-substrate binding, enzymatic reactions, 

antigen-antibody recognition are just a few examples. 

DNA (Figure 2.1) is a typical example of a biological macromolecule. Base pairing via either 

double or triple hydrogen bonds allow the formation of the famous double helix from individual 

strands, and provide the means to read out and to replicate the genetic information stored in it. 
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Figure 2.1 DNA double helix and nucleobases coupling through hydrogen bonding interactions. 

 

The canonical Watson and Crick base pairing is crucial in the formation of DNA double helix and 

in the storage of genetic information. It comprises two of the most common geometries involving 

the pairing of deoxyadenosine (dA) with deoxythymidine (dT) and deoxyguanosine (dG) with 

deoxycytidine (dC) through the formation of two and three hydrogen bonds, respectively. 

The process of self-organization can be exploited to create also synthetic compounds. The desired 

supramolecular entity was designed storing the information in order to organize itself a in specific 

structure. 

A self-organization process may be considered to involve three main stages :  

 Molecular recognition for the selective binding of the basic components.  

 Growth through sequential binding of multiple components in the correct relative 

disposition.  

 Termination of the process, requiring a built-in feature, a stop signal, that specifies the end 

point.  

Suitable encoding by manipulation of structural subunits and processing through interactional 

algorithms should give access to a variety of systems. 
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2.3 Guanine and G-quartet 

Nucleobases are excellent building blocks for construction of supramolecular aggregates, due to 

their ability to form non-covalent interactions.
7
 They are well known to form complementary H-

bonds between specific base pairs, according to Watson and Crick base pairing in DNA. Alternative 

hydrogen bonding patterns, such as the Hoogsteen base pairing can also occur, giving rise to 

complex and functional tertiary structures (Figure 2.2). This last mode of pairing implies the N
7
 

position (as a hydrogen bond acceptor) and amino group (as a donor) of the purine base, which 

binds the Watson-Crick (N
3
-N

4
) edge of the pyrimidine base. 

 

 

Figure 2.2 Watson-Crick edge and Hoogsteen base pairs. 

 

Among DNA nucleobases, guanine (G) is the most versatile scaffold, containing both a Watson-

Crick edge and an Hoogsteen edge
8
, and exhibits a very rich self-assembly behavior. The Watson-

Crick edge has two hydrogen bond donors (N
1
H, N

2
H) that can hydrogen bond with the two 

hydrogen bond acceptors (O
6
, N

3
 or N

7
) on the Hoogsteen edge. Depending on the environmental 

conditions, guanine can undergo different self-assembly pathways resulting in various well-distinct 

architectures including dimers, tetramers, ribbons, and helical structures. Among them, the best 

known is the so-called G-quartet which is a macrocyclic array of four guanines, hydrogen bonded 

through their self-complementary Watson-Crick (N
1
H and N

2
H) and Hoogsten (O

6 
and N

7
) edges.

9
 

Carbonyl oxygens point to the center of these quartets, creating a negative charge which is 

stabilized through coordination of O
6
 with a monovalent or divalent cation of suitable size (usually 



Chapter II. Supramolecular chemistry 

20 
 

Na
+
, K

+
). The other important architecture is the ribbon-like structure, characterized by a different 

hydrogen-bonding pattern (Figure 2.3). 

 

Figure 2.3 Guanine structure and possible linear and cyclic self-assembled structures. 

 

2.4 G-quadruplex 

The ability of guanine derivatives to form aggregates is known since 1910, when Bang
10

 reported 

gel formation of a highly concentrated solution of guanylic acid (Guanosine 5’-monophosphate, 5‘-

GMP). In 1962 Davies and coworkers
11

 identified through X-ray diffraction the G-quartet structure 

as the structural unit behind hydrogels formed by 5’-guanosine monophosphate (5’-GMP). But, 

only several years later research activities in the field of G-quartet related molecular systems have 

grown exponentially, due to the existence of the G-quartet motif in many biologically important 

systems in DNA and RNA structures.
12

 Now G-quartet structures can be found in many diverse 

areas such as molecular biology, medicinal chemistry and nanotechnology. 

G-quadruplex
13

 structures can form in guanine-rich DNA or RNA strands and consist of guanine 

tetrads (G-quartets) stacked on each other and stabilized by central monovalent cations, which 

interact with the lone pairs on the O
6
 atoms surrounding the central core (Figure 2.4). In mammalian 

cells this role is mainly played by K
+
, which has a higher intracellular concentration (140 mM) than 

Na
+
 (10 mM). G-quadruplexes can form spontaneously at sufficiently high concentrations of 

guanine. In particular, oligonucleotides with contiguous runs of guanine, such as d(TGGGT) can 

form stacked structures with the G-quartets linked by the sugar-phosphate backbone. 
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Figure 2.4 G-quadruplex structure. 

 

There are different types of G-quadruplex structures, depending on the involvement of one or more 

strands, on the length and composition of G-rich sequences. They can form within a single strand of 

DNA or RNA (intramolecular G-quadruplex) or from the interaction of two or more strands 

(intermolecular G-quadruplex). These strands have a directionality described as from 5’-end to 3’-

end and they can be parallel or antiparallel. At a molecular level, the different directionality of the 

strands relates to the conformational state of the glycosidic bond between the guanine base and the 

sugar. This may be either syn or anti. When all bases are in anti conformation the four strands are 

parallel, when the bases are in the syn all strands are antiparallel. This then affects the orientation of 

the backbone relative to the G-quartets, and hence results in grooves of different sizes.
14

 G-

quadruplexes may be comprised of four separate strands, as in Figure 2.5, forming tetramolecular 

G-quadruplexes, which are always found in the all-anti parallel form. Alternatively, they may be 

formed from two strands, each with two sets of contiguous guanines, or just from one strand, 

folding back on itself to form an intramolecular structure. In either of these cases, there will be 

loops that serve to connect the strands of the structure together. Depending on which strands are 

connected, these loops may cross diagonally across the top of the structure, joining diagonally 

opposed antiparallel strands; go across a side, linking adjacent antiparallel strands; or may loop 

around the side of the structure linking parallel strands and forming a double-strand reversal loop. 
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Figure 2.5 Different stoichiometries and folding patterns of G-quadruplexes. (A) Tetramolecular structure with all 

strands parallel; (B) bimolecular antiparallel structure with adjacent parallels trands; (C) unimolecular antiparallel 

structure with alternating parallel strands. 

 

Computational studies demonstrate that G-rich regions are not randomly located in vivo: in human, 

yeast and bacterial genomes potential quadruplex sequences have been identified in eukaryotic 

telomeres,
15

 and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive 

promoter regions. This specific distribution and the evolutionary conservation of these sequences 

suggests that G4-motifs have important functions in cells. The natural role and biological validation 

of these structures is starting to be explored, and there is particular interest in them as targets for 

therapeutic intervention. 

 

2.5 Structure and behaviour of lipophilic guanosines 

Guanine moiety is a versatile hydrogen bonding building block and guanosine derivatives have 

been studied for their application in supramolecular chemistry. Our group started the research on 

the supramolecular behavior of guanine-related compounds in late 80‘s with the observation of the 

lyotropic properties exhibited by 2‘-deoxyguanylyl-( 3‘-5‘)-2‘-deoxyguanosine (d(GpG)) sodium 

salt in water.
16

 In order to investigate guanosine behavior in absence of H-bonding competitors like 

water molecules, our group decided to synthesize lipophilic derivatives (LGs) which maintain the 

donor and acceptor groups in the nucleobase, but with long aliphatic chain in the sugar moiety that 

makes them readily soluble in apolar organic solvents. 

 

2.5.1 Self-assembly in presence of metal ions  

Lipophilic guanosines exhibit in the presence of cation different self-assembly pathways depending 

on experimental conditions. Our group showed
17

 that LipoGs, in particular 3’,5’-O-didecanoyl-2’-

deoxyguanosine derivative dG(C10)2, extracts K
+
 picrate from water into chlorinated solvents 

giving rise to an octameric complex composed of two stacked G-quartets (Figure 2.6 a). The NMR 
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spectrum of the LG molecule before and after extraction was clearly different, depending on the 

effective amount of potassium picrate KPic (1:8 or 1:4 K
+
/G ratio). In the 1:8 ratio case, a C4 

symmetric octamer was formed. In fact, the 
1
H NMR spectra,

18
 essentially temperature independent 

over more than 100°C, show two sets of signals in a 1:1 ratio corresponding each to nucleosides 

with different glycosydic conformation (syn-like and anti-like). With more potassium picrate, a 1:4 

K
+
/G structure (the pseudo-polymer) was produced (Figure 2.6 b). 

 

 

 

 

 

Figure 2.6 The cation-templated self-assembly of derivative dG(C10)2 from the unassembled molecule to an 

octameric species (a) and to a pseudopolymeric aggregate (b), (the spheres represent the cation). 

 

Another stereochemical consequence to the cation-templated self-assembly of guanosine derivatives 

is the mutual orientation between the two stacked quartets, which have diasterotopic faces, known 

as head (H) and tail (T). The two quartets in the octamer can be arranged in three different ways: H-

to-T (C4 symmetry, homopolar stacking), H-to-H and T-to-T (D4 symmetry, heteropolar stacking) 

(Figure 2.7). 
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Figure 2.7 a. Glycosidic syn and anti conformations of guanosine; b. Two diasterotopic faces of guanosine; head 

(H) with a clockwise direction of hydrogen bonds from donor to acceptor and tail (T, anti-clockwise); c. 

Schematic drawing of a C4-symmetric octamer, with an all-syn G-quartet (white) stacking with its tail-side (T, 

red) on the head-side (H, black) of an all-anti (black) G-quartet, and a D4-symmetric octamer with two all-syn tail 

to tail G-quartet stack. 

 

NMR data indicated a stereoselectivity for the octameric structure of dG(C10)2: a single 

diastereomer of C4 symmetry was formed and, in one G-quartet, all monomers had a syn 

conformation, while the other tetramer had an all-anti conformation. NOE interactions indicated a 

relative orientation with the head-side of the “all-anti” G-quartet facing the tail-side of the “all-syn” 

G-quartet. While this derivative forms the K
+
-templated C4-symmetric octamer structure or pseudo-

polymeric assembly in solution, other lipo-G derivatives (especially those with ribose, in place of 

deoxyribose, including 2’,3’di-O-isopropylidene-guanosine derivative (Figure 2.8) can give a 

different stereoregular octamer with a D4 symmetry.
19,20 
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Figure 2.8 Comparison between CD spectra of C4- (solid line) and D4-symmetric(dashed line) octamers G8•M+ 

obtained from A and B, respectively (Data from references 19-20). 

 

Furthermore, the picrate anion is not passive, as it contributes to keep together the complex 

structure by means of hydrogen bonds with the exocyclic NHs of two different quartets: this 

binding contribution of the picrate anion was also evident from an ESI-MS study.
21

 The lipophilic 

G-quadruplex looks like a cation channel with an anionic belt wrapped around its middle. 

 

2.5.2 Self-assembly in absence of metal ions 

In the absence of metal cations, derivative dG(C10)2 has been shown to undergo extensive self-

assembly mediated by hydrogen bonding between guanine bases: ribbon-like aggregates
22

 of 

indefinite legth were characterized these both in solution and in solid state. CD spectra, recorded in 

chloroform at different temperatures and concentrations, showed weak signals, without any exciton 

pattern, suggesting that no supramolecular chirality was originated by self-assembly of guanosines 

under these conditions. 
1
H-NMR spectra in CDCl3 showed broad signals if compared to the ones 

recorded in the strongly competing solvent DMSO-d6, as expected for largely associated molecules. 

The existence of oligomeric structures in CDCl3 was supported by ESI mass spectrometry. 
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Moreover, when increasing guanosine concentration (or lowering temperature), progressive 

deshielding of both the imino N
1
H and amino N

2
H protons took place, indicating that the H-bond 

donor groups of the guanine bases are progressively involved in the self-assembly process. IR 

spectra led to the same conclusion.
23

 

Two different ribbon-like aggregates (Figure 2.9), with different patterns of hydrogen bonds, were 

identified in the solid state and in chloroform solution: when a couple of guanines exposes to the 

observer their opposite sides, an infinite H-bonded motif is obtained (“ribbon A”). Furthermore, a 

different homocoupling (ADDA) in which different H-bonding sites of the guanine are involved, 

leads to the formation of a further kind of H-bonded ribbon (“ribbon B”).  

 

 

Figure 2.9 H-bond pattern of ribbon-like assemblies ribbon A (a.) and ribbon B (b.). Arrows indicate molecular 

dipoles. 

 

2.6 Methods for studying G-quadruplexes  

Several high- and low-resolution analytical techniques can be used to study and characterize the 

topology of G-quadruplexes, each examining different aspects of the structures, and hence reporting 

on different aspects of their formation. X-ray crystallography, NMR spectroscopy and molecular 

modelling give access to atomic-scale structure information and have revealed over the last decades 

an impressive structural polymorphism among G-quadruplexs. Other techniques such as UV 

spectroscopy, electronic circular dichroism spectroscopy, mass spectrometry and chromatography 

are employed to determine strand orientations, stoichiometry and molecular sizes. Each of these 

methods gives different types of information so it is important to combine different result in order to 

have a complete characterization. 

The first method used was X-ray crystallography
24

: obtaining a single crystal is still a slow and 

uncertain procedure, but with this technique it has been achieved a high resolution (sometimes 



Chapter II. Supramolecular chemistry 

27 
 

below 1 Å) that has allowed the determination of more than 50 crystal structures of G-quadruplexes. 

X-ray crystallography provides admission to atomic-scale resolution structures of DNA, RNA or 

LNA G-quadruplex, including the cations, water molecules and binders. A good number of 

structures containing alkali cations have been solved using this method so crystallography is 

considered very powerful to characterize cation coordination and more generally ligand binding. It 

also provides better defined structures than NMR in cased of mixtures of conformations. The limit 

with this technique is that only the structure adopted in solid state is reported: G-quadruplex 

structures are frequently highly polymorphic and the crystal structure obtained represents the form 

that crystallizes more easyly, not the favoured one in solution.  

NMR spectroscopy is a very useful method
25

 to collect information about G-quadruplex structures 

and their dynamics in solution. This high-resolution technique requires much less sample 

preparation than crystallography, but does require very pure and high-concentrated samples. At the 

simplest level, it is possible to gain much information even from a 1-D 
1
H NMR spectrum, as there 

are a relatively small number of protons in nucleic acids and the guanine NH1 imino protons have a 

characteristic shift when hydrogen bonded. In addition, they exchange relatively slowly with the 

deuterated solvent when compared to non-hydrogen-bonded protons. This may therefore be used to 

show G-quadruplex formation. In order to provide a more detailed analysis, multi-dimensional 

techniques are needed, which allow the complete assignment of resonances to the sequence being 

studied.
26,27

 

The most common low-resolution technique to study G-quadruplex is circular dichroism (CD). CD 

is a spectroscopic method that measures the difference in absorption of left- and right-circularly 

polarized light by chiral compounds. In the presence of chiral species, circularly polarized light will 

generally interact asymmetrically with chiral molecules, and the asymmetry varies with wavelength; 

the main aim of this method is to assign the absolute configuration of a chiral molecule, but it is 

very often used for studying conformational changes and supramolecular interactions.  

Although the topology of the folding of G4-DNA strands is very complex , only two basic types of 

CD spectra, which have been associated with the relative orientation of the strands parallel and 

antiparallel (Figure 2.10), are investigated. 
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Fig 2.10 Typical folding topologies of G4-DNA forming sequences: a parallel intermolecular structure (a), 

bimolecular antiparallel structural motifs (b–d), intramolecular parallel (e) and antiparallel (f–i) monomolecular 

structures. Arrows represent backbones running from 5’to 3’end. 

 

Typically G-quadruplex are characterized by their bands in the UV area, from 210 to 300 nm, 

because of electronic transitions of the guanine chromophore. 

The spectra of parallel quadruplexes, in which four strands with all glycosidic bonds in anti have a 

dominant positive band at 260 nm, and a negative band at 240 nm while the spectra of antiparallel 

quadruplexes (where guanines alternate syn and anti glycosidic conformations along each strands) 

have a negative band at 260 nm and a positive band at 290 nm (Figure 2.11). Although this 

empirical relationship often works in the interpretation for most CD spectra of G4-DNA, it cannot 

be considered of general validity. 
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Fig 2.11 CD spectra of guanine quadruplexes. Left side: the parallel stranded quadruplex [d(G4)]4 stabilized by 

16 mM K
+
; right side: Na

+
-induced antiparallel bimolecular quadruplex of [d(G4T4G4)]2. 

 

However starting from the chromophore it is possible to explain how the different folding patterns 

affect the CD. The guanine moiety chromophore has two absorption bands, corresponding to π-π* 

transitions at ca. 279 nm (short axis polarized) and 248 nm (long axis polarized).  

In G4-DNA, G-quartets are stacked one on the top of the other and they are rotated one with respect 

to the adjacent one: this rotation causes a chiral exciton coupling between transition dipole moments 

located in near-neighbour guanines. The first non-empirical interpretation of CD of G4 DNA has 

been reported by Spada et al. 29 By an exciton calculation considering only near-neighbour 

interactions between the guanine transitions of two stacked G-quartets, it has been possible to 

reproduce the spectrum of polyguanilic acid, which shows the typical features of “parallel” G4-

DNA. The two faces of a G-quartet are diasterotopic so when the G-tetrads are piled, each quartet 

can stack onto the adjacent one through the same (head-to-head or tail-to tail) or the opposite (head 

to tail) face leading to a heteropolar or homopolar stacking respectively (Figure 2.12). 
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Fig 2.12 a. Representation of π-π* axis polarized transitions in guanine structure; b. Two possible stacking modes 

of guanine octamers. 

 

Considering the case of parallel G4-DNA, the disposition of two adjacent G-quartets in a H-to-T 

orientation is that reported in the Figure 2.12 where the electric moments of a couple of near 

neighbour guanines are shown. Applying the simplified model of the exciton coupling it emerges 

that this chiral arrangement is expected to exhibit a positive exciton centerd at 250 nm (Figure 

2.13). When the glycosidic bonds of the guanines alternate in syn and anti conformations along 

each strand (antiparallel strands) the G-quartet polarity also alternates, while quadruplexes with 

parallel strands and all anti glycosidic bonds have a non-alternating G-quartet polarity. CD spectra 

in these two cases are expected to be different. Indeed, in the heteropolar H-to-H stacking of two 

quartets, the relative orientation of the closest dipole moments is different from the case described 

above. Using the qualitative approach of exciton coupling, the chiral arrangement is expected to 

give a negative couplet centered at 250 nm 

 

 



Chapter II. Supramolecular chemistry 

31 
 

 

Fig 2.13 A simplified model for the origin of the positive (left side) and negative (right side) exciton couplets for 

the head-to-tail (H-to-T) and head-to-head (H-to-H) G-quartet stacking, respectively. Top: the arrangement of two 

250 nm electric transition moments (full line: front vector; dashed line: rear vector) located in two closest 

guanines. Middle: themagnetic (m) and electric (l)moments generated by the coupling of the two guanine 

chromophore (more in details, in the high energy coupling of the left-side panel, the two electric transition 

moments–top–sum to a total electric vector pointing upward–middle–and generate a charge rotation with a 

resulting magnetic moments pointing downward, that is antiparallel). Bottom: the predicted CD spectra. 

 

 

CD spectra calculations with the dipole approximation of the two G-quartet stacked with the same 

or the opposite polarity have been performed by Gray at al.(fig. 1.17) .and their results are in 

agreement with the computations by Spada et al. on the homopolar stacked system and show how 

heteropolar stacking explains the emergence of a positive CD signals at 290 nm. The kind of CD 

spectrum is actually not directly related to the relative strands orientation: the stacking orientation 

of G tetrads obviously depends on the folding of the strands, however no direct relationship can be 

established between the two topological features. 
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Fig 2.14 Superimposed calculated CD spectra of two G-quartets stacked in the H-to-T (solid line) or H-to-H 

(dashed line) orientation as shown in Fig. 2.12. The relative orientation of the G-quartets for the calculation were 

extracted from the solution structure of d(G3T4G3) that present mixed polarities of stacked G-quartets. 
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III. Porphyrins 

"Vivid testimony to the continuing broad interest and deep impact of the chemistry of these 

Pigments of Life." - Jean-Marie Lehn, Nobel Laureate, Chemistry, College de France, France. 

 

3.1  Introduction 

Porphyrins are an important class of macrocyclic compounds which play leading roles in the 

metabolism of living organisms and in electron transport in biological systems. They are 

involved in a large variety of essential functions, as oxygen transport and storage, respiration, 

photosynthesis, electron transfer, catalysis, etc.  

In the past decade, porphyrin systems have become very popular, being targets for commercial 

exploitation of several catalytic processes such as in the chemical functionalization of 

hydrocarbons, transportation of oxygen, etc. The porphyrin macrocycle also provides an 

excellent chelating ligand for a variety of metal ions, giving rise to a wealth of molecules with 

interesting new features for inorganic and organometallic chemistry, as well as for theoretical, 

physical, and spectroscopic investigations. 

The word porphyrin is derived from the Greek word porphyrá which means purple. Indeed, pure 

porphyrins are crystalline fluorescent pigments intensely colored, of natural or synthetic source. 

The color is a consequence of the electronic spectra of porphyrins, which contain intense 

absorptions in the visible region, at 500 nm (called Q bands). Even more intense is the Soret 

band found in the near UV, from 400 to 450 nm, so named after its discoverer.
1
 

The first hypothesis on porphyrin structure was formulated in 1884 by Nencki
2
, who suggested 

that the chemical structure of porphyrins is based on pyrroles. Many years later, Kuster
3
 

specified that this macrocycle is made up of only four units of pyrroles. The final structure was 

confirmed in 1926, when Fischer
4
 synthesized the etioporphyrin. The porphyrin molecule is 

usually described as a union of four pyrrole rings linked by four methine bridges to form an 

aromatic macrocycle, called porphin (Figure 3.1). 

 

 

Figure 3.1 Porphin, the core structure of porphyrin. 
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3.2 Nomenclature of porphyrins 

The Fischer system for nomenclature of porphyrins is shown in Figure 3.2. Fischer also created a 

host of trivial names for porphyrins and for chlorophyll derivatives and a “type” isomer system 

of nomenclature, which was used to define the nature of the substituents array in certain 

porphyrins. Despite the significant work done by Fischer, this method has been replaced by 

IUPAC system. 

The official nomenclature system adopted by the IUPAC implies the numbering of all the ring 

carbons, including the nitrogen atoms, such that the two saturated nitrogens receive the numbers 

21 and 23 (Figure 3.2). For a free base porphyrin, the positions at 1, 4, 6, 9, 11, 14, 16 and 19 are 

identified as alpha (α) positions. In a similar way, the 2, 3, 7, 8, 12, 13, 17 and 18 positions are 

called beta (β) positions. At last, the positions 5, 10, 15 and 20 are referred commonly as "meso-

positions". Respectively, a proton bonded to a meso carbon is cited as H meso and that to a beta 

carbon as Hβ. 

 

 

Figure 3.2 Fisher numeration (left) and IUPAC system (right). 

 

Normally, porphyrin macrocycles are planar compounds
5
, but distortion of the macrocycle can 

be observed in many cases, for example due to the metallation of the porphyrin macrocycle or 

after a substitution of the  macrocycle at beta or meso positions by bulky groups.  

 

3.3 Biological role of porphyrins 

Porphyrins derivatives take part in many biological metabolic processes, as the prosthetic groups 

in a wide variety of primary metabolites, such as hemoglobins, myoglobins, cytochromes, 

catalases, peroxidases, chlorophylls, and bacteriochlorophylls. 

Cytochrome c
6
 is a small water-soluble protein (Figure 3.3), located in mitochondrial 

intermembrane-space and involved in two processes: oxidative phosphorylation and apoptosis. 

As an electron carrier in oxidative phosphorylation, cytochrome c shuttles four electrons, one at 

time, via its heme group from cytochrome c reductase (Complex III) to cytochrome c oxidase 
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(Complex IV). The transition of cytochrome c between the ferrous and ferric states within the 

cell, makes it an efficient  biological electron-transporter and it plays a vital role in cellular 

oxidations in both plants and animals. 

 

 

Figure 3.3 Chemical structure of cytochrome c. 

 

More recently, cytochrome c has been identified as a crucial mediator in apoptosis
7
 

(programmed cell death). When a cell receives an apoptotic stimulus, cytochrome c is released 

from mitochondria into the cytosol and triggers programmed cell death through apoptosis. 

Because cytochrome c leaves the apoptotic cell following induction of apoptosis it is being 

increasingly recognized as a potentially useful circulating extracellular diagnostic and prognostic 

biomarker for disease conditions in which apoptosis is involved.
8
 

Hemoglobin
9
 (Hb) is a globular heme protein in vertebrate red blood cells and in the plasma of 

many invertebrates, formed by symmetric pairing of a dimer of polypeptide chains, the α- and β-

globins, into a tetrameric structural and functional unit. These 4 polypeptides each have a large 

central space into which a heme b prosthetic group, an iron-protoporphyrin IX molecule, is 

bound by noncovalent forces (Figure 3.4). The reversible binding of gases by the heme group 

allows hemoglobin to transport oxygen, carbon monoxide, carbon dioxide and nitric oxide. 
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Figure 3.4 Chemical structure of heme b. 

 

Myoglobin
10

 (Mb) is a small globular monomeric protein, expressed in cardiac myocytes and 

oxidative skeletal muscle fibers, that reversibly binds and stores O2 by its heme residue and 

catalyzes NO oxidation. Myoglobin is also thought to buffer intracellular O2 concentration when 

muscle activity increases and to facilitate intracellular O2 diffusion by providing a parallel path 

that augments simple diffusion of dissolved O2. The iron-ligand bond is broken by light; 

therefore, Mb has also been employed for exploring the first relaxation events after 

photodissociation by fast and ultra‐fast kinetic methods.
11

 

The biological role of chlorophyll is well know, as it allows plants to absorb energy from light in 

the photosynthesis. Chlorophyll is a green pigment found in cyanobacteria and the chloroplasts 

of algae and plants, isolated and named for the first time by Joseph Bienaimé Caventou and 

Pierre Joseph Pelletier in 1817. The central ring structure is a chlorin, similar to porphyrin, 

which is produced through the same metabolic pathway as heme group, with three pyrroles and 

one pyrroline, instead four pyrroles as porphyrin, and a Mg
2+ 

metal ion inside.  The chlorin ring 

can have several different side chains, usually including a long phytol chain. There are a few 

different forms that occur naturally, but the most widely distributed forms in terrestrial plants are 

chlorophyll a and b (Figure 3.5). 

 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Cyanobacteria
https://en.wikipedia.org/wiki/Chloroplast
https://en.wikipedia.org/wiki/Alga
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Joseph_Bienaim%C3%A9_Caventou
https://en.wikipedia.org/wiki/Pierre_Joseph_Pelletier
https://en.wikipedia.org/wiki/Heme
https://en.wikipedia.org/wiki/Pyrrole
https://en.wikipedia.org/wiki/Pyrroline
https://en.wikipedia.org/wiki/Phytol
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Figure 3.5 Chemical structures of chlorophyll a and b. 

 

The difference between these two forms is in the composition of a sidechain (in a it is -CH3, in b 

it is CHO). This small difference allows each type of chlorophyll to absorb light at slightly 

different wavelengths. However, chlorophyll absorbs light most strongly in the blue portion and 

in the red portion of the electromagnetic spectrum. 

 

3.4 Reactivity of porphyrins 

The porphyrin macrocycle contains 22 conjugated π-electrons, 18 of them are required for its 

conjugated aromatic network, according to Huckel’s rule.
12

 As a consequence, porphyrins 

maintain their aromaticity even after different type of reactions, as additions, substitution, cross-

couplings, oxidations and reductions. In this way, it possible to synthesize a large variety of 

functionalized macrocycles, which are widely used in multiple applications in the fields of 

biology, medicine and materials science. 

The meso and β-pyrrole positions are both involved in this kind of reactions, but with a different 

reactivity. The most electronically reactive positions are the meso-positions, and generally they 

are the preferential sites for electrophilic aromatic substitutions, additions and radical reactions. 

On the other hand, the β-pyrrolic positions are the most sterically accessible and can also 

undergo the same type of reactions. It is possible to protonate the inner pyrrolenine nitrogen 

atoms of porphyrins to give the corresponding mono- or di-cations. On the contrary, the NH 

groups are slightly acidic and can be deprotonated by bases to produce di-anions.  

Porphyrins can also be readily metalated with a wide variety of metal ions; indeed the four 

nitrogens in the middle of the porphyrin molecule can grab and hold metal ions such as 

magnesium (Mg), iron (Fe), zinc (Zn), nickel (Ni), cobalt (Co), copper (Cu), and silver (Ag). The 

metal ions have an important inductive effect on the π-electron system and strongly influence 

chemical reactivity, photophysical properties and biological functions of porphyrin macrocycles. 

https://en.wikipedia.org/wiki/Diffuse_sky_radiation
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Closed-shell configuration metals incapable of dπ-pπ back-bonding, such as Zn(II) and Cd(II), 

induce the highest negative charge onto the porphyrin periphery, conferring them the lowest one-

electron oxidation potentials. On the other hand, metals capable of π-back-bonding decrease the 

electron density on the macrocycle, for example Cu(II) and Ni(II) with d
6
-d

9
 configurations, and 

in particular metals with d
1
-d

5
 configurations, such as Sn(IV) and Fe(III), strongly reduce the 

electron density at the porphyrin periphery. 

 

3.5 Porphyrin Synthesis 

Porphyrin systems have been the subject of many synthetic investigations over the past 70 years, 

involving different building blocks, like pyrroles, aldehydes, dipyrromethanes, dipyrromethenes, 

tripyrranes and linear tetrapyrroles. 

The chemistry of meso-substituted porphyrins developed thanks to the intense work of 

Rothemund, who first in 1935 investigated the synthesis of tetramethylporphyrin by the 

condensation of acetaldehyde and pyrrole in methanol at different temperatures.
13

 Rothemund 

and Menotti
14

 proposed a synthesis of meso-tetraphenylporphyrin (5,10,15,20-

tetraphenylporphyrin (TPP)
4
) in one step by reaction between benzaldehyde and pyrrole in 

pyridine in a sealed glass tube at 220 °C under nitrogen for 48 h to give blue needle- crystals. 

High concentrations of the reagents, higher temperatures and the absence of oxidising agents are 

the identifying characteristics of the so-called "Rothemund method ". (See Figure 3.6) 

 

 

Figure 3.6 Rothemund method for the synthesis of meso-substituted porphyrins. 

 

Unfortunately, the yield of these reactions remains very low, usually less than 5%. The reason 

for this low yield is due to the presence of a contaminant, the corresponding meso-substituted 

chlorin (17,18-dihydroporphyrin), which was studied and identified by Calvin and coworkers. In 

addition, Ball et al.
15

 also discovered that the addition of metal salts, like zinc acetate, to the 

reaction mixture of benzaldehyde and pyrrole increases the yield of TPP (as the zinc derivative) 

to 10% and decreases the amount of chlorin compound. 
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A modification by Adler, Longo and their colleagues
16

 came many years later, in the 1960s, with 

a method that involves an acid catalyzed condensation in glassware open to the atmosphere 

(Figure 3.7). By refluxing pyrrole and benzaldehyde in boiling propionic acid for about 30 

minutes, they obtained yields of 20-25%, with chlorin yields of 1% to 3%.
17

 This by-product can 

be easily removed by oxidation with dichloro-dicyanobenzoquinone (DDQ), thereby eliminating 

the need for a separation procedure.
18

 

 

 

Figure 3.7 Adler-Longo method for preparing meso-substituted porphyrins. 

 

The reaction also works with a limited number of substituted benzaldehydes that are able to 

survive to refluxing propionic acid. Yields of 35-40% were obtained in acetic acid, but 

purification was more difficult. Anaerobic conditions provided lower yields (about 5%), 

highlighting how the oxidation of the intermediate porphyrinogen by atmospheric oxygen was a 

critical step in the synthesis.
19

 

Over the period 1979-1986, Lindsey’s group
20,21

 developed a new and innovative method, called 

“two-step one-flask room temperature” to synthesize porphyrins, using a sequential process of 

condensation and oxidation under milder working conditions, thus expanding the number of 

aldehydes usable and hence the porphyrins available (Figure 3.8). The condensation of pyrrole 

and aldehyde was carried under argon, using a chlorinated solvent such as dichloromethane or 

chloroform, in the presence of a Lewis acid catalyst, usually BF3
.
OEt2 or trifluoroacetic acid 

(TFA). In the second step of the reaction, the initial product (a colorless porphyrinogen) is 

oxidized to porphyrin using a stoichiometric amount of a quinone such as 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ) or tetrachloro-1,4-benzoquinone (p-chloranil).  
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Figure 3.8 Lindsey method “Two-step one-flask room-temperature synthesis of porphyrins”. 

 

Yields up to 50% are reported, although this percentage is influenced by parameters such as the 

type of catalyst and oxidant employed, the concentration of the reactants and the duration of the 

condensation phase. Optimal concentration of pyrrole and aldehyde is around 10
-2

M; that is to 

favor the cyclization over the polymerization. 

The methods described above are suitable for the synthesis of porphyrins with four identical 

groups in the meso positions. Starting from a mixture of different aldehydes, the reaction leads to 

mixed condensation products, which require an heavy chromatographic work to obtain pure 

derivatives. Another strategy involves the use of dipyrromethanes, derivatives that consist of two 

pyrrole rings linked by a methine bridge. In most cases the meso position has either no 

substituted or a single aryl or dialkyl or aryl substituted. Dipyrromethanes allow the synthesis of 

trans-A2 and trans-A2B2 systems (Figure 3.9) by condensation [2+2] with aldehydes, as proposed 

for the first time by MacDonald in 1960.
22
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Figure 3.9 Structure of trans A2 porphyrin (left) and trans A2B2 porphyrin (right). 

 

In the following years, Lindsey applied the conditions of his method to MacDonald's reaction, in 

order to optimize the synthesis of this type of porphyrins (Figure 3.10).
23

 Using dipyrromethanes 

as starting material, the synthesis is unambiguous if condensation takes place with a single 

aldehyde. This obviously requires the prior synthesis of the dipyrromethane intermediate. 

 

 

Figure 3.10 Lindsey’s synthesis of trans-A2B2 porphyrins. 

 

During the condensation between aldehyde and dipyrromethane, acid catalyzed sequence of 

fragmentations and rearrangements can occur, leading to the formation of by-products as –for 

example- cis-A2B2 isomer, hardly separable from trans form. This process
24

, called scrambling
25

 

(Figure 3.11), could be minimized by properly controlling parameters like solvent, catalyst, 

temperature and concentration of the reagents. Another important factor in order to avoid 

scrambling is the location of the more hindered substituent: it has been noticed that when it is on 

dipyrromethane the scrambling doesn’t occur or is minimized. 
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Figure 3.11 Mechanism of acid catalyzed scrambling. 

 

3.6 Aggregation of Porphyrins 

Aggregation of porphyrins has been deeply studied in solution: different aggregates can form 

depending on ionic strength, temperature, pH, peripheral substitution, etc.
26,27 

Porphyrins and metalloporphyrins can form two types of supramolecular structures (Figure 

3.12), due to strong π-π interactions establishing between the aromatic systems: “H-type”, 

characterized by a bathochromic shift of both B and Q bands with respect to those of the 

monomer; “J-type” showing blue-shift of B band and red-shift of Q band. 

 The J-type or side-by-side aggregates were formed for transitions polarized parallel to the 

long axis of the aggregate. 

 H-type or face-to-face aggregates for transitions polarized perpendicular to it. 
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Figure 3.12 Schematic representation of H and J aggregates.
12

 

 

H- and J-aggregates was formed by simply mixing aqueous solutions of two kinds of porphyrins 

with opposite charges.
28

 In order to obtain deposition of an ordered monolayer, porphyrins can 

be functionalized with linkers which ensure the covalent anchoring to the surface. For example, 

porphyrins form a self-assembled monolayer (SAM) on gold via in situ cleavage of the thiol 

protecting group.
29

 In this way is possible to use porphyrins as molecular quantum devices, 

driving their assembly on a solid surface of gold or other electroactive material. 
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IV.  Guanosine-ferrocene derivatives 

4.1  Introduction 

As described in Chapter I, Quantum-dot Cellular Automata (QCA) is a revolutionary approach to 

computing and has been considered one of the most promising post-Moore alternatives. 

Implementation and miniaturization of QCA at the molecular level lead to severe challenges when 

addressing the single elementary units.  

The research carried out during these three years was part of the MolarNet project, supported by the 

European Commission, which aims at giving a first demonstration of molecular QCA elementary 

devices. 

In particular, the project specifically addressed the basic requirements to implement molecular 

QCA-inspired Networks, namely the measurement of the electrostatic interaction between a forced 

molecule (input) and its neighbour; the investigation of the propagation of a signal in a long row of 

molecules (binary line); the implementation and testing of a majority gate. 

In order to obtain an organized array of cells as binary line, the MolArNet consortium followed two 

approaches: 1) the single cell is the outcome of the self-assembly of molecular sub-units, 2) a single 

molecule constitutes a single cell. In any case, iron complexes were used as quantum dots moieties. 

In the first part of the project,
1
 alkyl substituted guanosine derivatives equipped with a ferrocene 

moiety on the C(5’) position of the sugar have been synthesized in order to study their self-

assembly at the solid/liquid interface on highly oriented pyrolitic graphite (HOPG) with scanning 

tunneling microscopy (STM) or under ultra-high vacuum (UHV),
2
 in collaboration with other 

partners of MolArNet project. 

This technique has shown numerous advantages, for example it provides an excellent environment 

for in situ chemical modifications of adsorbed molecules.
3
 When guanosine derivatives are 

physisorbed at surfaces, thermodynamically stable supramolecular ribbons, characterized by N(2)-

H
…

O(6) and N(1)-H
…

N(7) H-bonds, are observed. In the solid state, the ribbons, by bridging gold 

electrodes, were found to be photoconductive
4
 and also exhibited rectifying properties.

5
 

Given the possibility to functionalize the guanosines in the sugar moiety, they appeared as ideal 

building blocks for the fabrication of conformationally rigid and structurally complex architectures, 

thus paving the way towards their use as scaffolds in QCA devices.
6
 

Furthermore, the control over the self-assembly of ferrocene-based architectures through molecular 

engineering is crucial in order to control and improve their optical and electronic properties. For 

example, the assembly of ferrocenes on surfaces was directed by using H-bonding between 

carboxylic acids, leading to two-dimensional quasicrystals.
7
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4.2 Previous studies 

Numerous guanosine ferrocene hybrids had already been synthesized and studied as prototypes for 

the realization of QCA. As a first approach, several molecules equipped with ferrocene have been 

synthesized: deoxyguanosine (dG), 2′,3′-O-isopropylideneguanosine (GACE) and guanine 

derivatives, in order to obtain a first generation derivatives. Some examples are shown in Figure 

4.1. 

 

 

Figure 4.1 First generation derivatives. 

 

In solution, these derivatives had shown the typical supramolecular behavior of lipofilic guanosines 

(lipo-Gs), both in the presence and in the absence of cations, suggesting the feasibility of the 

approach. Furthermore, it had been established that the presence of Fc units does not influence the 

self-assembly attitude of the nucleobase. On the other hand, these derivatives turned out to be unfit 

for the realization of QCA because of their very low solubility and difficulties to form ordered 

structures on surfaces. On the basis of these results, a second generation of ferrocene-LipoG hybrids 

has been synthesized (Figure 4.2). 

 

 

Figure 4.2 Second generation derivatives. 

 

Derivative E: guanosine derivatives with 2' and 3' positions of the sugar protected as acetals and 

with long tails to confer a better solubility to the molecules. 
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Derivatives F and G: guanosine derivatives in which either 3' and 5' positions of the sugar were 

derivatized with ferrocene and long aliphatic tails (Chains C10 or C18). 

Derivatives E  showed a good solubility to be studied in solution, forming ottameric structures in 

the presence of potassium, but did not organize into ordered structures on surfaces. 

Electrochemical studies on the compound Ga (dG_5'Fc_3'C10) have instead shown that this 

molecule is suitable for QCA implementation.
8
 Furthermore, the introduction of a long alkyl chain 

(C18) in 3' and 5' positions (Gb) drives the formation of ribbon-like structures on the surface. 

At the same time, the electrochemical behavior of two others derivatives A and Ga (Figure 4.3) was 

characterized by cyclic voltammetry. These studies have highlighted an interesting behavior: in 

CHCl3, the self-assembly of the guanine derivatives, driven by the formation of hydrogen bonds, 

induces the formation of layers on the surface of the electrodes. Some of these layers are again 

dissolved following the reduction of the Iron, this process is observable in the time scale of cyclic 

voltammetry experiments. 

 

 

Figure 4.3 Guanosine derivatives A and Ga.  

 

One of the potential problems in the use of G-quartets as scaffolds for QCA cells is the presence of 

the cation and the counterion, which may interfere with electrochemical processes. Although 

cations are normally necessary for the templation of G-quartets, there have been examples of G-

quartets formed in the absence of cations. Studies carried out by the group of Prof. Sessler
9
 show a 

crystal structure of G10 (Figure 4.4) that revealed an “empty” G-quartet even without the assistance 

of a templating cation.  

The presence of a sterically bulky group on the C8 position of the guanine core gave a 

conformationally constrained nucleoside that prefers to adopt a syn glycosidic bond conformation 

both in the solid state and in solution. This syn conformation prevents the nucleoside from any 

hydrogen-bonded ribbon formation (as already mentioned before) and thus favors formation of the 

macrocyclic G-quartet. Cation-free isolated G4 have been also observed by MAS NMR in solid 

samples of derivatives devoid of substituents in C(8) position.
10
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Figure 4.4 Conformationally constrained G 10 forms a G-quartet without presence of a templating cation.  

 

On the basis of these considerations and thanks to the preliminary studies from previous molecules, 

we have designed and synthesized three lipophilic guanosine derivatives G1-G3 exposing a 

ferrocene moiety on the C(5’) position of the sugar (Figure 4.5), in order to study the effect of 

sterically demanding substituents covalently linked to the C(8) position on the self-assembly 

process at the solid/liquid interface on highly oriented pyrolitic graphite (HOPG). 

The presence of a long stearate side chain in C(3’) position of the sugar is expected to promote the 

molecular physisorption on HOPG.  

 

 

Figure 4.5 Derivatives G1 (dG_3'C18_5'Fc), G2 (dG_8Br_3'C18_5'Fc) and G3 (dG_8PhO_3'C18_5'Fc). 

 

4.3 Synthetic approaches 

4.3.1  G1 (5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine) 

Derivative G1 was prepared according to Scheme 4.1 Deoxyguanosine was first reacted with tert-

Butyldimethylsilyl chloride (TBDMSiCl) to give 5’-O-silylated 2. This compound, with free 3’-
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hydroxyl, was then acylated with stearic anhydride at 70°C in toluene to afford 3. Removal of 5’-

silyl group with tetrabutylammonium fluoride (TBAF) followed by esterification with FcCOOH 

gave the desired product G1. 

 

 

Scheme 4.1 Synthesis of G1. 

 

4.3.2  G2 (8-bromo-5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine) 

The synthesis of derivative G2 is practically the same as derivative G1, except for the insertion of 

bromine atom in C8 position in the first step with NBS and the last esterification performed with 

CH3SO2Cl and Et3N in THF (Scheme 4.2). 

 

 

Scheme 4.2 Synthesis of G2. 
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4.3.3  G3 (8-phenoxy-5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine) 

In order to synthesize derivative G3 we started from commercially available dG (Scheme 4.3), 

which is initially protected with TBDMSiCl. Subsequently, the hydrogen in the 8 position is 

replaced with bromine by reaction with NBS. The protected 9 was then used in the third step in 

order to replace bromine atom with phenoxy group, through a nucleophilic aromatic substitution on 

C8 position. At first, the nucleophilic aromatic substitution was attempted directly on 8-bromo 

deoxyguanosine with free hydroxy groups but, probably due to low solubility, we were not able to 

obtain derivative 10. After deprotection of 9 with TBAF, a mono-protection was carried out with 

TBDMSiCl on five prime position. Position three prime was then esterified with stearic anhydride. 

The subsequent deprotection on the five prime position with TBAF allows the reaction with 

carboxylic acid of ferrocene with methanesulfonylchloride, through the formation of a mixed 

anhydride. 

 
Scheme 4.3 Synthesis of G3. 

 

4.4 Supramolecular studies  

Several techniques were employed to study the self-assembly of guanine derivatives: NMR 

(monodimensional and bidimensional experiments) and CD (circular dichroism), STM (scanning 

tunneling microscopy) and AFM (atomic force microscopy). 

 

4.4.1  G1 

In the absence of metal ions, G1 forms ribbon-like structures. 
1
H NMR spectra in CDCl3 show a 

progressive downfield shift for both N(1)-H and N(2)-H signals upon cooling, while considerable 

line broadening occurs (Figure 4.6). 
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Figure 4.6 downfield portion of the 
1
H-NMR spectrum of G1 (16 mM) at different temperatures in CDCl3. 

Guidelines highlight imino and amino N-H shifts. Signals marked with stars belong to the C4-symmetric G18.K
+
 

complex formed by addition of a small amount of KI to the sample. 

 

G1 can complex alkali metal ions to form a C4 symmetric octamer consisting of two stacked G14, as 

indicated from the characteristic changes both in the 
1
H NMR and in the CD spectrum

11
 (Figure 

4.7). 
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Figure 4.7 CD (top) and UV (bottom) spectra of G1 (2.5 mM in CHCl3) before (blue) and after (red) addition of 

potassium picrate (1/8 mol/mol). 

 

We have then investigated the self-assembly of neat G1 by applying a 4 μL drop of a (100 ± 2) μM 

solution of G1 in 1-phenyloctane on the HOPG surface. The in situ STM image recorded at the 

solid-liquid interface showed a crystalline structure consisting of ribbon-like architectures forming a 

lamellar motif (Figure 4.8 left). In this 2D crystal, the stearate side chains are physisorbed flat on 

the basal plane of the surface and they are interdigitated between adjacent lamellae. The unit cell 

parameters amount to a = (7.4 ± 0.1) nm, b = (1.0 ± 0.1) nm, and α = (88 ± 2)°, leading to an area A 

= (7.4 ± 0.2) nm
2
, where each unit cell contains four molecules. Thus, the area occupied by a single 

molecule G1 corresponds to (1.85 ± 0.10) nm
2
. Given the size of the unit cell there is not enough 

space to accommodate the ferrocene units on the basal plane of the HOPG surface, therefore it is 

most likely that they are either back-folded into supernatant solution or physisorbed as second layer 

on the top of the guanosine first layer. Unfortunately, despite the high spatial resolution attained by 

STM imaging, we are unable to rule out any of these two scenarios. The monitored supramolecular 

motif can be well-described by the formation of a 1D hydrogen-bonded ribbon that involves the 

pairing N(2)-H
…

O(6) and N(1)-H
…

N(7). This self-assembly behavior is in good agreement with 

NMR solution data (see models in Figure 4.8 right and experimental part). 
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Figure 4.8 Left: STM current image of G1 monolayer at the graphite-solution interface using 1-phenyloctane as a 

solvent. Right: Proposed molecular packing of G1. The image shows the supramolecular self-assembly forming 

ribbon-like structures of G1. 

 

4.4.2  G2 

We then extended our study to guanosine G2, functionalized in C(8) position with a Br atom. Its 

1
H-NMR spectra recorded on cooling a solution in CDCl3 (Figure 4.9) show a progressive splitting 

of the broad N(2)-H singlet at 6.1 ppm into two signals (bonded and free N(2)-H, at 8.7 and 5.7 

ppm, respectively). The chemical shifts for the N(2)-H protons are close to those reported for a 

similar compound (8.50 and 5.44 ppm),
12

 but differ from those of the two stacked G-quartets 

formed by G1 in the presence of metal ions as well as from those of an isolated G-quartet (9.81 and 

5.15 ppm). Moreover, the lack of substantial line broadening is indicative of small sized 

aggregates.
13

 CD spectra recorded before and after K
+
 addition confirm the absence of stacked G-

quartets (Figure 4.10). 
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Figure 4.9 Downfield portion of the 
1
H-NMR spectrum of G2 (9 mM) at different temperatures in CDCl3. 

Guidelines highlight imino and amino N-H shifts. 
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Figure 4.10 CD (top) and UV (bottom) spectra of G2 (2.5 mM in CHCl3) before (blue) and after (red) addition of 

potassium picrate (1/8 mol/mol). 

 

Monolayers of G2 have been generated by applying a 4 μL drop of a (100 ± 2) μM solution of G2 

in 1-phenyloctane on the HOPG surface. The STM image of the obtained monolayer (Figure 4.11 

left) shows a crystalline lamellar structure consisting of ribbon-like architectures. In G2-based 2D 

crystal, the stearate side chains are physisorbed flat on the surface and are interdigitated between 

adjacent lamellae. The unit cell parameters, a = (4.1 ± 0.1) nm, b = (0.9 ± 0.1) nm, and α = (90 ± 

2)°, lead to an area A= (3.7 ± 0.1) nm
2
, where each unit cell contains two molecules. Thus, the area 

occupied by a single molecule G2 corresponds to (1.85 ± 0.10) nm
2
. While the area occupied by 

single molecule G2 is identical with the one of G1, their self-assembled patterns are markedly 

different. In particular, the appearance of hollow features within G2 ribbon core as well as different 

orientation of stearate side chains vs. the main lamellar axis (60° and 90° for G1 and G2 patterns, 

respectively) provides unambiguous evidence for a different self-assembly motif. In fact, the G2 

supramolecular motif can be well-described by the formation of H-bonded dimers that involves the 

pairing N(1)-H…O(6) (see models in Figures 4.11 right and experimental part). Each dimer 

interacts laterally with neighboring dimers via N(2)-H…Br(8) bonding, resulting in the formation of 

1D polymeric arrays. Similarly to the case of G1 ribbons, ferrocene units are likely back-folded into 
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supernatant solution or adsorbed as a second layer. Formation of such structures highlights the role 

played by bulky bromine atoms in C(8) position of guanine core, that induces the derivative G2 to 

organize themselves on the surface in a ribbon-like structure renamed ribbon C (see Figure 4.12), 

different from those (ribbon A and ribbon B) normally observed previously for lipoG. However, 

their presence in the molecular structure introduced N(2)-H…Br(8) bonding, which prevents the 

molecules from self-association into macrocyclic structures. We therefore decided to replace the Br 

atom with a more neutral group, which is also more sterically demanding, i.e. phenol (G3).  

 

  

Figure 4.11 Left: STM current image of G2 monolayer at the graphite-solution interface using 1-phenyloctane as 

a solvent. Right: Proposed molecular packing of G2. The image shows an unprecedented supramolecular motif, 

called ribbon-C. 
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Figure 4.12 Ribbon C. 

 

4.4.3  G3 

The behaviour of G3 in solution is very peculiar. In analogy to G2, the G3 molecule is unable to 

complex metal ions to form G4 stacked structures, as no changes can be detected both on CD and 

on 
1
H NMR spectra after the addition of K

+
 (Figure 4.13). 
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Figure 4.13 CD (top) and UV (bottom) spectra of G3 (2.5 mM in CHCl3) before (blue) and after (red) addition of 

potassium picrate (1/8 mol/mol). 

 

Furthermore, in the absence of added ions, both N(1)-H and N(2)-H signals split upon cooling. In 

particular, the N(2)-H signal splits into two couples of new signals in a 2:1 ratio. A couple of 

signals resonate at about 8 ppm, and can be attributed to H-bonded N(2)-Hs, while the other couple 

of signals appearing at 3 ppm can be ascribed to free N(2)-Hs. The existence of two sets of 

resonances for both imino and amino protons in a 2:1 ratio points to the existence of two different 

supramolecular species (Figure 4.14). 
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Figure 4.14 Downfield portion of the 
1
H-NMR spectrum of G3 (14 mM) at different temperatures in CDCl3. 

Guidelines highlight imino and amino N-H shifts. 

 

Based on NOE analysis (Figures 4.15 and 4.16) the major species can be ascribed to the formation 

of all-syn isolated G34. Although no direct and conclusive evidence could be gathered from the 

spectra, in depth inspection of the models suggests anti G34 or anti G3-ribbons analogous to those 

found for G2 on surfaces, as the possible structure for the minor species.  
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Figure 4.16. Bottom: 
1
H-NMR spectrum of G3 in CDCl3 at -50°C. Signals were assigned on the basis of COSY, 

HSQC and HMBC experiments. Top: noesy1d spectrum of the same sample (irradiation of protons o – see 

formula above – with a 50 Hz shaped pulse, mixing time 300 ms). 

 

NOE spectra (Figure 4.16) show weak contacts between ortho (o) and H1´ as well as between o and 

5´/5´´: according to calculations, the two conformers differ only slightly in energy. In addition, 

NOE intermolecular proximities can be observed between o and ferrocene a and between o and 

both free N(2)-H and bound N(2)-H (major specie).  
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Figure 4.17. Model of an isolated G-quartet formed by syn-G3 (some atoms are omitted for clarity). NOE 

contacts of Figure 4.16 are indicated by arrows. 

 

STM investigation of sub-monolayer-thick films obtained from (100 ± 2) μM solution of G3, 

revealed the formation of a new type of pattern (Figure 4.18). In this 2D crystal, because of steric 

hindrance brought into play by the phenol unit, only three out of four stearate side chains are 

physisorbed flat on the surface. The unit cell parameters, a = (4.5 ± 0.1) nm, b = (1.8 ± 0.1) nm, and 

α = (90 ± 2)°, lead to an area A = (8.1 ± 0.1) nm
2
, where each unit cell contains two molecules. 

Thus, the area occupied by a single molecule G3 corresponds to (4.1 ± 0.1) nm
2
. The packing of G3 

molecules is very loose as evidenced by the large discrepancy between the areas occupied by single 

molecules G1, G2 and G3. The STM inset in Figure 4.14 clearly shows the presence of macrocyclic 

bright features decorated with four small protrusions, which can be assigned to G34 and ferrocene 

groups (backfolded into the supernatant solution), respectively. Because of the presence of sterically 

demanding phenoxy substituent in the C(8) position of G3, the formation of ribbon-like structures is 

hindered, leading to the generation of cyclic tetrameric H-bonded structures characterized by the 

N(1)-H
…

O(6) and N(2)-H
…

N(7) motif, whose existence was also indicated by NOE. While NOE 

analysis suggests the presence of all-syn isolated G34, as the main specie, once adsorbed on the 

surface both all-syn and all-anti G34, will occupy the same areas, therefore we cannot 

unambiguously exclude the existence of the former over the latter. Noteworthyly, some of G34 

appear brighter in the STM image, which can be explained by the interference of the 

supramolecular lattice and the underling HOPG surface. 
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Figure 4.18 Left: STM current image of G3 monolayer at the graphite-solution interface using 1-phenyloctane as 

a solvent. Right: Proposed molecular packing of G3. The image shows an array of metal-free guanosine quartets. 

 

4.4.4  DFT 

To provide a molecular understanding of the three G derivatives self-assembly in 2D and gain 

insight into the formation and stability of supramolecular structures, we have carried out density 

functional theory (DFT) calculations using the hybrid Gaussian and plane-wave method (GPW), 

implemented in the QUICKSTEP module of the CP2K package.
14

 We used the B3LYP hybrid 

exchange-correlation potential,
15

 whereas the Grimme’s DFT-D2 method
16

 was employed for 

taking into account the dispersion forces. To bestow information onto the intermolecular binding 

mechanisms, we have focused our attention on unraveling the interplay between H-bonds, which 

hold the guanine cores together, and the effective metallic repulsion coming from the four iron 

cations present in the ferrocenes. Noteworthy, as can be seen in the suggested monolayer packing 

motifs, two types of intramolecular interactions can be distinguished, namely, the hydrogen-

bonding (or NH
…

Br interactions in the case of the G2 structure) between guanine cores, and the van 

der Waals interaction, resulting from the interdigitation of the stearate chains. In order to determine 

their contribution in the total cohesive energy, we calculated the intermolecular dissociation energy 

for each of the different four-molecule-based configurations exhibited in three G-based complexes 

(Figure 4.19). 

According to Etot values of three G derivatives, the ribbon structure of G1 is greatly stabilized by 

four strong H-bonds. In the G2 ribbon-like structure molecules are held together by two H-bonds to 

form dimers, which further self-assemble via two strong N(2)-H
…

Br bonds to form ribbons. As 
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expected the G34 macrocycle is energetically unfavored, since the H-bonds involved in pairing are 

of the weakest nature. Our findings indicate that the formation of H-bonds between molecules 

guides the generation of self-assembled structures, since the interactions between the stearate chains 

are much weaker. In gas phase, the calculated electronic structure of the dimers and ribbons exhibits 

hybridization between the states stemming from the organic complex, namely the guanine 

backbone, and the metallic states associated to the ferrocene functional groups. The information 

given by the electronic structure of calculated complexes strengthens our initial idea where, mainly, 

these complexes are held together by H-bonds formation even in presence of the metallic repulsion 

coming from the occupied molecular orbitals with clear d symmetries.  

 

 

Figure 4.19 Calculated structure of G1 and G2 ribbons and G34 cation-free quartet structure. 

 

4.5 Metal free G4 wires 

The results obtained with G3 led us to synthesize two other 8-substituted derivatives (Figure 4.20), 

using guanosine as the starting material in place of deoxyguanosine. This allows us to increase the 

lipophilic character of the compound. The first molecule is lipophilic guanosine derivative G4, with 

a phenyl group in C8 position. The second molecule is the analogous derivative G5, which carries a 

ferrocene residue in the 8-position. Both derivatives were expected to form metal free quartet-based 

assemblies. 
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Figure 4.20 Derivatives G4 and G5. 

 

 

4.5.1  Synthesis of G4 (G_8Ph_5Fc_23C10) 

The synthesis of derivative G4 was realized starting from commercial guanosine as described in 

Scheme 4.4. Bromination of the 8 position followed by selective protection of the primary alcoholic 

function led to derivative 15. Suzuki coupling with phenylboronic acid produced the 8-

phenylguanosine 16. The two secondary alcoholic functions were then esterified at 80°C with 

decanoic anhydride in a mixture of toluene and acetonitrile: with this procedure it is not necessary 

to protect the nucleobase exocyclic amino function. The primary alcoholic function was then 

deprotected and esterified with ferrocene carboxylic acid via a mixed anhydride, to form the target 

guanosine G4. 

 

 

Scheme 4.4 Synthesis of G4. 
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4.5.2  G5 (Synthesis of G_8Fc_235C10) 

Compound G5 was obtained by Suzuki-coupling of 8-Bromoguanosine 14 and ferroceneboronic 

acid, followed by esterification of ribose with decanoic anhydride (Scheme 4.5). 

 

 
Scheme 4.5 Synthesis of G5. 

 

4.5.3  Supramolecular studies of G4 and G5 

A typical feature of 
1
H-NMR spectra of G4 structures is the splitting of the signal for exocyclic 

amino protons into two signals, as hydrogen bonding produces a large downfield shift of the proton 

involved in G4 formation. This signal splitting is not usually observed at r.t., where the two protons 

are in fast exchange regime, but it can be easily observed by lowering the temperature. In Figure 

4.21 is shown the downfield portion of the 
1
H-NMR spectrum of pure G4 in CD2Cl2 at different 

temperatures in the absence of metal cations. The imino proton signal resonates at 12.6 ppm and 

undergoes deshielding on lowering the temperature. The same signal resonates at 10.9 ppm in 

dmso-d6, suggesting that in CD2Cl2 guanine is H-bonded already at r.t. The amino protons signal is 

baseline-broadened in the r.t. spectrum. By lowering the temperature, at -5°C two signals start to 

appear at 9.8 and 5.5 ppm for bound-N(2)H and free-N(2)H, respectively, and they become 

progressively sharper on further lowering the temperature. 

 



Chapter IV. Guanosine-ferrocene derivatives 

69 
 

 

Figure 4.21 Downfield portion of the 
1
H-NMR spectrum of pure G4 at different temperatures in CD2Cl2. Amino 

protons are marked with asterisks. 

 

This is the behavior normally observed in the presence of G4s, although in this case no templating 

ions are present. 

A further evidence of the existence and nature of self-assembled structures in solution is given by 

2D-NOE spectra, where cross peaks have the same phase as the diagonal. This is characteristic of 

slow tumbling regime, implying that the objects in solution have a MW above 2000 Da, while the 

MW of G4 is 879 Da. NOE experiments allow one to obtain a more detailed description of the 

species in solution and to confirm the existence of isolated G4s. Figure 4.22 shows selected 1D-

NOESY spectra of G4 recorded at -20°C. 
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Figure 4.22 a) Downfield portion of the 
1
H-NMR spectrum of G4 at -20°C in CD2Cl2 and signals assignment 

(diastereotopic protons were not assigned); b) NOESY-1D spectrum of the same sample upon irradiation at 7.83 

ppm (“o” protons); c) NOESY-1D spectrum of the same sample upon irradiation at 5.82 ppm (1ꞌ proton), In each 

NOE spectrum were used 512 coadded transients, a recycle delay of 0.6 sec, a mixing time of 0.6 sec and a 50Hz 

shaped pulse. Irradiated frequencies are indicated by a dashed line. 

 

The interaction between “orto” and H1' protons, already strong at r.t., and the absence of any 

correlation between H5'/H5'' and phenyl protons point to an exclusive syn conformation for G4, as 

depicted in Figure 4.22. In addition, the orto protons show contact with both exocyclic amino and 

ferrocene protons (Figure 4.22b). As these proximities can only be intermolecular, they can be 

easily accounted for by the G4 structure sketched in Figure 4.23, while they are incompatible with 

G-ribbon aggregates. 
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Figure 4.23 Proposed model for the isolated G4 formed by G4. Arrows indicate selected NOEs. Some atoms are 

omitted for clarity. 

 

Derivative G5 shows a different behavior. In Figure 4.24 are reported a series of 
1
H-NMR spectra 

of G5 in CD2Cl2 at different temperatures. While the imino signal behaves analogously to what 

shown above for G4, the amino signal starts to appear only at -20°C in the form of two separate 

signals, a downfield (9.38 ppm) and an upfield one (5.5 ppm ca., partially hidden under the residual 

solvent signal). Besides, imino (12.38 ppm) and amino (9.98 ppm) signals of a second assembled 

species (1:6 ratio with respect to the major one) become visible. 

If compared to the case of G4 under the same conditions, the lower temperature required for the 

appearance of amino signals of G5 suggests a lower dynamic stability for its aggregates. 

For the major aggregate of G5, NOE correlations are in phase with diagonal peaks, analogously to 

what observed for G4. Selective 1D-NOE experiments (Figure 4.25) show a spatial proximity 

between H1' or H2' and cyclopentadienyl protons (Figure 4.25b, c), suggesting a syn conformation 

around the glycosidic bond for the major species. In addition, irradiation of cyclopentadienyl  

proton (Figure 4.25b) shows an intermolecular NOE contact with exocyclic amino protons: we 

therefore assign the isolated G4 structure to the major species. As on lowering temperature no other 

new signal appears in the sugar/ferrocene region of the spectrum, one could rule out that the minor 

species consists of the diastereomeric anti conformer. No clear evidence could be obtained on the 

architecture of the minor species. Nonetheless, the existence of a second type of H-bonded 

aggregate, possibly a dimeric species, suggests that this derivative is “confused” in its self-assembly 
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preferences with respect to G4. It should be mentioned that an analogous 8-phenoxy derivative 

(compound G3) showed in solution a behavior analogous to G5. 

As the presence of bulky substituent at the 8 position is considered the structural feature responsible 

for the existence of isolated G4s, it is possible to conclude that a ferrocenyl residue creates a lower 

steric hindrance with respect to a phenyl one. 

 

 

Figure 4.24 Downfield portion of the 
1
H-NMR spectrum of pure G5 at different temperatures in CD2Cl2. 
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Figure 4.25 a) Downfield portion of the 
1
H-NMR spectrum of G5 at -40°C in CD2Cl2 and signals assignment 

(diastereotopic protons were not assigned); b) NOESY-1D spectrum of the same sample upon irradiation at 4.75 

ppm (“α” proton); c) NOESY-1D spectrum of the same sample upon irradiation at 7.07 ppm (1ꞌ proton). In each 

NOE spectrum were used 512 coadded transients, a recycle delay of 0.6 sec, a mixing time of 0.6 sec and a 50Hz 

shaped pulse. Irradiated frequencies are indicated by a dashed line. 
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4.5.4 Solid-state characterization of the aggregates 

To get a deeper insight on the morphology of the supramolecular structures, solid state Atomic 

Force Microscopy (AFM) study were performed. The samples were prepared by drop casting 150 µl 

of CH2Cl2 0.6 mg/ml solutions, containing the derivatives on the basal plane of thermally grown 

SiO2/Si (230 nm SiO2 on Si). The substrates were cleaned and functionalized with a monolayer of 

hexamethildisilazane (HMDS) covalently bonded to the pending SiOH groups, prior use, in order to 

make the surface hydrophobic and to avoid the formation of hydrogen bond between the molecules 

and the surface. 

Figure 4.26 shows AFM images of the packed molecules G4 (a and c) and G5 (b and d) under the 

same conditions. The crystalline architectures are extremely different, in particular G5 grows a 

disordered network of entangled bundles of fibers while G4 self-assembles in an ordered systems of 

aligned fibers that show an average height of 4.1 ± 0.5 nm and an average width of 32.4 ± 4 nm.  

 

 

Figure 4.26 AFM images of supramolecular metal-free G4s aggregates drop cast from CH2Cl2 0.6 mg/ml on 

HMDS functionalized SiO2. a,c) Molecule G4. b,d) Molecule G5. 
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To boost the aggregation into more stable and ordered supramolecular structures, the films were 

then exposed to a solvent vapor annealing (SVA) in CH2Cl2 for 48 hours under ambient conditions. 

By this method it’s possible to modify the morphology of the system i.e. to re-arrange the 

molecules into the most thermodynamically stable architectures. It is noteworthy that this method 

has previously been successfully used to finely tune the self-assembly of various molecular systems, 

including porphyrins,
17

 n-type perylene nanowires,
18

 p-type pentacene,
19

 and 

hexaperibenzacoronene (HBC) structures.
20

 

Figure 4.27 portraits the AFM images of the G4 (a,c) and G5 (b,d) fibers formed on the surface 

using SVA method. To this end, both systems look similar, appearing as bundles of entangled 

fibers. However, a fine analysis the architecture reveals that G4 is more ordered over large scale 

(Figure 4.27 a,c, linear structure can be clearly seen the AFM image).  

 

 

Figure 4.27 AFM images of supramolecular metal-free G4s aggregates drop cast from CH2Cl2 0.6 mg/ml on 

HMDS functionalized SiO2 after SVA (CH2Cl2 for 48 hours). a,c) Molecule G4. b,d) Molecule G5. 
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4.6 Conclusions 

In summary, by using STM at the solid/liquid interface, we have provided direct evidence on the 

sub-nanometer scale for the engineering of guanosine-based scaffolds. We have shown that 

supramolecular structures formed by ferrocene-exposing guanosines in solutions and at surfaces can 

be tuned by introducing sterically demanding substituents, ranging from G-ribbons to G4 cation-free 

architectures. This self-assembly is governed by the formation of H-bonds between guanosines that 

dictates the spatial localization of ferrocenes, ultimately forming 1D conjugated arrays that may be 

employed as prototypes of supramolecular nanowires.  

By using AFM imaging, we have monitored the self-association into SiO2/Si substrate of two other 

LipoG carrying a phenyl (G4) and ferrocenyl (G5) group at the C(8) position, respectively. 

Derivative G4 assembles into unprecedented G4 cation-free architectures, both in CD2Cl2 solution 

and at the surface. Derivative G5 does form isolated G4 as well, but another aggregated species is 

present in equilibrium. Indeed, the size of ferrocenyl moiety seems not large enough to drive the 

self-assembly towards the exclusive existence of isolated G4s in solution but its shape seems to 

hamper pi-stacking and hence a shift in equilibria towards (stacked) quartets in the solid state. 

Our approach demonstrates that a careful molecular design of the guanosine starting building block 

makes it possible to steer the self-assembly towards the formation of a range of different thick 

films, even in the absence of templating ions. The thickness was measured at more than 10 nm 

according to profile recorded from the AFM images. 

Unfortunately, although we were able to create an array with these guanosine derivatives, when we 

applied an oxidation potential, all the ferrocene groups were oxidized, making them useless as 

QCA. This is why we moved to another class of molecules: porphyrins, see in the next chapter. 
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V. Porphyrin-ferrocene hybrids 

5.1 Introduction 

Another possible strategy to control the assembly of molecules on surface and to obtain the desired 

disposition of molecular dots was related to the synthesis of functionalized porphyrins containing 

ferrocene.. The arrangement of metal-porphyrins on surfaces has been deeply studyed by single 

molecule imaging.
1
 

The aim of this work is to prove the feasibility of a porphyrin bearing different ferrocene groups. 

We expected that in this case energetically different charged states would be available. To be a 

good candidate as quantum molecular cell, a hybrid porphyrin-ferrocene must have not only the 

appropriate electrochemical properties, but also the ability to self-assemble into an ordered linear 

structure, which can reproduce the architecture of a matrix cell. In addition, for a practical use it is 

also necessary a way to anchor the macrocycle on a solid surface.  

In particular, we identified as targets, porphyrin derivatives where the ferrocene units are located at 

the meso positions of the porphine ring and hence in close proximity. In addition, we designed 

derivatives where ferrocenes were partially or fully conjugated with the aromatic macrocycle. We 

expect for these derivatives a multistep oxidation process, which will allow the easy obtainment of 

the doubly oxidized QCA cell, coupled with a stronger interaction between quantum dots. To drive 

the formation of 1D or 2D organized architectures, amide functional groups were planned. 

 

5.2 Project 

Analysis of literature brought us to design porphyrin derivatives with the general structure depicted 

in Figure 5.1: a trans-A2B2 porphyrin with two ferrocenes directly conjugated to the ring and a 

different type of functional group in the other two opposite meso positions. 

 

 

Figure 5.1 General formula of the target porphyrin. 
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These other two groups must be capable of ensuring the self-assembly into linear aggregates, while 

the anchoring of the molecule should occur through Van Der Waals interactions between the 

surface and the macrocycle. In particular, the amide function has been identified as a suitable group 

to allow the formation of hydrogen bonds between neighboring porphyrin rings, thus making the 2D 

aggregation possible.  

In the second part of my research, we have synthesized several hybrids porphyrin-ferrocene, 

summarized in Scheme 5.1, carrying ferrocene residues directly connected to the porphin core, in 

order to study their electrochemical behavior and their self-assembly at surfaces. 

 

 

Scheme 5.1 Porphyrin-ferrocene hybrids P1-P5. 

 

P2 and P3 are two porphyrins with ester functions, ethyl and benzyl, in the two meso positions. The 

goal in this case was to get a versatile molecule, usable as an half-cell with two dots: the complete 

cell would result be formed thanks to hydrogen bonds between the two molecules upon conversion 

of esters into carboxylic acids. These molecules are also intermediates for the synthesis of P4 and 

P5.  

Porphyrins P4 and P5 have been designed as candidate molecular unit cell and half-cell, 

respectively. In these derivatives, the ferrocene units are located at the meso positions of the 

porphine ring and hence in closer proximity. In addition, ferrocenes are either partially or fully 

conjugated with the aromatic macrocycle. The amide functional groups were introduced to drive the 

formation of 1D organized architectures via H-bonding, while the long aliphatic chains in P5 have 

the purpose of “insulating” the expected 1D supramolecular rows of cells and, in case, favour 

surface adsorption. 
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We expect for these derivatives a multistep oxidation process, which will allow the easy obtainment 

of the doubly oxidized QCA cell, coupled with a stronger interaction between quantum dots. 

 

5.3 Synthetic approaches  

5.3.1 P1 (5,10,15,20-tetra ferrocenyl porphyrin) 

Initially, porphyrin P1, known in the literature and with four ferrocenyl groups on the meso carbons 

was prepared (Figure 5.2), as a reference model for the other porphyrins. 

 

 

Figure 5.2 5,10,15,20-tetra ferrocenyl porphyrin. 

 

The first attempt to obtain compound P1 dates back to 1977 by Wollmann and Hendrickson
2
; after 

that many authors in recent years reported its synthesis
3,4,5,6

. 

The electrochemical studies of P1 resulted in conflicting reports. Narayanan
4
 shows a single 

oxidation peak at 0.54 V, Venkatraman
2
 describes two oxidation processes at 0.45 and 0.63 V, 

Nemykin
3
 reports two oxidation processes at -0.10 and +0.03 V. Currently there is no unique theory 

to explain the reasons for the particular electrochemical behaviour of this molecule. 

We have followed two procedures for the preparation of P1. The first
5
 procedure uses the acid 

catalysed condensation between ferrocenecarboxaldehyde and pyrrole, both commercially available, 

and subsequent oxidation according to Lindsey’s method
7
 (Scheme 5.2). 

 

 

Scheme 5.2 Synthesis of P1. 
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The main difficulty was to obtain satisfactory yields; in no one of our attempts yield reached the 

reported 40%. We tried to change the following reaction conditions in order to define those that 

would guarantee higher yields: 

 Solvent: CH2Cl2 has led to higher yields than MeCN. The solvent was always degassed for 

30 minutes in an ultrasonic bath under argon atmosphere before use because, according to 

literature, this procedure may increase the final yield
8
. This operation has also been 

performed in the synthesis of all other porphyrins that will be presented below. 

 Catalyst: the equivalents of BF3
.
Et2O were increased from 0.1 to 0.3, but this adjustment has 

not led to significant yield increases. 

 Oxidant: the use of DDQ or p-chloranil have led to equivalent results. 

The second procedure is based on the self condensation of meso ferrocenyl dipyrromethane 22 and 

subsequent oxidation, as in the Lindsey method (Scheme 5.3). The compound 22 was prepared by 

reaction of ferrocenecarboxaldehyde with an excess of pyrrole (40 eq) in the presence of acid 

catalyst, according to the general synthetic method for the preparation of meso-substituted 

dipyrromethanes
9
. 

 

 

Scheme 5.3 Alternative synthesis of P1. 

 

Two attempts have been made, employing CH2Cl2 or MeCN as solvent and TFA or BF3
.
Et2O as 

acid catalyst, respectively. In both cases, DDQ was used as oxidant. However, in either case results 

were poorer than with the first method. 

Table 5.1 shows schematically the conditions used for the  synthesis of compound P1. Conditions in 

the entry 1 and 3 have led to the best results. 
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ENTRY REAGENTS SOLVENTS OXIDANT CATALYST YIELD 

1 FcCHO, pyrrole CH
2
Cl

2
 

DDQ 
(0.8 equiv.) 

BF
3

.

Et
2
O 

(0.33 equiv.) 
<5% 

2 FcCHO, pyrrole MeCN, NH
4
Cl DDQ BF

3

.

Et
2
O trace 

3 FcCHO, pyrrole CH
2
Cl

2
 

p-chloranil 
(0.8 equiv.) 

BF
3

.

Et
2
O 

(0.33 equiv.) 
<5% 

4 FcDPM CH
2
Cl

2
 DDQ TFA trace 

5 FcDPM MeCN, NH
4
Cl DDQ BF

3

.

Et
2
O trace 

Table 5.1 Different strategies to synthesize P1. 

 

5.3.2 P2 (Porf_COOEt) 

The synthesis of P2 (Scheme 5.4) starts from the oxidative degradation of diethyl tartrate with 

periodic acid to form ethyl glyoxylate
10

 followed by reaction, in the conditions of the Lindsay 

method, with dipyrromethane equipped with ferrocene group to form the final porphyrin. As acid 

catalyst was used BF3
.
Et2O (0.1 eq with respect to 1) and DDQ (0.8 eq) as oxidizing agent. 

All the attempts to obtain the corresponding carboxylic acid by hydrolysis of P2 failed, probably 

due to the easy decarboxylation of the former (vide infra). 
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Scheme 5.4 Synthesis of P2. 

 

5.3.3 P3 (Porf_COOBz) 

The synthetic path followed for the preparation of P3 is reported in Scheme 5.5. The Fischer 

esterification of tartaric acid led to dibenzyl tartrate 26, which was then subjected to oxidative 

cleavage with of periodic acid to form benzyl glyoxylate 27. The reaction of the aldehyde function 

with an excess of pyrrole in the presence of acid catalyst according to the method of Lindsey led to 

meso benzyloxycarbonyl dipyrromethane 28. The condensation between 28 and 

ferrocencarboxaldehyde followed by oxidation with DDQ brought to the formation of porphyrin P3. 

Compared to the conditions described for the formation of P2 some adjustments have been made: 

 the oxidizing agent was used in excess (2 eq). 

 the use of MeCN as a solvent in the presence of an excess of NH4Cl (10 eq) at 0°C. Lindsey 

showed how these conditions can minimize the scrambling effect, despite of longer time of 

reactions and low yields of final porphyrin.
11

 

We tried the conversion of P3 into the corresponding meso-dicarboxylic acid by catalytic 

hydrogenolysis, but we were unable to isolate the compound.  
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Scheme 5.5 Synthesis of P3. 

 

5.3.4 P4 (Porf_NHFc) 

The synthesis of P4 is reported in Scheme 5.6: ferrocene was converted into iodoferrocene
12

 with t-

BuLi and I2. Subsequent treatment of 30 with concentrated ammonia in the presence of CuI  gave 

aminoferrocene 31.
13

 Ethyl glyoxylate was obtained by oxidation of diethyl tartrate with periodic 

acid and reacted with pyrrole to give the corresponding dipyrromethane 32. Saponification of 32 

and reaction via EDC/HOBT coupling with amino ferrocene gave dipyrromethane 34, which could 

be condensed with ferrocenecarboxaldehyde to form the desired porphyrin P4. 
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Scheme 5.6 Synthesis of P4. 

 

5.3.5 P5 (Porf_NHC10) 

The synthesis of P5 (Scheme 5.7) follows the same sequence of reactions as for P4, but decylamine 

was used instead of aminoferrocene.  

 

 

Scheme 5.7 Synthesis of P5.  
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5.4 Electrochemical studies 

The work and the characterization are still in progress. First, we report the electrochemical study in 

solution using cyclic voltammetry measurements, performed by the group of Professor Paolucci. 

Ferrocene-porphyrin molecules P4 and P5 were solubilized in dry dichloromethane (0.5 mM) with 

tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte (0.05 mM), Cyclic 

voltammetry of derivative P4 is shown in Figure 5.3. 

 

  

Figure 5.3 Cyclic voltammetry of P4 0.5 mM in 0.05 mM TBAPF6 in DCM , potential vs SCE. Left: T = 298 K, 

1 V/s. Right: T = 220 K, 10 V/s. 

 

In this spectrum we can see two distinct oxidation peaks, which were attributed to oxidation of the 

two different types of ferrocene located in the molecule: one for the two directly conjugated 

ferrocenes and one for the other two. It is therefore possible to obtain a mixed-valence compound 

and this would confirm that the molecule can be used as a QCA cell. The observation of two peaks 

suggests that, in this case, the communication between the  Fc residues is weak. 

Regarding derivative P5 (Figure 5.4), however, cyclic voltammetry shows again two oxidation 

peaks, in which the second peak appears as a shoulder of the first. By reducing the temperature or 

the scanning speed, the second peak appears better resolved. This indicates that the two Fc residues 

communicate with each other from an electronic point of view and this also makes the porphyrin P5 

a good candidate for the implementation of a QCA system as an half-cell. 
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Figure 5.4 Cyclic voltammetry of P5 0.5 mM in 0.05 mM TBAPF6 in DCM , potential vs SCE. Left: T = 298 K, 

5 V/s. Right: T = 220 K, 1 V/s. 

 

5.5 Organization on surfaces 

Studies on the morphology of the assemblies originated by P4 and P5 are still in progress, but some 

preliminary results show the formation of extended domains of ordered structures: in Figure 5.5 is 

shown an UHV-STM image of the topography of P5 dissolved in chloroform and electrosprayed on 

a Au(111) surface. 

 

 

Figure 5.5 STM image (at 77K) of P5 on Au(111) surface. 

 

A closer look at these domains (Figure 5.6, top) reveals an ordered arrangement of ribbon-like 2D 

structures, with a unit cell (in red) of 3.6 x 1.5 nm and an angle of 123°. Figures 5.6 A and B refer 

to images acquired with two different STM tips. 
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A      B 

Figure 5.6 UHV-STM Topography (25pA, -2.2V) of P5 on gold. 

 

Modelling of these images (Figure 5.6, bottom) confirms the formation of linear tapes of 

porphyrins, insulated by aliphatic tails. Nonetheless, the self-assembly seems controlled by 

lipophilic forces between aliphatic tails rather than by hydrogen bonding between amide groups. As 

a consequence, the orientation of the molecular units with respect to the ribbon axis is not the 

optimal one. 

While further studies are in progress on P4, we decided to synthesize porphyrin P6 (Scheme 5.8) 

with the aim of polymerizing via the STM
14

 tip the molecule deposited on a suitable surface to 

form, in this case, a conducting 2D polymer with the proper disposition of ferrocene units. 

Polymerization experiments are currently in progress. 

 

Scheme 5.8 Synthesis of P6. 
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VI. Supramolecular photoswitchable hydrogels 

6.1 Introduction 

A gel is a substance with these properties: (1) a continuous microscopic structure with macroscopic 

dimensions that is permanent at the time scale of an analytical experiment and (2) solid-like 

rheology despite being predominantly liquid.
1,2

 A gel can form a solid-like network (gel phase) 

which restricts the bulk flow of the liquid component (sol phase). If the solvent used to form the gel 

is water, the resulting gel is called a hydrogel. 

In contrast to the covalently linked networks in polymeric gels, the fibrous network of a physical 

gel forms through noncovalent interactions, such as ionic forces, hydrophobic interactions, π-π 

stacking, and hydrogen bonding. Supramolecular gels
3
, in which small organic molecules self-

assemble to form fibers, are an example of physical gels: such materials are very attractive due to 

their potential biocompatibility and biodegradability.  

Nucleosides and nucleic acids are examples of supramolecular gels based on natural products where 

self-assembly and molecular recognition of nucleobases is involved. As mentioned in Chapter 4, 

guanosine (G) shows unique self-assemblies, containing both a Watson-Crick edge and Hoogsteen 

edge, and some of the gels formed with G and its derivatives show notable promise for separations 

and biomedical applications. 

Guanosine derivatives, for example 5’-guanosine monophosphate (5’-GMP) have been known to 

form gels
4
 typically via templation of G4-quartet motifs

5
 by cations such as K

+
 and Na

+
, where four 

guanine bases form a macrocyle that is held together by hydrogen bonds and ion-ligand dipole 

interactions. The role of the cation is to assist the stacking of individual G4-quartets to give 

extended G4-wires, which ultimately form the fibers responsible of hydrogel formation. In order to 

obtain these guanine hydrogels, high concentratios of the nucleobase gelator (generally >0.05 M) 

and KCl (0.1−0.5 M) were needed. This requirement is likely because of the competition from 

water, that makes formation of the G4-quartet’s hydrogen bonds and ion-dipole interactions 

challenging. 

Recently, Davis and coworkers reported studies on a G4·K
+
 hydrogel, where gelation of water by 

guanosine (G 1) itself is achieved by addition of just 0.5 equiv of KB(OH)4 relative to the 

concentration of the gelator G 1 (Scheme 6.1).
6
 The countercation in the borate salt strongly alters 

the physical properties of the hydrogel. Addition of 0.5 equiv. of KB(OH)4 to G 1 (1 wt%; 36 mM) 

in water gave a strongest transparent gel (vial K), while the weakest system was obtained with 

LiB(OH)4, (0.5 equiv.), obtaining a free-flowing solution (vial Li). Although the LiB(OH)4 helps to 

dissolve G 1 by forming borate esters (monoester 2 and diastereomeric diesters 3 and 4), the sample 
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does not gel with Li
+
 as cation. This is due to the fact that K

+
 is far better than Li

+
 at stabilizing G4-

quartets.  

 

 

Scheme 6.1 Proposed mechanism for gelation of water by G 1 and KB(OH)4, via formation of GB borate 

monoester 2 and diesters 3/4, followed by formation and stacking of G4·M
+
 quartets and intermolecular 

association of G4-wires. 

 

6.2 Project 

Responsive and dynamic hydrogels are clearly attractive for many applications, including sensing 

of biomolecules and ions, as media for cell culture, tissue engineering and targeted drug 

delivery.
7,8,9,10

 

During the period at the University of Maryland, in the Prof. Jeffery Davis’ research group, I 

worked on the synthesis and characterization of specific dyes, containing azobenzene groups, in 

order to insert them in the guanosine hydrogels. Is well know that small molecules can promote and 

stabilize supramolecular assemblies. For example, Sleiman’s group demonstrated
11

 that 

intercalators could program self-assembly of oligonucleotides into well-defined DNA 

nanostructures. Davis and co-workers also investigated interactions of dyes with supramolecular 

hydrogels made from guanosine and borate salts.
12

 Both of these examples show the role of 

chaperones to control form and function in supramolecular assemblies, particularly those made 

from DNA nucleobases. 
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These dyes are capable, in principle, to change their conformation in a reversible way, through an 

external light stimulus. Thus, it could be possible to obtain photoresponsive hydrophilic gels, able 

to break and reform themselves in a controlled manner. 

 

6.3 Synthesis of the AD dye 

Xiang Zhou and co-workers
13

 reported the synthesis of an azobenzene derivative (Scheme 6.2) to 

control the movements and conformation of a G-quadruplex by irradiation. The formation and 

dissociation of G-quadruplex DNA was induced by interconversion of the trans and cis forms of 

compound 39. 

 

 

Scheme 6.2 Synthesis of compound 39. 

 

Compound 39 (called AD in this thesis) was synthesized by treating 4-hydroxyanilin with aqueous 

solution of sodium nitrite in acid condition, followed by addition of phenol in basic MeOH. Then, 

4,4’-dihydroxyazobenzene (37) was reacted with 1-(2 chloroethyl)piperidine hydrochloride  via 

Williamson synthesis to give compound 38, which was subsequently transformed in the third step 

into the final product by exhaustive methylation. 

 

6.4 Studies in solution 

UV/Vis spectroscopy was used to characterize the isomerization of compound 39 by 

photoillumination. Indeed, the azobenzene group is well known to undergo trans-to-cis 

isomerization under UV/Vis light. 
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Preliminary studies were conducted in solution to investigate the photoresponsive behavior of the 

dye in water. Upon the irradiation of a dilute solution of 39 in H2O (0.5 mM) at 365 nm for 10 

minutes, compound 39 underwent isomerization to the cis form (figure 6.2, blue line), and the 

system reverted to a photostationary trans (PSS-trans) state after irradiation at 432 nm for 10 

minutes (Figure 6.2, black line). 

 

 

Figure 6.2 UV/Vis spectrum of compound 39 in H2O (0.5 mM) before and after photoirradiation. Red line: all 

trans configuration under visible light. Blue line: PSS-cis after irradiation at 365 nm for 10 minutes. Black line: 

pss trans after irradiation at 432 nm for 10 minutes. 

 

In order to study the thermal back isomerization of the dye, a cis sample was maintained in the dark 

at room temperature and monitored by UV/Vis during the time. The thermal back isomerization was 

slow, indeed, as displayed in Figure 6.3: only after 17 hours the UV spectrum was almost 

superimposable to the PSS-trans trace (from red line to green line in Figure 6.3). 
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Figure 6.3: UV/Vis spectrum of trans 39 in H2O (0.5 mM) (red line). After irradiation at 365nm for 10 minutes 

(blue line) compound 39 has been checked during time (after 1 h: light blue line; after 2 h: black line and after 17 

h: green line). 

 

In Figure 6.4 are reported CD spectra (top) and UV/Vis spectra (down) obtained from a water 

solution of 10 mM of guanosine in LiB(OH)4 with AD dye 3 mM (red line) and spectra of the same 

solution without dye (blue line). 

 

 

Figure 6.4 CD (top) and UV/Vis (down) spectra of a water solution of 10 mM of guanosine in LiB(OH)4 with AD 

dye 3 mM (red line) and without dye (blue line). 

 

Both the samples show an exciton signal, typical of a D4-simmetric octamer. Interestingly, the 

sample with the dye shows an induced CD signal in the absorption region of the achiral dye, from 
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300 to 500 nm approximately. This signal suggests a dye-GB interaction, probably based on ionic 

forces. The same result was obtained with a solution of 10 mM of guanosine in KB(OH)4 (Figure 

6.5). 

 

 

Figure 6.5 CD (top) and UV/Vis (down) spectra of a water solution of 10 mM of guanosine in KB(OH)4 with AD 

dye 3 mM (red line) and without dye (blue line). 

 

6.5 GB hydrogels 

Based on these results, I tried to synthesize guanosine-borate (GB) gel, in order to put the dye inside 

the gel. A GB hydrogel was prepared according to the general preparation procedure: the desired 

amount of guanosine was weighed into a vial, and the appropriate amount of B(OH)3 solution was 

added. The mixture was sonicated for approximately 30 s, and the appropriate amount of LiOH or 

KOH solution was added. The suspension was heated to 90 - 100 °C in a water bath until guanosine 

was dissolved, and the solution was clear. The solution was then removed from the heat and a 

measured amount of dye solution was transferred into the vial while warm. The vial was allowed to 

cool to room temperature. Gels were formed at a 2:1 ratio of G:KB(OH)4.
6 

I started with several concentrations of guanosine (from 50 to 100 mM) with LiB(OH)4 and with 

two different concentrations of dye, 0.5 and 1 mM. I monitored these gels during a week, while the 

inversion tests (by simply reversing vial containing sample) provided macroscopic evidence of 

strength of gels (see Table 6.1). 
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Entry Guanosine Without dye Dye AD 0.5 mM Dye AD 1 mM 

1 G 50 mM Liquid Liquid Liquid 

2 G 60 mM Liquid Viscous liquid Liquid 

3 G 72 mM Very weak gel Very weak gel Very weak gel 

4 G 80 mM Very weak gel Very weak gel Very weak gel 

5 G 100 mM Gel Gel Gel 

Table 6.1 Inversion tests after a week of G:LiB(OH)4 and different concentrations of AD dye. 

 

Concentration of the dye 1 mM appeared too high compared to concentration of the guanosine. At 

the same time, G 50 mM formed a free flowing solution and, on the opposite, G 100 mM produced 

a strong gel. In light of this, I selected three concentrations of guanosine and two concentrations of 

dye, following all the samples during approximately 3 days. (Table 6.2) 

 

Entry GB Hydrogel 14 h 24 h 48 h 60 h 

1 G 60 mM Almost 

gel 

Almost gel Very weak gel Very weak gel 

2 G 60 mM + 0.25 mM 

dye AD 

Liquid Liquid Viscous liquid Viscous liquid 

3 G 60 mM + 0.50 mM 

dye AD 

Liquid Liquid Viscous liquid Viscous liquid 

4 G 72 mM Almost 

gel 

Weak gel Weak gel Gel 

5 G 72 mM + 0.25 mM 

dye AD 

Liquid Liquid Viscous liquid Viscous liquid 

6 G 72 mM + 0.50 mM 

dye AD 

Liquid Liquid Very viscous 

liquid 

Very viscous 

liquid 

7 G 80 mM Almost 

gel 

Almost gel Gel Gel 

8 G 80 mM + 0.25 mM 

dye AD 

Liquid Liquid Very weak gel Weak gel 

9 G 80 mM + 0.50 mM 

dye AD 

Liquid Viscous 

liquid 

Very weak gel Weak gel 

Table 6.2 Inversion tests during three days of G:LiB(OH)4 and different concentrations of AD dye. 
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In addition, I used another dye (called ST in this thesis) commercially available, 4-(4-

Diethylaminophenylazo)-1-(4-nitrobenzyl)pyridinium bromide (Figure 6.6). Inversion tests with 

this dye and G:LiB(OH)4 are reported in the Table 6.3. Unfortunately, this dye showed poor 

solubility in water. 

 

 

Figure 6.6 Structure of 4-(4-Diethylaminophenylazo)-1-(4-nitrobenzyl)pyridinium bromide (ST dye). 

 

Entry GB Hydrogel 14 h 24 h 48 h 60 h 

1 G 60 mM Liquid Viscous liquid Very weak gel Very weak 

gel 

2 G 60 mM + 

0.25 mM dye 

ST 

Liquid Liquid Viscous liquid Viscous 

liquid 

3 G 60 mM + 

0.50 mM dye 

ST 

Liquid Liquid Liquid Viscous 

liquid 

4 G 72 mM Liquid Weak gel Gel Gel 

5 G 72 mM + 

0.25 mM dye 

ST 

Liquid Liquid Very weak gel Gel 

6 G 72 mM + 

0.50 mM dye 

ST 

Liquid Liquid Viscous liquid Very weak 

gel 

7 G 80 mM Liquid Almost gel Gel Gel 

8 G 80 mM + 

0.25 mM dye 

ST 

Liquid Viscous liquid Almost gel Gel 

9 G 80 mM + 

0.50 mM dye 

ST 

Liquid Liquid Very weak gel Gel 

Table 6.3 Inversion tests during three days of G:LiB(OH)4 and different concentrations of ST dye. 
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Furthermore, I prepared samples with guanosine 80 mM, KB(OH)4 and the two different dyes 

(Table 6.4) 

 

Entry GB Hydrogel 14 h 24 h 48 h 60 h 

1 G 80 mM Gel Gel Gel Gel 

2 G 80 mM + 

0.25 mM dye 

AD 

Gel Weak gel Weak gel Weak gel 

3 G 80 mM + 

0.50 mM dye 

AD 

Gel (less 

strong) 

Gel (less 

strong) 

Weak gel Weak gel 

4 G 80 mM + 

0.25 mM dye 

ST 

Liquid Liquid Liquid Viscous 

liquid 

5 G 80 mM + 

0.50 mM dye 

ST 

Very weak 

gel 

Viscous liquid Viscous liquid Viscous 

liquid 

Table 6.4 Inversion tests during three days of G:KB(OH)4 and different concentrations of AD and ST dyes. 

 

Preliminary results show that both dyes make weaker gels as the concentration of the dye is 

increased, especially with ST dye. Potassium gels are more stable than lithium gels, as we expected, 

and can be used to test future dyes.  

Surprisingly, most of these samples show birefringence when observed through crossed polarizers 

(see Figure 6.7 and Figure 6.8), regardless of the presence of dye. 

 

 

http://context.reverso.net/traduzione/inglese-italiano/surprisingly
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Figure 6.7 Birefringence of two sample. Left: 80 mM G:KB(OH)4 with dye AD 0,5 mM, right: 40 mM 

G:KB(OH)4 with dye AD 2,5 mM. 

 

 

Figure 6.8 Optical microcope (crossed polarizers) birefringence of a water solution of 120 mM G:LiB(OH)4. 

 

These preliminary results suggest that what has always been considered a gel is actually a liquid 

crystalline phase, where some degree of anisotropy is present. This opens further possibilities for 

these materials and will be deeply investigated. 
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VII. Experimental part 

General 

All reactions requiring anhydrous conditions were carried out in oven-dried glassware under dry 

argon atmosphere. Macherey-Nagel Polygram silica gel plates (layer thickness 0.20 mm) were used 

for TLC analyses. Column chromatography was performed on Geduran silica gel 60 (40-63 µm). 

Reagents and solvents, including dry solvents, were purchased from Aldrich, TCI or Alfa Aesar. 

Nuclear magnetic resonance spectra were recorded on Varian (600, 400 or 200 MHz) spectrometers 

and referenced to the residual solvent resonance. Electrospray ionization mass spectra were 

obtained from methanol solutions with a Micromass ZMD 4000. CD were recorded with a Jasco J-

710 spectropolarimeter (cell path length= 0.01 cm). 

5’-O-tert-butyldimethylsilyl-3’-O-octadecanoyl-2’-deoxyguanosine 3: 

 

Stearic anhydride (1.14 g, 2.07 mmol) and a catalytic amount of 4-dimethylamino pyridine (DMAP) 

were added to a flask containing a suspension of 5’-O-tert-butyldimethylsilyl-2’-deoxyguanosine 2
1
 

(750 mg, 1.97 mmol, dried over P2O5 in vacuo for 2 h at 60 °C) in 30 mL of an acetonitrile - toluene 

mixture 1:1 and triethylamine (TEA) (288 L, 2.07mmol). The reaction was stirred at 80° C under 

argon for 5 h. The solvents were removed under reduced pressure and the crude material was 

dissolved in dichloromethane and extracted three times with a saturated solution of NaHCO3. The 

organic layer was then dried over MgSO4. The crude material was purified by column 

chromatography on silica gel using ether to elute stearic acid, then with dichloromethane/ methanol 

(95:5) as eluent to afford the desired product as a withe solid (750 mg, 1.16 mmol, yield 59%). 

ESI-MS (positive mode, MeOH solution, m/z): 648.1 [M+H]
+
, 670.3 [M+Na]

+ 
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H-NMR (600 MHz DMSO-d6) of 3 

 

3’-O-octadecanoyl-2’-deoxyguanosine 4 

 

Tetrabutylammonium fluoride trihydrate (TBAF) (547 mg, 1.73 mmol) was added to a solution of 

5’-O-tert-butyldimethylsilyl-3’-O-octadecanoyl-deoxyguanosine (750 mg, 1.16 mmol) in THF (20 

mL) and the solution was stirred for 4 h at room temperature. The solvent was removed under 

reduced pressure and the crude material was dissolved in dichloromethane and extracted three times 

with water. The organic layer was then dried over MgSO4. The crude material was purified by 

column chromatography on silica gel using dichloromethane /methanol (96:4) as eluent, affording 

the product as a white solid (460 mg, 0.85 mmol, yield 74%) 

ESI-MS (positive mode, MeOH solution, m/z): 534.2 [M+H]
+
, 567.3 [M+Na]

+ 
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H-NMR (200 MHz DMSO-d6) of 4 

 

5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine G1 

 

Ferrocene carboxylic acid (238 mg, 1.03 mmol) and 3’-O-decanoyl-2’-deoxyguanosine (460 mg, 

0.86 mmol) were dried over P2O5 in vacuo for 2 h at 60 °C. Ferrocene carboxylic acid was then 

dissolved in DMF (10 mL), DCC (467 mg, 2.27mmol) was added and the resulting solution was 

stirred under argon atmosphere. After 30 min. 3’-O-decanoyl-2’-deoxyguanosine and DMAP (126 

mg, 1.03 mmol) were added and the solution was stirred for 4 h. The solvent was removed under 

reduced pressure, the crude was dissolved in dichloromethane and extracted with a sat. 

NaHCO3.The organic layer was dried over MgSO4. The reaction mixture was applied to a silica gel 

column packed in dichloromethane and eluted with a gradient of methanol in dichloromethane. The 

final product was eluted with a mixture of dichloromethane-methanol (96:4) yielding the product as 

a yellow solid (260 mg, 0.35 mmol, yield 40%). 

ESI-MS (positive mode, MeOH solution, m/z): 744.7 [M+H]
+
, 769.5 [M+Na]

+ 
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H-NMR (600 MHz DMSO-d6) of G1 

 
13

C-NMR (600 MHz DMSO-d6) of G1 
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COSY spectrum (600 MHz DMSO-d6) of G1 

 

HSQC spectrum (600 MHz DMSO-d6) of G1 
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HMBC spectrum (600 MHz DMSO-d6) of G1 

 

8-bromo-5’-O-tert-butyldimethylsilyl-2’-deoxyguanosine 6 

 

8-Bromo-2'-deoxyguanosine 5
2
 (740 mg, 2.14 mmol) and imidazole (326 mg, 5.35mmol) were 

suspended in dry DMF (10 mL) and treated with a solution of tert-butyldimethylsilyl chloride (355 

mg, 2.35 mmol) in THF (5 mL).The reaction mixture was stirred for 2h at room temperature, 

concentrated, diluted in water (20 mL) and extracted with DCM ( 2 x 20 mL). The organic layer 

was dried over MgSO4, concentrated and purified by chromatography on silica gel (CH2Cl2: MeOH 

93:7) to provide 621mg (1.35mmol, 63%) of the title compound as a white powder. 

ESI-MS (positive mode, MeOH solution, m/z): 461.4 [M+H]
+
, 483.4 [M+Na]

+ 
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H-NMR (200 MHz DMSO-d6) of 6 

 

8-bromo-5’-O-tert-butyldimethylsilyl-3’-O-octadecanoyl-2’-deoxyguanosine 7 

 

Stearic anhydride (780 mg, 1.42 mmol) and a catalytic amount of DMAP were added to a flask 

containing a suspension of 8-bromo-5’-O-tert-butyldimethylsilyl-2’-deoxyguanosine (621 mg, 1.35 

mmol, dried in P2O5 in vacuo for 2 h at 60°C) in 20 mL of an acetonitrile-toluene 1:1 mixture and 

TEA (206 µL, 1.42 mmol). The reaction was stirred at 80° C under argon for 12 h. The solvents 

were removed under reduced pressure and the crude material was dissolved in dichloromethane and 

extracted three times withsat.NaHCO3. The organic layer was then dried over MgSO4. The crude 

material was purified by column chromatography on silica gel using DCM/methanol (95:5) as 

eluent affording the desired product as a white solid (560 mg, 0.77 mmol, yield 57%). 

ESI-MS (positive mode, MeOH solution, m/z): 727.8 [M+H]
+
, 749.8 [M+Na]

+ 
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H-NMR (200 MHz DMSO-d6) of 7 

 

8-bromo-3’-O-octadecanoyl-2’-deoxyguanosine 8 

 

Tetrabutylammonium fluoride trihydrate (560 mg, 0,77mmol) was added to a solution of 8-bromo-

5’-O-tert-butyldimethylsilyl-3’-O-octadecanoyl-deoxyguanosine (364 mg, 1.15 mmol) in THF (15 

mL) and the solution was stirred for 4 h at room temperature. The solvent was removed under 

reduced pressure and the crude material was dissolved in dichloromethane and extracted three times 

with water. The organic layer was then dried over MgSO4. The crude material was purified by 

column chromatography on silica gel using dichloromethane/methanol (96:4) as eluent, affording 

product 8 as a white solid (306 mg, 0.5 mmol, yield 65%) 

ESI-MS (positive mode, MeOH solution, m/z): 613.6 [M+H]
+
,  635.6 [M+Na]

+ 
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H-NMR (200 MHz DMSO-d6) of 8 

 

8 bromo-5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine G2 

 

Ferrocene carboxylic acid (138 mg, 0.6 mmol) and 8-bromo-3’-O-decanoyl-2’-deoxyguanosine 

(306 mg, 0.5 mmol) were dried over P2O5 in vacuo for 2 h at 60°C. Ferrocene carboxylic acid was 

dissolved in dry THF (10 mL), Et3N (79 L, 0.6 mmol) was added and the resulting solution was 

cooled at 0° C under argon atmosphere. Methanesulfonyl-chloride (CH3SO2Cl 46 L, 0.6 mmol)  

was added and the reaction was stirred at the same temperature for two hours. 8-Bromo-3’-O-

decanoyl-2’-deoxyguanosine and DMAP (catalytic amount) were then added and the solution was 

stirred for 12 hours at room temperature. The solvent was removed under reduced pressure, the 

crude was dissolved in dichloromethane and extracted with sat. NaHCO3. The organic layer was 

dried over MgSO4. The residue was applied to a silica gel column packed in dichloromethane and 

eluted with a gradient of methanol in dichloromethane. The target product was eluted with a 
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mixture of dichloromethane-methanol (97:3) and crystallized from MeOH, yielding G2 as a yellow 

solid (165 mg, 0.20 mmol, yield 40%). 

ESI-MS (positive mode, MeOH solution, m/z): 825.6 [M+H]
+
,  847.6 [M+Na]

+
 

H-NMR (600 MHz DMSO-d6) of G2 

 

C13 -NMR (600 MHz DMSO-d6) of G2 
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COSY-NMR (600 MHz DMSO-d6) of G2 

 

HSQC-NMR (600 MHz DMSO-d6) of G2 
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HMBC-NMR (600 MHz DMSO-d6) of G2 

 

8-bromo-3’-5’-O-bis-(tert-butyldimethylsilyl)-2’-deoxyguanosine 9 

 

8-bromo-2'-deoxyguanosine 5 (266 mg, 0.74 mmol) and imidazole (1.09 g, 16 mmol) were 

suspended in dry DMF (20 mL). t-butyldimethylsilyl chloride (1.45 g, 9.6 mmol) was added and the 

reaction mixture was stirred for 5h at room temperature, concentrated, diluted in water (20 mL) and 

extracted with EtOAc (3 x 20 mL). The organic layer was dried over MgSO4 and concentrated to 

provide 1.52 g (1.35 mmol, 82%) of the title compound as a white powder. 

ESI-MS (positive mode, MeOH solution, m/z): 575.9 [M+H]
+
, 597.9 [M+Na]

+ 
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H-NMR (200 MHz DMSO-d6) of 9 

 

8-Phenoxy-2’-deoxyguanosine 10 

 

To a suspension of Cs2CO3(4.32 g, 13.2 mmol) in dry xylene was added phenol (1.24 g 13.2 mmol) 

and the mixture was heated at 130° C for 1 h. 8-Bromo-3’-5’-O-bis-(tert-butyldimethylsilyl)-2’-

deoxyguanosine (1.52 g, 2.65 mmol) was then added and the reaction mixture was stirred at the 

same temperature for 12 h. The solvent was removed under reduced pressure, the crude was 

dissolved in ethyl acetate and extracted with a sat. NaHCO3. The organic layer was dried over 

MgSO4 .The residue was applied to a silica gel column and eluted with dichloromethane/methanol 

(98:2). 8-Phenoxy-3’-5’-O-bis-(tert-butyldimethylsilyl)-2’-deoxyguanosine was isolated as a white 

solid (500 mg, 0,85 mmol, 32 %). 

ESI-MS (positive mode, MeOH solution, m/z): 588.1 [M+H]
+
, 610.1 [M+Na]

+
 

Tetrabutylammonium fluoride trihydrate (804 mg, 2.55 mmol) was added to a solution of 8-

phenoxy-3’-5’-O-bis-(tert-butyldimethylsilyl)-2’-deoxyguanosine (500 mg, 0.85 mmol) in THF (15 

mL) and the solution was stirred for 4 h at room temperature. The solvent was removed under 
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reduced pressure and the crude material was dissolved in dichloromethane and extracted three times 

with water. The organic layer was then dried over MgSO4. The crude material was purified by 

column chromatography on silica gel using dichloromethane /methanol (85:15) as eluent, affording 

8-phenoxy-2’-deoxyguanosine 10 as a white solid (290 mg, 0.81 mmol, yield 95 %). 

ESI-MS (positive mode, MeOH solution, m/z): 359.9 [M+H]
+
 

H-NMR (200 MHz DMSO-d6) of 10 a 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter VII. Experimental part  

116 
 

H-NMR (200 MHz DMSO-d6) of 10 

 

8-phenoxy-5’-O-(tert-butyldimethylsilyl)-2’-deoxyguanosine 11 

 

8-phenoxy-2’-deoxyguanosine (266 mg, 0.74 mmol) and imidazole (126 mg, 1.85 mmol) were 

suspended in dry DMF (10 mL) and treated with a solution of tert-butyldimethylsilyl chloride (112 

mg 0.74 mmol) in THF (2 mL). The reaction mixture was stirred for 2 h at room temperature, 

concentrated, dissolved in DCM (2 x 20 mL) and extracted with sat. NaHCO3 The organic layer 

was dried over MgSO4, concentrated and purified by chromatography on silica gel (CH2Cl2:MeOH 

9:1) to provide 320 mg (0.68 mmol, 92 %) of the title compound as a white powder. 

ESI-MS (positive mode, MeOH solution, m/z): 474.1 [M+H]
+ 
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H-NMR (200 MHz DMSO-d6) of 11 

 

8-phenoxy-3’-O-octadecanoyl-2’-deoxyguanosine 12 

 

Stearic anhydride (391 mg, 0.71 mmol) and a catalytic amount of DMAP were added to a flask 

containing a suspension of 8-phenoxy-5’-O-(tert-butyldimethylsilyl)-2’-deoxyguanosine (320 mg, 

0.68 mmol, dried over P2O5 in vacuo for 2 h at 60°C) in 20 mL of a 1:1 mixture of acetonitrile and 

toluene. TEA (102 L, 0.71 mmol) was added and the reaction mixture was stirred at 80° C under 

argon for 4 h. Solvents were removed under reduced pressure and the crude material was dissolved 

in dichloromethane and extracted three times with sat. NaHCO3. The organic layer was then dried 

over MgSO4. The crude material was purified by column chromatography on silica gel using 

dicholormetane/methanol (97:3) as eluent, affording 8-phenoxy-5’-O-(tert-butyldimethylsilyl)-3’-

O-octadecanoyl-2’-deoxyguanosine as a withe solid (240 mg, 0.33 mmol, yield 48%). 

ESI-MS (positive mode, MeOH solution, m/z): 740.4 [M+H]
+ 



Chapter VII. Experimental part  

118 
 

Tetrabutylammonium fluoride trihydrate (170 mg, 0,54 mmol) was added to a solution of 8-

phenoxy-5’-O-(tert-butyldimethylsilyl)-3’-O-octadecanoyl-2’-deoxyguanosine (200 mg, 0.27 

mmol) in THF (5 mL) and the solution was stirred for 3 h at room temperature. The solvent was 

removed under reduced pressure and the crude material was dissolved in dichloromethane and 

extracted three times with water. The organic layer was then dried over MgSO4. The crude material 

was purified by column chromatography on silica gel using dichloromethane/methanol (96:4) as 

eluent, affording 8-phenoxy-3’-O-octadecanoyl-2’-deoxyguanosine 12 as a white solid (100 mg, 

0.16 mmol, yield 30 %) 

ESI-MS (positive mode, MeOH solution, m/z): 626.4 [M+H]
+
, 648.3 [M+Na]

+
 

H-NMR (200 MHz DMSO-d6) of 12a 
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H-NMR (200 MHz DMSO-d6) of 12 

 

8-phenoxy-5’-O-ferrocenoyl-3’-O-octadecanoyl-2’-deoxyguanosine G3 

 

Ferrocene carboxylic acid (55.2 mg, 0.24 mmol) and 8-phenoxy-3’-O-decanoyl-2’-deoxyguanosine 

(100 mg, 0.16 mmol) were dried over P2O5 in vacuo for 2 h at 60°C. Ferrocene carboxylic acid was 

dissolved in dry THF (5 mL), Et3N (108 µL, 0.24mmol) was added and the resulting solution was 

cooled at 0°C. (18 µl, 0.24 mmol) was added and stirring was continued at the same temperature for 

2 h. 8-Phenoxy-3’-O-decanoyl-2’-deoxyguanosine and DMAP (catalytic amount) were then added 

and the mixture was allowed to reach room temp. After 12 hours, the solvent was removed under 

reduced pressure, the residue was dissolved in dichloromethane and extracted with sat. 

NaHCO3.The organic layer was dried over MgSO4 and the crude reaction mixture was applied to a 

silica gel column packed in dichloromethane and eluted with a gradient of methanol in 

dichloromethane. The final product was eluted with a mixture of dichloromethane-methanol (98:2) 
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and crystallized in MeOH, affording the title product as a yellow solid (80 mg, 0.095 mmol, yield 

60%). 

ESI-MS (positive mode, MeOH solution, m/z): 838.3 [M+H]
+
, 860.3 [M+Na]

+
 

H-NMR (600 MHz DMSO-d6) of G3 

 

C
13

-NMR (600 MHz DMSO-d6) of G3 
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COSY-NMR (600 MHz DMSO-d6) of G3 

 

HSQC -NMR (600 MHz DMSO-d6) of G3 
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HMBC -NMR (600 MHz DMSO-d6) of G3 

 

8-Bromo guanosine 14 

 

Guanosine (1.00 g, 3.53 mmol) was suspended in 60 mL of an acetonitrile/water 2:1 mixture and N-

Bromosuccinimide (943 mg, 5.3 mmol, 1.5 eq) was added in three portions over 20 min. Stirring 

was continued until TLC (CH2Cl2/MeOH 8:2) revealed the disappearance of the starting material (2 

h). Solvents were then removed in vacuo and the pale yellow solid thus obtained was suspended in 

acetone (20 mL) and stirred at r.t. for 2 h. The flask was then placed in refrigerator and left 

overnight at -20°C. The precipitate was filtered and washed several times with cold acetone, to 

afford 1.09 g, 3.02 mmol (yield 86%) of the title compound as a white solid. 

ESI-MS: m/z 359.8/361.8 [M-H]
-
; 361.8/363.8 [M+H]

+
. 

HR-MS: calcd. for C10H12BrN5O5, m/z 361.0022; found, m/z 361.0020. 

1
H-NMR (dmso-d6): 3.54 (m, 1H, H5'), 3.63 (m, 1H, H5'), 3.85 (m, 1H, H4'), 4.13 (m, 1H, H3'), 

4.92 (m, 1H, OH5'), 5.01 (m, 1H, H2'), 5.08 (d, J=5.1, 1H, OH3'), 5.44 (d, J=6.0, 1H, OH2'), 5.68 

(d, J=6.0, 1H, H1'), 6.50 (bs, 2H, NH2), 10.81 (bs, 1H, NH) ppm. 

13
C-NMR  (dmso-d6): 62.46, 70.75, 70.94, 86.31, 90.14, 117.98, 121.54, 152.52, 153.90, 155.87  
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8-Bromo-5'-O-tert-butyldimethylsilyl guanosine 15 

 

8-Bromoguanosine (1.274 g, 3.52 mmol) was dried at 50°C over P2O5 in vacuo for 2h and dissolved 

in DMF (17 mL). Imidazole (491 mg, 7.21 mmol, 2.05 eq) was then added. To the resulting mixture 

was added dropwise a solution of t-butyldimethylsilyl chloride (558 mg, 3.70 mmol, 1.05 eq.) in 

THF (9 mL) and stirring was continued for 2 h. As TLC (CH2Cl2/MeOH 8:2) revealed the presence 

of unreacted starting material, an extra amount of imidazole (120 mg, 1.76 mmol, 0.5 eq.) and t-

butyldimethylsilyl chloride (266 mg, 1.76 mmol, 0.5 eq.) was added and reaction was continued for 

2 h. The crude mixture was poured into water (50 mL) and the precipitate was filtered, washed with 

water and Et2O and dried, to afford the product (1.04 g, 2.19 mmol, 62%) as a white solid. 

RF = 0.6 (CH2Cl2/MeOH 8:2) 

ESI-MS: m/z 473.9/475.9 [M-H]
-
; 475.9/477.9 [M+H]

+
. 

HR-MS: calcd. for C16H26BrN5O5Si, m/z 475.0887; found, m/z 475.0889. 

1
H-NMR (CD3OD): -0.03 and 0.01 (s,s, 6H, SiMe2), 0.84 (s, 9H, tBuSi), 3.83 (dd, J=11.4, J=5.7, 

1H, H5'), 3.92 (dd, J=11.4, J=4.0, 1H, H5'), 3.95 (m, J=11.4, J=5.7, J=4.0, 1H, H4'), 4.56 (m, 

J=5.7, 1H, H3'), 5.26 (dd, J=5.7, J=4.2, 1H, H2'), 5.85 (d, J=4.2, 1H, H1') ppm. 

8-Phenyl-5'-O-tert-butyldimethylsilyl guanosine 16 

 

PdCl2(PPh3)2, (59.0 mg, 0.084 mmol, 0.2 eq.) was added to a degased solution of 8-bromo-5'-O-tert-

butyldimethylsilylguanosine (200 mg, 0.421 mmol), phenylboronic acid (77 mg, 0.630 mmol, 1.5 

eq.) and K3PO4 (223 mg, 1.05 mmol) in 7 mL of a 6:1 mixture of dioxane/water. The mixture was 

heated at 95°C for 22 h. After cooling to r.t., solvents were removed by distillation, the dark residue 

was suspended in 50 mL of Et2O and filtered. The filtrate was washed with brine (40 mL) and 1N 

HCl (6 mL) and then dried over MgSO4. The precipitate was washed with a CH2Cl2/MeOH 4:1 

mixture, washings were combined with the ethereal residue and solvents were removed in vacuo. 
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The residue was purified by column chromatography on silica gel (CH2Cl2/MeOH 95:5) and the 

product was obtained in a 61% yield (121 mg, 0.256 mmol). 

RF = 0.2 (CH2Cl2/MeOH 9:1) 

ESI-MS: m/z: 472.0 [M-H]
-
; 474.0 [M+H]

+
; 497.2 [M+Na]

+
. 

HR-MS: calcd. for C22H31N5O5Si, m/z 473.2094; found, m/z 473.2092. 

1
H-NMR (dmso-d6): 0.003 and 0.006 (s,s, 6H, SiMe2), 0.841 (s, 9H, tBuSi), 3.74-3.84 (m, 3H, 

H4',H5'), 4.13 (m, 1H), 4.94 (d, J=6.0, 1H, OH), 5.07 (m, 1H), 5.36 (d, J=6.0, 1H, OH), 5.60 (d, 

J=5.5, 1H, H1'), 6.43 (bs, 2H, NH2), 7.52-7.54 (m, 3H, ArH), 7.64-7.67 (m, 2H, ArH), 10.73 (bs, 

1H, NH) ppm. 

13
C-NMR  (dmso-d6): -4.81 (CH3), -4.76 (CH3), 18.49 (C), 26.27 (CH3), 64.10 (C5'), 70.51 (C2'), 

70.66 (C3'), 85.34 (C4'), 89.73 (C1'), 117.44 (C), 129.06 (CH, Ph), 129.51 (CH, Ph), 129.87 (CH, 

Ph), 130.66 (C), 147.80 (C), 152.74 (C), 153.54 (C), 157.13 (C) . 

8-Phenyl-5'-O-tert-butyldimethylsilyl-2',3'-O-didecanoyl guanosine 17 

 

8-Phenyl-5'-O-tert-butyldimethylsilyl guanosine (100 mg, 0.211 mmol) was dried in vacuo over 

P2O5 at 50°C for 1 h and dissolved in 15 mL of an acetonitrile/toluene 2:1 mixture. Decanoic 

anidride (163 μL, 0.444 mmol, 2.10 eq.), Et3N (64 μL, 0.444 mmol, 2.10 eq.) and a small amount of 

DMAP were then added and the mixture was heated at 80°C for 7 h. After cooling to r.t. MeOH 

(0.5 mL) was added and stirring was continued for 20 min. Solvents were removed by distillation, 

the residue was dissolved in CH2Cl2, washed with 5% NaHCO3 and brine and dried over MgSO4. 

After removal of solvents, the residue was purified by chromatography on silica gel (CH2Cl2/MeOH 

99:1) and the product (120 mg, 0.153 mmol) was obtained as a white solid in a 72% yield. 

RF = 0.36 (CH2Cl2/MeOH 97:3) 

ESI-MS: m/z: 780.2 [M-H]
-
; 782.4 [M+H]

+
; 804.3 [M+Na]

+
. 

HR-MS: calcd. for C42H67N5O7Si, m/z 781.4810; found, m/z 781.4812. 

1
H-NMR (dmso-d6): 0.024 and 0.021 (s,s, 6H, SiMe2), 0.810 (s, 9H, tBuSi), 0.843 and 0.848 (t,t, 

6H, CH3), 1.13-1.27 (m, 24H, CH2), 1.41 and 1.49 (qi, qi, 4H, CH2-CH2-CO), 2.19-2.35 (m, 4H, 

CH2-CO), 3.87 (m, 2H), 4.07 (m, 1H), 5.63 (m, 1H), 5.75 (d, J=5.0, 1H), 6.26 (m, 1H), 6.43 (bs, 

2H, NH2), 7.53-7.55 (m, 3H, ArH), 7.59-7.61 (m, 2H, ArH), 10.84 (bs, 1H, NH) ppm. 
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13
C-NMR  (dmso-d6/CDCl3): -4.83 (CH3), -4.76 (CH3), 19.01 (C), 14.12 (CH3), 22.62 (CH2), 

24.56 (CH2), 24.66 (CH2), 26.35 (CH3), 28.88 (CH2), 29.07 (CH2), 29.18 (CH2), 29.18 (CH2), 29.20 

(CH2), 29.27 (CH2), 29.32 (CH2), 29.40 (CH2), 31.83 (CH2), 33.67 (CH2), 34.01 (CH2), 63.50 (C5'), 

71.63 (C2'), 71.79 (C3'), 85.31 (C4'), 89.36 (C1'), 119.00 (C), 129.13 (CH, Ph), 129.74 (CH, Ph), 

130.58 (C), 130.71 (CH, Ph), 147.45 (C8), 152.96 (C), 153.68 (C), 158.22 (C), 172.01 (C=O), 

172.30 (C=O). 

8-Phenyl-2',3'-O-didecanoyl guanosine 18 

 

To a solution of 8-phenyl-5'-O-t-butyldimethylsilyl-2',3'-O-didecanoyl guanosine (120 mg, 0.153 

mmol) in THF (4 mL) were added 72.5 mg (0.230 mmol, 1.5 eq) of TBAF. The mixture  was stirred 

at r.t. until tlc (CH2Cl2/MeOH 92:8) showed complete disappearance of starting material. The 

reaction mixture was concentrated, redissolved in CH2Cl2 and washed with sat. NaHCO3 (3x10 

mL). The organic phase was dried over MgSO4 and solvents were removed by distillation. The 

residue was purified on silica gel by eluting first with Et2O, then with CH2Cl2/MeOH 95:5. The 

product was obtained as a white solid in a 73% yield (75 mg, 0.112 mmol). 

RF = 0.28 (CH2Cl2/MeOH 92:8) 

ESI-MS: m/z: 666.3 [M-H]
-
; 668.3 [M+H]

+
; 690.3[M+Na]

+
. 

HR-MS: calcd. for C36H53N5O7, m/z 667.3945; found, m/z 667.3948. 

1
H-NMR (dmso-d6): 0.84 and 0.85 (t,t, 6H, CH3), 1.12-1.27 (m, 24H, CH2), 1.40 and 1.48 (qi, qi, 

4H, CH2-CH2-CO), 2.16-2.35 (m, 4H, CH2-CO), 3.64 (m, 1H, 5'H), 3.75 (m, 1H, 5'H), 4.08 (m, 1H, 

4'H), 5.49 (m, 1H, 3'H), 5.78 (d, J=6.0, 1H), 5.80 (m, 1H, 2'H), 6.18 (t, 1H, OH), 6.48 (bs, 2H, 

NH2), 7.53-7.55 (m, 3H, m- and p-ArH), 7.58-7.61 (m, 2H, o-ArH), 10.84 (bs, 1H, NH) ppm. 

13
C-NMR  (dmso-d6): 14.03 (CH3), 22.58 (CH2), 24.50 (CH2), 24.76 (CH2), 28.95 (CH2), 29.01 

(CH2), 29.16 (CH2), 29.17 (CH2), 29.19 (CH2), 29.28 (CH2), 29.32 (CH2), 29.35 (CH2), 31.76 

(CH2), 33.61 (CH2), 33.89 (CH2), 61.65 (C5'), 71.73 (C2'), 72.08 (C3'), 85.10 (C4'), 88.08 (C1'), 

119.64 (C), 129.22 (CH, m-Ph), 129.86 (CH, o-Ph), 130.52 (C, Ph), 131.86 (CH, p-Ph), 147.36 

(C8), 153.55 (C), 153.71 (C), 159.61 (C), 171.78 (C=O 2'), 172.27 (C=O 3'). 

 

 



Chapter VII. Experimental part  

126 
 

8-Phenyl-5'-O-ferrocenoyl-2',3'-O-didecanoyl guanosine G4 

 

Ferrocene carboxylic acid (77,5 mg, 0.337 mmol, 1.3 eq.) was dried in vacuo at 50°C for 1 h and 

dissolved in THF (9 mL). Et3N (175 μL, 1.217 mmol, 4.7 eq.) was added and the resulting solution 

was cooled to 0°C. Methanesulfonyl chloride (25,5 μL, 0.311 mmol, 1.2 eq.) was added and the 

mixture was allowed to warm to r.t. and stirred for 2 h. A solution of vacuum-dried 8-phenyl-2',3'-

O-didecanoyl guanosine (173 mg, 0.259 mmol) in THF (6 mL) was then added, followed by a 

catalytic amount of DMAP. Stirring was continued for 24 h, then MeOH (0.5 mL) was added and 

the reaction mixture was concentrated in vacuo. The residue was dissolved in CH2Cl2, washed with 

water and dried over MgSO4. The solvent was removed by distillation and the residue was purified 

by chromatography on silica gel (gradient from CH2Cl2 to CH2Cl2/MeOH 99:1), affording the title 

compound (85 mg, 0.097 mmol) as a yellow solid in a 38% yield. 

RF = 0.24 (CH2Cl2/MeOH 9:1) 

ESI-MS: m/z: 878.2 [M-H]
-
 

HR-MS: calcd. for C47H61FeN5O8, m/z 879.3870; found, m/z 879.3866. 

1
H-NMR (CD2Cl2): 0.84-0.88 (m, 6H, CH3), 1.20-1.33 (m, 24H, CH2), 1.52-1.67 (m, 4H, CH2-

CH2-CO), 2.26-2.36 (m, 4H, CH2-CO), 3.97 (s, 5H, Fc), 4.17 (s, 1H, Fc), 4.20 (s, 1H, Fc), 4.34 (dd, 

J=12.0, 4.3, 1H, H5'), 4.41 (m, 1H, H4'), 4.61 (s, 1H, Fc), 4.62 (dd, J=12.0, 4.3, 1H, H5'), 4.67 (s, 

1H, Fc), 5.85 (d, J=3.0, 1H, H1'), 6.43 (dd, J=3.0, 5.4, 1H, H2'), 6.48 (dd, J=5.4, 7.8, 1H, H3'), 7.49 

(t, 1H, J=7.1, Ph),7.56 (t, 2H, J=7.1, Ph), 7.81 (d, J=7.1, 2H, Ph), 12.57 (bs, 1H, NH) ppm. 

13
C-NMR  (CD2Cl2): 13.96 (CH3), 22.77 (CH2), 24.93 (CH2), 25.66 (CH2), 29.15 (CH2), 29.24 

(CH2), 29.37 (CH2), 29.42 (CH2), 29.46 (CH2), 29.51 (CH2), 29.57 (CH2), 29.77 (CH2), 31.96 

(CH2), 31.99 (CH2), 33.95 (CH2), 33.99 (CH2), 61.72 (CH2, C5'), 69.79 (CH, Fc), 69.96 (CH, C3'), 

70.07 (CH, Fc), 70.13 (C, Fc), 71.74 (CH, Fc), 72.47 (CH, C2'), 79.92 (CH, C4'), 87.65 (CH, C1'), 

117.06 (C), ')), 172.50 (C, CO(3')). 
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8-Ferrocenylguanosine 19 

 

A mixture of 14 (0.300 g, 0.83 mmol), DME (12 mL), ferroceneboronic acid (0.286 g, 1.24 mmol, 

1.5 eq) and NaOH (3M, 5.25 mL, 15.75 mmol) was degassed with a stream of Ar for 40 min. in an 

ultrasonic bath. PdCl2(PPh3)2 (0.058 g, 0.1 eq) was added and the resulting solution was refluxed at 

85°C under argon for 48 h. The solvent was then removed under reduce pressure, the reaction 

mixture was quenched with 10% HCl and the solid was filtered, washed with water and dried. The 

product thus obtained was used in the subsequent step without further purification. 

Rf = 0.17 (DCM/MeOH 9:1) 

MS-ESI: m/z: 467 (100) [M-H]
-
 

HR-MS: calcd. for C20H21FeN5O5, m/z 467.0892; found, m/z 467.0898. 

1
H-NMR (dmso-d6): 3.57 and 3.71 (m, m, 2H, H5',H5''), 3.97 (m, 1H, H4'), 4.19 (m, 1H, H3'), 

5.16 (m, 1H, H2'), 5.24 (m, 1H, OH
5'
), 5.36 (d, J=6.0, 1H, OH

3'
), 5.53 (d, J=6.0, 1H, OH

2'
), 6.3 (bs, 

2H, NH2), 6.65 (d, J=7.2, 1H, H1'), 10.71 (bs, 1H, NH) ppm. 

8-Ferrocenyl-2',3',5'-O-tridecanoyl guanosine G5 

 

Crude 8-Ferrocenylguanosine 19 (0.430 g, 1.0 eq, 0.92 mmol) was dried over P2O5 in vacuo for 2 h 

at 55 °C and then suspended in 30 mL of an acetonitrile-toluene 1:1 mixture. Decanoic anhydride 

(0.443 μL, 3.15 eq, 2.90 mmol) and triethylamine (0.209 μL, 3.15 eq, 2.90 mmol) were then added, 

followed by a catalytic amount of 4-dimethylamino pyridine. The mixture was stirred under argon 

for 14 h at 80°C. A second aliquot of decanoic anhydride (0.443 μL, 3.15 eq, 2.90 mmol) and TEA 

(0.209 μL, 3.15 eq, 2.90 mmol) was added and stirring was continued for 12 h at the same 

temperature. 

The solvent was removed under reduced pressure, the crude was dissolved in dichloromethane and 

extracted with a sat. NaHCO3 and brine. The organic layer was dried over MgSO4. The crude 
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reaction mixture was then applied to a silica gel column packed in dichloromethane and eluted with 

a mixture of dichloromethane-methanol (from 99:1 to 95:5). The product was obtained as an orange 

viscous glass. 

Yield: 23% 

ESI-MS (positive mode, MeOH solution, m/z): 928.2 [M-H]
+
, 930.5 [M+H]

+
, 953.4 [M+Na]

+
 

HR-MS: calcd. for C50H75FeN5O8, m/z 929.4965; found, m/z 929.4964. 

1
H-NMR (dmso-d6): 0.82-0.85 (m, 9H, CH3), 1.17-1.24 (m, 36H, CH2), 1.47 (m, 4H, 2 CH2-CH2-

CO), 1.58 (qi, J=6.6, 2H, CH2-CH2-CO), 2.27-2.45 (m, 6H, CH2-CH2-CO), 4.28 (s, 5H, Fc), 4.30 

(m, 1H, H5'), 4.37 (m, 1H, H4'), 4.48 (m, 1H, H5'), 4.50 (bs, 2H, Fc), 4.60 (s, 1H, Fc), 4.64 (s, 1H, 

Fc), 5.74 (dd, J=4.2, 6.0, 1H, H3'), 6.40 (bs, 2H, NH2), 6.58 (t, J=6.0, 1H, H2'), 6.75 (d, J=6.0, 1H, 

H1'), 10.77 (bs, 1H, NH) ppm. 

13
C-NMR (dmso-d6): 14.38 (CH3), 14.41 (CH3), 22.55 (CH2), 24.75 (CH2), 24.79 (CH2), 24.91 

(CH2), 24.97 (CH2), 28.76 (CH2), 28.82 (CH2), 28.96 (CH2), 29.01 (CH2), 29.11 (CH2), 29.15 

(CH2), 29.21 (CH2), 29.25 (CH2), 29.28 (CH2), 29.34 (CH2), 31.73 (CH2), 33.62 (CH2), 33.76 

(CH2), 33.86 (CH2), 34.15 (CH2), 63.05 (CH2, C5'), 68.60 (CH, Fc), 68.74 (CH, Fc), 69.78 (CH, 

Fc), 70.00 (CH, Fc), 70.19 (CH, Fc), 70.59 (CH, C2'), 71.09 (CH, C3'), 74.47 (C, Fc), 80.06 (CH, 

C4'), 86.52 (CH, C1'), 117.29 (C5), 146.09 (C8), 152.56 (C4), 153.52 (C), 156.58 (C), 172.16 

(CO
2'
), 173.12 (CO

5'
), 174.97 (CO) ppm. 

 

Microscopy studies 

The Atomic Force Microscopy (AFM) study of the self-assembled G4 and G5 in two dimensions 

was performed using Veeco Dimension 3100 running with a Nanoscope IV controller. Solutions of 

investigated molecules were prepared in hexane. First, the solution of each molecule was drop-

casted into clean SiO2/Si substrate and directly characterized by AFM. Second, we proceeded to use 

the Solvent Vapor Annealing (SVA) method. After drop-casting the molecule solution into the 

substrate, the system (molecule/substrate) was kept closed in a container contacting CH2Cl2 solution 

for 48 hours.  

Scanning Tunneling Microscopy experiments 

Scanning Tunneling Microscopy (STM) measurements were performed using a Veeco scanning 

Tunneling microscope (multimode Nanoscope III, Veeco) at the interface between a highly oriented 

pyrolitic graphite (HOPG) substrate and a supernatant solution, thereby mapping a maximum area 

of 1 µm × 1 µm. Solution of molecules were applied to the basal plane of the surface. For STM 

measurements, the substrates were glued to a magnetic disk and an electric contact was made with 

silver paint (Aldrich Chemicals). The STM tips were mechanically cut from a Pt/Ir wire (90/10, 
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diameter 0.25 mm). The raw STM data were processed through the application of background 

flattening and the drift was corrected using the underlying graphite lattice as a reference. The lattice 

was visualized by lowering the bias voltage to 20 mV and raising the current up to 65 pA. STM 

imaging was carried out in constant height mode without turning off the feedback loop, to avoid tip 

crashes. Monolayer pattern formation was achieved by applying onto freshly cleaved HOPG 4 µL 

of a solution. The STM images were recorded at room temperature once achieving a negligible 

thermal drift. Solutions of all molecules were prepared by dissolving the molecules in CHCl3 and 

diluting with 1-phenyloctane to give 1 mM solution (solvent composition 99 % 1-phenyloctane + 1 

% CHCl3). All of the molecular models were minimized with MMFF and processed with QuteMol 

visualization software 

 

DFT calculations 

To provide a molecular understanding of three G derivatives self-assembly in 2D and shed light 

onto the formation and stability of supramolecular structures, we have carried out density functional 

theory (DFT) calculations using the hybrid Gaussian and plane-wave method (GPW), implemented 

in the QUICKSTEP module of the CP2K package. We used the B3LYP hybrid exchange-

correlation potential, whereas the Grimme’s DFT-D2 method was employed for taking into account 

the dispersion forces. To gain insights into the intermolecular binding mechanisms, we have 

focused our attention on unravelling the interplay between H-bonds, which hold the guanine cores 

together, and the effective metallic repulsion coming from the four iron cations present in the 

ferrocenes.  

 

Meso ferrocenyl dipyrromethane 22 

 

Pyrrole 38.8 mL (40 equiv, 0.56 mol) and FcCHO 3 g (0.014 mol) were added to a dry round-

bottomed flask under Ar. TFA 107 µL (0.10 equiv, 0.014 mol) was then added, and the solution 

was stirred under Ar at room temperature for 20 min in the dark. The crude mixture was dissolved 

in dichloromethane and washed with 0.1 N NaOH. The organic phase was dried with MgSO4 and 

the solvent was removed under vacuum at 50°C due to remove pyrrole. The orange oil was washed 

with cyclohexane three times and the solvent was removed under vacuum. The crude product was 
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purified by column chromatography on silica gel (CyHex/EtOAc 9:1), affording the final product as 

a yellow solid (1.24 g, 0.00375 mol). Rf = 0.4 (CyHex/EtOAc 8:2)  

Yield: 27% 

ESI-MS: m/z (%): 331.09 [M+H+]  

H
1
NMR in CDCl3: 
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5,10,15,20-tetra ferrocenyl porphyrin P1 

 

In a 3-necked flask 150 mL of anhydrous CH2Cl2 was degassed by bubbling argon for 30 minutes at 

0°C. After removing the ice bath and under magnetic stirring 321 mg (1 eq, 0.0015 mol) of FcCHO, 

114 μL (1.1 eq, 0.00165 mol) of pyrrole and 62 μL (0.33 eq, 0.0005 mol) of BF3
.
Et2O were added 

and the reaction was stirred in the dark for 20 h. Then 272 mg (0.8 eq, 0.0012 mol) of DDQ was 

added and the reaction was refluxed for 90 min in air at 50°C and at room temperature for further 3 

h. The solvent was removed under vacuum, the solid was washed two times with CH2Cl2 and 

filtered. The crude product was purified by column chromatography on alumina (CH2Cl2) and then 

on silica gel (CH2Cl2), affording the final product as a purple solid (10 mg, 0.0096 mmol).  

Rf = 0.16 (CH2Cl2)  

Yield: 3%  

ESI-MS: m/z (%): 1047 [M+H+]  

H
1
NMR CD2Cl2 



Chapter VII. Experimental part  

133 
 

 



Chapter VII. Experimental part  

134 
 

Ethyl glyoxylate 24 

 

A solution of diethyl-L-tartrate (1.66 mL, 0.00971 mol) in anhydrous Et2O (15 mL) under N2 was 

cooled in an ice-water bath for 15 min and the paraperiodic acid (H5IO6) (2.21 g, 1 eq, 0.00971 mol) 

was added in portion over 45 min. The resulting milky reaction mixture was then stirred for a 

further 3 h, until the ether become almost clear and a white solid separated. The ether phase was 

decanted, dried with 4 Å molecular sieves. Evaporation of the solvent gave the crude ethyl 

glyoxylate in ca. 80%, which was used directly in the next step without further purifications. 

5,15-Di(ferrocenyl)-10,20-di(ethoxicarbonyl)porphyrin P2 

 

In a three-necked flask 158 mL of anhydrous CH2Cl2  was degassed by bubbling argon at 0°C for 30 

minutes. After removing the ice bath, 371 mg (0.00364 mol) of ethyl glyoxylate, 1,24 g (1.03 eq, 

0.00375 mol) of meso-(Ferrocenyl)dipyrromethane and 45 μL (0.1 eq, 0.000364 mol) of BF3
.
Et2O 

added dropwise were stirred at room temperature in the dark for 20 hours. The reaction was then 

opened to air and 661 mg (0.8 eq, 0.00291 mol) of DDQ were added, continuing to stir overnight. 

Purification by two consecutive silica gel column cromatographies: 

1. CH2Cl2 

2. CH2Cl2:CyHex 9:1 

Rf = 0.3 ( CH2Cl2) 

Yield = 3% 

ESI-MS: m/z (%) 823.16 [M+H
+
] 

H
1
NMR in CD2Cl2: 
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Dibenzyl-tartrate 26 

 

1g (0.0067 mol) of tartaric acid, 1.38 mL (1.98 eq, 0.0133 mol) of benzyl alcohol, 63 mg (0.05 eq, 

0.000335 mol) of p-toluenesolfonic acid were stirred in a flask, using 25 mL of toluene as solvent. 

The Dean-Stark apparatus was used in order to collect the forming water, setting the temperature at 

160°C. After 12 hours, the solution was concentrated on a rotary evaporator; the residual solid is 

dissolved in EtOAc and extracted with H2O. The organic phase was dried over MgSO4 and 

concentrated on a rotary evaporator. Purification by silica gel column cromatography 

(CyHex:EtOAc 85:15). 

Rf = 0.27 (CyHex:EtOAc 7:3) 

ESI-MS: m/z (%): 353.1 [M+Na
+
], 369.2 [M+K

+
] 

H
1
NMR in CDCl3: 
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Benzyl glyoxylate 27 

 

A solution of dibenzyl-tartrate (200 mg, 0.00061 mol) in THF (1.94 mL) under an argon 

atmosphere was cooled in an ice-water bath for 15 minutes and H5IO6 (138 mg, 1eq, 0.00061 mol) 

was added in portions over 15 minutes. The reaction was stirred for 3 hours, and sonicated 

repeatedly. The solvent was removed under vacuum, then the resulting solid was dissolved in 

EtOAc, washed with a saturated solution of  NaHCO3 and brine (x2) and dried over MgSO4. 

Evaporation of the solvent gave the crude benzyl glyoxylate in ca. 80%, which was used directly in 

the next step without further purifications. 

meso-(Benzyloxycarbonyl)dipyrromethane 28 

 

Pyrrole 2.3 mL (40 eq, 0.034 mol) and benzyl glyoxylate (140 mg, 0.00085 mol) were added to a 

flask and stirred under an argon atmosphere. TFA 6.5 μl (0.1 eq, 0.000085 mol) was then added, 

and the reaction was stirred for further 20 minutes, at room temperature in the dark. The crude 

mixture was dissolved in CH2Cl2  and washed with 0.1 N NaOH. The organic phase was dried with 

MgSO4 , and the solvent was removed under vacuum at 50°C due to remove pyrrole. The resulting 

phase was washed with cyclohexane (x3) and the solvent was removed under vacuum. Purification 

by silica gel column cromatography (CyHex:EtOAc 7:3). 

Rf = 0.48 (FM: CyHex:EtOAc 7:3) 

Yield: 27% 

ESI-MS: m/z (%): 279.1 [M-H
+
], 303.0 [M+Na

+
] 

H
1
NMR in CDCl3: 



Chapter VII. Experimental part  

139 
 

 



Chapter VII. Experimental part  

140 
 

5,15-Di(ferrocenyl)-10,20-di(benzyloxycarbonyl)porphyrin P3 

 

NH4Cl 428 mg (10eq, 0.008 mol) and CH3CN 80 mL were added in a three-necked flask. The 

solvent was degassed by bubbling argon for 30 minutes at 0°C. Keeping the ice bath and under 

magnetic stirring, 172 mg (1 eq, 0.0008 mol) of FcCHO, 224 mg (1 eq, 0.0008 mol) of meso-

(Benzyloxycarbonyl)dipyrromethane, 10 μL (0.1 eq, 0.00008 mol) of BF3
.
Et2O (dropwise) were 

added, and the reaction was stirred in the dark for 5 hours. Then 360 mg (2 eq, 0.0016 mol) of DDQ 

was added, the reaction was opened to air and the ice bath removed. After 20 hours, the solvent was 

removed under vacuum and the crude product was purified by two consecutive silica gel column 

cromatographies: 

1) CH2Cl2:CH3OH 95:5. 

2) CH2Cl2. 

The product was then washed with Et2O (x2), affording 34 mg (0.000036 mol) of a purple solid. 

Rf = 0.80 (CH2Cl2) 

Yield: 9% 

H
1
NMR in CDCl3: 



Chapter VII. Experimental part  

141 
 

 



Chapter VII. Experimental part  

142 
 

meso-(Ethoxycarbonyl)dipyrromethane 32 

 

Pyrrole 43 mL (40 eq, 0.6216 mol) and ethyl glyoxlate 1.58 g (1 eq, 0.01554 mol) were added to a 

flask under an atmosphere of argon. TFA 0.119 ml (0.1 eq, 0.001554 mol) was then added, and the 

solution was stirred under an atmosphere of argon at room temperature in the dark for 20 minutes. 

The crude mixture was dissolved in CH2Cl2, and washed with NaOH 0.1N. The organic phase was 

dried with MgSO4 and the solvent was removed under vacuum at 50°C due to remove pyrrole. The 

crude product was washed with cyclohexane (x3) and concentrated on a rotary evaporator, resulting 

in a dark brown oil. The oil was purified by silica gel column cromatography (CH2Cl2), affording 

899 mg (0.0041 mol) of fuchsia crystals. 

Rf = 0.33 (CH2Cl2) 

Yield: 27% 

ESI-MS: m/z (%): 217.2 [M-H
+
], 253.2 [M+Cl

-
], 241.2 [M+Na

+
] 

H
1
NMR in CD2Cl2: 
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meso-(Carboxyl)dipyrromethane 33 

 

1.139 g (1 eq, 0.00522 mol) of meso-(Ethoxycarbonyl)dipyrromethane was dissolved in THF 13.3 

mL, under an atmosphere of argon. KOH 2N 5.12 mL was added, and the reaction mixture was 

refluxed at 75°C for 2 hours. Evaporation of the solvent gave the crude product in ca. 100%, which 

was used directly in the next step without further purifications. 

ESI-MS: m/z (%): 189.2 [M-H
+
], 145.5 [M-COO

-
] 

Iodoferrocene 30 

 

Ferrocene 7.49 g (0.040 mol) previously dried at 50°C was dissolved in 50 mL of anhydrous THF 

in four-necked flask under an argon atmosphere. 19 mL of 1.7 M tBuLi in hexane was added 

dropwise to the flask, cooled in an ice bath over 20 minutes with efficient stirring. The reaction 

turned red. After additional 15 minutes, the reaction was cooled at -80°C in a dry ice/acetone bath. 

Solid iodine 10 g (1eq, 0.040 mol) was added in portions under argon and the flask was left in the 

cooling bath overnight. H2O 1 mL + 15 mL was added, stirring for 10 minutes. The crude mixture 

was extracred with CyHex and the aqueous phase was washed with additional CyHex. The 

collected organic phases were washed with 15 mL H2O and 15 mL (x4) of 5% Na2S2O3 . The 

organic layer was dried over  MgSO4  and filtered.  The solvent was removed under vacuum and the 

product was dried in a vacuum pump. 

Yield: 14% 

H
1
NMR in CDCl3: 
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Aminoferrocene 31 

 

Iodoferrocene 998 mg (0.0032 mol) was dissolved in 30 mL of C2H5OH. 60 mg of CuI (0.1 eq, 

0.00032 mol), 50 mg of Fe2O3 (0.1 eq, 0.00032 mol) and 300 mg of NaOH (2.3 eq, 0.0075 mol) 

were added to the solution. 15 mL of aqueous ammonia 13.5 N was added to the resulting red 

suspension, and the reaction mixture was heated to 90°C for 6 hours. The reaction mixture was 

cooled to room temperature and 350 mL of Et2O was added. The organic phase was then washed 

with aqueous NaOH 1N (100 ml x 3), dried over MgSO4 , filtered and evaporated to dryness to 

obtain the crude product, purified by silica gel column cromatography (CyHex:EtOAc 1:1) to obtain 

118 mg (0.00059 mol) of a yellow solid. 

Rf = 0.28 (CyHex:EtOAc 1:1) 

Yield: 18% 

ESI-MS: m/z (%): 201.2 [M+H
+
] 

H
1
NMR in DMSO: 
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meso-(N-Ferrocenylamido)dipyrromethane 34 

 

Aminoferrocene 445 mg (0.8 eq, 0.0022 mol) was dissolved in 15 mL of THF anhydrous. The 

resulting solution was added in a flask containing 549 mg (1 eq, 0.0028 mol) of meso-

(carboxyl)dipyrromethane, under an argon atmosphere. Then 429 mg of HOBT (12% H2O) (1 eq, 

0.0028 mol) was added, followed by EDC
.
HCl 554 mg (1 eq, 0.0028 mol) in two portions. After 2 

hours, the crude product was purified by silica gel column cromatography (CyHex:EtOAc 2:1), to 

obtain 397 mg (0.0011 mol) of a yellow solid. 

Rf = 0.50 (CyHex:EtOAc 2:1) 

Yield: 48% 

ESI-MS: m/z (%): 372.0 [M-H
+
], 408.0 [M+Cl

-
] 

H
1
NMR in CD3CN: 
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5,15-Di(ferrocenyl)-10,20-di(N-ferrocenylamido)porphyrin P4 

 

NH4Cl 214 mg (10eq, 0.004 mol) and 40 mL of CH3CN were added in a three-necked flask. The 

solvent was degassed by bubbling argon for 30 minutes at 0°C. Keeping the ice bath and under 

magnetic stirring, 86 mg (1 eq, 0.0004 mol) of FcCHO, 149 mg (1 eq, 0.0004 mol) of meso-(N-

Ferrocenilamido)dipyrromethane, 5 μL (0.1 eq, 0.00004 mol) of BF3
.
Et2O (dropwise) were added, 

and the reaction was stirred in the dark for 5 hours. Then, 180 mg (2 eq, 0.0008 mol) of DDQ was 

added, the reaction was opened to air and the ice bath removed. After 20 hours, the solvent was 

removed under vacuum and the crude product was purified by a first column cromatography on 

alumina (CH2Cl2:CH3OH 7:3) followed by a silica gel column cromatography (CH2Cl2:CH3OH 

99:1), to obtain 44 mg (0.000039 mol) of purple solid, then washed with CH3OH. 

Rf = 0.42 (FM: CH2Cl2/CH3OH 99:1) 

Yield: 19% 

H
1
NMR in DMSO: 
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meso-(N-Decilamido)dipyrromethane 35 

 

meso-(Carboxyl)dipyrromethane 992 mg (1 eq, 0.00522 mol) was dissolved in 27 mL anhydrous 

THF under an argon atmosphere.Then decylamine 1.04 mL (1 eq, 0.00522 mol) and HOBT (12% 

H2O) 788 mg (1 eq, 0.00522 mol) were added, followed by EDC
.
HCl 1.00 g (1 eq, 0.00522 mol) in 

two portions. After 24 hours, the solvent was removed under vacuum, then the crude product was 

washed with Et2O and filtered. The liquid phase was again removed under vacuum, affording a dark 

brown oil. Purification by two consecutive silica gel column cromatographies: 

1) CH2Cl2:CH3OH 95:5. 

2) CyHex:EtOAc 70:30. 

The product was then washed with Et2O (x3) and CyHex (x1), to obtain 971 mg (0.0029 mol) of a 

white solid. 

Rf = 0.30 (CyHex:EtOAc 7:3) 

Yield: 56% 

ESI-MS: m/z (%): 328.3 [M-H
+
], 364.2 [M+Cl

-
], 368.3 [M+K

+
] 

H
1
NMR in CD3OD: 
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5,15-Di(ferrocenyl)-10,20-di(N-decilamido)porphyrin P5 

 

NH4Cl 776 mg (10 eq, 0.0145 mol) and 144 mL of CH3CN were added in a three-necked flask.    

The solvent was degassed by bubbling argon for 30 minutes at 0°C. Keeping the ice bath and under 

magnetic stirring, 310 mg (1 eq, 0.00145 mol) of FcCHO, 479 mg (1 eq, 0.00145 mol) of meso-(N-

Decilamido)dipyrromethane, 18 μL (0.1 eq, 0.000145 mol) of BF3
.
Et2O (dropwise) were added, and 

the reaction was stirred in the dark for 48 hours. Then 658 mg (2 eq, 0.00290 mol) of DDQ was 

added, the reaction was refluxed for 90 minutes in air at 50°C and at room temperature for further 

20 hours. The solvent was removed under vacuum and the crude product was purified by a first 

column cromatography on alumina (CyHex:EtOAc 80:20) followed by a silica gel column 

cromatography (CyHex:EtOAc 70:30). The product was then washed with Et2O (x3) and 

crystallized by C2H5OH. 

Rf = 0.44 (CyHex:EtOAc 70:30) 

Yield: 16% 

ESI-MS: m/z (%): 1045 [M+H
+
], 1067 [M+Na

+
], 1084 [M+K

+
] 

H
1
NMR in CDCl3: 
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5,15-bis(4-bromophenyl)-10,20-ferrocenyl-porphyrin P6 

 

CH2Cl2 45 mL and CH3CN 225 mL were added in a three-necked flask. The solvent was degassed 

by bubbling argon for 30 minutes. Under magnetic stirring, 505 mg (1 eq, 2.727 mmol) of 4-

bromobenzaldehyde, 900 mg (1 eq, 2.727 mmol) of FcDPM, 35.59 μL (0.273 mmol) of BF3
.
Et2O 

(dropwise) were added, and the reaction was stirred in the dark for 3 hours. Then, 671 mg (2.40 

mmol) of cloranile was added. After 72 hours, the solvent was removed under vacuum and the 

crude product was purified by two consecutive silica gel column cromatographies: 

1) Toluene 

2) CyHex:CH2Cl2:Toluene 6:2.5:1.5 

The product was finally washed with CH3CN. 

Yield: 26% 

H
1
NMR in CDCl3: 
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4,4-Dihydroxyazobenzene 37 

 

4-Hydroxyanilin (6.4 g, 0.058 mol) was dissolved in 100 mL of dilute hydrochloric acid (1 M) and 

cooled to 0°C. An aqueous solution of sodium nitrite (4.03 g, 0.058 mol in 20 mL of water) was 

added dropwise under constant stirring. The mixture is diluted by adding 200 mL of precooled 

methanol. In a separate batch, phenol (5.46 g, 0.058 mol) and potassium hydroxide (6.2 g, 0.11 mol) 

are dissolved in 40 mL of methanol and also cooled to 0°C. This phenolate solution is added 

dropwise under constant stirring to the first mixture. The red solution is stirred for another 2 h at 

0°C before the reaction is quenched with dilute hydrochloric acid. The red solid was filtered, 

washed thoroughly with water, and dried. The crude material was purified by recrystallization from 

concentrated acetic acid.  

Yield: 4.48 g, 0.021 mol, 36%. 

EI-MS: m/z 214.0 (M
+
). 

1
H NMR: (DMSO-d6) δ 10.05 (br, 2 H), 7.74 (d, 4 H, J ) 4 Hz), 6.93 (d, 4 H, J ) 4 Hz); (CDCl3) δ 

7.84 (d, 4 H, J ) 4 Hz), 6.95 (d, 4 H, J ) 4 Hz), 5.05 (br, 2 H).  

13
C NMR (DMSOd6): δ 160.3 (2), 145.6 (2), 124.4 (4), 116.1 (4).  
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1, 2-bis (4-(2-(piperidin-1-yl) ethoxy) phenyl) diazene 38 

 

4,4’-Dihydroxyazobenzene (0.214 g, 1 mmol) was refluxed with 1-(2-chloroethyl)piperidine 

hydrochloride (0.440 g, 3 mmol) in dry acetone in presence of anhydrous K2CO3 (0.420 g, 3 mmol) 

under Ar. After stirring for 50 h, the reaction mixture was allowed to cool down and added with 

water. Then the crude product was filtered and the resulting orange solid was obtained. The solid 

product was dissolved in CH2Cl2 and washed with water for several times, then dried with Na2SO4, 

and concentrated to dryness. The product was further purified by silica gel column chromatography 

(chloroform/ methanol, 1:10) to give the desired yellow solid product (0.259 g, 59.4% yield).  

1
H NMR (CDCl3): δ = 1.49 (m, 4 H), 1.70 (m, 8 H), 2.64 (m, 8 H), 2.90 (m, 4 H), 4.26 (m, 4 H), 

7.00 (d, J = 9.0 Hz, 4 H), 7.87 ppm (d, J = 9.0 Hz, 4 H);  

13
C NMR (CDCl3): δ = 24.40, 26.17, 55.31, 58.07, 66.49, 114.97, 124.52, 147.23, 161.04 ppm. ESI-

MS for C26H36N4O2: calcd. (M+2H/2)
+
 : 219.14864, found: 219.14984. 
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1, 1’-(2, 2’-(4, 4’ (diazene-1, 2-diyl) bis (4, 1-phenylene)) bis (oxy) bis (ethane-2, 1-diyl) bis (1-

methlpiperidinium) iodide 39 

 

CH3I (6 mL, 0.096 mmol) was added to a solution of compound 38 (0.190 g, 0.44 mmol) in CHCl3 

(20 mL). After stirring for 24 h at 45°C, the reaction mixture was filtered and yellow solid was 

obtained. The collected yellow solid was further recrystallized with methanol/ diethyl ether (1: 5) to 

give the desired orange solid product (0.155 g, 49.4% yield). 

1
H NMR (d6-DMSO): δ = 1.54 (m, 4 H), 1.82 (m, 8 H), 3.14 (s, 6 H), 3.44 (m, 8 H), 3.84 (m, 4 H), 

4.56 (m, 4 H), 7.17 (d, J = 9.0 Hz, 4H), 7.88 ppm (d, J = 9.0 Hz, 4H); 
13

C NMR (d6-DMSO): δ = 

20.02, 21.23, 48.60, 61.56, 62.20, 116.02, 124.86, 147.27, 160.32 ppm. ESI-MS for C28H42N4O2I2: 

calcd. ((M-2I+2e)/2)
+
: 233.16594, found: 233.16553. 

 

 

 


