
Alma Mater Studiorum – Università di BolognaAlma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

AUTOMATICA E RICERCA OPERATIVA

Ciclo 29^

Settore Concorsuale di afferenza: A1/06

Settore Scientifico disciplinare: MAT/09

Combinatorial Optimisation Problems in Logistics and Scheduling

Presentata da: ALBERTO MARIA SANTINI

Coordinatore Dottorato Relatore

Prof. Daniele Vigo Prof. Silvano Martello

Relatore

 Prof. Daniele Vigo

Esame finale anno 2017

PhD Thesis

Combinatorial Optimisation Problems in
Logistics and Scheduling

Alberto Santini

2017

Department of Electrical, Electronic, and Information Engineering
University of Bologna

The present work is dedicated to:
my parents,

my wife and her family,
my mentors Daniele and Silvano,

all the colleagues of the O.R. group at the University of Bologna.

Contents

1 Introduction 1
1.1 Topics . 1

1.1.1 Maritime logistics . 1
1.1.2 Railway transport . 3

1.2 Methodological toolbox . 3
1.2.1 Exact methods . 4
1.2.2 Metaheuristics . 7

2 Maritime landside logistics: the quay crane assignment problem 13
2.1 Introduction . 13
2.2 Mathematical model . 15
2.3 Computational results . 16
2.4 Conclusions . 17

3 Maritime landside logistics: is the berth allocation problem solvable by
partition colouring? 21
3.1 Introduction . 21

3.1.1 Modelling the Berth Allocation Problem 23
3.1.2 Literature review: the PCP . 24
3.1.3 Literature review: the BAP . 25
3.1.4 Paper Contribution . 26

3.2 Integer Linear Programming Formulations . 26
3.3 A New Branch-and-Price Algorithm . 29

3.3.1 Solving the Linear Programming Relaxation of ILPE 29
3.3.2 Branching scheme for ILPE . 30

3.4 Heuristic algorithms . 32
3.4.1 Tabu Search . 32
3.4.2 ALNS-based heuristic . 33
3.4.3 Local Search refinement . 35

3.5 Computational Results: PCP . 36
3.5.1 Instances . 36
3.5.2 Initial Heuristics . 36
3.5.3 Branch-and-price Algorithm . 37

3.6 Computational results: BAP . 41
3.6.1 Instances . 41
3.6.2 Algorithm . 41

3.7 Conclusions . 42

iii

Contents

3.8 Acknowledgments . 44

4 Maritime seaside logistics: the feeder network design problem 48
4.1 Introduction . 48
4.2 Literature review . 51
4.3 Model . 53

4.3.1 Graphs . 55
4.3.2 Integer formulation . 57

4.4 Solution of the pricing subproblem . 58
4.4.1 Greedy-randomised heuristic for the ESPPRC 58
4.4.2 Exact dynamic programming algorithm for the ESPPRC 58
4.4.3 Exact dynamic programming algorithm for the SPPRC 59
4.4.4 Acceleration techniques . 61

4.5 Branch-and-price algorithm . 61
4.5.1 Column generation . 61
4.5.2 Column management . 62
4.5.3 Branching . 62
4.5.4 Upper bounding . 64

4.6 Results . 65
4.6.1 Instance generation . 65
4.6.2 Computational results . 66
4.6.3 Scenario Analysis . 70

4.7 Conclusions . 74

5 Maritime seaside logistics: the travelling salesman problem with pickup,
delivery, and draft limits 78
5.1 Introduction . 78
5.2 Mathematical model . 81

5.2.1 Integer Linear Program . 81
5.2.2 Arc removal due to precedence, capacity and draft constraints 82

5.3 Valid inequalities . 83
5.3.1 Subtour elimination cuts . 83
5.3.2 Generalized order cuts . 84
5.3.3 Capacity-draft cuts . 85
5.3.4 Fork cuts . 85

5.4 Branch-and-cut algorithm . 85
5.4.1 Strengthened model . 86
5.4.2 Cut separation . 87

5.5 Heuristic algorithms . 89
5.5.1 Constructive heuristics . 89
5.5.2 Refinement . 91

5.6 Computational experiments . 91
5.7 Conclusion . 95

iv

Contents

6 Railway logistics: the train rescheduling problem 99
6.1 Introduction . 99
6.2 Timetables and conflicts . 101
6.3 Literature Review . 102
6.4 Problem description . 104

6.4.1 Network and timetables . 104
6.4.2 Time-space graph . 107
6.4.3 Constraints . 109
6.4.4 Objective function . 114

6.5 Solution Algorithm . 116
6.5.1 Initial sorting . 117
6.5.2 Construction . 118
6.5.3 Shaking . 119
6.5.4 Sparsification . 120

6.6 Computational Results . 121
6.6.1 Parameter tuning . 126
6.6.2 Parallel algorithm . 132

6.7 Conclusions . 136

7 Acceptance criteria for ALNS: a benchmark on logistic problems 146
7.1 Introduction . 146
7.2 The ALNS Framework . 147
7.3 Acceptance Criteria . 148

7.3.1 Hill Climbing . 149
7.3.2 Random Walk . 149
7.3.3 Late Acceptance Hill Climbing . 149
7.3.4 Threshold Acceptance . 151
7.3.5 Simulated Annealing . 151
7.3.6 Great Deluge . 153
7.3.7 Non-Linear Great Deluge . 154
7.3.8 Record-to-Record Travel . 155
7.3.9 Worse Accept . 155
7.3.10 Parameter space reduction . 156

7.4 Test Problems . 157
7.4.1 Capacitated Vehicle Routing Problem . 157
7.4.2 Capacitated Minimum Spanning Tree Problem 157

7.5 ALNS applied to Test Problems . 157
7.5.1 ALNS for the CVRP . 158
7.5.2 Simple LNS for the CVRP . 158
7.5.3 CMST . 158
7.5.4 Problem-specific parameters . 159

7.6 Parameter Tuning . 159
7.7 Results . 162
7.8 Conclusions . 171

v

1 Introduction

This thesis presents a variety of problems and results in the fields of logistics and, in particular,
of maritime and railways logistics. In Chapter 1 we first give a general overview of these
areas in general, and of the problems discussed in this work in particular. We also aim to
highlight the importance of these problems and how they contribute in achieving high-impact
goals, such as reducing the environmental footprint of moving goods and people on transport
networks. We then proceed to briefly review the tools used in the rest of the thesis. The
problems considered, in fact, have been tackled with both exact and heuristic methods, and
often with a combination of both.

The rest of the thesis presents one problem per each chapter. Each problem corresponds
to a research paper, either published or submitted to peer-reviewed journals. We decided
to keep the internal structure of the chapters as similar as possible to that of the original
papers; in this way, each chapter is self-contained and can be read separately. This, of course,
introduces some repetition between chapters, for which we apologise to the reader.

1.1 Topics

1.1.1 Maritime logistics

The International Chamber of Shipping [23] estimates that around 90% of world trade has
been done by sea in 2015. This figure was of 75% in 2008 [28] and 85% in 2013 [13]. There
are roughly 50000 merchant ships operating worldwide, manned by more than one million
seafarers, generating around $380 billion in annual freight rates. Even though the global
economic crisis has slowed down growth in the global trade of merchandise, Asariotis et al.
[1] assess that in 2015 the amount of goods shipped by sea still grew by 1.4%, surpassing
for the first time the 10 billion tonnes mark. At the same time, the investment in new
infrastructure is steady growing, as witnessed by the recent expansion works on the Suez
and Panama canals. And investment in the global fleet do not lag behind, as in 2015 the
world fleet grew by 3.5% in terms of deadweight tonnes [1].

The economical incentive to optimise the maritime supply chain, therefore, remains strong
if operators want to maintain profitability in spite of lower rates. In 2015, for example, almost
all shipping segments butandor — depending on the point of view — oversupply of capacity.
One of the most affected segment has been that of container shipping: if it grew by 6.1% in
2014, by 2015 the growth slowed down to 2.9%, corresponding to around 175 million TEU1

shipped [1]. At the core of this slow-down were a decrease in demand on intra-Asian and
Asia-Europe routes.

1Twenty-foot Equivalent Unit, corresponding to the volume of a standard-sized container 20 feet long.

1

1 Introduction

Excessive capacity is also a problem in container shipping: acconrdig to Davidson [11],
the average ship size increased by an astounding 18.2% in 2010–2015. For example, Mærsk
Line (the world’s biggest container shipping operator) has introduced in 2013 a new class
of vessels, the Triple-E, with a capacity of 18340 TEU [30]. These were the largest container
ships ever built at the time of their introduction, only to be surpassed by China Shipping
Container Lines’ new Globe vessel, which can carry 19100 TEU [31]. This big vessels allow
for better economies of scale, by having fewer of them and sailing more slowly. However,
there is al imit on how much a ship size can grow, before it becomes impossible to operate
at most ports. Vessels like the Globe, for example, can only be employed on the Asia-Europe
route: no American port has enough space or drought to let them in.

Given the enormous volumes traded, and the corresponding revenue earned, it is clear that
any improvement in maritime supply chain can have a big impact on the profitability of the
operators. There is, however, another important reason for increasing efficiency in maritime
transport: the World Shipping Council [43] estimated that 2.7% of global greenhouse gas
emissions is accounted by international maritime shipping, and a quarter of this figure is due
to container shipping. The minimisation of the impact of shipping on the environment has
recently increased on a regulatory level, e.g., by banning particularly polluting types of fuel.
But the issue has been tackled also from the point of view of maritime optimisation: the two
recent reviews by Christiansen et al. [7], Wang et al. [42] dedicate a large section to problems
which focus on or, at least, include the problem of the environmental impact of shipping, and
the “Green Ship Routing Problem” [25] has been formalised and is now increasingly studied
in the literature.

In this thesis we focus on two aspects of the optimisation of the maritime supply chain:
landside and seaside maritime logistics. While seaside logistics is concerned with all the
aspects which directly involve routing a vessel at sea, landside logistics involve all the in-
frastructure which forms the interface between the ship and the rest of the supply chain.
Examples of landside logistic problems are defining optimal routes for ships, given a set of
ports they have to call; optimising their sailing speed profile; balancing the load onboard,
in order to reduce drag and improve stability, etc. Notable landside problems include the
assignment of vessels to berths, the assignment of quay cranes to vessel services, and the
routing of containers in the port yard.

We refer the reader to Panayides and Song [37] for an introduction to maritime logistics,
to Christiansen et al. [5, 6, 7] for reviews on maritime routing and scheduling problems,
and to Psaraftis and Kontovas [38] for a survey on speed optimisation in vessel routing.
Regarding landside problems, we refer to the excellent survey by Steenken et al. [40] on
container terminals (and to the work of Vis and De Koster [41] for transhipments at container
terminals, in particular) and to Bierwirth and Meisel [3] for an overview of berth and quay
crane assignment problems.

Chapters 2 and 3 deal with two landside problems, namely quay crane assignment and
berth allocation; Chapters 4 and 5, on the other hand, tackle two seaside problem: the Feeder
Network Design Problem, a strategic problem asking to find a set of routes for a fleet of vessels
which maximises the operator’s revenue, and the Travelling Salesman Problem with Draught
Limits, which seeks the optimal route for a single vessel, taking into account that loading
more cargo in the vessel also increases the amount of draught that it needs in order to enter

2

1 Introduction

a port.

1.1.2 Railway transport

Railway transport involves the movement of people or goods on trains. It is, therefore,
usually classified in two macro-areas: passenger rail transport and freight rail transport.
Passenger transport is on the rise: Eurostat [15], for example, reports an average increase
of +1.8% passenger-kilometres in 2015 in the European Union, with peak increases of 34%
in Slovakia, 18% in Greece, and 15% in Luxembourg. Globally, China, India and Japan lead
the way [35], with a comined total of about 2400 billion passenger-kilometres.

Freight rail transport statistics, however, tell a different story. A trend similar to that
analysed in Section 1.1.1 for container shipping has emerged in the years following the
global economic crisis, which has seen the amount of goods shipped by train decrease sharply.
Eurostat [15], however, reports that growth in freight rail traffic has now restarted in 12 EU
countries already in 2014, starting with Germany and France (+1.7 billions tonne-kilometres),
followed by Romania (+1.4 billions). On the other hand, Finland and Sweden saw a steep
contraction during the same period. In a medium-term perspective, however, rail freight has
gained share in the EU-28 countries, passing from 16.9% of all inland freight transport in
2009 to 18.4% in 2014 [14]. Globally, it is the United Stats to lead the league, with their
2704 billions tonne-kilometres in 2015, followed by China, Russia, India, and Canada [35].

These numbers show both that rail transport is a crucial part of the global transportation
infrastructure, and that it is increasingly the mean of transport of choice for both passengers
and freight. The tranportation of passengers, in particular, involves additional challenges,
because a succesfull passenger railway system has stringent requirements in terms of punctu-
ality, frequency, connectivity, and resilience. In this thesis we are going to study the problem
of rescheduling passenger trains, i.e. of finding appropriate countermeasures when an un-
forseen event forces the train operator to depart from its normal operating shedule. This type
of problem is now increasingly studied: so much so that “train rescheduling” has become a
well-defined category of optimisation problems. The reader is referred to the excellent survey
by Cacchiani et al. [4] for an overview on train rescheduling algorithms.

1.2 Methodological toolbox

The three main approaches to the solution of a combinatorial optimisation problem consist
in using either exact, approximate, or heuristic methods. Exact algorithms provide the
guarantee that an optimal solution (if any) to the problem will be found in bounded time.
For most interesting problems, however, this bound is often super-polynomial. Classical
combinatorial problems, such as the Graph Colouring Problem, the Hamiltonian Path Problem,
the Minimum Spanning Tree Problem, the Knapsack Problem, the Quadratic Assignment
Problem, are all N P -complete, meaning that the running time of any exact algorithm will
grow at least exponentially with the input size.

For many N P -hard optimisation problems, then, we often have to be content with a
solution which is not optimal. Algorithms that produce such solutions are typically classified

3

1 Introduction

as approximate or heuristic. An approximate algorithm is an algorithm that produces a
solution of provable minimum quality. This means that a mathematical proof is available
that the ratio between the value of the solution provided by the algorithm and the value of
the optimal solution is bounded by a constant (assuming a minimisation problem), called
the approximation ratio. Measures of quality for these algorithms are, e.g., the ratios in the
worst or the average case.

In order to have a proof of the quality produced by an algorithm, we often need such
algorithm to be simple enough to be studied from a mathematical, combinatorial, geometric,
or probabilistic point of view. On the other hand, many well-perofrming non-exact algorithms
for combinatorial optimisation problems are too complex to be studied in such a way. In this
case, we talk about heuristic algorithms: they produce solutions with no theoretical quality
guarantee whatsoever, but which are very (or, at least, reasonably) good in practice.

1.2.1 Exact methods

The exact algorithms used to tackle the problems presented in this thesis have, as their
ultimate outcome, that of solving a Mixed-Integer Programme (MIP). The most widely used
such algorithm is the branch-and-bound algorithm. This algorithm explores the solution
space by traversing a tree. Each node of the tree represents a more constrained version of
the original problem and, therefore, has to explore a smaller subset of the solution space.
For example, when solving a 0-1 problem, the solution space can be partitioned into two
halves, by considering the two subproblems where the value of a binary variable has been
fixed, repsectively, to 0 and 1. These two subproblems will correspond to two child nodes of
the root of the tree. By proceeding with further partitioning, the leaves of the tree represent
solutions where all variables are fixed to specific values. Exploring the full tree, therefore,
would correspond to a complete enumeration of the solution space.

The advantage of using a branch-and-bound algorithm, however, lies precisely in the fact
that the whole tree need not be explored. Consider, for example, a bounded 0-1 problem
(P01) in minimisation form:

min ct x (1.1)

s.t. Ax � b (1.2)

x 2 {0,1}n (1.3)

Notice that the objective value ct x̂ of a feasible solution x̂ to (P01) always provides an upper
bound on the optimal objective value. On the other hand, the optimal solution to a relaxation
of (P01) — for example, to its linear relaxation (P01L) — provides a lower bound on the
optimal objective value. During the exploration of a node of the branch-and-bound tree,
suppose we have obtained an uper bound UB (e.g. by reaching a leaf, or by means of a
heuristic) and, solving (P01L) at the node, we obtain a lower bound LB � UB. Since by
further constraining the problem, i.e. by fixing more variables, the lower bound produced
in the subtree of the current node can only increase, we are confident that we will not find
any leaf in such subtree with a better upper bound than the one we already have. For this
reason, we can prune the current node and its whole subtree. Analogously, we can prune the
tree when we reach a node where the problem is infeasible.

4

1 Introduction

This algorithm was first proposed by Land and Doig [26] and got its current name when
it was applied to the solution of the Travelling Salesman Problem (TSP) by Little et al. [27].
The branch-and-bound method is extremely effective and, therefore, has not only theoretical
but only practical value, being the underlying algorithm in many commercial MIP solvers.

But another crucial component in the solution of a combinatorial problem is the choice of
the MIP model used to represent the problem mathematically. Two different MIP formula-
tions for the same problem can have dramatically different mathematical and combinatorial
properties (e.g. the strength of the relaxation, the presence of symmetry) that affect how
effectively they can be solved by applying a branch-and-bound algorithm. The most evident
of these properties is arguably the model size. With this respect, we can classify MIP formu-
lations into compact and extended. Compact formulations are those for which the size of
the model is polynomial in the size of input data. By size of the model we mean the size
of its constraint matrix; e.g. in the case of (P01) this would be the dimension of the space
to which matrix A belongs. On the other hand, extended formulations are those for which
the model size is super-polynomial in the size of the input data. We refer the reader to, e.g.,
Conforti et al. [8] to a summary of the differences between these two types of formulations.

Branch-and-price

Consider the linear relaxation (P01L) of (P01), and assume we are in the case where (P01L)
is bounded and the number of columns of A is exponential in the size of the input. This
means that, for a large enough instance of the problem, even inputting (P01L) to a computer
solver would take a considerable amount of time, let alone working towards the solution of
the associated minimisation problem. In other words, even the enumeration of the columns
of A is not viable.

Let K be the set of columns of A 2 Rn⇥m (therefore |K | = m). Consider a smaller subset
K 0 ⇢ K containing only a few of the columns of A, and let (RP01L) be the version of (P01L)
where only the columns of K 0 are considered:

min
X

k2K 0
ck xk (1.4)

s.t.
X

k2K 0
ahk xk � bh 8h 2 {1, . . . , n} (1.5)

x 2 Rn
+ (1.6)

Let x̂ 2 Rn
+ be the optimal solution of (RP01L), which we also call the restricted problem, and

let ⇡h � 0 be the dual variables associated with Eq. (1.5) in its �-form. To solve the original
unrestricted programme, we would like to identify which columns in K ✓ K 0 should enter
the base of (RP01L) in order to improve the upper bound. We would then only add those
columns, with the hope that we can prove the optimality of (P01L) by moving into K 0 only a
small set of columns from K \ K 0.

Recall from dual theory, that a column missing from the base of the primal problem corre-
sponds to a violated inequality in the dual problem. The inequalities in the dual of (RP01L)

5

1 Introduction

are

ck �
n
X

h=1

ahk⇡h � 0 8k 2 K 0 (1.7)

and therefore, a solution k⇤ 2 K \ K 0 should enter the base iff

ĉ(k⇤) := ck⇤ �
n
X

h=1

ahk⇤⇡h < 0 (1.8)

where ĉ(k⇤) is called the reduced cost of k⇤. When we can prove that no column in K \K 0 has
negative reduced cost, again from dual theory, we know that the original unrestricted problem
(P01L) has been solved to optimality. In order to have a working algorithm, therefore, we
also need a method to generate new columns with negative reduced cost. Such a method is
called a pricing algorithm, and is heavily dependent on the nature of the problem we are
dealing with. A desirable characteristic of the pricing algorithm is that it is able to find new
columns with negative reduced cost (or to prove that none exist) in short time, and ideally
in polynomial time.

By solving iteratively the linear relaxation of the reduced problem (also called the master
problem), and the pricing problem, we obtain an algorithm for the solution of (P01L), which
takes the name of a column generation algorithm. This method to solve a linear problem
with a potentially exponential number of variables was introduced by Ford and Fulkerson
[16] and succesfully employed for the first time by Gilmore and Gomory [17, 18].

When we are interested in solving an integer or mixed-integer programme, we can then
embed the column generation approach within a branch-and-bound algorithm: at each node
of the tree, the linear relaxation at that node is solved by means of column generation. Such a
combined algorithm is called a branch-and-price algorithm. This combination of algorithms
is not straightforward. The main problem lies, in fact, in the effect of branching decisions
to the master and pricing problems. It is well known (see, e.g., Barnhart et al. [2]) that a
simple branching rule that fixes the values of the variables in the master problem is often
problematic to enforce in the subproblems. In many cases, therefore, alternative branching
strategies have to be devised, which partition the solution space in ways other than fixing
the variable values. We refer the reader to Lübbecke and Desrosiers [29] and Desrosiers and
Lübbecke [12] for further introductory material on column generation and branch-and-price
algorithms.

Branch-and-price algorithms are used in Chapters 3 and 4 to provide exact solutions,
respectively, to the Partition Colouring Problem — also used to model a Berth Allocation
Problem — and to the Feeder Network Design Problem — arising in maritime seaside logistics.
In the first case, the number of columns is explonential, as it is the number of (maximal)
stable sets in a graph; in the second case, because each column represents a (feasible) route
of a vessel, i.e. a (feasible) sequencing of port visits.

Branch-and-cut

We now consider the related case in which (P01L) is bounded, but it’s the number of rows of
A to be exponential in the size of the input. We employ a similar approach, and consider only

6

1 Introduction

a subset of row, i.e. a subset N ⇢ {1, . . . , n} of constraints, producing formulation (CP01L):

min
X

k2K

ck xk (1.9)

s.t.
X

k2K

ahk xk � bh 8h 2 N (1.10)

x 2 Rn
+ (1.11)

Since we removed some constraints, (CP01L) is a relaxation of the original problem (P01L).
Therefore, if the optimal solution x⇤ to (CP01L) also satisfies the removed constraints, then
it is also the optimal solution for (P01L). Otherwise, we will have to identify which removed
constraint is violated by x⇤; we can then add it to the model, and resolve. This iterative
process is commonly called a cutting planes algorithm. The problem of identifying which
implicit constraint is violated by a solution of (CP01L), or to prove that none are, is named
the separation problem. As in the case of the pricing problem, we would like the separation
problem to be quick (hopefully polynomial) to solve, and we have the hope that the optimal
solution to (P01L) is found by separating only a small number of constraints. The cutting
plane algorithm was introduced by Kelley [24].

Notice that, in principle, it is also possible to separate inequalities which are not required
to produce a feasible solution, but are nonetheless valid: the idea that a linear formulation
could be strenghtened by introducing extra constraints was pioneered by Gouonr [22]. These
extra constraints take the name of valid inequalities and, depending on their number, can
either be added to the original formulation, or separated using a cutting plane algorithm.

When we are solving and integer or mixed-integer programme, similarly to what done
for column generation, we can embed a cutting plane algorithm into the exploration of
the branch-and-bound tree, thereby using a branch-and-cut algorithm. Notice that the
correctness of the overall algorithm is guaranteed by separating violated inequalities just for
the integer solutions, but convergence can be accelerated if the separation problem can be
used to derive inequalities violated by fractional solutions as well.

In the first implementations (see, e.g., Crowder and Padberg [9], Crowder et al. [10])
cutting planes were used only at the root node of the branch-and-bound tree; such approach
is now called cut-and-branch. The first actual implementation of a branch-and-cut algorithm
was presented by Padberg and Rinaldi [36] to solve the Travelling Salesman Problem (TSP).
We refer the reader to Mitchell [32] for a general overview on branch-and-cut algorithms.

A branch-and-cut algorithm is used in Chapter 5 to solve a variant of the Travelling Sales-
man Problem. Inequalities corresponding to subtour elimination constraints are in expo-
nential number, as there is one of them for each possible subset of the set of nodes, and
are therefore added only when a violated one is found in any optimal solution to the linear
relaxation of the problem. Furthermore, a number of valid inequalities are also separated
and added to the model, in order to strenghten the formulation.

1.2.2 Metaheuristics

Metaheuristics are paradigms used to create heuristic algorithms. In the words of Glover and
Kochenberger [21],

7

1 Introduction

“Metaheuristics, in their original definition, are solution methods that orchestrate
an interaction between local improvement procedures and higher level strategies
to create a process capable of escaping from local optima and performing a robust
search of a solution space. Over time, these methods have also come to include
any procedures that employ strategies for overcoming the trap of local optimality
in complex solution spaces, especially those procedures that utilize one or more
neighborhood structures as a means of defining admissible moves to transition
from one solution to another, or to build or destroy solutions in constructive and
destructive processes.”

In this work, in particular, we are going to use a variety of metaheuristic paradigms: Tabu
Search (TS, Glover [19, 20]), Reduced Variable Neighbourhod Search (RVNS, Mladenovic
[33], Mladenović and Hansen [34]), Adaptive Large Neighbourhood Search (ALNS, Ropke
and Pisinger [39]).

These three metaheuristics offer three different solutions to the problem highlighted by
Glover and Kochenberger: local search improvements lead to find solutions which are local
optima, potentially very far away from the global optimum. A feasible solution x0 is improved
with local search by considering a neighbourhood N(x0) to explore, and choosing the best
solution x1 2 N(x0). If the problem involves the minimisation of an objective function
f (x), then x1 can be chosen as x1 = BEST(N(x0)) := arg minx2N(x0){ f (x)}. This procedure
can be iterated by considering x2 = BEST(N(x1)), etc. When we reach a local optimum
xk = BEST(N(xk)), the algorithm must then terminate.

The basic idea behind TS is that local optima can be escaped from, by allowing non-
improving moves. One could set, for example, xk+1 as any solution in N(xk) taken at
random, and not necessarily the best one (which would coincide with the local optimum
xk). This approach, however, has a clear disadvantage: most of the time we will have that
xk = BEST(N(xk+1)), thereby cycling back to solution xk and never escaping the “valley”
surrounding the local optimum. TS proposes to overcome this limitation by introducing a
short-term memory of moves to forbid, thereby placing them in a tabu list. The definition of
move can be problem-dependent; it is important, however, that forbidding a move achieves
the desired outcome of forbidding the return to a recently-visited local optimum. Since the
memory is short-term (not to reduce too much the solution space), we only place a move
in the tabu list for a certain limited number of iterations; this number is known as the tabu
tenure.

The RVNS metaheuristic, on the other hand, aims at escaping from local minima by ex-
ploring increasingly larger neighbourhoods. In this case, instead of defining a single neigh-
bourhood N(x), we define a succession of them: N1(x), . . . , Nk(x). These neighbourhoods
are nested, i.e. for all points x of the solution space, N1(x) ⇢ N2(x) ⇢ . . . ⇢ Nk(x). Since
the size of a neighbourhood Nh can become very large as h increases, they are not explored
completely but rather sampled. In this work, we only consider one sample from each neigh-
bourhood: if the sample provides a better objective value than the current solution, it is
accepted; otherwise, we sample the next (larger) neighbourhood.

ALNS, finally, is rooted in the idea that, when multiple neighbourhoods are available, the
same neighbourhood can be effective for one instance and ineffective for another. Therefore,

8

1 Introduction

the choice of neighbourhood to use in each iteration of the heuristic should depend on its past
performance during the solution process of the current specific instance. In particular, ALNS
neighbourhoods are defined implicitely as Ndr(x) = r(d(x)). d(·) is a destroy method which
takes a feasible solution as input, and destroys part of it, returning a potentially unfeasible
one; r(·) is a repair method which takes a destroyed solution and repairs it, producing a
feasible solution. If each repair method is able to repair solutions destroyed by each destroy
method, then we will have one neighbourhood Ndr for each possible combination of destroy
and repair methods. ALNS will then try to evaluate the destroy and repair methods separately,
rather than giving an explicit evaluation of the neighbourhood. This is done by defining a
score for each method and increasing it every time the method is involved in the production
of an improving solution, while decreasing it if the solution is worse than the current one. At
each iteration, then, the methods are selected randomly with a probability proportional to
their score, thus favouring methods which have “behaved well” for the instance at hand.

The roles these metaheuristics play in the present work are many: we use them to generate
starting solutions to exact algorithms, to efficiently explore the solution space of a problem,
and we even study their methodological properties without the explicit aim of solving any
particular problem. TS is used in Chapter 3 to produce initial solutions for the Partition
Colouring Problem; however, we show that ALNS produces better results in a shorter time.
This result is particularly interesting, because traditionally ALNS has proven effective in
solving “rough landscape” problems, such as Vehicle Routing variants: problems where the
number of possible objective values is very large (essentially of the same order of the number
of solutions). The Partition Colouring Problem, on the other hand, has a very flat landscape
with a few discrete possible values for the objective function, and moving from a solution
to one with a better objective value is difficult. To this end, we employed a new acceptance
criterion (a criterion to decide wether a new solution should be kept or discarded) which
plays well with flat-landscape problems. TS is furthermore used in Chapter 5 to produce
initial solutions to the Travelling Salesman Problem with Draft Limits.

TS and RVNS are also employed in Chapter 6 as two alternative strategies to decide in
which order the subproblems of a decomposed problem should be solved, keeping in mind
that the solution of a previous subproblem reduces the solution space of the following ones. In
particular, the problem of rescheduling a set of trains is decomposed train-by-train; scheduling
one train marks certain resourced (tracks, platform) as inaccessible for trains scheduled
afterwards. The main idea of the algorithm is to produce greedy schedules for each train in
sequence, and then perturb their order and re-run the greedy algorithm. TS and VNS come
into play when deciding how the order pertubation should be made, in order to find a good
compromise between running times (this real-time algorithm should produce a solution in
under 2 seconds) and solution quality.

Finally, Chapter 7 investigates the impact of different acceptance criteria on ALNS, and
reports results obtained trying the different critera on two relevant optimisation problems:
the Capacitated Vehicle Routing Problem, and the Capacitated Minimum Spanning Tree
Problem.

9

Bibliography

[1] Regina Asariotis, Hassiba Benamara, Jan Hoffmann, Anila Premti, Vincent Valentine,
and Frida Youssef. Review of maritime transport, 2016. Technical report, United Nation
Conference on Trade and Development, 2016.

[2] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and
Pamela H Vance. Branch-and-price: Column generation for solving huge integer pro-
grams. Operations research, 46(3):316–329, 1998.

[3] Christian Bierwirth and Frank Meisel. A survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Research,
202(3):615–627, 2010.

[4] Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth, Lucas Veelen-
turf, and Joris Wagenaar. An overview of recovery models and algorithms for real-time
railway rescheduling. Transportation Research Part B: Methodological, 63:15–37, 2014.

[5] Marielle Christiansen, Kjetil Fagerholt, and David Ronen. Ship routing and scheduling:
Status and perspectives. Transportation science, 38(1):1–18, 2004.

[6] Marielle Christiansen, Kjetil Fagerholt, Bjørn Nygreen, and David Ronen. Maritime
transportation. Handbooks in operations research and management science, 14:189–284,
2007.

[7] Marielle Christiansen, Kjetil Fagerholt, Bjørn Nygreen, and David Ronen. Ship routing
and scheduling in the new millennium. European Journal of Operational Research, 228
(3):467–483, 2013.

[8] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations
in combinatorial optimization. 4OR: A Quarterly Journal of Operations Research, 8(1):
1–48, 2010.

[9] Harlan Crowder and Manfred W Padberg. Solving large-scale symmetric travelling
salesman problems to optimality. Management Science, 26(5):495–509, 1980.

[10] Harlan Crowder, Ellis L Johnson, and Manfred Padberg. Solving large-scale zero-one
linear programming problems. Operations Research, 31(5):803–834, 1983.

[11] Neil Davidson. Juggling bigger ships, mega-alliances and slower growth, 2016. Termi-
nal Operations Conference Europe, Hamburg.

10

Bibliography

[12] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In Column
generation, pages 1–32. Springer, 2005.

[13] Drewry Maritime Research. Seaborne Trade Annual Report 2013. Technical report,
Drewry, 2014.

[14] Eurostat. Energy, transport and environemtn indicators. Technical report,
2016. URL

.

[15] Eurostat. Railway passenger transport statistics: quarterly and annual data 2016.
Technical report, 2016.

[16] Lester Randolph Ford and Delbert R Fulkerson. A suggested computation for maximal
multi-commodity network flows. Management Science, 5(1):97–101, 1958.

[17] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting-
stock problem. Operations research, 9(6):849–859, 1961.

[18] Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting
stock problem – Part II. Operations research, 11(6):863–888, 1963.

[19] Fred Glover. Tabu search — part i. ORSA Journal on computing, 1(3):190–206, 1989.

[20] Fred Glover. Tabu search — part ii. ORSA Journal on computing, 2(1):4–32, 1990.

[21] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics, volume 57.
Springer Science & Business Media, 2006.

[22] RE Gouonr. Outline of an algorithm for integer solutions to linear programs. Bull. Am.
Math. Soc, 64:3, 1958.

[23] International Chamber of Shipping. Shipping and world trade, 2017. URL
.

[24] James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of
the society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

[25] Christos A Kontovas. The green ship routing and scheduling problem (gsrsp): a concep-
tual approach. Transportation Research Part D: Transport and Environment, 31:61–69,
2014.

[26] Ailsa H Land and Alison G Doig. An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[27] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. An algorithm for
the traveling salesman problem. Operations research, 11(6):972–989, 1963.

[28] Lloyd’s Marine Intelligence Unit. Measuring Global Seaborne Trade. Technical report,
Lloyd’s, 2009.

11

http://ec.europa.eu/eurostat/documents/3217494/7731525/KS-DK-16-001-EN-N.pdf
http://ec.europa.eu/eurostat/documents/3217494/7731525/KS-DK-16-001-EN-N.pdf
http://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
http://www.ics-shipping.org/shipping-facts/shipping-and-world-trade

Bibliography

[29] Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[30] Mærsk Line. Mærsk Triple-E, 2017. URL
.

[31] MarineTraffic. CSCL Globe, 2017. URL

.

[32] John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.
Handbook of applied optimization, pages 65–77, 2002.

[33] Nenad Mladenovic. A variable neighborhood algorithm — a new metaheuristic for
combinatorial optimization. In Abstract of papers presented at Optimization Days, page
112, 1995.

[34] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers &
operations research, 24(11):1097–1100, 1997.

[35] International Union of Railways. Railways statistics. Technical report, 2016. URL
.

[36] Manfred Padberg and Giovanni Rinaldi. Optimization of a 532-city symmetric traveling
salesman problem by branch and cut. Operations Research Letters, 6(1):1–7, 1987.

[37] Photis M Panayides and Dong-Wook Song. Maritime logistics as an emerging discipline.
Maritime Policy & Management, 40(3):295–308, 2013.

[38] Harilaos N Psaraftis and Christos A Kontovas. Speed models for energy-efficient mar-
itime transportation: A taxonomy and survey. Transportation Research Part C: Emerging
Technologies, 26:331–351, 2013.

[39] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation science, 40(4):
455–472, 2006.

[40] Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and
operations research: a classification and literature review. OR spectrum, 26(1):3–49,
2004.

[41] Iris FA Vis and Rene De Koster. Transshipment of containers at a container terminal:
An overview. European journal of operational research, 147(1):1–16, 2003.

[42] Shuaian Wang, Qiang Meng, and Zhiyuan Liu. Bunker consumption optimization
methods in shipping: A critical review and extensions. Transportation Research Part E:
Logistics and Transportation Review, 53:49–62, 2013.

[43] World Shipping Council. The Liner Shipping Industry and Carbon Emission Policies.
Technical report, World Shipping Council, 2009.

12

http://www.maersk.com/en/hardware/triple-e
http://www.maersk.com/en/hardware/triple-e
http://www.marinetraffic.com/en/ais/details/ships/shipid:993261/mmsi:477712400/imo:9695121/vessel:CSCL_GLOBE
http://www.marinetraffic.com/en/ais/details/ships/shipid:993261/mmsi:477712400/imo:9695121/vessel:CSCL_GLOBE
http://www.marinetraffic.com/en/ais/details/ships/shipid:993261/mmsi:477712400/imo:9695121/vessel:CSCL_GLOBE
http://www.uic.org/IMG/pdf/synopsis_2015_print_5_.pdf

2 Maritime landside logistics: the quay
crane assignment problem

Abstract This chapter studies the Quay Crane Scheduling Problem with non-crossing
constraints, which is an operational problem that arises in container ter-
minals. An enhancement to a mixed integer programming model for the
problem is proposed and a new class of valid inequalities is introduced. Com-
putational results show the effectiveness of these enhancements in solving
the problem to optimality.

2.1 Introduction

A container terminal manager is faced with several interesting and challenging optimization
problems and the topic of applying operational research methods to optimize container
terminal operations has received a great amount of attention in recent years. The most
important container terminal optimization problems as well as related solution methods are
surveyed by Steenken et al. [7] and Stahlbock and Voß [6].

The focus of this article is on the quay crane scheduling problem (QCSP). In the QCSP
a container vessel and a number of quay cranes are given and the objective is to make a
schedule for the quay cranes such that the tasks that need to be performed on the vessel are
carried out in a way that satisfies both the terminal manager and the vessel owner. Typically
it is of primary importance to serve the vessel as quickly as possible. This is in the interest
of the terminal manager, as it ensures that valuable quay space is freed up quickly and that
labor cost is kept in check. It is also in the interest of the vessel owner, because it means that
the ship can quickly commence its voyage, so to minimize unproductive time.

A conceptual container vessel is displayed in Figure 2.1. The figure shows that storage space
on the vessel is divided into bays, rows and tiers, with a certain bay–row–tier combination
pointing out a cell in the vessel that can store one forty feet container. This figure is, of course,
a simplification. In practice the containers are not stored in a box-shaped vessel, the system
for numbering positions on the vessel is different from what is used here and containers come
in different sizes. The reader is referred to, for example, Pacino et al. [4] for a more realistic

This chapter is based on the contents of: Alberto Santini, Henrik Alsing Friberg, and Stefan Ropke. A note on
a model for quay crane scheduling with non-crossing constraints. Engineering Optimization, 47(6):860–865,
2015. doi: 10.1080/0305215X.2014.958731.

13

2 Maritime landside logistics: the quay crane assignment problem

description of a container vessel. For the purposes of this work, the simple description is
sufficient since, as it is common in the QCSP literature, the assumption is made that each
task consists of unloading and loading an entire bay.

Figure 2.1: Conceptual container vessel

The QCSP model studied in this article is the one presented by Lee and Chen [3] and the
contribution of the article is to show how the model, in a very simple way, can be improved to
make it much more tractable for off-the-shelf solvers like CPLEX. Let B = {1, ..., n} be the set
of bays, K = {1, ..., m} the set of quay cranes and pb the processing time of bay b 2 B. Each
crane can process one bay at a time. Once the processing has started it has to run to its end.
Cranes are running on rails, so they cannot overtake each other. The dimensions of bays and
cranes are such that it is impossible to place two or more cranes at any bay simultaneously.
it must be decided which crane should process which bay and at what time, while respecting
the non-crossing constraint and the necessary time for processing each bay. It is assumed that
the time for moving the crane between bays is negligible compared to the time for processing
each bay. The objective is to minimize the make-span of the entire operation; that is, to
minimise the ending time for the crane that ends the latest.

A classification scheme for QCSP formulations as well as a survey of contributions to
the problem are presented by Bierwirth and Meisel [1]. QCSP formulations are classified
according to four attributes: 1) task attribute, 2) crane attribute, 3) interference attribute
and 4) performance attribute. The QCSP studied in this article is classified as “Bay | – | cross
| max(compl)” which means that 1) each individual task is a bay — as opposed to a group of
bays or a single container at the two extremes, 2) there are no special attributes associated
with cranes, 3) the non-crossing of cranes is respected and 4) the maximum completion time
of all tasks is minimized.

14

2 Maritime landside logistics: the quay crane assignment problem

2.2 Mathematical model
The mathematical model is based on that of Lee and Chen [3] which in turn is an improved
version of the model presented by Lee et al. [2]. The model uses the binary variable xbk
which is 1 if and only if bay b 2 B is served by crane k 2 K , the binary variable ybb0 is 1 if
and only if work on bay b 2 B is finished before work on bay b0 2 B starts. The variables
cb indicate the completion time of bay b 2 B and c is the overall makespan. Using these
variables and letting M be a sufficiently large positive integer number, the model is:

min c (2.1)
subject to c � cb 8b 2 B (2.2)

cb � pb 8b 2 B (2.3)
X

k2K

xbk = 1 8b 2 B (2.4)

cb cb0 � pb0 +M(1� ybb0) 8b, b0 2 B, b 6= b0 (2.5)
X

k2K

kxbk �
X

k2K

kxb0k + 1 M(ybb0 + yb0b) 8b, b0 2 B, b < b0 (2.6)

X

k2K

kxb0k �
X

k2K

kxbk b0 � b+M(ybb0 + yb0b) 8b, b0 2 B, b < b0 (2.7)

xbk = 0 8b 2 B, k 2 K , k > b (2.8)
xbk = 0 8b 2 B, k 2 K , n� b < m� k (2.9)
xbk 2 {0,1} 8b 2 B, k 2 K (2.10)
ybb0 2 {0, 1} 8b, b0 2 B, b 6= b0 (2.11)
cb 2 R 8b 2 B (2.12)
c 2 R (2.13)

The objective function (2.1) minimizes the total make-span of the process. Constraint (2.2)
together with the minimization of the objective function ensures that c is equal to the largest
of all completion times. Constraint (2.3) makes sure that the completion time of each bay is
greater than its processing time. Constraint (2.4) ensures that every bay is served by exactly
one crane. Constraint (2.5) links the ybb0 and cb variables. It forces ybb0 to zero whenever
cb > cb0 � pb0 , that is, when b0 is started before b finishes. Constraint (2.6) makes sure that
the cranes do not cross and that each crane is working at one bay at a time. Constraint (2.7)
ensures that there is always is enough space between two cranes (e.g. that crane 1 and 3
never are servicing two adjacent bays simultaneously). Constraints (2.8) and (2.9) ensure
that no crane is pushed outside the bounds of the ship. This is illustrated in Figure 2.2 that
shows an example with 8 bays and 3 quay cranes. In this example it is only crane 1 that is
feasible for bay one; crane 2 and 3 are not feasible since that would imply that crane 1 is
pushed further left and there may not be space for that since another vessel may be moored
directly to the left of the current vessel or the vessel may be at the end of the quay. Similarly
it is only crane 2 and 3 that can serve bay 7 since serving it by crane 1 would imply that
crane 3 is pushed out of bounds. In the example, constraint (2.8) fixes x12, x13 and x23 to
zero and thereby ensures that no crane is pushed too far left. Constraint (2.9) fixes x71, x81
and x82 to zero implying that no crane is pushed too far right.

15

2 Maritime landside logistics: the quay crane assignment problem

Figure 2.2: Bays and feasible quay cranes

The model is different from that of Lee and Chen [3] in two ways. Lee and Chen [3] creates
two dummy bays and two dummy cranes in order to avoid cranes being pushed out of bounds.
The dummy bays are situated at each end of the ship and the dummy cranes are locked to
serving the two dummy bays during the entire planning period. As explained earlier, in this
model the same issue is handled by the variable fixing done in (2.8) and (2.9). This modeling
approach is preferred, as it requires fewer decision variables and constraints, while making
the model easier to understand as well.

The second difference is that constraint (17) of Lee and Chen [3] has been left out. Using
the notation introduced earlier, the constraint is

cb +M ybb0 � cb0 � pb0 8b, b0 2 B, b 6= b0

It forces ybb0 to 1 when cb < cb0 � pb0 , that is, when b0 starts after b finishes. Forcing the ybb0

variable to one has no impact on the solution of the model since the only other place where
ybb0 occurs is in constraints 2.6 and 2.7 and here a value of one implies that the constraint
will never be binding. The only drawback is that the ybb0 sometimes can have a value 0 in
the final solution when the value logically should be 1, but that is not an issue as the only
interest is in the values of the xbk, cb and c variables.

The following simple family of valid inequalities has been introduced and its significant
impact on computing experiments will be later shown:

c �
X

b2B

xbkpb 8k 2 K (2.14)

Inequality (2.14) simply forces the overall make-span to be greater than the sum of all the
processing times of the bays served by the same crane.

2.3 Computational results

The purpose of the computational results is to show the impact of inequality (2.14) when
solving model (2.1) – (2.13). The computational tests were performed using a 2.93 GHz
Intel Core i7 model 940 that has 4 cores. The MIP model was solved using CPLEX 12.4 which
was allowed to use all cores of the computer and was allotted one hour per run. Table 2.1
shows results on the 24 instances used by Lee and Chen [3] and compare results with and

16

2 Maritime landside logistics: the quay crane assignment problem

without constraint (2.14), as well as the results reported in [3]. The authors obtained the
original data set from Lee and Chen and conducted the experiments using these instances.

The first column in the table reports the instance name, the first number gives the number
of bays while the second gives the number of quay cranes. The next 6 columns report results
from the mathematical model, including constraint (2.14). The first three of these columns
report the lower and upper bounds when CPLEX terminated and the corresponding gap is
calculated as (UB-LB)/LB · 100%. The next columns report the time spent by CPLEX, where a
dash indicates that the solver timed out. The last two of the six columns report if the problem
was solved to optimality and the number of branch and bound nodes explored. The following
six columns show the same information for the model without constraint (2.14). The second
to last column reports the best solution found by Lee and Chen [3]. Values marked with
superscript “A” were found using CPLEX, while values marked with superscript “B” were
found using a heuristic. The last column reports if the instance was solved to optimality in
[3].

A first observation is that the valid inequality has a tremendous impact on the model.
Consider for example the first instance. Without the inequality, CPLEX needs about 90 times
as much time and needs to explore around 290 times as many nodes in the branch and
bound tree in order to solve it to optimality. CPLEX is able to solve 15 instances to optimality
when using the inequality and only 4 instances without the inequality. For the instances that
none of the models can solve to optimality, the gap is much lower for the model using the
inequalities.

When comparing to the results reported by Lee and Chen [3], it can be noticed that even
the model without the valid inequality is able to solve more instances to optimality. This has
been attributed to the fact that the experiment reported in the present work are using a faster
computer and a more recent version of CPLEX. Lee and Chen [3] used a 3 GHz Pentium IV
computer and did not report which version of CPLEX they used. The authors do not believe
that the fact that they are using slightly fewer variables and constraints in their model has a
great impact on CPLEX’s ability to solve the problem.

The optimal results obtained with the proposed valid inequalities are often substantially
better than the heuristic solutions reported in [3] and for most of the instances that were not
solved to optimality, CPLEX is still able to find a better solution than Chen and Lee’s heuristic.
On the other hand, their heuristic is much faster and never uses more than 15 seconds.

The heuristic is also able to find a better solution than CPLEX for the largest instances with
100 bays. However, no container ship has 100 bays so such an instance is not realistic: one
of the largest container ships currently in operation, Emma Maersk, has approximately 23
bays (based on inspection of photos). It is therefore possible to conclude that the enhanced
model, within one hour, is able to solve most of the realistic sized instances to optimality.

2.4 Conclusions

In this article the quay crane scheduling model proposed by Lee and Chen [3] has been
revisited. A simple family of inequalities has been introduced and this has been shown to
have a great impact on the ability to solve the model to optimality. Computational results

17

2 Maritime landside logistics: the quay crane assignment problem

W
it

h
co

ns
tr

ai
nt

s
(2

.1
4)

W
it

ho
ut

co
ns

tr
ai

nt
s

(2
.1

4)
Le

e
an

d
C

he
n
[3
]

In
st

an
ce

LB
U

B
G

ap %
Ti

m
e

(s
)

O
pt

BB
N

od
es

LB
U

B
G

ap %
Ti

m
e

(s
)

O
pt

BB
N

od
es

Be
st

So
lu

ti
on

O
pt

16
-4

72
6.

0
72

6
0.

0
3.

4
4

12
87

8
72

6.
0

72
6

0.
0

30
5.

4
4

37
26

72
6

72
6A

4
16

-5
58

6.
0

58
6

0.
0

1.
1

4
52

88
58

6.
0

58
6

0.
0

8.
8

4
52

27
4

61
0A

17
-4

74
1.

0
74

1
0.

0
34

.6
4

74
28

5
69

8.
0

74
1

6.
2

—
23

59
36

06
74

6A

17
-5

60
0.

0
60

0
0.

0
44

.9
4

76
72

1
60

0.
0

60
0

0.
0

33
0.

5
4

34
35

50
5

60
4A

18
-4

72
0.

0
72

0
0.

0
41

.2
4

84
80

1
68

7.
0

72
0

4.
8

—
29

25
26

98
73

7A

18
-5

57
9.

0
57

9
0.

0
35

.9
4

26
85

4
57

9.
0

57
9

0.
0

23
3.

7
4

25
87

33
9

59
5A

19
-4

70
2.

0
70

2
0.

0
25

5.
0

4
31

70
52

57
8.

0
70

2
21

.5
—

14
82

41
65

71
1B

19
-5

56
7.

0
56

7
0.

0
41

4.
2

4
40

47
94

54
2.

0
56

7
4.

6
—

21
70

25
26

58
0A

20
-4

92
5.

0
92

5
0.

0
57

9.
4

4
10

43
27

8
67

9.
0

92
5

36
.2

—
95

78
04

8
94

9A

20
-5

73
9.

0
73

9
0.

0
27

1.
4

4
32

30
89

67
7.

0
74

9
10

.6
—

14
66

46
65

78
1B

21
-4

75
9.

0
75

9
0.

0
11

51
.1

4
15

16
15

3
54

0.
1

75
9

40
.5

—
69

54
43

9
80

1B

21
-5

61
2.

0
61

2
0.

0
33

20
.3

4
37

03
08

4
52

4.
0

61
2

16
.8

—
87

13
79

4
62

2B

22
-4

75
7.

0
75

7
0.

0
12

03
.2

4
20

42
91

7
61

2.
0

75
9

24
.0

—
68

20
79

0
76

6B

22
-5

61
1.

0
61

1
0.

0
27

15
.0

4
60

97
88

8
54

4.
0

61
1

12
.3

—
12

18
50

27
63

6A

23
-4

88
6.

0
88

6
0.

0
19

16
.2

4
21

68
28

4
56

2.
0

88
9

58
.2

—
53

71
12

5
91

0B

23
-5

70
8.

8
71

9
1.

4
—

31
48

78
9

54
6.

9
71

3
30

.4
—

57
54

00
8

74
0B

24
-4

85
7.

5
86

0
0.

3
—

37
22

24
3

60
0.

0
86

1
43

.5
—

49
96

44
1

87
4B

24
-5

68
6.

0
69

8
1.

7
—

52
10

88
6

52
5.

7
69

3
31

.2
—

38
65

71
0

71
2B

25
-4

10
83

.5
10

87
0.

3
—

20
85

82
8

57
9.

0
10

89
88

.1
—

10
20

03
9

11
29

B

25
-5

86
6.

8
87

1
0.

5
—

26
51

60
9

56
0.

1
87

7
56

.6
—

20
23

90
5

92
1B

50
-8

99
8.

3
10

25
2.

7
—

35
73

69
42

7.
0

10
13

13
7.

2
—

62
12

0
10

46
B

50
-1

0
79

8.
6

83
0

3.
9

—
20

44
19

44
8.

0
83

9
87

.3
—

23
96

55
2

89
7B

10
0-

8
20

64
.9

21
32

3.
2

—
31

98
13

36
5.

0
—

—
—

67
35

07
21

24
B

10
0-

10
16

51
.9

17
57

6.
4

—
27

55
14

34
5.

4
—

—
—

56
18

73
17

47
B

Ta
bl

e
2.

1:
C

om
pu

ta
tio

na
lr

es
ul

ts

18

2 Maritime landside logistics: the quay crane assignment problem

showed that the improved model is able to solve most instances with realistic size to optimality.
The authors believe that the model can provide inspiration for further work in this and related
areas and that the computational results provided can be used as a basis for comparison for
future heuristics for the problem.

19

Bibliography

[1] C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane scheduling
problems in container terminals. European Journal of Operational Research, 202:615–
627, 2010.

[2] D.-H. Lee, H.Q. Wang, and L. Miao. Quay crane scheduling with non-interference
constraints in port container terminals. Transportation Research Part E, 44(1):124–135,
2008.

[3] Der-Horng Lee and Jiang Hang Chen. An improved approach for quay crane scheduling
with non-crossing constraints. Engineering Optimization, 42(1):1–15, 2010. ISSN
0305-215X.

[4] D. Pacino, A. Delgado, R.M. Jensen, and T. Bebbington. Fast generation of near-optimal
plans for eco-efficient stowage of large container vessels. Lecture Notes in Computer
Science, 6971:286–301, 2011.

[5] Alberto Santini, Henrik Alsing Friberg, and Stefan Ropke. A note on a model for quay
crane scheduling with non-crossing constraints. Engineering Optimization, 47(6):860–
865, 2015. doi: 10.1080/0305215X.2014.958731.

[6] R. Stahlbock and S. Voß. Operations research at container terminals: a literature update.
OR Spectrum, 30:1–52, 2008.

[7] D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and operations
research – a classification and literature review. OR Spectrum, 26:3–49, 2004.

20

3 Maritime landside logistics: is the berth
allocation problem solvable by
partition colouring?

Abstract This chapter presents a study of the Partition Coloring Problem (PCP), a
generalization of the Vertex Coloring Problem where the vertex set is par-
titioned, and analyses a claim by Demange et al. [7] that the PCP can be
used to solve the Berth Allocation Problem (BAP). The PCP asks to select
one vertex for each subset of the partition in such a way that the chromatic
number of the induced graph is minimum. We propose a new Integer Lin-
ear Programming formulation with an exponential number of variables. To
solve this formulation to optimality, we design an effective Branch-and-Price
algorithm. We propose and compare several meta-heuristic algorithms capa-
ble of finding excellent quality solutions in short computing time. Extensive
computational experiments on a benchmark test of instances from the lit-
erature show that our Branch-and-Price algorithm, combined with the new
meta-heuristic algorithms, is able to outperform the state-of-the-art exact
approaches for the PCP. After having established that the proposed method
is a suitable tool to solve the PCP, we generated BAP instances, transformed
them into PCP instances, and assessed the feasibility of solving the BAP as
a PCP.

3.1 Introduction

Graph coloring problems are among the most studied ones in both graph theory and combina-
torial optimization. Given an undirected graph G = (V, E) with |V |= n vertices and |E|= m
edges, the classical Vertex Coloring Problem (VCP) consists of assigning a color to each vertex
of the graph in such a way that two adjacent vertices do not share the same color and the
total number of colors is minimized. The chromatic number of G, denoted by �(G), is the
minimum number of colors in a coloring of G.

This chapter is based on the contents of: Fabio Furini, Enrico Malaguti, and Alberto Santini. Exact and euristic
algorithms for the Partition Colouring Problem. Submitted to Computers & Operations Resarch, pages 1–17,
2017.

21

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

The VCP is an N P -hard problem and it has a variety of applications, among which:
scheduling, register allocation, seating plan design, timetabling, frequency assignment, sport
league design, and many others (we refer the interested readers to Pardalos et al. [29], Marx
[26], Lewis [21]). The VCP and its variants are very challenging from a computational view-
point; the best performing exact algorithms are usually based on exponential-size Set Cover-
ing formulations, and require Branch-and-Price techniques to be solved (see, e.g., Malaguti
et al. [25], Gualandi and Malucelli [13], Held et al. [15], Furini and Malaguti [11]). For dense
graphs, good results are obtained by advanced Integer Linear Programming (ILP) compact
formulations, like the so-called representatives formulation (see Campêlo et al. [3], Cornaz
et al. [5]), which are able to remove the symmetry affecting classical descriptive compact
ILP models.

In this manuscript we study the Partition Coloring Problem (PCP) which is a generalisation
of the VCP where the vertex set is partitioned and exactly one vertex of each subset of the
partition has to be colored. The PCP asks to select one vertex for each subset of the partition
in such a way that the chromatic number of the induced graph is minimum. The PCP is
N P -hard since it generalizes the VCP and it is also known in the literature as the Selective
Graph Coloring Problem.

Formally, let P = {P1, . . . , Pk} be a k-partition of the vertex set V of G. A stable set is a
subset S ✓ V of non-adjacent vertices, i.e., 8u, v 2 S, uv /2 E. A partial coloring C̃ of G is a
partition of a subset of vertices Ṽ ⇢ V into h non-empty stable sets or colors (C̃ = {Ṽ1, . . . , Ṽh}),
while the remaining vertices V \ Ṽ are uncolored. Let f (v) be a function which returns the
color of a colored vertex v (v 2 Ṽ). The PCP consists of finding a partial coloring C̃ such that:

(i) |Ṽ \ Pi |= 1 for i = 1,2, . . . , k;

(ii) f (v) 6= f (w) for all v, w 2 Ṽ , vw 2 E;

(iii) h is minimum.

The minimum number of colors used in any optimal PCP solution is denoted in the rest of
this manuscript as Partition Chromatic Number �P(G,P).

Let us introduce an example, called Example 1. In the left part of Figure 3.1, we depict a
graph G of ten vertices and thirteen edges. The graph is partitioned in five subsets (k = 5),
each subset is composed by two vertices; the dotted lines are used to identify the subsets of
the partition. In the right part of Figure 3.1, we depict a feasible partial coloring C̃ using two
colors (gray and black). For each subset of the partition exactly one vertex is colored. The
colored vertices, i.e., the vertices v 2 Ṽ , are colored with the corresponding color (gray or
black) while the uncolored ones are white.

The PCP models many real-world applications (see Demange et al. [7]) including: routing
and wavelength assignment, dichotomy-based constraint encoding, antenna positioning and
frequency assignment, as well as a wide variety of scheduling problems (timetabling, quality
test) and a variant of the classical Travelling Salesman Problem. Furhtermore, Demange
et al. [7] propose to model the Berth Allocation Problem (BAP) as a PCP, but provide no
computational evidence on whether this is a practicable solution method for the BAP. Part of
the aim of the present work is to provide an answer to this question.

22

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Figure 3.1: Example: (left) a graph G and a partition of its vertices in 5 subsets (k = 5); (right) a feasible
partition coloring of G with two colors (gray and black).

Figure 3.2: A ship docket at berth 3, occupying berths 3, 4, and 5.

3.1.1 Modelling the Berth Allocation Problem

In the considered version of the BAP (see, e.g., Türkoğulları et al. [33]) the terminal operator
has a list of ships he will have to receive and dock during a certain time horizon. The quay
is divided in berths where each ship can dock if the berth, or eventually the adjacent ones
(depending on the size of the ship) are not occupied. Figure 3.2 shows a ship docking at
berth 3. Because of the ship’s size, no other vessel can use berths 3, 4, and 5 while the ship
is docked.

More formally, let U be the set of ships. Each ship is identified by a length lu and an amount
of time tu which is needed to load or unload the ship. Let B be the set of berths, aligned
along a quay of total length L. Each berth has a length l̃ b, and starts at a distance db from
the leftmost point of the quay. The first berth, therefore, will have d1 = 0, the second will
have d2 = l̃1, the third d3 = l̃1+ l̃2, and so on. The time horizon T of duration tmax is divided
into time intervals, and each ship can dock at a berth b at time interval t if db + lu L and
t + tl tmax.

A feasible solution to the problem is an assignment of each ship to a berth and a time
instant, such that no two ships occupy the same berth at the same time. We will now show
how this problem can be modelled as a PCP on a graph GBAP = (VBAP, EBAP). Consider the

23

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

quay

time

db db + lu

t

t + tu

u

Figure 3.3: A representation of the planning horizon, showing a ship u docket at berth b from time t to time
t + tu.

vertex set:
VBAP = {(u, b, t) 2 U ⇥ B ⇥ T : db + lu L, t + tu tmax} (3.1)

Notice that if there are limitations on the arrival time of a ship, e.g. if we know that a ship u
cannot arrive before time interval t̄, the node set can be pruned accordingly, by removing all
vertices of the type (u, b, t) for t < t̄. The vertex set is partitioned into a partition P of |U |
clusters, one for each ship, as follows:

Pū = {(u, b, t) 2 VBAP : u= ū} (3.2)

The arc set E contains an edge between all pair of vertices (u, b, t) and (u0, b0, t 0) such that if
ship u docks at berth b at time t, than it is not possible for ship u0 to dock at berth b0 at time
t 0. If we represent the planning horizon on a cartesian plane, where the x axis corresponds
to the length of the quay, and the y axis corresponds to time, each node can be represented
by a rectangle, as shown in Figure 3.3. Two nodes are then marked as incompatible (and an
edge is drawn between them) if the two corresponding rectangles overlap.

We see, then, that the BAP has a feasible solution if and only if �P(GBAP,P) = 1. In
this case, the corresponding coloring gives a feasible docking plan for the time horizon. If
�P(GBAP,P)> 1, on the other hand, not all ships are serviceable within the time horizon.

3.1.2 Literature review: the PCP

The PCP has been introduced in Li and Simha [22] to model wavelength routing and assign-
ment problems. Three heuristic algorithms for the VCP, i.e., the Largest-First, the Smallest-Last
and the Color-Degree have been adapted to tackle the PCP. In Li and Simha [22], a first set
of benchmark instances for the PCP has been proposed, representing mesh optical networks
and the National Science Foundation Net (called in the following). A memetic heuristic
algorithm was proposed by Pop et al. [30], which combines genetic operators with a local
search phase.

24

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Theorethical results on the complexity of the PCP on particular classes of graphs have been
obtained in Demange et al. [6] and Demange et al. [8].

To the best of our knowledge, only two works proposed exact algorithms for the PCP: Frota
et al. [10] and Hoshino et al. [16]. The first one proposes a branch-and-cut algorithm
based on the asymmetric representatives formulation introduced by Campêlo et al. [3, 2]
for the VCP. A number of valid inequalities are proposed and used within a branch-and-
cut framework. A Tabu Search heuristic algorithm has also been proposed to initialize the
formulation. Computational tests are reported on randomly generated instances (called

), VCP instances from the literature, and instances derived from the routing and
wavelength assignment literature (including the instances, and a new set of instances
called).

The second exact algorithm, i.e., the one presented in Hoshino et al. [16], is branch-and-
price algorithm based on the Dantzig-Wolfe reformulation of the representatives formulation.
In order to deal with an exponential number of variables, a column generation scheme has
been proposed which is based on a set of pricing problems, one for each “representative”
vertex. The authors show how to adapt to the valid inequalities used by Frota et al. [10] to
the reformulated model. However, since the inequalities did not prove to be computationally
effective, they were not added to the model. Several heuristic algorithms has also been
proposed in Hoshino et al. [16]. Computational results on the , , and
instances showed that the branch-and-price algorithm of Hoshino et al. [16] outperforms
the branch-and-cut algorithm of Frota et al. [10].

3.1.3 Literature review: the BAP

Many variants of the Berth Allocation Problem exist in the literature. The first distinction is
made between static and dynamic problem. In the static version (see, e.g., Imai et al. [17]),
such as the one we consider in this chapter, the ship arrivals are known beforehand to the
terminal operator. In the dinamic version (introduced by Imai et al. [18]), on the other hand,
this information is only partially known at the initial planning time.

Another distinction is often made relative to the possible docking positions of the ship.
Imai et al. [20] consider the case when the position can be chosen arbitrarily along the
quayside,and is therefore represented by a real value. The majority of works, however,
discretise the berth into segments and impose that each segment can be used by at most one
ship at a time (see, e.g., Guan and Cheung [14]).

Finally, a further difference involves the objective function. The BAP can aim to the min-
imisation of the total makespan, i.e. the moment at which the last serviced ship is released,
or the sum of the waiting times, i.e. the difference between a ship’s arrival and docking times.
Finally, if the service time is dependend from the berthing position (notice that our model can
handle this case: the width of the rectangle in Figure 3.3 would then be dependent on the
x-coordinate of its left side) a sum of waiting and handling time can be considered [4, 28].
Guan and Cheung [14], furthermore, consider a further generalisation of this objective func-
tion in which each vessel’s term is multiplied by a different weight. Finally, Imai et al. [19]
consider a version of the dynamic BAP in which certain vessels can be given priority over
others. In our work, following the approach proposed by Demange et al. [7] we use a simpler

25

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

approach, as we only study the feasibility of the docking plan, without any consideration
relative to wait or service times.

The BAP has been modelled using variation of other known combinatorial problems. The
particular case of the discrete version of the problem where each ship only occupies one berth
segment can be modelled as an assignment problem, which can be solved in polynomial time
with the Hungarian method [18]. The more general discrete version can be modelled as
an unrelated parallel machine scheduling problem, in both the static and dynamic variants
[4]. The continuous version can be modelled as a cutting-stock problem [20]. This is, to the
best of our knolwedge, the first time that the Berth Allocation Problem is solved via graph
coloring.

3.1.4 Paper Contribution

In Section 3.2 we introduce a new formulation for the PCP with an exponential number of
variables and in Section 3.3 we design a Brach-and-Price algorithm to solve it to proven
optimality. Based on study of the mathematical structures of the formulation, we managed
to design a pricing phase based on a unique pricing problem. This is a main improvement
with respect to the state-of-the-art branch-and-price algorithm of Hoshino et al. [16], which
requires instead to solve several pricing problems, one for each “representative” vertex. In or-
der to obtain feasible integer solutions, two different branching strategies are also presented
in Section 3.3. To effectively initialize our branch-and-price algorithm, new meta-heuristic
algorithms are presented in Section 3.4. Several instances of the considered test bed have
been solved to proven optimality at the root node, i.e., no branching is required, thanks to
the quality of the heuristic solutions and the strength of the lower bound provided by the
linear programming relaxation of the new formulation. In Section 3.5 we present exten-
sive computational experiments comparing the new exact and heuristic algorithms with the
state-of-the-art approaches. We also present results relative to the Berth Allocation Problem
instances. Finally, in Section 3.7, we draw some conclusions and depict further possible lines
of research on the topic.

3.2 Integer Linear Programming Formulations

In this section we first introduce a natural ILP formulation for the PCP and then we derive a
new extended formulation based on the Dantzig-Wolfe reformulation of the natural formula-
tion. A trivial upper bound on the number of colors used in any optimal PCP solution is given
by the number k of subsets of the partition. We can then introduce a set of binary variables
y with the following meaning:

yc =

®

1 if color c is used
0 otherwise

c = 1,2, . . . , k;

and a set of binary variables x with the following meaning:

xvc =

®

1 if vertex v is colored with color c
0 otherwise

v 2 V, c = 1,2, . . . , k.

26

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

The first natural ILP formulation (called ILPN) reads:

(ILPN) min
k
X

c=1

yc (3.3)

k
X

c=1

X

v2Pi

xvc = 1 i = 1,2, . . . , k (3.4)

xvc + xuc yc uv 2 E, c = 1,2, . . . , k (3.5)

xvc 2 {0, 1} v 2 V, c = 1,2, . . . , k (3.6)

yc 2 {0,1} c = 1,2, . . . , k, (3.7)

where the objective function (3.3) minimizes the number of used colors, constraints (3.4)
impose that one vertex per subset of the partition is colored, and constraints (3.5) impose
that adjacent vertices do not receive the same color. Finally, constraints (3.6) and (3.7) define
the variables of the formulation.

By replacing constraints (3.6) and (3.7) with

xvc � 0 v 2 V, c = 1,2, . . . , k (3.8)

yc � 0 c = 1,2, . . . , k, (3.9)

we obtain the Linear Programming relaxation of ILPN, that will be denoted as LPN in what
follows.

Descriptive natural models for coloring problems are known to produce weak linear pro-
gramming relaxations and are affected by symmetry (see Malaguti and Toth [23], Cornaz
et al. [5]), hence, in general they can be solved to optimality only for small graphs. In order
to improve the strength of the linear programming relaxation, and to remove the symmetry
of model (3.3)–(3.7), we convexify constraints (3.5) through Dantzing-Wolfe decomposition
(see [9]). Let us introduce the following exponential-size collection S of stable sets of G
which intersect each subset of the partition at most once:

S = {S ✓ V : uv 62 E, 8u, v 2 S ; |S \ Pi | 1, i = 1, . . . , k} . (3.10)

A valid model for the PCP can be obtained by introducing, for each subset S 2 S , a binary
variable ⇠S with the following meaning:

⇠S =

®

1 if vertices in S take the same color
0 otherwise

S 2 S

then the extended ILP formulation reads as follows:

(ILPE) min
X

S2S
⇠S (3.11)

X

S2S :|S\Pi |=1

⇠S = 1 i = 1, . . . , k (3.12)

27

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

⇠S 2 {0, 1} S 2 S , (3.13)

where the objective function (3.11) minimizes the number of stable sets (colors), whereas
constraints (3.12) ensure that exactly one vertex of each subset of the partition is colored.
Finally constraints (3.13) impose all variables be binary. It is worth noticing that constraint
(3.12) can be rewritten as follows:

X

S2S :|S\Pi |=1

⇠S � 1 i = 1, . . . , k, (3.14)

since it is always possible to transform a solution of model (3.11), (3.14) and (3.13) into a
solution of model (3.11)–(3.13) of same value. Constraint (3.14) ensures that the associated
dual variables take non negative values and this fact helps stabilizing our exact algorithm
(see the next section for further details). The resulting formulation (3.11)-(3.14)-(3.13) is
denoted as ILPE in the following.

Finally, by relaxing the integrality of constraints (3.13) to

⇠S � 0 S 2 S , (3.15)

we obtain the Linear Programming relaxation of ILPE, that is denoted as LPE in what follows.
By observing that ILPE is obtained by applying Dantzig-Wolfe decomposition of constraints

(3.5) of ILPN and since constraints (3.5) do not form a totally unimodular matrix, it follows
that the quality of the lower bound obtained solving the LP relaxation of ILPN is dominated
by its counterpart associated with ILPE:

Observation 3.2.1. Model ILPE dominates ILPN in terms of Linear Programming relaxation.

Proof. Proving the observation for the specific PCP models give more insight on the structure
of the LP relaxation optimal solutions for the ILPN and ILPE models.

We first show that any feasible solution for LPE can be converted to a solution that is feasible
for LPN. Given a function p(v) which returns the corresponding index i (i = 1,2, . . . , k) of
the subset of the partition of a vertex v (v 2 V), we can uniquely define the color c(S) of any
S 2 S as minv2S p(v). Let ⇠⇤ denote a feasible solution to LPE and assume, without loss of
generality, that no subset of the partition is covered by more than one selected subset S 2 S .
Let us define a solution (x⇤, y⇤) as follows: for each color c set

y⇤c =
X

S2S : c=c(S)

⇠⇤S and x⇤vc =
X

S2S : c=c(S),
v2S

⇠⇤S . (3.16)

Thus, inequalities (3.14) ensure that constraints (3.4) are satisfied. Observe that, by con-
struction, for each edge uv 2 E and for each color c = 1,2, . . . , k we have x⇤vc + x⇤uc < y⇤c ;
thus, (x⇤, y⇤) is feasible to LPN.

We then show a case where the optimal value of LPE is strictly larger than the optimal value
of LPN. Consider the instance of Figure 3.4, where we depict a graph G of ten vertices and
twenty edges. The graph is partitioned into five subsets (k = 5), and each subset is composed

28

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

by two vertices. As in Figure 3.1, the dotted lines define the subsets of the vertex partition.
The figure report also a numbering of the vertices of the graph. The optimal solution of LPE

is ⇠⇤S1
= ⇠⇤S2

= ⇠⇤S3
= ⇠⇤S4

= ⇠⇤S5
= 0.5 where the five stable sets are S1 = {1,8}, S2 = {1,9},

S3 = {2,9}, S4 = {2,10}, and S5 = {8,10}. Thus, the optimal solution value is 2.5, i.e., it is
larger than the value of the LP relaxations of LPN, which is 2.

3
8

2

7
1

6

5

10

4

9

Figure 3.4: Example: a graph G of 10 vertices and a partition of its vertices in 5 subsets (k = 5).

Model ILPE has exponentially many ⇠S variables (S 2 S), which cannot be explicitly
enumerated for large-size instances. Column Generation (CG) techniques are then necessary
to efficiently solve ILPE. In the following we present a new Branch-and-Price framework for
ILPE, and refer the interested reader to [9] for further details on CG.

3.3 A New Branch-and-Price Algorithm

Two are the main ingredients of a Branch-and-Price algorithm, i.e., a CG algorithm to solve
the Linear Programming Relaxation of the exponential-size integer model, and a branching
scheme. We discuss separately these two aspects in the next sections.

3.3.1 Solving the Linear Programming Relaxation of ILPE

Model (3.11), (3.14) and (3.15), initialized with a subset of variables containing a feasible
solution, is called the Restricted Master Problem (RMP). Additional new variables, needed to
solve LPE to optimality, can be obtained by separating the following dual constraints:

X

i=1,2,...,k :
|Pi\S|=1

⇡i 1 S 2 S , (3.17)

where ⇡i (i = 1,2, . . . , k) is the dual variable associated with the i-th constraint (3.14).
Accordingly, the CG performs a number of iterations, where violated dual constraints are
added to the RMP in form of primal variables, and the RMP is re-optimized, until no violated
dual constraint exist. At each iteration, the so-called Pricing Problem (PP) is solved. This

29

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

problem asks to determine (if any) a stable set S⇤ 2 S for which the associated dual constraint
(3.17) is violated, i.e., such that

X

i=1,2,...,k :
|Pi\S⇤|=1

⇡⇤i > 1, (3.18)

where ⇡⇤ is the optimal vector of dual variables for the current RMP.
At each iteration, the pricing problem can be modeled as a Maximum Weight Stable Set

Problem (MWSSP) on an auxiliary graph Ĝ = (V, Ê), constructed as follows: the vertex set of
Ĝ coincides with the vertex set of G while the edge set Ê is constructed from the edge set of
G and its partition P = {P1, . . . , Pk}:

Ê = E [{uv : u, v 2 Pi , i = 1, . . . , k}. (3.19)

In other words, each subset of the partition of G is transformed to a clique in Ĝ. Given
a weight vector c 2 R|V |+ , where the weight cv of the vertex v 2 Pi is set to the value ⇡⇤i
associated with the i-th subset of the partition, the pricing problem corresponds then to a
MWSSP in Ĝ, that is, to determine a stable set S of Ĝ maximizing

P

v2S cv .
Notice that since each partition subset has been turned into a clique, such a stable set con-

tains at most one vertex per subset Pi and therefore collects each profit ⇡i at most once. The
MWSS can be solved by means of a specialized combinatorial Branch-and-Bound algorithm
(see Section 3.5).

If a stable set S⇤ has total weight larger than one (that is, the reduced cost is negative),
the associated column is added to the RMP and the problem is re-optimized. If, on the other
hand, the total weight is not larger than 1, by linear programming optimality conditions no
column can improve the objective function of the RMP and therefore we have solved LPE to
optimality.

3.3.2 Branching scheme for ILPE

The design of a branching scheme is crucial for the performance of a branch-and-price algo-
rithm [34]. In the following we describe the branching scheme adopted in our new Branch-
and-Price framework. Two are its main properties. Firstly, it is a complete scheme, i.e., it
ensures that integrality can be imposed in all cases. Secondly, it does not require modifica-
tions neither on the master problem nor the pricing algorithm. The latter means that our
branching does not alter the structure of the pricing problem so that the same algorithm can
be applied during the entire search.

Consider a fractional solution ⇠⇤ to LPE, at a given node of the branching tree, and let
Ŝ ✓ S be the set of columns in the RMP at the node. We propose a branching scheme
composed of two rules applied in sequence, i.e., when the branching condition for the first
rule fails, the second is applied.

The first branching rule is designed to impose that exactly one vertex is colored for each
subset. Constraints (3.14) impose that the sum of the values of the variables associated with
stables sets intersecting each subset is at least one, but in a fractional solution these stable
sets can include different vertices in the same subset of the partition. A given subset Pi has

30

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

more than one (partially) colored vertex if:

|{v 2 Pi :
X

S2Ŝ ,v2S

⇠⇤S > 0}|> 1 (3.20)

In case more than one such subset exists, we select the subset i with the largest number of
(partially) colored vertices, breaking ties by size of the subsets (preferring smaller subsets
and breaking further ties randomly). We then branch on the vertex v 2 Pi with the largest
value of

P

S2Ŝ ,v2S ⇠
⇤
S . Two children nodes are then created:

• in the first node we impose that v is the colored vertex for subset Pi;

• in the second node, we forbid that v is the colored vertex for subset Pi .

This branching rule can be enforced without any additional constraint neither for the RMP
nor for the pricing problem. To force the coloring of v in the children nodes of the branching
scheme, we remove from the graph G all other vertices u 2 Pi (u 6= v); to forbid the coloring
of v, we simply remove the vertex from the graph G. This first branching rule is not complete
since it may happen that a vertex (partially) belongs to more that one stable set in the solution
⇠⇤.

If this happens for a vertex v, there must be another vertex u (belonging to a different
subset of the partition) such that:

X

S2Ŝ :v,u2S

⇠⇤S = �, �is fractional. (3.21)

We say that v and u are a fractionally colored pair of vertices.
The second branching rule is designed to impose that each pair of (colored) vertices either

takes the same color, or the two vertices of the pair take different colors. This rule has been
proposed for the VCP by Zykov [35] and used to derive several effective Branch-and-Price
algorithms for the VCP, starting from the seminal work by Mehrotra and Trick [27], see, e.g.,
[25, 13, 15]. In case more pairs of fractionally colored vertices exist, we select the pair v and
u with the largest � value. Two children nodes are then created:

• in the first node we force vertices v and u to take the same color;

• in the second node we force vertices v and u to take different colors.

The second branching rule can also be enforced without any additional constraint neither for
the RMP nor for the pricing problem. To force different colors for a pair of vertices v and u
in the children nodes of the branching scheme, we add the edge vu to E. On the other hand,
to force v and u to take the same color, we remove v and u from the graph G and replace
them with a new vertex z; we add edges zw for all w 2 V such that either uw 2 E or vw 2 E.
We then consider a stable set containing the vertex z coloring both Pp(v) and Pp(u), where the
function p(v) (v 2 V) returns the index of the subset of the partition containing vertex v.

In our Branch-and-Price algorithm we first define the vertices for each subset of the partition
to be colored, i.e., we apply the first branching rule. Then, in case the solutions are still
fractional, we apply the second branching rule in order to obtain integer solutions.

31

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

After branching, the variables that are incompatible with the branching decision are re-
moved from the children nodes. The following observation states that the two proposed
branching rules define a complete branching scheme for the formulation ILPE:

Observation 3.3.1. The two branching rules applied in sequence provide a complete branching
scheme for model ILPE.

Proof. After the application of the first branching rule, the colored vertex in each subset of
the partition is determined. In [1] it is proved that for any 0-1 constraint matrix A (as for the
case of LPE), if a basic solution ⇠⇤ to A⇠ = 1 is fractional, then there exist two rows i and j
such that:

0<
X

S2S : i, j2S

⇠⇤S < 1 (3.22)

This result allows us to conclude that if a solution is fractional then we can determine two
subsets of the partition such that (3.22) holds. The same holds for the case in which A⇠⇤ > 1:
in any optimal fractional solution to LPE, the rows for which covering constraints are satisfied
with equality must be covered by at least two columns with associated fractional variables,
and the previous result applies. By picking the colored vertex from the first and the colored
vertex from the second subset, the two vertices constitute a fractionally colored pair of vertices
on which to apply the second branching rule.

3.4 Heuristic algorithms

We devised three algorithms based on meta-heuristics: a Tabu Search, inspired by that of
Malaguti et al. [24]; a heuristic based on the Adaptive Large Neighbourhood Search (ALNS,
first introduced by Ropke and Pisinger [31]) heuristic; a variation of the ALNS-based heuristic,
improved by a Local Search phase. These algorithms are used to initialize the Branch-and-
Bound algorithm with a feasible solution of good quality. Basic initial solutions are provided
to the heuristics. They are created by a simple greedy procedure that constructs stable sets
one at the time. Starting from a stable set composed by a vertex from an uncolored subset,
the procedure keeps adding the least connected vertices of uncolored subsets to the current
stable set. When this is not possible anymore, it starts a new stable set.

3.4.1 Tabu Search

The Tabu Search algorithm aims to find solutions to the PCP that use exactly k colors. Once
such a solution has been found, the heuristic is restarted, trying to find a solution of k � 1
colors, and so on, until a stopping criterion intervenes.

The algorithm considers k+1 buckets B1, . . . , Bk+1. Each of the first k buckets represents a
feasible stable set of S . The (k+ 1)-th bucket contains all other vertices. A feasible solution
is reached when the stable sets B1, . . . , Bk form a selective coloring for the graph G.

At each iteration, we randomly select an uncolored subset Pi and a random vertex v 2 Pi
(from Bk+1). We try to insert v in each of the first k buckets and compute a score for each

32

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

insertion, given by the sum of the external degrees of all the vertices that would have to
leave Bi , when v enters it. The external degree of a vertex w is the number of vertices u such
that w, u 2 E and p(w) 6= p(u). After evaluating each possible insertion, we perform the one
which has the lowest score. Notice that, if there is a bucket i where we can place v without
having to remove any other vertex, this insertion has score 0 and is always the preferred one.
When inserting vertex v in bucket Bi, we add the couple (i, v) to a tabu list, meaning that,
for the next I iterations (where I is a parameter) if v exits bucket Bi , it cannot re-enter it. In
our experiments, we set I = 150; the algorithm was run for 50000 iterations.

3.4.2 ALNS-based heuristic

The basic idea behind ALNS is to explore the solution space using a large collection of
neighbourhoods. At each iteration, the neighbourhood to explore is chosen randomly, with a
probability proportional to a given score. The score, in turn, reflects the past performance of
the neighbourhood during the solution process. Algorithm 1 shows the general framework
of ALNS.

In Line 1 and Line 2 the current and best solutions are initialized; Line 3 initializes the
iteration counter, and Line 4 initializes the neighbourhood scores. The algorithm is run
for maxiter iterations. At each iteration, a neighbourhood is selected (Line 6) using a
roulette-wheel selection mechanism, with probabilities proportional to the scores. Since the
neighbourhood size is often exponential, N is often not explored completely, but just sampled,
in order to produce a new solution x 0 (Line 7). Next, in Line 8, the new solution is evaluated
and either accepted or rejected, according to an acceptance criterion. The acceptance criterion
uses a set of parameters that can change during the solution process: for example, accepting
worsening solutions might be more likely at the beginning of the process than at the end.
The current (Line 9) and best (Line 12) solutions are possibly updated, and finally the scores
(Line 14), the acceptance criterion parameters (Line 15) and the iteration counter (Line 16)
are updated, and the best known solution is returned on Line 18.

In our algorithm, the set N of neighbourhoods is not explicitly enumerated. Rather, we
give a set of destroy methods and a set of repair methods. The former transform a feasible
solution into an unfeasible one, and the latter transform an unfeasible solution into a feasible
one. Each combination of a destroy method, followed by a repair method gives rise to a
neighbourhood. Rather than keeping scores for the neighbourhoods, then, we keep the
scores of the individual destroy and repair methods and perform two independent roulette-
wheel selections. Notice that this approach can only work if (as in our case) all destroy and
repair methods are compatible, meaning that it is possible to repair a destroyed solution
produced by any destroy method, with any repair method.

In our implementation, we devised the destroy and repair methods described below. In
order to compact the exposition, some similar methods have been grouped together and their
distinctive elements are listed in curly braces.

• Destroy methods

1. Select {a random, the smallest, the biggest} stable set of the solution, and remove
a random vertex from that set.

33

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Algorithm 1: ALNS Framework

Input : Initial solution: x0
Input :List of neighbourhoods: N
Input :Neighbourhood scores: �N for N 2 N
Input :Acceptance parameters: p
Input :Objective to minimize: f (·)

1 x = x0
2 x⇤ = x0
3 i = 1
4 �N = 1, 8N 2 N

5 while i maxiter do
6 Choose neighbourhood N 2 N with probability proportional to �N
7 Select x 0 2 N(x)
8 if Accept new solution x 0 (using parameters p) then
9 x = x 0

10 end
11 if f (x)< f (x⇤) then
12 x⇤ = x
13 end
14 Update scores �
15 Update acceptance parameters p
16 i = i + 1
17 end
18 return x⇤

2. Select the colored vertex with {smallest, largest} external degree, and remove it
from the stable set it belongs to.

3. Select the colored vertex with {smallest, largest} color degree, and remove it from
the stable set it belongs to. The color degree of a vertex v is the number of vertices
w such that {v, w} 2 E and w is colored in the current solution.

4. As in Items 2 and 3 but the vertex to be removed is chosen with a roulette wheel
method, in which the probability of being chosen is {directely, inversely} propor-
tional to its degree.

5. Select {a random, the smallest} stable set of the solution, remove the stable set.

6. As in Item 5, but the criterion used to choose the set is that it has the smallest
cumulative {external, color} degree, defined as the sum of the degrees of its
vertices.

7. As in Item 6, but where the set is chosen with a roulette wheel method, in which
the probability of being chosen is inversely proportional to the cumulative degree.

• Repair methods

1. For each uncolored subset, select a random vertex from the subset and add it to
{a random, the smallest, the largest} feasible stable set of the current solution. If

34

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

it is not possible to put the vertex in any existing stable set, define a new stable
set.

2. As in Item 1, but for each uncolored subset, we select the vertex with smallest
{external, color} degree.

The scores of the destroy and repair heuristics are updated at each iteration as follows:
if a method produced a new best solution, its score is increased by 0.5; otherwise, if a
method produced a solution accepted by the acceptance criterion, its score is increased by
0.1; otherwise, its score is reduced by 0.5%.

The classical acceptance criterion used within ALNS is Simulated Annealing, in which a
solution is accepted with probability exp((f (x)� f (x 0))/T), where T is a parameter (called
temperature) that decreases exponentially during the solution process. However, the objective
function f (·) we consider simply counts the number of used colors, and therefore it only
assumes a very limited range of discrete values, while moving from one value to the next
(i.e., reducing the number of colors by one) is a relatively rare occurence. For these reason,
an acceptance criterion that accepts a solution based on its objective value does not seem
particularly suited for the PCP. We, therefore, decided to use the “Worse Accept” criterion,
proposed by Santini et al. [32], which accepts a new solution x 0 if either it uses strictly fewer
colors than the current one, or otherwise with a certain probability p, which starts at a high
value, and decreases linearly to reach 0 at the end of the solution process. Notice that p does
not depend on the value f (x 0) of the new solution. In our implementation, we used the start
value p = 0.05, and the algorithm was run for 20000 iterations.

3.4.3 Local Search refinement

The local search is a heuristic procedure that can be applied each time a new solution is
generated by the destroy and repair heuristics, before the solution is evaluated. Although
applying the refinement to all generated solutions certainly increases the running time of the
algorithm, it also produces solutions of higher quality, and gives an important improvement
on the overall quality of the algorithm, as outlined by the computational experiments reported
in Section 3.5.2.

The local search operator tries to reduce the number of colors used in a solution by one unit,
by emptying the smallest cardinality stable set in the solution. Assume the current solution
uses k colors S1, . . . , Sk and, without loss of generality, that Sk is the smallest cardinality
stable set. The local search heuristic first uncolors all vertices of Sk. It then considers each
uncolored partition, and tries to color any vertex (say v) of the partition by inserting it in
one of S1, . . . , Sk�1.

If there is a stable set Si such that Si [{v} is still a stable set, v is placed in Si . Otherwise,
the procedure tries to insert v in one stable set Si by removing all vertices w1, . . . , wr in Si
that are not compatible with v, i.e., v, wj 2 E for j = 1, . . . , r. If it is possible to greedily
relocate all vertices wj in other stable sets, the vertices are relocated, and v is inserted in Si .
If there is no stable set where vertex v can be inserted, the procedure tries to color another
vertex from the same uncolored partition. The uncolored partitions, the vertices v from the
uncolored partition and stable sets Si and are considered in random order.

35

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Difference with �P Tabu ALNS ALNS + LS
0 45 72 160
1 66 66 10
2 23 17 1
3 19 8 0
4 12 6 0
� 5 6 2 0

Table 3.1: Quality of the solution produced by Tabu search, ALNS, and ALNS enhanced with local search.

If, for some uncolored partition, no vertex can be inserted in a stable set S1, . . . , Sn�1, local
search is stopped. On the other hand, if the local search manages to recolor one vertex for
each uncolored partition, it has reduced the number of colors in the solution by one.

3.5 Computational Results: PCP

The experiments have been performed on a computer with a 3.10 GHz 4-core Intel Xeon
processor and 8Gb RAM, running a 64 bits Linux operating system. The algorithms were
coded in and all the codes were compiled with and optimizations. At each
iteration of the Column Generation procedure (see Section 3.3), we used as
a Linear Programming solver (ran single-threaded). The pricing MWSS subproblems were
solved using the open-source implementation of the algorithm described in Held et al. [15]
and available at .

3.5.1 Instances

In order to compare our results with the ones present in the literature, we tested our approach
on the instance classes , and presented in Section 3.1.2. In their work,
Hoshino et al. [16] consider a subset of 187 out of a total of 199 instances, removing those
instances solved to optimality in less than a second by either their algorithm or that of Frota
et al. [10].

We, in turn, removed 12 instances of the class, as we realised that they were identical
copies of the same three basic instances. In particular, instances to
all correspond to the same instance (therefore only 1 out of the 5 instances has been kept),
as do the analogous instances of base type and . This reduced the total number of
instances to 175. In particular, we used 56 , 32 , and 87 instances. We
also note that in instances, all elements of the partition have cardinality 2.

3.5.2 Initial Heuristics

This section compares the three initial heuristics presented in Section 3.4. Out of the 175
instances we considered, we know the optimal result (either from our branch-and-price
algorithm, or from that of Hoshino et al. [16]) of 170 of them. For these instances, we

36

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Figure 3.5: Running time of the three heuristics, versus instance size (measured in number of vertices of the
graph).

can compute how well the initial heuristics fare, with respect to the optimal solution value.
Table 3.1 shows the number of instances for which each of the three heuristics has found: the
optimal solution; a solution with one, two, three or four colors more than the optimum; a
solution with at least five colors more than the optimum. The table shows that the ALNS-based
heuristics outperform Tabu search and that the introduction of a local search phase greatly
enhances the effectiveness of ALNS. Figure 3.5 shows computational times for the three
heuristics. Notice that the time axis is logarithmic, showing an exponential dependency of
the running time to the number of vertices of the graph. For smaller graphs, furthermore, we
also recorded a dependency of the Tabu Search algorithm to the graph density; this explains,
for example, the two clusters of points visible in the area relative to graphs with fewer
than 300 vertices. With respect to ALNS, the introduction of local search slightly increases
the computational time of ALNS, but the improved solution quality definitely justifies the
increase.

3.5.3 Branch-and-price Algorithm

In this section, we report the results obtained by our new branch-and-price algorithm with a
time limit of 1 hour. The time limit includes the runtime of the ALNS+LS heuristic, which is
used to generate an initial feasible solution.

Since linear relaxation bounds are generally tight, the overall performance of our algo-
rithms very much depends on the ability to find good feasible solutions (upper bounds) early
in the branching tree. Therefore, we solve the restricted master program as an integer model
with in a subset of the branching nodes aiming at improving the incumbent solutions.
Solving these MIP models can be computationally expensive, for this reason we limit the
attempts of improving the upper bounds. We solve the MIP associated with the current pool of
columns at the root and at all nodes until the pool contains no more than 400 columns. Then,
we solve the MIP every 1000th node explored. In order to avoid unnecessary computational

37

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Instance |V | |E| �P Cols Time (s) Instance |V | |E| �P Cols Time (s)

100 2515 7 180 0.7 164 5337 12 159 1.1
100 2460 7 192 0.8 166 5497 13 122 0.6
100 2468 7 172 0.8 180 6450 13 162 2.2
100 2524 7 188 0.5 130 3430 13 77 0.1
60 924 5 96 0.2 140 3970 12 108 0.4
80 1616 6 137 0.4 150 4525 12 116 0.3
80 1570 6 144 0.6 162 5343 15 85 0.2
80 1634 6 158 0.3 188 7099 14 104 0.1
90 435 2 323 7.1 164 5484 15 106 0.2
90 837 3 254 2.6 180 6549 14 115 0.3
90 2040 7 154 0.4 196 7761 16 160 0.8
90 2082 7 154 0.3 208 8760 18 119 0.2
90 2462 8 145 0.3 226 10280 18 157 0.4
90 2403 8 150 0.3 208 8828 19 131 0.1
90 2463 8 145 0.3 210 8974 17 184 1.7
90 3268 12 131 0.2 226 10281 18 136 0.2
90 3282 12 133 0.5 250 12567 19 180 0.9
90 3239 12 133 0.2 258 13395 19 160 0.6
90 3637 16 139 0.2 258 13529 22 163 0.1
90 3619 16 129 0.2 260 13724 20 210 4.6
90 3621 16 142 0.4 252 12808 21 176 0.7
90 3640 16 126 0.2 288 16745 21 202 2.4

101 625 6 54 0.1 330 21921 25 191 1.1
99 579 7 60 0.2 306 18974 23 175 0.4

112 769 6 127 1.0 310 19455 23 169 0.8
130 1041 8 79 0.2 282 16126 23 179 1.1
118 828 7 76 0.6 352 24949 25 198 1.2
132 1099 7 111 0.6 338 23111 26 208 1.2
149 1506 9 99 0.3 344 23984 25 204 1.6
154 1443 9 77 0.4 328 21736 25 233 4.6
153 1404 9 108 0.3 386 30115 27 318 33.0
161 1650 9 125 0.4 380 29257 28 243 5.6
139 1211 9 78 0.2 380 29233 27 231 2.6
180 2157 10 146 0.9 128 3345 10 80 0.1
202 2718 11 112 0.4 172 6040 15 133 0.3
177 1966 10 124 0.5 162 5293 13 100 0.2
187 2191 11 143 0.7 152 4727 13 106 0.1
159 1642 9 138 1.6 162 5449 16 137 0.2
201 2594 11 136 1.4 218 9618 18 143 0.4
221 3167 11 147 2.5 246 12431 24 149 0.1
208 2743 11 125 0.7 234 11068 18 145 0.6
209 2876 11 158 2.2 222 10169 20 148 0.1
184 2049 11 100 0.3 240 11922 21 161 0.4
216 2966 12 155 1.2 306 18925 24 175 0.3
231 3370 12 131 0.9 318 20852 28 209 0.8
217 2889 12 127 0.7 296 17718 21 205 2.9
226 3169 12 202 5.1 292 17451 25 192 0.8
234 3424 12 176 2.4 330 22422 29 203 0.8
250 3996 13 161 3.5 392 31120 32 205 0.1
251 4026 13 209 21.8 396 32349 32 234 0.9
238 3465 13 163 2.6 380 29251 27 220 1.2
257 4320 13 208 15.9 358 26197 28 221 1.5
248 3879 13 161 3.1 390 31285 32 228 0.2
130 3353 10 75 0.1 458 42545 36 271 1.1
146 4221 11 123 0.4 464 44339 36 321 7.5
152 4605 12 97 0.2 440 39665 34 239 0.3
144 4115 11 78 0.1 536 58410 39 286 3.8
146 4233 11 81 0.2 580 68948 43 336 9.2
138 3785 11 104 0.3 624 79813 46 347 7.2
162 5225 12 97 0.2 614 76597 43 380 59.0
164 5360 12 87 0.2 602 74191 43 392 36.7
166 5479 13 115 0.2 672 92075 48 393 54.9

Table 3.2: Computational results for instances solved at the root node.

38

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

B&P [16] B&P (new)
Instance |V | |E| LB UB hUB rLB UB Nodes Cols rTime (s) Time (s)

100 2532 7 7 8 7 8 68655 16093 0.6 tl
120 3616 8 8 9 8 8 61712 16045 1.6 1100.0
120 3563 8 8 8 7 8 35 610 1.34 5.4
120 3638 8 8 9 8 8 64801 15330 1.6 1366.0
120 3565 8 8 9 7 8 59603 17100 1.74 1604.0
120 3653 8 8 9 8 8 56675 17553 1.81 1660.1

70 1204 6 6 6 5 6 21 285 0.32 0.6
70 1218 6 6 6 5 6 261 1236 0.49 2.4
70 1217 6 6 6 5 6 35 404 0.25 0.6
80 1611 6 6 7 6 6 16441 8460 0.46 313.0
80 1595 6 6 7 6 6 7579 5424 0.31 91.4
90 445 2 3 3 2 3 509 17079 6.78 195.2
90 442 2 3 3 2 3 1581 42500 7.04 837.4
90 465 3 3 3 2 3 41 1807 3.37 26.2
90 485 3 3 3 2 3 21 1237 4.88 23.7
90 823 3 4 4 3 4 6598 61174 3.32 tl
90 869 3 4 4 3 4 283 4485 3.09 63.4
90 821 3 4 4 3 4 6943 59331 3.75 tl
90 862 3 4 4 3 4 981 13679 3.51 201.5
90 1215 4 5 5 4 5 9149 29746 1.18 1393.3
90 1234 4 5 5 4 5 9661 29767 1.06 1466.1
90 1275 5 5 5 4 5 187 1898 1.27 17.3
90 1211 4 5 5 4 5 13961 42572 1.8 tl
90 1268 5 5 5 4 5 877 6064 1.48 57.9
90 1624 5 6 6 5 6 12535 18276 0.74 852.6
90 1600 5 6 6 5 5 4088 9745 0.89 145.6
90 1650 6 6 6 5 6 889 3663 0.83 25.6
90 1638 6 6 6 5 6 1763 6076 0.74 51.1
90 1671 6 6 6 5 6 55 697 0.73 3.5
90 2039 7 7 7 6 7 81 694 0.33 2.1
90 1988 7 7 7 6 7 6173 7172 0.5 125.3
90 2064 7 7 7 6 7 23 369 0.65 1.4
90 2478 9 9 9 8 9 2071 2056 0.41 13.0
90 3200 12 12 12 11 12 191 506 0.18 0.8

370 27654 26 26 27 26 26 74 1858 24.91 352.0
392 31121 27 27 28 27 27 82 2532 101.19 902.4
420 35700 28 29 30 28 28 70 2527 363.73 3392.1
456 42134 32 32 33 32 32 114 2848 19.49 732.5
452 41756 32 32 33 32 32 89 2526 108.18 1314.2
534 57846 37 37 38 37 37 125 3282 130.56 2808.3
536 58641 38 38 39 38 38 126 3263 168.56 3544.7
518 55043 38 38 39 38 38 144 3200 258.86 1962.4
614 76875 44 44 45 44 44 157 3562 59.77 2418.7
610 76046 43 43 44 43 44 45 1358 225.97 tl
696 99162 49 49 50 49 50 16 890 1264.21 tl
686 95915 - 48 49 47 47 11 815 1405 3493.7
686 96132 - 48 49 47 47 7 824 1953.06 3544.6
706 101953 - 49 50 49 50 12 904 1648.07 tl
760 117800 - - 53 39 50 0 797 tl tl

Optimal # 33 41

Table 3.3: Computational results for instances not solved at the root node.

39

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Class Instances Solved [16] (any) Solved [16] (best) Solved B&P

56 45 42 52
32 32 32 32
87 82 76 83

Total 175 159 150 167

Table 3.4: Summary of the computational results from Hoshino et al. [16] and our branch-and-price algorithm.

efforts, we also set a maximum time limit of 30 seconds for each attempt.
The results are divided in two batches. In the first batch, we considered those instances

that we were able to solve at the root node. In the second batch, we include those instances
for which the absolute gap at the root node was > 1, and one instance for which we were
not able to fully explore the root node within the time limit.

Table 3.2 presents the results relative to the instances closed at the root node. Columns
“|V |” and “|E|” report, respectively, the number of vertices and edges in the graph. Column
“�P” is the chromatic number of the graph. Finally, column “Cols” reports the final size of the
column pool, and column “Time (s)” is the solution time in seconds.

Table 3.3 presents the results relative to the instances that were not closed at the root node,
either because the root node bound did not match the optimal solution value, or because the
optimal solution value was not discovered by the initial heuristics, or both. We report under
“B&P [16]” the best results obtained by any of the four implementations of Hoshino et al.
[16], while under “New B&P” the results obtained by our algorithm. Columns “LB” and “UB”
are the final lower and upper bounds, while column “hUB” is the upper bound obtained by
the heuristic algorithm. Column “Nodes” displays the number of explored Branch-and-Bound
nodes, while column “Cols” reports the number of columns generated. Finally, columns
“rTime (s)” and “Time (s)” list, respectively, the root node (not including the initial heuristic)
and the overall solution time (including the initial heuristic), in seconds. We do not report
explicitly the final lower bound for “New B&P” because it is equal to the root lower bound
“rLB” for all open instances.

Notice that we could not solve the root node of one instance (), for
which we provide a lagrangean lower bound LB=

⌃

zLPE/zViol
⌥

, where zLPE is the solution of
the last linear relaxation of the reduced master problem solved, and zViol is the last solution
value found by the pricing problem. In summary, we managed to find the optimal solution
to 41 of these 49 instances, and in 34 cases the solution was found in less than half an hour
(1800s).

Table 3.4 concisely lists the number of instances solved to optimality, in each of the three
classes, by the best algorithm in the literature (that of Hoshino et al. [16]) and by our
branch-and-price algorithm. Column “Instances” lists the number of instances considered.
In column “Solved [16] (any)” we report the number of instances solved by at least one of
the four implementations of Hoshino et al. [16]. Column “Solved [16] (best)” reports the
number of instances solved by the best of the four implementations, as listed in Table 5 of
Hoshino et al. [16] (after removing the duplicate instances). Finally, column “Solved B&P”

40

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Set |U| |B| |T|
BAP1 20 10 12
BAP2 20 10 24
BAP3 40 10 24
BAP4 60 10 24

Table 3.5: Caracteristics of the generated BAP instances.

lists the number of instances solved by our branch-and-price algorithm.

3.6 Computational results: BAP

The same experimental setting used for the PCP has been used for the BAP. Solving the BAP,
as noticed in Section 3.1.1, corresponds to solving the decision version of the PCP where
we are asking whether or not a partitioned graph can be selectively colored with one color.
For this reason, when solving the BAP, the algorithm performs an early termination if either
the initial constructive heuristic or the ALNS produce a solution with one color; in this case,
the decision problem has affirmative answer. On the other hand, if the initial solution uses
multiple colors, the branch-and-price algorithm is started. If during the exploration of the
branch-and-bound tree the lower bound rises above 2.0, however, then the algorithm is again
terminated early; in this case, the decision problem has negative answer.

3.6.1 Instances

We generated four set of random instances. The distinctive features of each set are the number
|U | of ships (i.e., partitions), the number |B| of berths, and the time horizon length |T |, as
the vertex set is VBAP ✓ U ⇥ B ⇥ T . Table 3.5 reports these value for each instance set. Ten
instances were generated in each set, according to the following procedure.

Each berth length was chosen uniformly at random in the interval [2.0,4.0]; the ship
lengths were chosen uniformly at random in the interval [1.0, 6.0]. The ship handling times
were first drawn from the interval [2,6] proportionally to the ship length; successively, an
uniform random number was drawn for each ship from the set {�1,0,1} and was added
to the handling time. The arrival time of each ship was chosen uniformly at random in the
interval [0,8] for the instances with a 12-hours time horizon, and [0,18] for those with a
24-hours time horizon.

3.6.2 Algorithm

In this section we analyse the results ottained applying the heuristics and the branch-and-
price algorithm for the PCP to the BAP instances. As shown in Table 3.6 the resulting graphs
are of considerable dimensions with respect to both number of vertices and edges. Instances
of sets BAP1, BAP2, and BAP3 were all solved to optimality by the initial heuristic, giving
affirmative answer (�P = 1) and therefore producing a feasible berth allocation schedule.

41

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Instances of class BAP4, on the other hand, were much harder to solve. The combination of
the constructive heuristic and the ALNS algorithm could not complete within the 1-hour time
limit and was, therefore, truncated. For all these instances the heuristic found a colouring
using two colours. In order to test the exact algorithm, this initial solution was fed to the
branch-and-price solver with an additional hour of available computing time. However, in
no case the solver was able to explore the root node within the time limit, and therefore the
instances remain open.

From an analysis of the results, we can roughly group BAP instances into two categories:
those for which a feasible berthing plan exists and could be found heuristically, and for which
a berthing plan either does not exist or could not be found heuristically. The results seem to
hint that there is little hope to solve this latter group of instances within a reasonable time
limit.

We could solve to optimality instances with up to 40 ships and 10 berths. By comparison,
Cordeau et al. [4] solved to optimality instances with up to 25 ships and 5 berths over a time
horizon of one week, using a MIP model ran with a two-hour time limit; their objective was
the minimisation of the total waiting and service time for the ships, considering that it also
depends on which berth the ship is moored. Guan and Cheung [14] could solve to optmaility
instances with up to 4 vessels using a MIP model, and up to 15 vessels with a Tree Search
algorithm; the time horizon was of 1 week and the objective function minimised the waiting
times. Monaco and Sammarra [28] solved instances with up to 30 ships and 7 berths with a
compact MIP formulation, minimising the waiting and service times of the ships.

A direct comparison of these result would bare little value, as the objective functions are
tremendously different. In general, we can state that — under certain circumstances — it
seems feasible to solve the decision version of the BAP, modelling it as a PCP. This is especially
useful for highly trafficked ports where a large number of ships need be served in a short time.
The other algorithms proposed in the literature generally fail to provide optimal answers
in these scenarios, being more useful on sparse instances where fewer vessels arrive over a
larger time horizon.

3.7 Conclusions

In this manuscript we have studied the Partition Coloring Problem (PCP), a generalization
of the classical Vertex Coloring Problem with several real world applications in telecommuni-
cations and scheduling. For the PCP, we propose a new ILP formulation with an exponential
number of variables and a new Branch-and-Price algorithm to effectively tackle it. In order
to obtain good quality feasible solutions in short computational time, we have developed a
battery of heuristic algorithms. Thanks to the new exact algorithm, which exploit the heuris-
tic solutions in its initialization phase, we were able to solve to proven optimality 167 out of
175 PCP instances from the literature. Extensive computational results have proven that the
new Branch-and-Price framework improves on the previous state-of-the-art exact approaches
from the literature.

We also applied the above algorithm to Berth Allocation Problem (BAP) instances, in order
to assess the feasibility of solving the BAP as a PCP, as proposed by Demange et al. [7]. The

42

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

Instance |VBAP| |EBAP| �P Heur Time BP Time
BAP1-0 465 19908 1 0.20 —
BAP1-1 252 8709 1 0.02 —
BAP1-2 191 4844 1 0.01 —
BAP1-3 578 28952 1 0.39 —
BAP1-4 390 19201 1 0.10 —
BAP1-5 530 27067 1 0.41 —
BAP1-6 550 27625 1 0.48 —
BAP1-7 672 35340 1 0.96 —
BAP1-8 324 13042 1 0.06 —
BAP2-0 530 27718 1 0.50 —
BAP2-1 2290 247238 1 55.15 —
BAP2-2 1809 185514 1 32.60 —
BAP2-3 1680 154170 1 21.00 —
BAP2-4 2422 266620 1 73.50 —
BAP2-5 1955 235677 1 46.18 —
BAP2-6 2420 318054 1 72.49 —
BAP2-7 2590 339640 1 83.49 —
BAP2-8 2565 311996 1 80.53 —
BAP2-9 2490 325782 1 93.41 —
BAP3-0 5003 861868 1 934.36 —
BAP3-1 4266 696475 1 559.37 —
BAP3-2 4789 750146 1 756.38 —
BAP3-3 4233 651228 1 762.15 —
BAP3-4 4810 947037 1 1930.58 —
BAP3-5 4329 668180 1 583.10 —
BAP3-6 4800 911949 1 858.80 —
BAP3-7 4484 799176 1 726.38 —
BAP3-8 4819 888290 1 868.67 —
BAP3-9 4590 878543 1 1569.36 —
BAP4-0 7390 1834851 {1, 2} 3600 3600
BAP4-1 6470 1505789 {1, 2} 3600 3600
BAP4-2 6860 1725947 {1, 2} 3600 3600
BAP4-3 6309 1354479 {1, 2} 3600 3600
BAP4-4 6922 1726307 {1, 2} 3600 3600
BAP4-5 6066 1450902 {1, 2} 3600 3600
BAP4-6 6792 1641599 {1, 2} 3600 3600
BAP4-7 7410 1796181 {1, 2} 3600 3600
BAP4-8 6984 1650984 {1, 2} 3600 3600
BAP5-9 6492 1527453 {1, 2} 3600 3600

Table 3.6: Computational results on the Berth Allocation Problem instances.

43

3 Maritime landside logistics: is the berth allocation problem solvable by partition colouring?

problem we consider is in some sense easier than other versions of the BAP from the literature,
as we are only asking whether or not it is feasible to assign a set of ships to a set of berths,
without taking into consideration the minimisation of waiting times or the total makespan.
Under this simplifying assumption, we could solve instances with up to 40 vessels and 10
berths.

Finally, as a future research topic, it could be interesting to analyse the performances of
the PCP model when it is adapted to take into account the classical objective function for
the BAP. Let, for a berth allocation plan S 2 S , ⌧S be the total waiting and service time for
the ships allocated by S. The objective function (3.11) can then be modified in a bi-level
fashion as

P

S2S (tmax + 1+ ⌧S)⇠S in order to first look for a solution which uses just one
berth allocation plan and, in that case, look for the allocation plan which minimises the sum
of the waiting and service time for the ships.

3.8 Acknowledgments

The authors thank Stefan Held for making the source code for the MWSS problem available
online, and Edna Hoshino for providing detailed computational results for the branch-and-
price algorithm of [16]. Enrico Malaguti is partially supported by MIUR (Italy), Grant PRIN
2015.

44

Bibliography

[1] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46(3):316–329, 1998.

[2] Manoel Campêlo, Ricardo Corrêa, and Yuri Frota. Cliques, holes and the vertex coloring
polytope. Information Processing Letters, 89(4):159–164, 2004.

[3] Manoel Campêlo, Victor A Campos, and Ricardo C Corrêa. On the asymmetric repre-
sentatives formulation for the vertex coloring problem. Discrete Applied Mathematics,
156(7):1097–1111, 2008.

[4] Jean-François Cordeau, Gilbert Laporte, Pasquale Legato, and Luigi Moccia. Models
and tabu search heuristics for the berth-allocation problem. Transportation science, 39
(4):526–538, 2005.

[5] Denis Cornaz, Fabio Furini, and Enrico Malaguti. Solving coloring problems as maxi-
mum weight stable set problems. Discrete Applied Mathematics, 2016. (to appear).

[6] Marc Demange, Jérôme Monnot, Petrica Pop, and Bernard Ries. On the complexity
of the selective graph coloring problem in some special classes of graphs. Theoretical
Computer Science, 540:89–102, 2014.

[7] Marc Demange, Tınaz Ekim, Bernard Ries, and Cerasela Tanasescu. On some applica-
tions of the selective graph coloring problem. European Journal of Operational Research,
240(2):307–314, 2015.

[8] Marc Demange, Tınaz Ekim, and Bernard Ries. On the minimum and maximum
selective graph coloring problems in some graph classes. Discrete Applied Mathematics,
204:77–89, 2016.

[9] Guy Desaulniers, Jacques Desrosiers, and Marius Solomon, editors. Column generation,
volume 5. Springer Science & Business Media, 2006.

[10] Yuri Frota, Nelson Maculan, Thiago F Noronha, and Celso C Ribeiro. A branch-and-cut
algorithm for partition coloring. Networks, 55(3):194–204, 2010.

[11] Fabio Furini and Enrico Malaguti. Exact weighted vertex coloring via branch-and-price.
Discrete Optimization, 9(2):130 – 136, 2012. ISSN 1572-5286.

[12] Fabio Furini, Enrico Malaguti, and Alberto Santini. Exact and euristic algorithms for
the Partition Colouring Problem. Submitted to Computers & Operations Resarch, pages
1–17, 2017.

45

Bibliography

[13] Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems
via constraint programming and column generation. INFORMS Journal on Computing,
24(1):81–100, 2012.

[14] Yongpei Guan and Raymond K Cheung. The berth allocation problem: models and
solution methods. OR Spectrum, 26(1):75–92, 2004.

[15] Stefan Held, William Cook, and Edward Sewell. Maximum-weight stable sets and
safe lower bounds for graph coloring. Mathematical Programming Computation, 4(4):
363–381, 2012.

[16] Edna A Hoshino, Yuri A Frota, and Cid C De Souza. A branch-and-price approach for
the partition coloring problem. Operations Research Letters, 39(2):132–137, 2011.

[17] Akio Imai, Ken’Ichiro Nagaiwa, and Chan Weng Tat. Efficient planning of berth alloca-
tion for container terminals in asia. Journal of advanced transportation, 31(1):75–94,
1997.

[18] Akio Imai, Etsuko Nishimura, and Stratos Papadimitriou. The dynamic berth allocation
problem for a container port. Transportation Research Part B: Methodological, 35(4):
401–417, 2001.

[19] Akio Imai, Etsuko Nishimura, and Stratos Papadimitriou. Berth allocation with service
priority. Transportation Research Part B: Methodological, 37(5):437–457, 2003.

[20] Akio Imai, Xin Sun, Etsuko Nishimura, and Stratos Papadimitriou. Berth allocation in
a container port: using a continuous location space approach. Transportation Research
Part B: Methodological, 39(3):199–221, 2005.

[21] Rhyd MR Lewis. A Guide to Graph Colouring. Springer, 2015.

[22] Guangzhi Li and Rahul Simha. The partition coloring problem and its application to
wavelength routing and assignment. In Proceedings of the First Workshop on Optical
Networks, page 1. Citeseer, 2000.

[23] E. Malaguti and P. Toth. A survey on vertex coloring problems. International Transac-
tions in Operational Research, 17:1–34, 2010.

[24] Enrico Malaguti, Michele Monaci, and Paolo Toth. A metaheuristic approach for the
vertex coloring problem. INFORMS Journal on Computing, 20(2):302–316, 2008.

[25] Enrico Malaguti, Michele Monaci, and Paolo Toth. An exact approach for the vertex
coloring problem. Discrete Optimization, 8(2):174–190, 2011.

[26] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytech., Electr. Eng, 48(1-2):11–16, 2004.

[27] Anuj Mehrotra and Michael A Trick. A column generation approach for graph coloring.
informs Journal on Computing, 8(4):344–354, 1996.

46

Bibliography

[28] M Flavia Monaco and Marcello Sammarra. The berth allocation problem: a strong
formulation solved by a lagrangean approach. Transportation Science, 41(2):265–280,
2007.

[29] Panos M Pardalos, Thelma Mavridou, and Jue Xue. The graph coloring problem: A
bibliographic survey. In Panos M Pardalos and Ding-Zhu Du, editors, Handbook of
combinatorial optimization, pages 1077–1141. Springer, 1998.

[30] Petrica C Pop, Bin Hu, and Günther R Raidl. A memetic algorithm for the partition
graph coloring problem. In Extended Abstracts of the 14th International Conference on
Computer Aided Systems Theory, Gran Canaria, Spain, pages 167–169, 2013.

[31] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation science, 40(4):
455–472, 2006.

[32] Alberto Santini, Stefan Ropke, and Lars Magnus Hvattum. A comparison of acceptance
criteria for the adaptive large neighbourhood search metaheuristic. Journal of Heuristics,
Submitted, 2016.

[33] Yavuz B Türkoğulları, Z Caner Taşkın, Necati Aras, and İ Kuban Altınel. Optimal berth
allocation and time-invariant quay crane assignment in container terminals. European
Journal of Operational Research, 235(1):88–101, 2014.

[34] François Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical
Programming, 130(2):249–294, 2011. doi: 10.1007/s10107-009-0334-1.

[35] Alexander Aleksandrovich Zykov. On some properties of linear complexes. Matem-
aticheskii sbornik, 66(2):163–188, 1949.

47

4 Maritime seaside logistics: the feeder
network design problem

Abstract In this chapter the design of a container liner shipping feeder network is
decided, by choosing which port to serve during many rotations which start
and end at a hub, and can take an arbitrary shape, potentially visiting the
hub multiple times during a fixed time horizon. We take into account many
operational constraints, such as variable speeds and cargo transit times, and
accordingly generated realistic instances, based on the LinerLib benchmark
suite. We solved the problem with a branch-and-price algorithm, which is
able to solve most instances to optimality. Furthermore, we performed a
comprehensive scenario analysis to evaluate the sensitivity of the solutions
to changes in external conditions and internal policies, and to formulate
practical guidelines for network planners.

4.1 Introduction

Container liner shipping is the main freight transportation service used to move large quan-
tities of cargo over long distances. As opposed to tramp shipping, that describes individual
ships operated to fulfil the transportation requests as they come, and that decide which one
is more convenient for them to accept, liner ships operate along fixed routes and according
to a published schedule.

According to Lloyd’s [22], 75% of internationally traded goods by volume was transported
by sea in 2008 and this figure is set to increase: it was already an estimated 85% during
2013, according to Drewry [17]. Containerised goods account for a relatively small portion
of the shipped volume, but their value per volume unit is higher than that of any other kind
of goods, and around 52% of maritime commerce by value is shipped in containers.

Furthermore, the environmental impact of moving goods by sea is certainly non-negligible:
World Shipping Council [38] estimated that 2.7% of the global greenhouse gas emissions is
accounted by international maritime shipping, and a quarter of this figure is due to container
shipping.

This chapter is based on the contents of: Alberto Santini, Stefan Ropke, and Christian E.M. Plum. A branch-
and-price approach to the Feeder Network Design Problem. European Journal of Operational Research (under
revision), pages 1–16, 2017.

48

4 Maritime seaside logistics: the feeder network design problem

Figure 4.1: Different types of rotations. Reprinted from Andersen [2] with permission.

These data make clear that the impact of employing OR tools for the optimisation of
liner container vessels operations can yield enormous results in terms of both business and
environmental value. And yet, operational research methods have not frequently focussed
on liner shipping, especially when comparing the amount of literature relevant to this field
versus other fields of logistics and transportation (see, e.g., Christiansen et al. [11]).

In this paper, we consider the Feeder Network Design Problem (FNDP), which arises when
planning the routes of liner container vessels in regional feeder networks. Intercontinental
container routes are operated by big vessels (up to 18000 TEU, Twenty-foot Equivalent Units)
that only call the main hub ports. These hubs are characterised by an extensive infrastructure
that makes them suitable to operate with enormous quantities of containers and to efficiently
load and unload extremely big vessels. Networks of smaller vessels load the containers
delivered at the hubs and transport them to smaller ports in a particular region. At the same
time, they collect containers at the small ports and unload them at the hubs, where they
will later be shipped to their final destination on the intercontinental routes. In short, liner
shipping is organised in hub-and-spoke networks. While more than one hub can exist in the
same region, in this work we focus on single-hub feeder networks.

Since liner vessels operate according to a fixed schedule, the operator issues a public
timetable composed by a sequence of port calls together with their day and time. It is clearly
convenient that such a schedule be periodic, so that each port is called on a certain day of
the week that does not change. For this reason, the time horizon considered when planning
feeder routes is a multiple of one week.

Due to the nature of the feeder network, moreover, each schedule starts and ends at the hub
port (even though it can visit the hub more than once). For this reason, we usually refer to
the route taken by a vessel as a rotation. Rotations are sometimes classified according to their
structure: Figure 4.1, reprinted from Andersen [2], depicts cycles, pendulum routes, butterfly
routes, and conveyor belts. In our work, we allow the creation of routes with arbitrary shapes,
and that visit the hub any number of times within the time horizon. Therefore, all rotation
types presented in Figure 4.1 are allowed to be constructed, as particular cases of our routes.

The network designer is also faced with the decision of selecting which ports to serve. The
liner company earns revenue for each container it moves at each served port. The company
might also be requested to pay a penalty when not serving a port, if it had contracts in
place with terminal or logistic operators. Another possibility is that the company decides to
outsource the service to another company (for example, by buying capacity on a competitor’s

49

4 Maritime seaside logistics: the feeder network design problem

vessel). As we will show in the following sections, our model is flexible enough to allow for
each of these scenarios.

We assume that both the delivery and pickup demands of a port are determined and known
in advance. In practice, the data we use comes from forecast of future demand, possibly
based on historical observation or on contracts in place. We also assume that, for each port,
the network designer has two decisions to make: whether or not to pickup demand at the
port, and whether or not to deliver demand to the port (these decisions are independent).
Once the decision is made to serve, e.g. the pickup demand at the port, the total amount of
cargo will be picked up in one visit. In other words, we do not allow split pickup and delivery.

The quantity to maximise is the total revenue from served cargoes, minus the cost of the
rotations and the eventual penalties or outsourcing costs. The cost of rotations includes port
taxes and calling fees and the vessel’s bunker cost, i.e. the cost of the fuel used by the ship.
This latter cost is particularly important for two reasons: first, it makes up a considerable
share of an operator expenses, while its price remains very volatile; second, it is greatly
impacted by the steaming speed of a vessel, with the relationship between the two being
approximately cubic:

cost(s) =
⇣ s

s⇤

⌘3
· cost(s⇤)

where s is the steaming speed, cost(s) is the cost incurred to sail for a unit of time at speed s,
s⇤ is the design speed, and cost(s⇤) is the cost to sail for a unit of time at the design speed.
Both s⇤ and cost(s⇤) are known in advance.

The constraints the operator is faced with are the limited capacity and number of vessels
available, the fact that ports observe certain closing time windows (e.g. ports that are closed
for operations at night), that certain goods might have a maximum time span during which
they can travel (e.g. perishable goods) and that ports have a maximum draught and therefore
not every vessel can enter every port.

In short, the FNDP requires us to come up with certain routes for a fleet of vehicles (vessels,
in this case) that abide particular constraints. The problem is, therefore, related to the well-
known Vehicle Routing Problem (VRP) and many of its variants: it combines elements of
the capacitated VRP since each vessel has a maximum container capacity, the VRP with time
windows, the VRP with heterogeneous fleet since each vessel can differ from the others, the
VRP with pickups and deliveries since we have a flow of cargo both from and to the hub, the
multi-period VRP because the vehicles can get back to the hub multiple times. We refer the
reader to the recent book by Toth and Vigo [35] for a comprehensive review of various VRP
variants.

In these variants of the VRP, however, the set of customers to be served is given and no
selection need be performed. With this respect, the FNDP is then related to the family of
Orienteering Problems (OP), and in particular to the multi-vehicle variants which ares present
in the literature under various names, including Team Orienteering Problem (TOP), VRP
with Profit Collection, or VRP with Customer Selection. The TOP has received considerable
attention in the recent years (see, for a review, Archetti et al. [4]). While exact algorithms
based on branch-and-price exist for the TOP [7] and for its capacitated version [3], to the
best of our knowledge no exact algorithm has been developed for cases which include time
windows, or a pickup-and-delivery component.

50

4 Maritime seaside logistics: the feeder network design problem

The main contributions of this paper are three-fold. First, we introduce a mathematical
model and an extended formulation for the Feeder Network Design Problem, taking into
account the principal real-life constraints that container vessel operators have to face. Second,
we provide a state-of-the-art algorithm, which is able to solve to optimality (or with very small
gaps) realistic instances. Third, we perform a wide variety of scenario analyses, from which
we dystill general principles an operator can apply at the strategic, tactical, and operational
levels.

4.2 Literature review

In this section we summarise recent literature on two important aspects of maritime optimi-
sation: liner network design, and speed optimisation. For more general reviews of research
in maritime optimisation, we refer the reader to Christiansen et al. [11], Christiansen et al.
[12] and Christiansen et al. [13].

Liner network design

An introduction to liner shipping is given in Brouer et al. [8], where the authors also present
a benchmark model for LinerLib (see Løfstedt et al. [23]), the main instance library used
for liner shipping problems. The benchmark model for the Liner Network Design Problem
(LNDP), is solved by means of a heuristic based on Tabu search and column generation. A
broad introduction to operational research methods in container liner shipping is given in
the survey by Meng et al. [25].

A heuristic, a column generation algorithm and a Benders decomposition algorithm, all
coupled with an iterative search routine, are presented by Agarwal and Ergun [1] to solve
the combined ship scheduling and cargo routing problem, with weekly frequencies and tran-
shipments. The authors allow multiple visits to the same port (as long as they happen in
different days of the week), but do not consider transhipment costs. They test their approach
on instances with at most 20 ports and 100 ships.

An exact method is presented by Reinhardt and Pisinger [31] to solve the network design
and fleet assignment problem. The authors use a branch-and-cut algorithm to solve instances
up to 15 ports, while considering transhipments, a heterogeneous fleet and allowing butterfly
routes.

Mulder and Dekker [26] propose a heuristic approach to the combined problem of fleet
design, ship scheduling and cargo routing. The authors first cluster ports by proximity and
then design a hub-and-spoke hierarchy, in which each cluster is served by a feeder network.
They test their approach on the Asia-Europe trade lane, comprising 58 ports.

Plum et al. [28] propose to switch the classic arc-flow formulation for the LNDP, with a
service-flow based formulation. Similarly to our work, they consider the Baltic and Western
African scenarios of the LinerLib and propose a mixed-integer linear formulation to maximise
the operator’s profit, under a weekly frequency constraint and allowing multiple calls to the
same port (thereby allowing an arbitrary number of butterfly ports). The model is solved
with a commercial solver.

51

4 Maritime seaside logistics: the feeder network design problem

Criterion Value Criterion Value

Optimisation Criterion Profit Shipping Market Liner
Decision maker Owner Explicit fuel price Yes
Freight rate Yes Fuel consumption Cubic
Leg-by-leg optimal speed Yes Speed function of payload No
Logistical context Pickup and delivery Size of fleet Multiple ships
More ships an option Yes Inventory costs No
Modal split No Ports included Yes

Table 4.1: Classification of the present paper under the taxonomy proposed by Psaraftis and Kontovas [29].

Another heuristic method, based on column generation, for the network design and cargo
flow problem in liner shipping is presented by Wang and Meng [37]. The authors apply the
column generation algorithm to a mixed-integer non-linear non-convex formulation, which
models weekly services and maximum transit times (which they refer to as deadlines). They
test their approach on the Asia-Europe trade lane, considering 12 ports.

Plum et al. [27] presents arc-flow and path-flow models for the single-vessel liner ship-
ping service design, in which an operator has to optimise the best-paying demand (pickups
and deliveries) for a round-trip route operated by a single vessel, taking into account maxi-
mum transit times. The authors propose a branch-and-cut algorithm, which is able to solve
instances with up to 25 ports.

Speed optimisation

A general review and a taxonomy of existing literature related to speed optimisation for
efficient and green maritime transportation is given in Psaraftis and Kontovas [29]. Table 4.1
shows the classification of our work under the proposed taxonomy.

Chang and Wang [10] and Cariou [9] study the economical impact and sustainability of slow
steaming in liner shipping. In the first work, the authors conclude that speed optimisation is
best employed as a dynamic process, which depends on both charter rates and fuel prices. In
the second work, the author concludes that slow steaming is a long-term sustainable strategy
on main container trade lanes, if the bunker price is at least $350-$400.

More details on the relation between sailing speed, incurred costs and emissions is given
in Psaraftis and Kontovas [30] and Kontovas [21], in which the authors study the trade-offs
involved in speed optimisation in broader shipping scenarios. In particular, Psaraftis and
Kontovas [30] consider many real-life factors impacting on the relationship between speed
and costs, stressing the importance of considering hotel costs to adjust the purely cubic cost
function, the dependency of the cost function on the payload, the impact of external events
such as weather conditions, and of the maintenance state of the ship (e.g. hull condition).
They also mention the importance of en route inventory costs, which clearly tend to increase
at lower speeds on long-distance routes. Kontovas [21], on the other hand, focuses on the
relationship between fuel consumption and CO2 emissions.

The work of Wang and Meng [36] studies the leg-by-leg optimisation of sailing speeds,
once the routes have already been fixed. The author consider transhipments and container

52

4 Maritime seaside logistics: the feeder network design problem

routing, and propose a Mixed-integer non-linear convex model, for which they give an outer
approximation scheme. They test their approach on an instance with 46 ports and 11 fixed
routes.

4.3 Model

The time in the planning horizon is divided into m time intervals, and it is modelled by the set
T = {1, . . . , m}. The size of this discretisation depends on the size of the region considered.
As mentioned in Section 4.1, it is convenient that the time horizon be a multiple of one week.
If, for example, we consider one month as planning horizon, we can then deploy four ships
on each rotation spacing them out by one week, so that each port is visited weekly.

Let n 2 N be the number of ports in the region, excluding the hub. We model each port
twice, once as a pickup and once as a delivery port. The set of all ports is denoted by
P 0 = {0,1, . . . , n, n + 1, . . . , 2n} where 0 represents the hub, P� = {1, . . . , n} is the set of
delivery ports, and P+ = {n+ 1, . . . , 2n} is the set of pickup ports. Ports i and n+ i represent
the same physical port.

We also define the set P = P 0 \ {0} of all ports excluding the hub. Each port i 2 P� has
a delivery demand di � 0 and each port j 2 P+ has a pickup demand pj � 0. Furthermore,
each port has a maximum draught mp

i > 0, meaning that vessels with a draught greater than
mp

i cannot enter the port. Each port has a handling time hi � 0, that is the number of time
intervals needed to load (if i 2 P+) or unload (if i 2 P�) containers at that port. Since the
quantity of containers to be moved at each port is known in advance, an accurate estimate
of hi can be given for each port. We assume that when the vessel visits the hub, its handling
time h0 can be estimated only based on the vessel type, independently from the quantity of
cargo it carries.

Each port has a number of closing time windows which can be used not only to model
times at which the port is closed, but also for many other purposes. Here we give a couple
of examples.

• If i is a pickup port that receives most fo the goods it exports (for example, via a freight
train) at a certain time t0 > 1, then i can be marked as closed until a time t1 � t0 at
which we can assume the goods are ready to be loaded onto a ship.

• If we use a time horizon representing 2 weeks, and have a delivery port j which is
served weekly by a freight train (at times t0, t1), and which imports perishable goods
that can stay in the yard at most t 0 time units before they are loaded on the train, we can
mark the port as open only during time windows [t0� t 0, t0] and [t1� t 0, t1]. A rotation
will visit j, for example, during the first time window; the second ship deployed on
the same rotation will visit it during the second time window, thereby guaranteeing a
weekly visit, and that the goods are not spoiled by staying too long in the yard.

For every pair of ports i, j we have a symmetric distance �i, j � 0. The distances satisfy the
triangle inequality, and are zero for elements modelling the same port, i.e. �i,i = 0 for all
i 2 P 0, and �i,n+i = 0 for all i 2 P�.

53

4 Maritime seaside logistics: the feeder network design problem

Hub

Port 1

Port 2

(a) Configuration of the instance, with the ports in their geographical positions.

Hub

Port 1 Pickup

Port 1 Delivery
Port 2 Pickup

Port 2 Delivery

(b) In this graph, the ports have been duplicated (for pickup and delivery) and arcs represent the possibility to
sail from one port to another.

Hub

Port 1 Pickup

Port 1 Delivery

Port 2 Pickup

Port 2 Delivery

t = 0 1 2 3 4 · · · m

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •
(c) The time-expanded graph for a particular vessel, where each node is copied once for each time instant. Two

arcs are depicted, representing sailing between two ports at different speeds.

Figure 4.2: Modelling of a simple instance, with one hub and two ports.

54

4 Maritime seaside logistics: the feeder network design problem

We deal with a heterogeneous fleet of k vessels, modelled by set V = {1, . . . , k}. Each vessel
v has a capacity Qv > 0 and a draught mv

v > 0. We consider the draught of a vessel as fixed,
even though in reality it can change slightly with the amount of load a vessel is carrying.
We refer the reader to, e.g., Glomvik Rakke et al. [19], Battarra et al. [6], Malaguti et al.
[24] for recent works on maritime routing under draught limits. Each vessel v has a set of
possible sailing speeds ⌦v = {!v

1, . . . ,!v
sv
} expressed in nautical miles per discrete time unit

(i.e., the speed is expressed in multiple of knots); sv 2 N is the number of speeds associated
with vessel v.

We take into account the following cost components:

• Time charter cost: a fixed daily cost that the operator pays to charter the vessel. We
associate to each vessel v the time charter cost � TC

v (in dollars per time interval).

• Hotel cost: the cost incurred when keeping a vessel moored, but operational. We
denote the hotel cost for vessel v as �H

v (in dollars per time interval).

• Bunker cost: the sailing cost, which depends on the cruising speed of the vessel. Given
a vessel v and a sailing speed !v

k 2 ⌦v , we consider the associated cost � B
vk (in dollars

per time interval).

• Movement costs: the unit costs relative to the handling of the cargo at a port. Given a
vessel v and a port i, since we know the quantity of cargo that needs to be handled in
i, we can compute the total movement cost and denote it as �M

vi (in dollars).

• Fixed port call fee: a flat cost to pay when any vessel calls a port i. This is denoted as
� PF

i (in dollars).

• Variable port call fee: a cost to pay when calling a port, but dependent on the capacity
of the vessel. A vessel v calling port i will pay � PV

vi (in dollars).

Serving requests generates revenue, as the operator earns a certain fee per Forty-Foot Equiv-
alent Unit (FFE) picked up or delivered. The revenue is, for commercial reasons, not uniform
and delivering an FFE to a certain port could earn more or less than delivering to another
port. Therefore, we associate to each port i a revenue Ri > 0 (in dollars) which express
the total earned by the operator when a vessel serves the port. Analogously, we associate a
penalty ↵i � 0 (in dollars) to be paid by the shipping operator if it decides to skip service at
the port. This penalty can be also used to model the cost of outsourcing the service.

Figure 4.2a shows a simple instance of the problem, with one hub and two ports. In
Figure 4.2b we create one node for each element of P 0 and draw solid arcs to represent that
a ship can sail from any port to any other port. The dotted arcs represent a ship that, at the
same port, first performs a delivery and then a pickup.

4.3.1 Graphs

For each vessel v we create a space-time graph Gv = (N , Av). The node set is common to all
graphs and is defined as N = {�,⌧}[P 0 ⇥ T where � and ⌧ are, respectively, a source and

55

4 Maritime seaside logistics: the feeder network design problem

sink node. All other nodes (i, t) represent a port at a specific time instant; Gv is, therefore, a
time-expanded graph. The arcs Av can be partitioned in four sets:

• Starting arcs of type (�, (0, t)), that link the source node with a node representing the
hub.

• Ending arcs of type ((0, t),⌧), that link a node representing the hub with the sink node.

• Delivery-to-pickup arcs of type ((i, t), (i + n, t 0)), that link the delivery and pickup
operations at the same physical port.

• Sailing arcs of the type ((i, t), (j, t 0)), with j 6= i+n if i, j 2 P, that represent the sailing
from port i 2 P 0 to port j 2 P 0.

The time used for the operations at the destination node of the arc is precomputed and
included in the arc itself. To understand how this is done, consider the example of a sailing
arc from port i 2 P to port j 2 P, modelling the sailing of vessel v 2 V , starting at time t
and sailing at speed !v

k 2 ⌦v. Assume that the draught limits are respected (mp
i � mv

v and
mp

j � mv
v), that i is open at time t, and that visiting j immediately after i does not violate

capacity constraints (pi + pj < Qv if i, j 2 P+, di + dj < Qv if i, j 2 P�, pi + dj < Qv if
i 2 P+, j 2 P�). If these conditions do not hold, then the arc is not created.

The arrival time instant of vessel v will be tarr = t +�i j/!
v
k. Let t 0 be the time instant in

which the handling operations at j can be completed; if tarr corresponds to a time when port
j is open, then t 0 = tarr+hj , otherwise a waiting time has to be factored in, as the ship cannot
berth or be operated on, while the port is closed. We can then create the arc ((i, t), (j, t 0)).

This process is repeated for each pair of ports, for each vessel v 2 V , and for each speed
! 2 ⌦v . The delivery-to-pickup arcs are created similarly, while the starting and ending arcs
are created for all nodes representing the hub. A starting arc of type (�, (0, t))means that the
vessel is leaving the hub at time t and therefore has been waiting idly at the hub during the
time period [0, t]. Analogously, an ending arc of type ((0, t),⌧) represents a ship concluding
its rotation at time t and waiting idly during time period [t + 1, m].

Notice that all costs, as well as the revenue, can be modelled on the arcs. For example, the
cost of a sailing arc a = ((i, t), (j, t 0)) is set to:

ca = � TC
v (t

0 � t) + �H
v (t

0 � tarr) + � B
vk(tarr � t) + �M

v j + �
PF
j + �

PV
v j � Rj (4.1)

Figure 4.2c shows the time-expanded version of the graph depicted in Figure 4.2b, for a
particular vessel (for simplicity, we omit vertices �,⌧). In the figure, we only draw two arcs:
they represent a ship sailing from “Port 1 Pickup” to “Port 2 Pickup”. We can imagine, for
example, that the first arc represents the ship leaving Port 1 at time 1, arriving at Port 2 at
time 2, and finishing the loading operations at time 3. The second arc again models leaving
Port 1 at time 1 but, sailing more slowly, Port 2 is reached only at time 3, and the loading
operations are completed at time 4.

56

4 Maritime seaside logistics: the feeder network design problem

4.3.2 Integer formulation

We define a route for vessel v as a succession of consecutive arcs in Av such that the first
starts at � and the last ends at node ⌧. If every port i 2 P is visited at most once, and if the
capacity constraint is not violated, we say that the route is feasible. The set of feasible routes
for vessel v is denoted as Rv and the set of all feasible routes as R=

S

v2V Rv . Notice that it
is possible to assign naturally a cost cr to each route r by summing the costs of the arcs that
compose the route. Finally, let "ri 2 {0, 1} be a parameter with value 1 iff port i is visited by
route r. We can formulate a model for the FNDP by considering binary variables xr taking
value 1 iff route r 2 R is part of the solution:

(MP) min
X

r2R

cr xr +
X

i2P

↵i

Ç

1�
X

r2R

"ri xr

å

(4.2)

s.t.
X

r2R

"ri xr 1 8i 2 P (4.3)

X

r2Rv

xr 1 8v 2 V (4.4)

xr 2 {0,1} 8r 2 R (4.5)

The objective function (4.2) minimises the total cost of selected routes and the penalties paid.
(A solution yelds a profit if the value of the objective function is negative.) Constraint (4.3)
ensures that each port is visited by at most one vessel, constraint (4.4) guarantees that we
do not use more vessels than available, and finally constraint (4.5) specifies the variables’
domain. Notice that, unlike problems in the VRP family, where the requirement that all
customers need be served leads to set-covering �-constraints, our model has -constraints
in (4.3).

Problem (MP) is called the master problem. An obvious drawback of (MP) is that sets Rv is
too large to enumerate in practice, since the number of feasible routes grows exponentially
with the size of the graphs. We then consider a version of (MP) where the sets Rv are
substituted with much smaller sets R0v; this new problem is called the restricted master problem
(RMP). The idea behind the branch-and-price algorithm we propose is to solve (RMP) by
branch-and-bound: at each node the linear relaxation of (RMP) is solved and new columns
are added to R0v. In order to find promising columns to add, we solve a pricing subproblem
(SP)v for each vessel v, that will produce new columns with negative reduced cost. From
dual theory, we know that columns with negative reduced cost entering the base will improve
the objective function of the relaxed (RMP). A node is considered explored when it is not
possible to find any negative reduced cost column. Let ⇡i � 0 be the dual variables of (4.3)
and µv � 0 be the dual variables of (4.4). Notice that the objective function can be rewritten
as

X

r2R

Ç

cr �
X

i2P

↵i"ri

å

xr +
X

i2P

↵i (4.6)

and the last sum is a constant. Therefore, the dual cost of a column corresponding to route

57

4 Maritime seaside logistics: the feeder network design problem

r 2 Rv is:
ĉr = cr +

X

i2P

(⇡i �↵i)"ri +µv (4.7)

The dual cost is given by the original route cost; then, for each visited port i 2 P, the dual
price ⇡i is added and the corresponding penalty ↵i is removed; finally, a dual price µv is paid,
only depending on the used vessel v 2 V .

4.4 Solution of the pricing subproblem

The pricing subproblem (SP)v is a shortest path problem with resource constraints (SPPRC),
as routes for vessel v are paths in Gv from the source node � to the sink node ⌧, and the
resource constraints are used to ensure the routes’ feasibility. In some sense, this problem can
also be seen as an elementary SPPRC (ESPPRC). Graphs Gv are acyclic, and therefore any
path would be elementary. In our case, however, we require that every port i 2 P is visited at
most once, i.e. that every subset of nodes Ni = {(i, t) | t 2 T} has at most one inbound and
one outbound arc. In the rest of this paper we will refer to this property when we speak of
elementariness.

Notice that the elementariness requirement can be dropped, and routes that visit the same
port multiple times can be generated, as long as the corresponding columns are then removed
by suitable branching rules in the master problem (as we will explain in Section 4.5.3). For
this reason, in this section we propose algorithms to solve both the ESPPRC and the SPPRC.

4.4.1 Greedy-randomised heuristic for the ESPPRC

We can attempt to find negative-reduced-cost elementary path with a simple greedy algorithm
that builds a path starting in � and then proceeds by choosing one random arc among the
K1 outgoing arcs of least reduced cost that do not close a cycle, until ⌧ is reached. The
same procedure can also be applied backward, starting in ⌧ and ending at �. After the path
is constructed, we can check that the capacity constraint has not been violated by a single
pass over the list of visited ports; if the path is not capacity-feasible, or if its reduced cost is
non-negative, it is discarded. The algorithm can be applied in both directions many times,
as its computational time is very small, thereby increasing the chances that a feasible path
of negative reduced cost is found.

4.4.2 Exact dynamic programming algorithm for the ESPPRC

The ESPPRC can be solved exactly via dynamic programming by using a label-setting algo-
rithm (see, e.g., Irnich et al. [20] for a review on solution methods for shortest path problems
with resource constraints). We associate a label L to each partial path from � to a node (i, t).
The label components are similar to those introduced by Dell’Amico et al. [15] in the context
of a Vehicle Routing Problem with simultaneous distribution and collection:

• ⌫ 2 N , the current node (i, t) the path is visiting.

58

4 Maritime seaside logistics: the feeder network design problem

• ⇧ 2 N, the amount of cargo that vessel v can pick up after visiting the current port.

• � 2 N, the amount of cargo that vessel v can deliver after visiting the current port.

• ~V 2 {0, 1}P , a binary vector whose j-th component is 0 iff port j 2 P can be visited at
some point after the current port. This vector is used to keep track of visited ports so
to ensure that the route is elementary.

• C 2 R, the cost associated with the partial path. This is given by the sum of the costs
of the arcs traversed, plus the prices ⇡ j paid and minus the penalties ↵i avoided at
visited ports. If ⌫= ⌧ we also add the dual price µv .

An initial label is created with ⌫ = �, ⇧ =� = Qv, ~V = ~0, and C = 0. Notice that a label L
can then be thought of as an element of the space S = N ⇥ {0, . . . ,Qv}2 ⇥ {0, 1}|P| equipped
with a cost function C : S! R.

In the following we will use the convenient convention that pi = 0 for all i 2 P� and dj = 0
for all j 2 P+. Let us describe how to update a label L associated with a partial path to (i, t)
when the path is extended to a node (j, t 0), with j 2 P, along a sailing arc. We will call the new
label L0 = (⌫0,⇧0,�0, ~V 0) and its cost C 0. First of all we check if such an extension is feasible.
This is the case if there is an arc a connecting (i, t) with (j, t 0), if j is a visitable port (i.e. the
j-th component of ~V is 0) and if there is enough available capacity on the vessel (i.e. ⇧ � pj
and � � dj). If the extension is feasible, we set the components of new label L0 as follows:
component ⌫0 will be set to (j, t 0); ~V 0 will be equal to ~V except for the j-th coordinate, that
will be set to 1, as it is not possible to visit port j again; the cost component will be updated
as C 0 = C+cav+⇡ j�↵ j . Let us now consider component⇧0: since collecting cargo consumes
the associated resource “amount of load that can be picked up after visiting j” of a number
of units equal to the amount of cargo we collect, while delivering it does not, it will updated
as ⇧0 = ⇧� pj. Component �0, on the other hand, represent the resource “amount of load
that can be delivered after visiting j” and both a pickup and a delivery operation reduce this
resource by a number of units equal to the amount of cargo picked up or delivered. Therefore,
it is updated as �0 =min{⇧� pj ,�� dj}.

Similar rules are followed when extending along other type of arcs. In particular, an
extension to the hub (0, t) is always possible, and will have the effect of resetting components
⇧ and � to their original value of Qv . Finally, we charge the dual cost µv associated with the
vessel on the arcs used to reach the sink (i.e. on the “ending arcs” described in Section 4.3.1);
the cost of the corresponding label will be updated as C 0 = C +µv .

We now define a dominance criterion to compare two labels L1 = (⌫,⇧1,�1, ~V1, C1) and
L2 = (⌫,⇧2,�2, ~V2, C2) representing partial paths up to the same node. We say that label
L1 dominates L2, and we write L1 � L2, if: (a) C1 C2; (b) ~V1 ~V2 component-wise;
(c) �1 ��2; (d) ⇧1 � ⇧2; (e) at least one of the previous inequalities is strict.

4.4.3 Exact dynamic programming algorithm for the SPPRC

Since the ESPPRC is an N P -hard problem, we can consider the labelling algorithm on a
relaxed state space (state here is a synonym for label). We project the state space S into a

59

4 Maritime seaside logistics: the feeder network design problem

� 0 D1

D2 D3 P4 0 ⌧

Figure 4.3: Example graph that shows the importance of correctly ordering the relaxed labels.

lower-dimensional space S0 = N ⇥ {0, . . . ,Qv}2. The projection function sends an element
L = (⌫,⇧,�, ~V) 2 S to the element L0 := proj(L) = (⌫,⇧,�) 2 S0. As shown by Christofides
et al. [14], the interesting property of state space relaxation is that the cost of the new label
is C(L0) minL2proj�1(L0) C(L), and therefore provides a lower bound on the minimum cost
of the corresponding label in the original space. The drawback is that S0 contains labels that
would be infeasible for the ESPPRC and, in particular, there are labels that correspond to
paths that are not elementary. The monotonically decreasing nature of the resources, however,
guarantees that eventual cycles will be finite. The state-space-relaxed labelling algorithm,
therefore, solves the SPPRC. Since |S0| = |N |·(Qv+1)2, the algorithm has pseudo-polynomial
complexity. The extension function of this algorithm will omit the missing component and
the dominance criterion will omit condition (b). We will denote the problem solved by the
state space relaxed version of our labelling algorithm as (SP’)v .

Label extension order It is important to observe that the fundamental assumption of
label-setting algorithms (if a label L1 dominates a label L2, then all extensions of L1 dominate
the corresponding extensions of L2) is valid for the relaxed state space, only if we process
the labels in a particular order. To see why this is the case, consider the graph in Figure 4.3
where, for simplicity, we omitted the time component and all arcs have cost 1. Ports D1, D2, D3
are delivery ports with demands, respectively, 5, 4 and 5. Port P4 is a pickup port with
demand 10. The vessel’s capacity is 10. Consider two paths: r1 = (�, 0, D1, D3, P4, 0,⌧) and
r2 = (�, 0, D2, D3, P4, 0,⌧). The labels associated respectively with these two paths at node
D3 are L1 = (D3, 10, 0) and L2 = (D3, 10, 1). Having both the same cost, we should conclude
that L2 dominates L1. However, if we consider their extensions to port P4, we see that both
labels would be extended into L01 = L02 = (P4, 0, 0). Therefore it is not true that any extension
of L2 dominates the corresponding extension of L1. This observation also applies to the state
relaxation used in Dell’Amico et al. [15], where the authors projected component ~V into
P

i2P
~Vi , as both partial paths in D3 have visited the same number of ports. To overcome this

limitation, we equip S with a suitable total order relation, and make sure that a label is not
extended before all its predecessors are. The order we use in our algorithm is a lexicographic
comparison, starting with component� (lowest first), followed by⇧ (lowest first) and finally
by the cost (highest first).

60

4 Maritime seaside logistics: the feeder network design problem

4.4.4 Acceleration techniques

Both labelling algorithms for the ESPPRC and the SPPRC can be accelerated heuristically,
by pruning the time-expanded graph. We propse two strategies for arc removal. The first
strategy involves sorting all arcs in each graph by their reduced cost, and only keep the K2 ·|Av |
ones with lowest reduced cost, where K2 2 (0, 1) is a parameter. This sparsification method
takes into account both the original cost of the arcs and the reduced prices to pay at the ports;
we refer to this technique as (C+P).

The second strategy, instead, sorts the ports by their respective reduced prices ⇡i. Let ⇡̄
and

¯
⇡ the highest and lowest, respetively, reduced prizes (the lowest one being the most

desirable), and ī and
¯
i the ports corresponding, respectively, to ⇡̄ and

¯
⇡. Then each arc is

removed with a probability directly proportional to the dual price of its target port, with
arcs incoming to

¯
i having probability 0, and arcs incoming to ī having probability K3, where

K3 2 (0,1] is a parameter. This sparsification method only takes into account the reduced
prices, independently from the original cost of the arcs; we refer to this technique as (P).

4.5 Branch-and-price algorithm

As mentioned in Section 4.3, we solve the FNDP with a branch-and-price algorithm. We will
explore the branch-and-bound tree according to a best-first lazy strategy: when a node is
explored, the next node will be the one whose father’s lower bound is the highest (with ties
broken randomly).

4.5.1 Column generation

At each node of the tree we solve the linear relaxation of (RMP), which we call (RRMP),
and use its dual values to find negative reduced cost columns, by solving k subproblems
(SP’)v . We solve the subproblem using both the heuristics and the exact methods presented
in Section 4.4. Heuristic pricing has been succesfully employed in order to speed up column
generation in a variety of routing problems (see, e.g., Dumas et al. [18], Savelsbergh and
Sol [34], and Desaulniers et al. [16]).

The following methods are used sequentially; if any of them finds a route of negative
reduced cost, the column generation phase is halted and (RRMP) is re-solved.

1. The first heuristic is the randomised-greedy heuristic of Section 4.4.1, which is tried
100 times in each direction, with parameter K1 = 10. This heuristic is very quick
and has the advantage of producing feasible columns; however, it is usually able to
produce negative-reduced-cost columns only at the beginning of the exploration of a
branch-and-bound node.

2. Next, we solve the SPPRC by dynamic programming, employing the acceleration tech-
niques presented in Section 4.4.4. We use (C+P) with parameter K2 = 0.25 and (P)
with parameter K3 = 1.

3. Finally, we solve the SPPRC by dynamic programming, on the complete graph.

61

4 Maritime seaside logistics: the feeder network design problem

4.5.2 Column management

We solve the first iteration at the root node with a pool made of one single dummy column,
corresponding to a visit to each port. We attribute a very high cost to this column and consider
as infeasible any solution that includes it among the base columns. If unused vessels can be
chartered out, and �v is the revenue generated by chartering vessel v 2 V , another possibility
is to initialise the column pool with one column for each vessel, each with cost ��v and not
visiting any port.

At each node we remove duplicate columns from the column pool. Notice that neither the
order in which ports are visited, nor the visit times, nor the visits to the hub are encoded in
the columns, so it is possible to have duplicate columns with different costs. In this case we
only keep the column with the lowest cost.

4.5.3 Branching

In classic VRP-like problems, the integrality and feasibility of the solution is often imposed
by considering a route corresponding to a fractional column, and a customer (say i) visited
by that route, which is also covered by another fractional column, such that the the two
customers (say j, k) preceding i in the two routes differ. Branching is performed by imposing
in one child node that arc (j, i) is not used (e.g. by removing that arc from the graph), and in
the other child that node i can only be reached via j (e.g. by removing all other arcs leading
to i and all other arcs leaving j). In this latter node, because of the set covering constraints,
nodes i and j need to be visited, and therefore the use of arc (j, i) is guaranteed.

Since in our model (4.2)–(4.4) we do not have such set covering constraints, this branching
rule would not actually guarantee an integer solution in the second node. In our problem, in
fact, more decisions need to be made: whether a port is visted or not; if so, by which vessel;
once the vessel is fixed, by using which arc.

For this reason, we propose the branching rules described below. The application of these
branching rule will also guarantee that unfeasible columns (i.e., those corresponding to
routes that visit a port more than once) will not appear in the optimal solution. The order in
which the following rules are applied is: (1) branch on port visit; (2) branch on vessel; (3)
branch on successive visits; (4) branc on arc selection.

Branching on port visit

The first branching rule is used to determine whether or not a port is visited, by any vessel.
This branching rule was also used by Boussier et al. [7] in their branch-and-price algorithm
for the TOP.

Let, for a given solution x̂ of (RRMP) and for a port i 2 P, x(i) =
P

r2R0 "ri x̂ r (R0 is the set
of routes active at the node). If not all values x(i) are integer (i.e., either 0 or 1) then one
port is visited with fractional flow. We then select the port i for which the quantity x(i) is
most fractional (i.e., closer to 0.5), and create two branches.

62

4 Maritime seaside logistics: the feeder network design problem

In the first branch i is visited and, in the master problem, constraint (4.3) is replaced by
X

r2R

"ri xr = 1 (4.8)

The subproblem remains unchanged, but notice that now the dual variable ⇡i associated
with the port is unrestricted, meaning that a path visiting i will now potentially collect a prize
⇡i 0 which will be deducted from the cost of the partial path.

In the second branch, i is not visited. In the master problem, we remove all columns
corresponding to routes r for which "ri = 1. In the subproblem, we remove from all graphs
the nodes of set Ni . Therefore, no column covering i will appear in the subtree of this branch.

Branching on vessel selection

If all ports have an integer value for x(i), it can still happen that there is a port i which is
visited by more than one vessel. Define, for a solution x̂ of (RRMP), a port i 2 P, and a vessel
v 2 V , the quantity xv(i) =

P

r2R0v
"ri x̂ r (R0v is the set of routes associated with vessel v, and

active at the node). We then select the port i and the vessel v for which the quantity xv(i) is
most fractional, and create two branches.

In the first branch, we want i to be visited by v (if it is visited at all). In the master problem,
we remove all columns of r 2 R0w with "ri = 1, for all vessels w 6= v. In the subproblem,
we remove all nodes of Ni from all graphs associated with vessels w 6= v. Notice that if the
inequality (4.3) corresponding to i was already transformed into an equality by the previous
branching rule, than we can also remove all columns of r 2 R0v with "ri = 0, as in this case
we know that i will be visited, and will be visited by v.

In the second branch, i is not visited by v. Therefore, in the master problem, we remove all
columns of R0v which cover i. In the subproblem, we remove all nodes of Ni from the graph
associated with v.

Branching on arc selection

Consider a solution which does not trigger any of the preceding branching rules, i.e. each
port has integer flow, and is visited by only one vessel. Let r 2 R0 be the route corresponding
to the most fractional column in the base, and v the associated vessel.

A branching rule sufficient to ensure that the final solution be integer and without infeasible
columns would consist in considering any arc a of r connecting two ports, say linking (i, t)
to (j, t 0) in the time-expanded graph, and creating two branches.

In the first branch, we force v to use arc a if travelling from i to j. To do so, we remove
from the master problem all columns corresponding to routes r 2 R0v such that "ri = "r j = 1,
but which do not use a. In the subproblem we remove from Gv all other arcs linking nodes
of Ni with nodes of Nj .

In the second branch, we forbid the use of the arc; in the master problem we remove the
routes of R0v which use a, and in the subproblem we simply remove the arc from the graph
Gv .

63

4 Maritime seaside logistics: the feeder network design problem

Notice that this rule can also exclude routes containing cycles, as in these routes there is at
least one port which is visited twice, i.e. by using two incoming arcs, and one of the arcs can
be forbidden by using this rule. In this case, the route need be applied to integer columns as
well.

However, the rule produces two unbalanced subtrees, as one branch imposes a much
stronger condition than the other. Furthermore, routes where v does not visit neither i nor
j can appear in both branches. In order to improve the convergence of the algorithm, then,
we also devise another branching rule, described in the next subsection.

Notice, finally, that this branching rule used in conjunction with the previous two forms a
complete branching scheme. Indeed, in the branch forbidding the use of the arc, its flow will
be obviously integer (in particular, it will be 0). When imposing the use of the arc, however,
the optimal solution to (RRMP) could still give fractional flow. In this case, however, if the
total flow on port j is fractional, we will perform branching on the port visit. In the branch
that excludes j the flow on the arc will be again obviously integer (and equal to 0). In the
other branch, we still have the possibility that the flow be fractional. But in this case, since
the total flow on j is 1, there must be another route associated with a different vessel whose
corresponding column is also in the base. In this case we will perform branching on vessel
selection. In the branch that assigns j to v the flow on the arc is forced to be 1; in the other
branch, it is forced to be 0.

Branching on successive visits

Let r 2 R0v be the route corresponding to the most fractional column in the base. If there is
another fractional column corresponding to a route r 0 2 R0v (r 0 6= r), such that there is a port
i visited by both r and r 0, and the ports preceding i in r and r 0 are different (say, j and j0),
then we can perform binary branching by respectively forcing and forbidding the consecutive
visit of ports j, i. This rule can again be applied to routes corresponding to integer columns,
in order to remove cycles.

In the first branch, we remove from the master problem all columns of R0v whose corre-
sponding route does not visit the succession of ports j, i; in the subproblem, we can remove
from Gv all arcs from nodes of Nj to nodes of Nk (for k 6= i), and from nodes of Nk to nodes
of Ni (for k 6= j). In the second branch, we remove from the master problem all columns of
R0v whose corresponding route visits j, i in succession; in the subproblem we remove from
Gv all arcs from nodes of Nj to nodes of Ni .

4.5.4 Upper bounding

In order to strengthen the upper bound, at the end of the exploration of the root node,
problem (RMP) is solved as an integer problem with the feasible columns currently in the
column pool, using a black-box commercial solver. This step is performed only if the column
pool has fewer than 1500 columns.

64

4 Maritime seaside logistics: the feeder network design problem

4.6 Results

In this section we describe how the test instances were generated starting from instances
already present in the literature, and we provide computational results that highlight both
the performance of our algorithm and key features of optimal routes.

4.6.1 Instance generation

The instances used in this paper are derived from the library LinerLib, presented by Brouer
et al. [8]. We considered the two LinerLib scenarios Baltic and Western Africa (WAF). Both
scenarios include a single hub: Bremerhaven for the Baltic scenario and Algeciras for the
Western African one. In the Baltic scenario, we have a 1-week planning horizon, modelled
with a discretisation of 2 hours per time interval; in the WAF scenario, the planning horizon is
of 4 weeks, and each time instant represents 8 hours. The Baltic scenario comprises 13 ports
(see Figure 4.4a) and 6 vessels, while the Western African one has 20 ports (see Figure 4.4b)
and 10 vessels. In both scenarios the bunker price is of $375/tn, and all ↵i have been set
to 0, thereby considering the pure opportunity cost of each service (revenue minus cost of
performing the service). Furthermore, each vessel can sail at a low, medium, or high speed
(the minimum and maximum speeds are obtained from the LinerLib data).

We generated respectively 12 and 8 base instances for the Baltic and WAF scenarios. These
instances share the same network topology of the LinerLib original instances, but have dif-
ferent values for time windows, transit times, and handling times:

• We considered instances both with and without closing time windows. When they are
present, their centres are distributed evenly along the time horizon, to simulate ports
closing at night, each day of the week. For the Baltic scenario, we have three options:
no time window; all time windows have duration of 1 time interval; time windows
have durations of either 1 or 3 time intervals (the actual value is chosen at random for
each port). For the WAF scenario, we only have two options: no time window, or all
time windows with duration 1.

• We also generated instances with and without maximum transit times. When the transit
times were enabled, their value was comprised between 5 and 6.5 days for the Baltic
scenario, and between 23 and 27 days for the WAF scenario. The actual transit time for
each port was chosen according to a uniform random distribution over said intervals.

• The handling times were also distributed in intervals ([2, 4] or [3, 5] time units for the
Baltic scenario; [1,1] or [1,2] time units for the WAF scenario). However, the actual
value for each port has been chosen proportionally to the number of containers to be
handled at the port.

We thus generated a total of 20 base instances, available at Santini [32], which we use in
Section 4.6.2 to verify that the proposed branch-and-price algorithm attains state-of-the-art
performances in terms of solution time and quality vs number of ports and vessels considered.
We then generated further instances, which were used for the scenario analysis presented in

65

4 Maritime seaside logistics: the feeder network design problem

Section 4.6.3. The objective of the scenario analysis is to assess the impact of external condi-
tions, designer’s decisions, and modelling precision on the optimal solutions. These instances
were based on the Baltic scenario. Typical questions that are investigated in the scenario
analysis are, e.g.: under which conditions it is convenient to buy capacity on competitors?
what happens when there is a surge in bunker prices? will considering more possible speeds
in the model lead to significantly better solutions? will longer routes lead to better utilisation
of ship capacities?

In order to perform this analysis, we varied further characteristics of the base instances:

Bunker price While the bunker price was fixed to an average value of $375/tn in the base
instances, in this scenario analysis we use the values {250, 300, 375, 450, 500} to assess
what changes in the solution under low, medium, and high bunker prices. This price is
in practice subject to changes for two main reasons: the volatility of crude oil price, and
the possibility that certain countries will pass legislation forcing the use of low-sulfur
bunkers, which are less polluting but much more expensive.

Speeds In this analysis we use 1, 3 (base instances), and 5 possible speed values for each
vessel, in order to check whether the increased complexity (especially in terms of arcs
being created in the graphs Gv) given by adding more speed values leads to significantly
better solutions.

Demand In this analysis we consider scenarios with demand multiplied by a factor of 1.0
(base instances), 0.8, 0.6, and 0.4. This analysis is particularly important, as one of
the major consequences of a global financial and consumption crisis is a steep decline
in the volumes of goods traded and shipped by sea.

Penalties We use penalties to model the purchase of capacity on a competitor. In particular,
while in the base instances we only had opportunity costs, in this scenario analysis
we can outsource a service. In this case, we can still earn a small percentage of the
revenue (1%, 5%, or 10%), while most of it is transferred to the competitor.

Time horizon We solved the Baltic instances with time horizons of 1 (base instances), 2,
and 3 weeks. The number of hours per time interval were, respectively, 2, 4, and 6.
The number of ships available is scaled according to the time horizon (1/2 and 1/3 of
the original fleet size, respectively) to reflect the fact that multiple ships need to sail
the same rotation at once.

In total, we generated additional 48 instances for the bunker price analysis, 24 for the speeds
analysis, 36 for the demand analysis, 36 for the penalties analysis, and 24 for the time horizon
analysis.

4.6.2 Computational results

Computational experiments were run on a dual-core 3.10GHz Xeon CPU with 4GB of RAM.
The LPs were solved using CPLEX 12.6, limited to the use of one thread. Table 4.2 reports
the results for the Baltic and Western African scenarios.

66

4 Maritime seaside logistics: the feeder network design problem

(a) The Baltic scenario. (b) The WAF scenario.

Figure 4.4: Ports in the considered scenarios. Map data: Google.

Instance Time SP Time % Gap % RGap % Cols NNodes Depth

Baltic1 0.77 96.75 0.00 0.00 72 1 1
Baltic2 4.07 99.54 0.00 0.00 91 1 1
Baltic3 13.87 98.67 0.00 0.00 145 1 1
Baltic4 9.39 98.65 0.00 0.00 113 1 1
Baltic5 8.66 99.16 0.00 0.00 114 1 1
Baltic6 4.99 99.60 0.00 0.00 88 1 1
Baltic7 11.67 99.08 0.00 0.00 135 1 1
Baltic8 1.71 98.80 0.00 0.00 64 1 1
Baltic9 1.65 98.18 0.00 0.00 70 1 1
Baltic10 2.21 96.39 0.00 0.00 78 1 1
Baltic11 4.08 98.25 0.00 0.00 95 1 1
Baltic12 2.44 98.62 0.00 0.00 75 1 1
WAF1 3600.00 91.66 0.04 0.34 3402 321 151
WAF2 819.04 93.40 0.00 0.34 5132 45 13
WAF3 1382.66 93.93 0.00 0.71 5036 89 16
WAF4 1229.08 94.98 0.00 0.34 5396 47 12
WAF5 555.15 92.61 0.00 0.21 4255 25 9
WAF6 319.76 93.38 0.00 0.21 3474 17 8
WAF7 275.23 87.44 0.00 0.21 3101 11 5
WAF8 497.11 92.99 0.00 0.21 4754 35 13

Table 4.2: Computational results for the base instances.

67

4 Maritime seaside logistics: the feeder network design problem

Figure 4.5: Optimal solution for instance Baltic1.

Column “Time” reports the execution time in seconds, while column “SPTime” tells the
time, in percentage, spent solving the subproblem. Columns “RGap” and “Gap” report the
optimality gap percentage, respectively at the root node and at the end of the solution process.
The gap is calculated as 100(UB� LB)/UB. Finally, Column “Cols” indicates the size of the
column pool, “NNodes” gives the number of branch-and-bound nodes explored, and “Depth”
is the maximum depth reached in the branch-and-bound tree.

Table 4.2 shows that the proposed approach is able to solve to optimality (or almost to
optimality) instances of realistic size. Our results are in line or better with recent work in
maritime optimisation: Reinhardt and Pisinger [31], e.g., solve instances with up to 15 ports;
Plum et al. [27] solve instances with up to 25 ports, but only consider one vessel.

The root node gaps show that the linear relaxation of (MP) is very strong. In particular,
comparing with an earlier version of this paper, we noticed that relaxing the requirement
that each route visits the hub exactly once provides both a stronger dual bound at the root
node, and quicker convergence towards optimality. This comes at no cost in terms of solution
quality, as the present version of the problem also produces routes which are closer to the
real-life requirements of network planners.

All Baltic instances are solved at the root node, whereas branching is required for the
WAF instances. Most of these instances are solved to optimality exploring fewer than 100
nodes; the only instance that requires exploring a large number of nodes and going deep in
the branch-and-bound tree, is also the only open instance, WAF1. An analysis of the logs,
furthermore, has shown that the branching rules described in Sections 4.5.3 to 4.5.3 were
sufficient to solve all closed instances to optimality, while the branching rule described in
Section 4.5.3 was never used.

Figures 4.5 and 4.6 show two optimal solutions, respectively to instances Baltic1 and WAF5.

68

4 Maritime seaside logistics: the feeder network design problem

Figure 4.6: Optimal solution for instance WAF4.

In Figure 4.5, for example, a butterfly route is used to serve first Aarhus and Stavanger and,
after returning to the hub, Gothenburg. A dedicated service is performed in Saint Petersburg,
which has high demand; on the ohter hand, the port of Rauma (Finland) is distant and has
very low demand, so its service would have a negative reduced cost, and the service is skipped.
Some port might be unprofitable to serve, but an operator might still decide to serve it for
prestige reasons or other commercial considerations. In this case, the network planner could
direct the model in this sense, by applying an appropriate penalty ↵i. This could happen,
e.g., if the operator decided to serve more than just one port in Norway, by mantaing an
additional presence in Bergen, Alesund, or Kristiansand.

By analysing these solutions, we noticed two recurring features. First of all, there are
ports which require dedicated services because of their high volume. Second, routes tend to
serve ports clustered together, as is clear in Figure 4.6. These observations are validated by
real-life practice where indeed some port is served by dedicated vessels and services are often
separated into short-sea clusters and deep-sea clusters, as this configuration gives ports called
on each type of service a relatively good transit time for both import and export volumes.
Notice, e.g., the short-sea cluster Conarky – Monrovia – Takoradi served by the dotted purple
route in Figure 4.6 and the deep-sea cluster Pointe-Noire – Boma – Lobito – Matadi served
by the black dash-dotted line.

An analysis of the solutions of the base instances has shown an average vessel speed of
around 15kn in the Baltic scenario, and 13.5kn in the Western African one, and that the cost
of bunker accounts for around 30% and 20% of the total costs, repsectively. These values are

69

4 Maritime seaside logistics: the feeder network design problem

Value Rev SU Srv HLE CTD Spd BC

250 +5.80 0.00 +5.30 -2.02 -0.58 0.69 -28.36
300 +3.36 0.00 +5.30 -2.02 -0.58 0.63 -16.98
375 0.00 0.00 0.00 0.00 0.00 0.00 0.00
450 -3.92 0.00 0.00 0.00 0.24 -0.03 11.72
500 -6.19 0.00 0.00 0.00 0.24 -1.13 23.28

Table 4.3: Scenario analysis for the “Bunker Price” value.

Value Rev SU Srv HLE CTD Spd BC

1 -24.37 -20.83 -9.09 -43.51 -17.63 -19.94 -38.51
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 +0.36 0.00 +4.55 0.00 -0.81 0.21 -0.37

Table 4.4: Scenario analysis for the “Number of speeds” value.

Value Rev SU Srv HLE CTD Spd BC

0.4 -78.75 -62.50 -36.36 -44.85 -22.44 -11.08 -25.26
0.6 -55.12 -25.00 4.55 -56.42 -6.99 -8.17 -14.89
0.8 -8.52 0.00 13.64 -16.22 8.26 0.31 -3.25

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.5: Scenario analysis for the “Demand” value.

also in line with real-life data.

4.6.3 Scenario Analysis

Tables 4.3 to 4.7 present the summary of the scenario analyses. Column “Value” reports the
variations on the relevant value that is being changed (bunker price, number of speeds, de-
mands, share of revenue kept when outsourcing, time horizon length). Each row aggregates,
by taking the average, all instances which share the same relevant value. The underlined
value is the one used for the base instances. All other columns report the percentage variation
of some metric compared to its base value. If a metric has value mv for one group of instances
and value mb for the base instances, the column will show the value 100(mv

mb
�1). The metrics

considered are:

Rev The total revenue earned.

SU The total number of ships used. This value is adjusted appropriately when instances with
different time horizons are considered.

Srv The total number of services performed.

HLE The highest load efficiency. For a given instance this value is the average of the highest
load efficiency for each rotation. The highest load efficiency for a rotation is the highest
quantity D/Qv achieved at some point in the rotation, where D is the total quantity of
cargo on board, and Qv is the capacity of the considered vessel.

Value Rev SU Srv HLE CTD Spd BC

Keep 10% +9.24 0.00 +1.52 -4.04 +0.48 -2.25 -4.88
Keep 5% +4.60 0.00 +0.76 -2.02 +0.24 -1.13 -2.44
Keep 1% +0.98 0.00 0.00 0.00 0.00 -0.04 0.00
Keep 0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.6: Scenario analysis for the “Penalties” value.

Value Rev SU Srv HLE CTD Spd BC

1wk 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2wk +18.70 +100.00 +27.27 +4.10 +42.73 -27.39 -18.90
3wk +1.19 +100.00 +20.00 +4.58 +80.85 -23.10 -11.60

Table 4.7: Scenario analysis for the “Time horizon” value.

70

4 Maritime seaside logistics: the feeder network design problem

Figure 4.7: Optimal solution for the Baltic1 instance with demand coefficient of 0.8.

CTD The cargo travel distance. For a given instance this value is the average amount of
nautical miles that each cargo has spent travelling on-board the ship.

Spd The average speed, considering in each instance all legs sailed by all vessels employed.

BC The percentage of the total costs incurred which is attributable to bunker costs.

All the instances in the scenario analysis were solved to optimality, but for those with 2- and
3-weeks time horizons, for which the scenarios refer to the best integer solution obtained
within 1 hour. All optimality gaps were under 1% for the 2-weeks time horizon, and under
10% for the 3-weeks time horizon.

Table 4.3 shows the sensitivity of the solutions to variations in bunker price. As it can
be expected, the share of costs attributable to bunker price is the most affected KPI (Key
Performance Indicator). Revenue also benefit greatly from lower bunker costs, by exhibiting
a wide gap between the lowest and highest values. It is interesting to notice that lower bunker
prices allow for slightly faster speeds; this, in turn, could mean being able to serve more
ports, thereby further increasing revenue and coverage. This can be seen for the $250 and
$300 prices, where a +5.30% in the number of services means that one more service was
performed.

Notice that the insertion of one port can alter the overall shape of the rotations considerably.
Therefore, it can be difficult to add one additional service at a later time, after the network
design has been decided, just because of a decrease in bunker prices which now makes that
service profitable. For this reason, we advise network planners to first consider network
layouts with more services, and to try increase the profitability of the routes by means of fuel
hedging, contracting lower port fees, etc.

71

4 Maritime seaside logistics: the feeder network design problem

Figure 4.8: Optimal solution for instance Baltic1 with a 2-week time horizon.

Table 4.4 analyses the impact of speed optimisation in the network plan. Notice how
considering three rather than just one fixed speed has a great impact on all the KPIs considered.
Not including a speed decision means obtaining solutions with �24% revenue and fewer
served ports. Notice that the average speed is lower when only considering 1 speed (in this
case the speed considered was the average between the maximum and minimum speeds
provided by the LinerLib for each vessel) showing that the advantages of speed optimisation
cannot be simply attributed to low-speed steaming, but rather to a smart combination of
low-speed and high-speed legs which, on average, brings the speed up and allows a vessel
to serve more ports in a single route. In some instances, using only one speed meant the
deployment of one fewer vessel, as a route became either unfeasible or unprofitable.

On the other hand, using five speed values has a positive effect on the revenue and the
number of services performed. The difference is not as big as the one noted before (e.g. in
terms of revenue generated) and the route shapes are very similar between the solutions
with 3 and 5 speeds. Finally, the average speed is also very close between these two group of
instances. In short, we see no downsides in using a higher number of speeds, as all instances
could still be solved to optimality, but the planner should not expect to see big improvements
just by increasing the granualarity of speed discretisation beyond a certain point.

Other interesting observations can be made by considering Table 4.5, which shows the
impact of demand. First of all notice that, as expected, less demand means less revenue for
the oprerator. However, notice how revenue multiplier 0.8, corresponding to a reduction in
demand of �20%, gives a reduction in revenue of just �8.52%. This is because, by using the
same number of ships (column “SU”) the optimal route increases coverage (column “Srv”)
as an effective countermeasure. A further reduction in demand, with multipliers 0.6 and 0.4
is, instead, eccessive and cannot be counteracted as effectively.

72

4 Maritime seaside logistics: the feeder network design problem

The increased coverage seen for demand multiplier 0.8 is due to the fact that routes that
before were infeasible because of capacity restrictions, now become feasible. Compare, for
example, the optimal solutions to instance Baltic1 with multipliers 1.0 (Figure 4.5) and
0.8 (Figure 4.7); in the second network plan, a vessel serves the port of Kotka which was
previously unserved. The ports of Gothenburg and Kotka are served by a vessel with capacity
800TEU; the sum of their pickup demands is 822TEU, but it reduces to just 658TEU when
the multiplier is 0.8, thereby making the route feasible.

In summary, we can notice that a decrease in the demand corresponds to a roughly propor-
tional decrease in the total revenue, but the planner can respond with better fleet utilisation
and wider coverage. This shows that restructuring the routes can be an effective counter-
measure during extended periods of low demand.

In Table 4.6 we report the results of allowing to outsource some service. It can be noted that
admitting this possibility only resulted in small changes in the generated routes. The major
variation is recorded in the generated revenue, as ports that are not served earn nothing in
the base case, while they earn a small fraction of their revenue in the other cases.

It is interesting to notice that, when keeping 10% of the revenue, the total number of
services performed actually increased: the port of Saint Petersburg, which was served with
a dedicated vessel, was instead outsourced and the vessel was used to increase coverage of
other ports. This hints to the fact that the intuitive rule of thumb of focussing on high-demand
(and, therefore, high-revenue) ports in the strategic phase, and delegating the decision of
buying capacity on competitors to the tactical or operational stages, can lead to sub-optimal
results.

Finally, Table 4.7 shows what happens when we allow longer routes. In the base case, the
routes can last up to one week and there are 6 vessels available; in the 2-week case, we have
3 vessels; in the 3-week case, we only have 2 available vessels. It appears that the optimal
route duration from the point of view of revenue should be of 2 weeks, and that further
increasing the time horizon to three weeks actually gives worse solutions, even though still
slightly better than the 1-week base case.

While in the 1-week scenario we were using on average 3 vessels (out of 6 available), in the
2-week case we produce 3 rotations (thereby deploying all 6 vessels), and in the 3-week case
we produce 2 rotations (again deploying all 6 vessels). The number of services performed
increases, as do the highest load efficiency and the cargo travel distance. At the same time,
longer routes allow for lower speeds and, therefore, a lower share of costs attributable to the
bunker. We can compare the optimal solutions of instance Baltic1 for a 1-week (Figure 4.5)
and for a 2-week time horizon (Figure 4.8). Notice how the vessel that is serving Saint
Petersburg can now be reused in the second part of the route, after being unloaded at the
hub, and proceeds to serving Gothenburg and Christiansand. At the same time, the other
two vessels also perform longer routes.

This is probably the most impactful design decision, as the variation in earned revenue gets
up to +18.70%. Considering that the time horizon length is mostly an operator’s decision
which does not depend on external factors, this can surely be the most critical decision in the
design of a feeder network.

73

4 Maritime seaside logistics: the feeder network design problem

4.7 Conclusions

In this paper we proposed an exact algorithm for the solution of the Feeder Network Design
Problem. The algorithm can handle instances of realistic size and either solves them to
optimality, or finds a solution close to the computed lower bound. The modelling framework
is able to describe many real-world constraints and, as such, has been used to perform
scenario analysis with the objective to derive general guidelines for network planners.

In particular, we assessed: (1) The impact of bunker price on the profitability of the services;
we advise the planners to prioritise wider service coverage and fuel negotiations options.
(2) The importance of leg-by-leg speed optimisation; to this end, while slow steaming is a
consolidated practice for inter-continental services, we show that a combination of slower and
faster sailing speeds is more apt for feeder networks. (3) The effect of demand fluctuations; we
have showed that demand is a crucial factor in determining profitability, but the detrimental
effects of a prolonged period of low demend can be reduced if the planner responds with a
suitable network restructuring. (4) Outsourcing services by buying capacity on competitors
can have deep effects on the network design; capacity availability on competitors, however,
can be volatile and therefore we advise prudence when trying to incorporate this decision
at the strategic level. (5) Designing longer rotations and deploying more vessels to each
of them, can have a strong positive impact on profitability; however, the relationship is not
linear, and the planner must perform an accurate analysis to determine the optimal rotation
length.

As for future research avenues, we would like to retrieve realistic data for scenarios with
more ports, in order to better asses which are the largest instances that the algorithm can
solve to optimality. Furthermore, we would like to test the validity of the proposed approach
for similar problems, such as the TOP with pickup and delivery for which, at the best of our
knowledge, only one heuristic algorithm has been proposed [5].

Acknowledgments

We are grateful to the support from Optimization Manager Mikkel M. Sigurd from Mærsk
Line, for fruitful discussions which made this work possible. Stefan Røpke was supported by
The Danish Strategical Research Council and The Danish Energy Technology Development
and Demonstration Program (EUDP) under the ENERPLAN and GREENSHIP project. We are
also grateful to the anonymous referees for their comments, which greatly contributed to the
improvement of the present work.

74

Bibliography

[1] Richa Agarwal and Özlem Ergun. Ship scheduling and network design for cargo routing
in liner shipping. Transportation Science, 42(2):175–196, 2008.

[2] Martin Andersen. Service Network Design and Management in Liner Container Shipping
Applications. PhD thesis, Danish Technical University, 2010.

[3] Claudia Archetti, Dominique Feillet, Alain Hertz, and Maria Grazia Speranza. The
capacitated team orienteering and profitable tour problems. Journal of the Operational
Research Society, 60(6):831–842, 2009.

[4] Claudia Archetti, M Grazia Speranza, and Daniele Vigo. Vehicle routing problems with
profits. In Paolo Toth and Daniele Vigo, editors, Vehicle Routing: Problems, Methods,
and Applications. SIAM, 2014.

[5] DG Baklagis, G Dikas, and I Minis. The team orienteering pick-up and delivery problem
with time windows and its applications in fleet sizing. RAIRO-Operations Research, 50
(3):503–517, 2016.

[6] Maria Battarra, Artur Pessoa, Anand Subramanian, and Eduardo Uchoa. Exact al-
gorithms for the traveling salesman problem with draft limits. European Journal of
Operational Research, 235(1):115–128, 2014.

[7] Sylvain Boussier, Dominique Feillet, and Michel Gendreau. An exact algorithm for team
orienteering problems. 4OR: A Quarterly Journal of Operations Research, 5(3):211–230,
2007.

[8] Berit Brouer, Fernando Alvarez, Christian Plum, David Pisinger, and Mikkel Sigurd.
A base integer programming model and benchmark suite for liner-shipping network
design. Transportation Science, 48(2):281–312, 2013.

[9] Pierre Cariou. Is slow steaming a sustainable means of reducing CO2 emissions from
container shipping? Transportation Research Part D: Transport and Environment, 16(3):
260–264, 2011.

[10] Ching-Chih Chang and Chih-Min Wang. Evaluating the effects of speed reduce for
shipping costs and CO2 emission. Transportation Research Part D: Transport and Envi-
ronment, 31:110–115, 2014.

[11] Marielle Christiansen, Kjetil Fagerholt, and David Ronen. Ship routing and scheduling:
Status and perspectives. Transportation science, 38(1):1–18, 2004.

75

Bibliography

[12] Marielle Christiansen, Kjetil Fagerholt, Bjørn Nygreen, and David Ronen. Maritime
transportation. Transportation, 14:189–284, 2006.

[13] Marielle Christiansen, Kjetil Fagerholt, Bjørn Nygreen, and David Ronen. Ship routing
and scheduling in the new millennium. European Journal of Operational Research, 228
(3):467–483, 2013.

[14] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. State-space relaxation proce-
dures for the computation of bounds to routing problems. Networks, 11(2):145–164,
1981.

[15] Mauro Dell’Amico, Giovanni Righini, and Matteo Salani. A branch-and-price approach
to the vehicle routing problem with simultaneous distribution and collection. Trans-
portation Science, 40(2):235–247, 2006.

[16] Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu search, partial elemen-
tarity, and generalized k-path inequalities for the vehicle routing problem with time
windows. Transportation Science, 42(3):387–404, 2008.

[17] Maritime Research Drewry. Seaborne trade annual report 2013. Technical report,
Drewry, 2014.

[18] Yvan Dumas, Jacques Desrosiers, and Francois Soumis. The pickup and delivery prob-
lem with time windows. European Journal of Operational Research, 54(1):7–22, 1991.

[19] Jørgem Glomvik Rakke, Marielle Christiansen, Kjetil Fagerholt, and Gilbert Laporte.
The traveling salesman problem with draft limits. Computers & Operations Research, 39
(9):2161–2167, 2012.

[20] Stefan Irnich, Guy Desaulniers, et al. Shortest path problems with resource constraints.
Column generation, 6730:33–65, 2005.

[21] Christos Kontovas. The green ship routing and scheduling problem (gsrsp): A concep-
tual approach. Transportation Research Part D: Transport and Environment, 31:61–69,
2014.

[22] Marine Intelligence Unit Lloyd’s. Measuring global seaborne trade. Technical report,
Lloyd’s, 2009.

[23] Berit Løfstedt, Fernando Alvarez, Christian Plum, David Pisinger, and Mikkel Sigurd.
An integer programming model and benchmark suite for liner shipping network design.
Technical Report 19, DTU, Technical University of Denmark, 2010.

[24] Enrico Malaguti, Silvano Martello, and Alberto Santini. The traveling salesman problem
with pickups, deliveries, and draft limits. Omega, In press, 2017.

[25] Qiang Meng, Shuaian Wang, Henrik Andersson, and Kristian Thun. Containership rout-
ing and scheduling in liner shipping: overview and future research directions. Trans-
portation Science, 48(2):265–280, 2013.

76

Bibliography

[26] Judith Mulder and Rommert Dekker. Methods for strategic liner shipping network
design. European Journal of Operational Research, 235(2):367–377, 2014.

[27] Christian Plum, David Pisinger, Juan-José Salazar-González, and Mikkel Sigurd. Single
liner shipping service design. Computers & Operations Research, 45:1–6, 2014.

[28] Christian Plum, David Pisinger, and Mikkel Sigurd. A service flow model for the liner
shipping network design problem. European Journal of Operational Research, 235(2):
378–386, 2014.

[29] Harilaos Psaraftis and Christos Kontovas. Speed models for energy-efficient maritime
transportation: A taxonomy and survey. Transportation Research Part C: Emerging
Technologies, 26:331–351, 2013.

[30] Harilaos Psaraftis and Christos Kontovas. Ship speed optimization: Concepts, models
and combined speed-routing scenarios. Transportation Research Part C: Emerging
Technologies, 44:52–69, 2014.

[31] Line Blander Reinhardt and David Pisinger. A branch and cut algorithm for the container
shipping network design problem. Flexible Services and Manufacturing Journal, 24(3):
349–374, 2012.

[32] Alberto Santini. Maritime-vrp: v1.1, May 2016. URL
.

[33] Alberto Santini, Stefan Ropke, and Christian E.M. Plum. A branch-and-price approach
to the Feeder Network Design Problem. European Journal of Operational Research
(under revision), pages 1–16, 2017.

[34] Martin Savelsbergh and Marc Sol. Drive: Dynamic routing of independent vehicles.
Operations Research, 46(4):474–490, 1998.

[35] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications,
volume 18. Siam, 2014.

[36] Shuaian Wang and Qiang Meng. Sailing speed optimization for container ships in a
liner shipping network. Transportation Research Part E: Logistics and Transportation
Review, 48(3):701–714, 2012.

[37] Shuaian Wang and Qiang Meng. Liner shipping network design with deadlines. Com-
puters & Operations Research, 41:140–149, 2014.

[38] The World Shipping Council. The liner shipping industry and carbon emission policies.
Technical report, The World Shipping Council, 2009.

77

http://dx.doi.org/10.5281/zenodo.51312
http://dx.doi.org/10.5281/zenodo.51312

5 Maritime seaside logistics: the
travelling salesman problem with
pickup, delivery, and draft limits

Abstract We introduce a new generalization of the traveling salesman problem with
pickup and delivery, that stems from applications in maritime logistics, in
which each node represents a port and has a known draft limit. Each cus-
tomer has a demand, characterized by a weight, and pickups and deliveries
are performed by a single ship of given weight capacity. The ship is able
to visit a port only if the amount of cargo it carries is compatible with the
draft limit of the port. We present an integer linear programming formula-
tion and we show how classical valid inequalities from the literature can be
adapted to the considered problem. We introduce heuristic procedures and
a branch-and-cut exact algorithm. We examine, through extensive compu-
tational experiments, the impact of the various cuts and the performance of
the proposed algorithms.

5.1 Introduction

One of the most well known variants of the (asymmetric) Traveling Salesman Problem (TSP)
is the TSP with Pickup and Delivery (TSPPD). The problem is defined on a directed graph
G = (N , A) with node set N = {0,1, . . . , n, n+ 1, . . . 2n, 2n+ 1} and arc set A= {(i, j) : i, j 2
N}. Node 0 is the starting depot and node 2n+ 1 is the ending depot (that can eventually
coincide). Each arc (i, j) 2 A has a cost ci j � 0, and we assume that the triangle inequality
(ci j cik + ck j 8i, j, k 2 N) holds. One has to serve n customers, each of which is associated
with a pickup node i and a delivery node j. We assume, without loss of generality that, for
any customer i, the pickup node i is in {1, . . . , n}, and the corresponding delivery node j
coincides with n+ i. The objective is to find a Hamiltonian path of minimum total cost that
starts at node 0 and terminates at node 2n+ 1, in which the pickup node of every customer
is visited before the corresponding delivery node. Although a customer may be origin or

This chapter is based on the contents of: Enrico Malaguti, Silvano Martello, and Alberto Santini. The Travelling
Salesman Problem with pickups, deliveries, and draft limits. Omega (to appear), pages 1–17, 2017. doi:
10.1016/j.omega.2017.01.005.

78

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

destination of a number of different requests, we always associate two distinct nodes to each
request.

In the capacitated TSPPD (sometimes referred to in the literature as the TSPPD),

(i) each customer has a demand di , defined by a positive value (weight) associated with his
pickup node i. We conventionally associate dn+i = �di with the corresponding delivery
node. (For the depot, we assume d0 = d2n+1 = 0.);

(ii) pickups and deliveries are performed by a single vehicle of capacity Q;

(iii) at no time during the tour the total load of the vehicle can exceed Q;

(iv) the vehicle leaves and returns to the depot empty.

In the present work we consider a generalization of the capacitated TSPPD that stems from
maritime applications, in which nodes represent ports. Each node i 2 {1, . . . , 2n} has a draft
limit li > 0. In maritime terminology the draft is the distance between the waterline and
the bottom of the hull of a ship, and it varies as a function of the cargo onboard the ship. If
the draft of a ship is greater than the draft limit of a port, the ship is not able to enter and
operate safely at that port (see Figure 5.1). A ship could then deliver part of its cargo at other
ports, until its draft is small enough to allow a visit to the port. The relationship between the
amount of cargo onboard and the draft of a ship is given, and therefore the draft limit li can
be expressed with the same unit as the demands di and the capacity Q. In other words, for
the Traveling Salesman Problem with Pickups, Deliveries and Draft Limits (TSPPDD) it must
also hold that

Figure 5.1: In the picture above, the draft of a ship as a function of the cargo on board. In the picture below, a
ship able to enter a port (left) and one whose draft is too large to enter the same port (right).

79

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

(v) when traveling along arc (i, j), the total load of the ship cannot exceed min(li , l j).

We assume in the following, without loss of generality, that demands, ship capacity, and drafts
are positive integers.

The impact of drafts on maritime logistics is becoming more and more important, as the
average size of the vessels is increasing. While draft was traditionally an issue related mostly
with tankers and bulk vessels, it now involves container ships as well: the average size of a
container ship has increased by 19% just in the four years between January 2007 and January
2011 (see Notteboom and Vernimmen [12]). Upgrading port infrastructure is, most of the
time, too expensive and time consuming to be considered a feasible solution. Therefore, the
burden of ensuring a proper balance between the economy of scale provided by the bigger
vessels and the feasibility of the fleet composition and route planning, is left with the ship
operator. As observed by Tirschwell [18],

It’s a lot easier for a carrier CEO to sign an order for a new ship than for a port
to deepen its draft so that ships can enter or leave fully loaded. One takes 10
minutes, the other 10 years.

To the best of our knowledge, this is the first study on the TSPPDD, although the constraints
we impose have been separately considered by other authors.

Dumitrescu, Ropke, Cordeau, and Laporte [6] studied the polytope of the TSPPD, de-
rived facet-defining inequalities, and developed a branch-and-cut algorithm in which the
inequalities are separated heuristically. They solved to optimality instances with up to 35
origin-destination pairs.

Ropke, Cordeau, and Laporte [16] and Ropke and Cordeau [15] studied the pickup and
delivery problem with time windows, i.e., a multi-vehicle generalization of the TSPPD in
which customers can only be visited within their opening time. The former paper presents
a branch-and-cut algorithm, while the latter improves on it, by using a branch-and-cut-
and-price approach. The traveling salesman problem with draft limits was introduced by
Glomvik Rakke, Christiansen, Fagerholt, and Laporte [7]. In this problem, the ship starts
from the depot completely loaded and the objective is to find the shortest Hamiltonian path to
satisfy the demands of the customers without violating the drafts limits. They proposed two
formulations, a branch-and-cut algorithm, and a method to strengthen the bounds through
the solution of knapsack problems. The approach was tested on 240 instances with up to 48
nodes, derived from the TSP Library.

Battarra, Pessoa, Subramanian, and Uchoa [3] investigated the same problem, proposing
mathematical formulations as well as a branch-and-cut and a branch-and-cut-and-price al-
gorithm. The latter algorithm proved to be very effective and solved to optimality all the
instances proposed in [7].

A constraint that can remind our draft constraint has been considered by Ma, Cheang, Lim,
Zhang, and Zhu [10], who studied a vehicle routing problem with link capacity constraints,
in which road links (i.e., arcs) have limitations on the tonnage of the vehicles allowed to
travel along them.

Differently from other generalizations of the TSP (see, e.g., Cordeau, Nossack, and Pesch
[5]), the TSPPDD does not have a natural decomposition into simpler problems. In the

80

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

next section we present a mathematical model for the TSPPDD. In Section 5.3 we obtain a
number of valid inequalities that are used in Section 5.4 to obtain a branch-and-cut algorithm.
In order to provide a good initial solution to the algorithm, a heuristic and a local search
approach are proposed in Section 5.5. Computational experiments are presented in Section
5.6, and conclusions follow in Section 5.7.

5.2 Mathematical model

In this section we present an Integer Linear Programming (ILP) formulation of the TSPPDD,
and we show how it can be simplified through arc removal.

5.2.1 Integer Linear Program

For each arc (i, j) 2 A, let xi j be a binary variable taking the value 1 if and only if arc (i, j)
is part of the solution, and yi j be an integer variable representing the quantity of cargo on
board the ship when traveling along arc (i, j).

Let us define two parameters, �i j and �i j, to represent a lower and an upper bound,
respectively, on yi j . The former can be defined as

�i j =

8

>

>

<

>

>

:

di if i 2 {1, . . . , n} and j 2 {1, . . . , n}[{n+ i} ; (5.1)

�dj if i, j 2 {n+ 1, . . . , 2n}; (5.2)

di � dj if i 2 {1, . . . , n} and j 2 {n+ 1, . . . , 2n} \ {n+ i}; (5.3)

0 otherwise. (5.4)

In case (5.1) i is an origin and j is either another origin or the destination of i: a ship
traveling along (i, j) must carry at least the cargo picked up at i. In case (5.2) both i and j
are destinations: the cargo destined to j must be on board when traveling along (i, j). In
case (5.3) i is an origin and j is a destination either than that of i: a ship traveling along
(i, j) must carry both the cargo picked up at i and the one to be delivered at j. Finally, if i is
a destination and j is an origin, the ship could possibly be empty.

An obvious upper bound on yi j is min{li , l j ,Q}. A tighter bound may be obtained by
decreasing these three quantities as

�i j =min{li +min{0, di}, l j �max{0, dj},Q�max{0,�di , dj}} (5.5)

Indeed: (i) if i is a destination then the minimum between li and Q may be decreased by the
amount of cargo delivered at i; (ii) if j is an origin then the minimum between l j and Q may
be decreased by the amount of cargo to be picked up at j.

The TSPPDD can then be formally defined through the following Integer Linear Program-
ming (ILP) model:

min
X

i2N

X

j2N

ci j xi j (5.6)

81

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

s.t.
X

j2N

xi j = 1 (i = 0, . . . , 2n) (5.7)

X

i2N

xi j = 1 (j = 1, . . . , 2n+ 1) (5.8)

�i j xi j yi j �i j xi j (i, j = 1, . . . , 2n) (5.9)
X

j2N

yi j �
X

j2N

yji = di (i = 1, . . . , 2n) (5.10)

X

j2N

y0 j = 0 (5.11)

X

j2S

xi j � 1 (i = 1, . . . , n; S ⇢ N : i /2 S and n+ i 2 S) (5.12)

X

j2S

xi j � 1 (i = n+ 1, . . . , 2n; S ⇢ N : i 62 S and 2n+ 1 2 S) (5.13)

xi j 2 {0,1}, yi j 2 N (i, j = 0, . . . , 2n+ 1). (5.14)

The objective function (5.6) minimizes the total cost of the route. Constraints (5.7) and (5.8)
ensure that the ship starts from depot 0 and ends at depot 2n+ 1 after having visited every
port exactly once. Constraints (5.9) guarantee the feasibility of the quantity of cargo onboard
at any time. Constraints (5.10) impose that all pickups and deliveries be fulfilled. Constraint
(5.11) ensures that the ship starts its route with no load. The precedence constraints (5.12)
enforce each origin to be visited before the corresponding destination, while constraints
(5.13) impose that depot 2n+ 1 be visited after all destinations. Note that constraints (5.7),
(5.8), (5.12) and (5.13) together ensure that the classical subtour elimination constraints be
satisfied.

5.2.2 Arc removal due to precedence, capacity and draft constraints

The ILP model can be enhanced by removing arcs from set A according to the following
considerations:

• self-loop arcs (i, i) (i 2 N) are not considered;

• arcs of the form (0, n + i) or (i, 2n + 1) (i 2 {1, . . . , n}) cannot be part of a feasible
solution, as they would violate precedence constraints;

• arcs of the form (n+ i, i) (i 2 {1, . . . , n}) would make no sense in a solution;

• arcs of the form (i, j) (i, j 2 {1, . . . , n}) such that di + dj > min{l j ,Q} would violate
either the draft limit at j or the ship capacity;

• arcs of the form (n+ i, n+ j) (i, j 2 {1, . . . , n}) such that di + dj >min{ln+i ,Q} would
violate either the draft limit at n+ i or the ship capacity;

• arcs of the form (i, n+ j) (i, j 2 {1, . . . , n}, j 6= i) such that di + dj > min{li , ln+ j ,Q}
would violate either the draft of i, or the draft of n+ j, or the ship capacity.

82

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

5.3 Valid inequalities

The TSPPDD is as a generalization of the TSPPD which, in turn, is a special case of the
Precedence Constrained TSP (PCTSP) in which the solution must satisfy precedence relations
i � j imposed to a set of node pairs. A number of valid TSPPD or PCTSP inequalities are
either valid or can be adapted to the TSPPDD, as well as to other related problems (see, e.g.,
Xue, Luo, and Lim [19]). We considered in particular subtour-elimination, generalized order,
capacity and fork cuts.

5.3.1 Subtour elimination cuts

Given a set S ⇢ N , let A(S) = {(i, j) : i, j 2 S} and S̄ = N \ S. The classical TSP facet-defining
subtour-elimination cut is

X

(i, j)2A(S)

xi j |S|� 1 8S ⇢ N . (5.15)

We will adopt the notation of Cordeau [4], namely:

�(S) = {i 2 N : n+ 1 i 2n and i � n 2 S} (successor nodes);
⇡(S) = {i 2 N : 1 i n and n+ i 2 S} (predecessor nodes).

Balas, Fischetti, and Pulleyblank [2] have lifted (5.15) for the PCTSP through the precedence
constraints. As each node (but the depots) is the predecessor or successor of exactly one
other node, (5.15) can be lifted in two ways. Let �(S, T) = {(i, j) 2 A : i 2 S, j 2 T}. For
predecessors, we have:

X

(i, j)2A(S)

xi j +
X

(i, j)2�(S\⇡(S),S̄\⇡(S))
xi j +

X

(i, j)2�(S,S̄\⇡(S))
xi j |S|� 1 8S ⇢ N , (5.16)

while for successors we have
X

(i, j)2A(S)

xi j +
X

(i, j)2�(S̄\�(S),S\�(S))
xi j +

X

(i, j)2�(S̄\�(S),S)
xi j |S|� 1 8S ⇢ N . (5.17)

Consider the relaxation of the TSPPDD obtained by eliminating the constraints on draft limits
and ship capacity. The resulting problem is a special case of the PCTSP, and hence inequalities
(5.16) and (5.17) are valid for the TSPPDD as well.

Another TSP facet-defining cut can be found by a different lifting of (5.15). Given a set
S ⇢ N with h= |S|� 3, and any ordering of its nodes S = {i1, . . . , ih}, Grötschel and Padberg
[8] proved that the following inequalities are valid for the TSP:

h�1
X

k=1

xik ,ik+1
+ xih,i1 + 2

h�1
X

k=2

xik ,i1 +
h�1
X

k=3

k�1
X

l=2

xik ,il |S|� 1. (5.18)

h�1
X

k=1

xik ,ik+1
+ xih,i1 + 2

h
X

k=3

xi1,ik +
h
X

k=4

k�1
X

l=3

xik ,il |S|� 1. (5.19)

83

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

The dial-a-ride problem is a routing problem in which one has to design vehicle routes
and schedules for a set of requests which specify pickup and delivery between origins and
destinations. Cordeau [4] proved that, for such problem, the above cuts can be further
strengthened by adding a term that takes into account the resulting precedence constraints,
obtaining:

h�1
X

k=1

xik ,ik+1
+ xih,i1 + 2

h�1
X

k=2

xik ,i1 +
h�1
X

k=3

k�1
X

l=2

xik ,il +
X

j2S̄\�(S)
x j,i1 |S|� 1, (5.20)

h�1
X

k=1

xik ,ik+1
+ xih,i1 + 2

h
X

k=3

xi1,ik +
h
X

k=4

k�1
X

l=3

xik ,il +
X

j2S̄\⇡(S)
xi1, j |S|� 1. (5.21)

Since the precedence constraints of the dial-a-ride problem are the same as those of the
TSPPDD, these cuts are also valid for our problem.

5.3.2 Generalized order cuts

Another family of valid inequalities, called generalized m-order constraints, was introduced by
Ruland and Rodin [17] for the TSPPD. Given m disjoint subsets S1, . . . , Sm ⇢ N such that none
of them contains 0 or 2n+1, if it is possible to find a sequence of nodes i1, . . . , im 2 {1, . . . , n}
such that:

ik 2 Sk (k = 1, . . . , m),
n+ ik+1 2 Sk (k = 1, . . . , m� 1),
n+ i1 2 Sm,

then the following inequality is valid:

m
X

l=1

X

(i, j)2A(Sl)

xi j
m
X

l=1

|Sl |�m� 1. (5.22)

It has been proved in [4] that, by taking into account the precedences induced by pickup and
delivery, these cuts can be lifted in two ways:

m
X

l=1

X

(i, j)2A(Sl)

xi j +
m�1
X

l=2

xi1,il +
m
X

l=3

xi1,n+il
m
X

l=1

|Sl |�m� 1; (5.23)

m
X

l=1

X

(i, j)2A(Sl)

xi j +
m�2
X

l=2

xn+i1,il +
m�1
X

l=2

xn+i1,n+il
m
X

l=1

|Sl |�m� 1. (5.24)

Again, the validity for the TSPPDD comes from the consideration that the precedence con-
straints of the two problems coincide.

84

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

5.3.3 Capacity-draft cuts

Given a subset S ⇢ N , let d(S) =
P

i2S di . Consider a set S such that d(S)> 0, and define the
reduced capacity with respect to S as Q(S) = min(Q,maxi2S{li}) (upper bound on the load
when visiting a node of S). An immediate lower bound on the number of times a vehicle
must visit S is then

X

(i, j)2�(S,S̄)

xi j =
X

(i, j)2�(S̄,S)

xi j � dd(S)/Q(S)e. (5.25)

Following Ropke, Cordeau, and Laporte [16], cut (5.25) can be strengthened by considering
two sets S, T ⇢ N with q(S)> 0, and defining U = ⇡(T) \ (S [T). We obtain

X

(i, j)2A(S)

xi j +
X

(i, j)2A(T)

xi j +
X

(i, j)2�(S,T)

xi j |S|+ |T |�
°

d(S) + d(U)
Q(S [T)

§

, (5.26)

which coincides with the cut obtained by [16], with the only difference that Q(S [T) replaces
Q.

5.3.4 Fork cuts

Consider any routing problem in which a feasible path P = (k1, . . . , kr) becomes infeasible if
two nodes i 2 S and j 2 T (S, T ⇢ N), are added at the beginning and at the end of P. Then
the fork inequality

X

i2S

xi,k1
+

r�1
X

h=1

xkh,kh+1
+
X

j2T

xk, j r (5.27)

obviously holds. It has been shown in [16] that (5.27) can be strengthened through sets
of nodes that produce intermediate infeasible paths. Specifically we consider subsets S,
T1, . . . , Tr ⇢ N such that kh 62 Th�1 for h= 2, . . . r. If the path (i, k1, . . . , kh, j) is infeasible for
any h r and any pair (i 2 S, j 2 Th), then the outfork inequality

X

i2S

xi,k1
+

r�1
X

h=1

xkh,kh+1
+

r
X

h=1

X

j2Th

xkh, j r (5.28)

prohibits infeasible paths obtained by prematurely leaving P. Exactly in the same way one
can derive infork inequalities by prohibiting infeasible paths obtained by entering P at an
intermediate node. As these cuts are valid for any routing problem in which one can decide
whether a certain path is infeasible, they hold for the TSPPDD as well.

5.4 Branch-and-cut algorithm

We implemented a branch-and-cut algorithm based on the root-node formulation (5.6)-(5.14).
At the root node we relax constraints (5.12)-(5.13), which impose precedence and subtour-
elimination. At each decision node, we separate those inequalities that are violated by the
current (fractional) solution. In addition to these two families of constraints, which ensure

85

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

feasibility, we generate the cuts described in Section 5.3. The branch-decision tree exploration
is managed by a general purpose software (e.g, CPLEX). In this section we describe how the
model was strengthened and how the cuts were separated.

5.4.1 Strengthened model

In order to strengthen the root-node formulation, we added two sets of constraints to the
relaxed model.

Classical 2-cycle elimination constraints

xi j + x ji 1 8 (i, j) 2 A : j > i and (j, i) 2 A. (5.29)

Property 5.4.1. In spite of their simplicity, constraints (5.29) are not implied by the relaxed
model (5.6)-(5.11), (5.14). Indeed

Proof. It is enough to consider the case i n, j > n, j 6= n+i, dj = �di . Solution xi j = x ji = 1,
yi j = di , yji = 0 does not violate (5.10), but it violates (5.29). É

There are O(n2) potential 2-cycle elimination constraints, hence their addition to the model
is not computationally heavy. The experiments showed however that they have limited impact
on the solution quality, so we developed the following specialized constraints, that gave much
better results.

Draft oriented 2-path elimination constraints

xi j + x jk 1 8 i, j, k 2 {1, . . . , 2n} : certain conditions (see below) hold. (5.30)

Property 5.4.2. Inequalities (5.30) are valid for the following cases (corresponding to the
enumeration of all possible characterizations of i, j, k), in which a path (i, j, k) would violate
either a draft (cases 1-6) or a precedence (cases 7 and 8) constraint (see Figure 5.2, where pickup
nodes are drawn bigger than delivery nodes, and the value on an arc gives the minimum load
the ship would have when traveling along it):

1. i n, j n, k n and di + dj + dk >min(Q, lk).

2. i n, j n, k > n, k 6= n + i, k 6= n + j and either di + dj � dk > min(Q, l j , lk) or
di � dk >min(Q, li , l j);

3. i n, j > n, k n, j 6= n+ i and di + dk >min(Q, lk);

4. i n, j > n, k > n, j 6= n + i, k 6= n + i and either di � dj � dk > min(Q, li , l j) or
di � dk >min(Q, l j , lk);

5. i > n, j n, k > n, k 6= n+ j and �di � dk >min(Q, li);

6. i > n, j > n, k > n and �di � dj � dk >min(Q, li);

86

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

•
i

•
j

•
k

0 di di + dj
di + dj
+dk

(a)

•
i

•
j

•
k

�dk di � dk

di + dj�dk di + dj

(b)

•
i

•
j

•
k

�dj di � dj di di + dk

(c)

•
i

•
j

•
k

�dj � dk
di � dj�dk di � dk di

(d)

•
i

•
j

•
k

�di � dk �dk dj � dk dj

(e)

•
i

•
j

•
k

�di � dj�dk �dj � dk �dk 0

(f)

Figure 5.2: Minimum load on board a ship traveling along arcs (i, j) and (j, k).

7. i > n, j n, k n and i = n+ k;

8. i > n, j > n, k n and i = n+ k;

Proof. Consider Case 1: the load on the arc leaving k would be at least di + dj + dk (Figure
5.2a). Very similar reasonings, immediately emerging from the figures, prove: Case 2 (Figure
5.2b), and note that the last condition is equivalent to di � dk > li); Case 3 (Figure 5.2c);
Case 4 (Figure 5.2d, and note that the last condition is equivalent to as di � dk > lk); Case
5 (Figure 5.2e); Case 6 (Figure 5.2f). In cases 7 and 8 no draft violation occurs, but the
precedence condition between i and k would be violated. É

The number of potential 2-path constraints is O(n3) but their inclusion into the model
proved to be effective. Note in addition that, as these constraints represent incompatibilities
between pairs of arcs, it would be possible to aggregate some of them into stronger clique
inequalities, representing incompatibilities between subsets of arcs. This is however auto-
matically done by the solver we used (CPLEX), so there would be no advantage in doing it
explicitly.

5.4.2 Cut separation

The precedence inequalities (5.12) and (5.13) can both be separated exactly in polynomial
time through series of max-flow problems. Violated inequalities (5.12) can be found by
solving n max-flow problems from i to n+ i (i = 1, . . . , n), where the arc capacities are the
values of variables xi j . Violated inequalities (5.13) can be found by solving, in an analogous
way, n max-flow problems from n+ i to 2n+ 1 (i = 1, . . . , n). Details on these separation
methods can be found, e.g., in Padberg and Hong [13].

All the cuts discussed in Section 5.3 were instead separated in a heuristic way. A heuristic
separation method for subtour elimination cuts (5.16) and (5.17) was given by [4]. Observe
that, for any set S 6= ;, the arcs incident with all nodes of S can either belong to �+(S), or to

87

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

��(S), or to A(S) (in which case they appear twice), and hence
X

(i, j)2�+(S)[��(S)
xi j + 2

X

(i, j)2A(S)

xi j = 2 |S|. (5.31)

By combining (5.31) with twice (5.16) in one case, and twice (5.17) in the other, one obtains
X

(i, j)2�+(S)[��(S)
xi j � 2

X

(i, j)2�(S\⇡(S),S̄\⇡(S))
xi j � 2

X

(i, j)2�(S,S̄\⇡(S))
xi j � 2 (5.32)

X

(i, j)2�+(S)[��(S)
xi j � 2

X

(i, j)2�(S̄\�(S),S\�(S))
xi j � 2

X

(i, j)2�(S̄\�(S),S)
xi j � 2 (5.33)

We therefore heuristically search for subsets S violating (5.32) or (5.33), using the simple
Tabu search scheme proposed by Augerat [1] for the capacitated vehicle routing problem.
Consider the separation of (5.16) through (5.32). The search starts from an empty set S
and iteratively adds or removes elements from S, trying to minimize the left hand side of
(5.32). When a node is removed from S, its insertion is marked as tabu for a certain number
of iterations. In addition, at each iteration, if |S|� 3, the current set S is also used to check
whether (5.20) is violated: in fact, we can choose i1 of (5.20) as the node with the largest
outflow and compute the left-hand side of (5.20) by numbering all other nodes at random.
A similar procedure is used for separating (5.17) through (5.33) as well as, if |S| � 3, for
checking whether (5.21) is violated.

We separate generalized order cuts (5.23) and (5.24) only for m= 3 and |Sl | = 2 (l = 1, 2, 3)
as, for larger values, they become computationally very expensive. Notice that in this case
sets Sl can be written as:

S1 = {i1, n+ i2}, S2 = {i2, n+ i3}, S3 = {i3, n+ i1}

and equation (5.23) becomes:

xi1,n+i2 + xn+i2,i1 + xi2,n+i3 + xn+i3,i2 + xi3,n+i1 + xn+i1,i3 + xi1,i2 + xi1,n+i3 2. (5.34)

For every possible choice of i1 2 {1, . . . , n}, we find the node i2 2 {1, . . . , n} such that the
three terms containing only indices i1, i2, n+ i2 in the lhs of (5.34) are maximized. Then, we
find the node i3 2 {1, . . . , n} that maximizes the other five terms. In other words, for (5.23)

i2 = arg max
1 jn
{xi1,n+ j + xn+ j,i1 + xi1, j}; (5.35)

i3 = arg max
1 jn
{xi2,n+ j + xn+ j,i2 + x j,n+i1 + xn+i1, j + xi1,n+ j}, (5.36)

and analogously, for (5.24):

i2 = arg max
1 jn
{xi1,n+ j + xn+ j,i1 + xn+i1,n+ j}; (5.37)

i3 = arg max
1 jn
{xi2,n+ j + xn+ j,i2 + x j,n+i1 + xn+i1, j}. (5.38)

88

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

We separate capacity-draft cuts (5.26) using the procedure detailed in [16] which starts
with sets S = {i} and T = {n+ j} for all possible i, j 2 {1, . . . , n} and tries to augment these
sets at each iteration.

Finally, fork cuts are separated in both their basic version (5.27), and in the strenghtened
infork and outfork versions (see (5.28)). The path P = (k1, . . . , kr) that forms the backbone
for the cut is constructed as follows. We fix a node k0 2 {1, . . . , 2n} and we consider all
paths (k0, k1, . . . , kr) for r � 2, that can be constructed by adding arcs corresponding to base
columns of the linear relaxation of the problem. In other words, arc (i, j) is used to extend
the path only if xi j > 0. For each such path, set T is constructed as

T = { j : j 62 P and (k0, k1, . . . , kr , j) is infeasible},

and the corresponding set S is

S = {i : i 62 P and (i, k1, . . . , kr , j) is infeasible for all j 2 T}.

Notice that, by construction, k0 2 S. An inequality (5.27) is added whenever it is violated
by the current choice of P, S, and T . For non-violated inequalities, we attempt lifting into
outfork and infork inequalities. For example, we attempt to find a violated outfork inequality
(5.28) by adding, in a greedy way, as many nodes as possible to sets T1, . . . , Tr . Attempting
this procedure for all r values would clearly be computationally too expensive, and hence,
on the basis of preliminary experiments, we only considered paths with r 6. In addition,
whenever we check a sub-path for feasibility, we store the result in a hash table from which it
can be retrieved at a later time. The feasibility check ensures that no precedence constraint is
violated and that the draft limits are respected, by assuming that the ship is has the minimum
possible load when it enters the sub-path.

5.5 Heuristic algorithms

In this section we present the heuristics used to obtain feasible initial solutions to the TSPPDD.
We will call an origin-destination pair (i, n+ i) a request. We will call an insertion of a request
in a partial path a couple (porig, pdest) that indicates the positions in the partial path where,
respectively, the origin and the destination of the request are inserted. Our approach consists
of two constructive heuristics, followed by a refinement procedure.

5.5.1 Constructive heuristics

Our constructive heuristics start with an empty path and proceed by inserting one request at a
time, until no requests are left (and hence an initial feasible solution has been obtained). We
considered two approaches, denoted as Sorted Insert and Best Insert. In the former approach,
the requests are preliminarily ordered according to some score that only depends on the
requests themselves, and then are inserted one by one in such order: the current request
is inserted in a position chosen according to a heuristic criterion. In the latter approach, at
each iteration, each non-inserted request is assigned a score and a possible insertion, and the
request with the highest score is correspondingly inserted.

89

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

The heuristics build a solution by using two kinds of scores, one related to the requests,
and one related to their insertion. The request scores are

R1 the cost ci,n+i of the origin-destination arc;

R2 the value min(li , ln+i)� di of the additional load the ship can carry when entering the
two ports.

In order to introduce the insertion scores, let us define, for a path P:

• cP =
P

(i, j)2P ci j , the cost of the path;

• dP =
P

(i, j)2P:1in di , the total load picked up along the path;

• wP =
P

(i, j)2P(min{Q, li , l j} � yi j), where yi j is the load of the ship when traveling
along arc (i, j): wP represents the waste of capacity along the path.

The insertion score is assigned to a possible insertion (porig, pdest) by considering the extended
path P given by the insertion. Four scores (the lower, the better) were evaluated:

I1 cP , the cost of the new path;

I2 cP dP , a measure that favors paths with low cost, while giving priority to requests with
low demand;

I3 cP + ⇢dP , where ⇢ > 0 is a prefixed parameter, a measure similar to the previous
measure, but with lesser impact of dP . (We adopted, on the basis of preliminary com-
putational experiments, the value ⇢ = 1);

I4 cP wP , a measure that favors paths with low cost and high capacity utilization.

Four Sorted Insert procedures were obtained by sorting the requests according to decreasing
or increasing request score R1 or R2. For each of them, the insertion was decided using, as
insertion score, either I1 or I4 (note that I2 and I3 need not be considered, since once the
current request has been fixed, dP is constant for all insertions). In total this results in eight
different implementations.

Four Best Insert procedures were obtained by respectively evaluating, for each non-inserted
request, insertion scores I1-I4. For each of them, two implementations were obtained by
selecting the next request and position either as the one providing the smallest insertion
score, or the one providing the largest regret, i.e., the largest difference between the second
minimum and the minimum insertion score (or the insertion score, when only one insertion
is feasible). In this case too we thus obtained eight different implementations.

For the values of n we used in our computational experiments, the CPU time taken by these
procedures is negligible, hence all of them were executed (and refined, as shown in the next
section). Other scores were attempted too, but the sixteen implementations we described
were the only non dominated ones.

90

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

5.5.2 Refinement

The feasible solutions produced by the constructive heuristics were improved through a very
simple Tabu search, defined by the following ingredients:

• move: three-opt (see Lin [9]) with check on the feasibility of the resulting solution.
Notice that, for an oriented graph, every triplet of arcs has just one possible recombi-
nation;

• Tabu list: for each move, the cheapest removed arc is stored;

• Tabu tenure: a prefixed parameter (having value 30 in our implementation);

• halting criteria: a prefixed maximum number of iterations, or of iterations with no
improvement. (We used values 50000 and 500, respectively, in our experiments).

5.6 Computational experiments

The exact and heuristic approaches of the previous sections were implemented in C++ and
run on an Intel Xeon 3.10 GHz with 8 GB RAM, equipped with four cores. In order to allow
future fair comparisons, all the experiments were performed by setting to one the number of
threads.

We used IBM ILOG CPLEX 12.6 as ILP solver for the branch-and-cut algorithm of Section
5.4. Remind that we relax the precedence and subtour-elimination inequalities (5.12)-(5.13):
at each decision node, the inequalities that are violated by the current solution are separated
and added via a CPLEX callback. The additional valid inequalities of Section 5.3 were not
generated at each decision node: the decision about separation is taken according to different
probabilistic distributions, depending on the number of explored nodes and on the specific
cut. Namely, the probability of separation linearly decreases from 1 to ↵ for nodes 1–100,
from � to � for nodes 101–20 000, while it is set to � for all subsequent nodes. Good values
of ↵, � and � were determined, through preliminary computational experiments, as

• subtour elimination cuts: ↵= 0.9, � = 0.5, �= 0.05;

• generalized order cuts: ↵= 1 (always separated), � = 1, �= 0.1;

• capacity-draft cuts: ↵= 0.75, � = 0.125, �= 0.0125;

• fork cuts: ↵= 0.75, � = 0.0625, �= 0.00625.

We randomly generated our benchmark starting from the eight instances of the
[14] that have been used in [7] and in [3] to generate benchmarks for the TSP with draft
limits: bayg29, burma14, fri26, gr17, gr21, gr48, ulysses16, and ulysses22. From each TSP
instance we obtained TSPPDD instances having 2n+ 2 nodes, with n 2 {10,14,18,22}, as
follows. For each value of n,

91

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

|N
|

C
Ba

si
c

m
od

el
2-

cy
cl

e
2-

pa
th

Su
bt

.e
lim

.
G

en
.o

rd
er

C
ap

.-d
ra

ft
Fo

rk
B&

C

Ro
ot

Fi
na

l
Ro

ot
Fi

na
l

Ro
ot

Fi
na

l
Ro

ot
Fi

na
l

Ro
ot

Fi
na

l
Ro

ot
Fi

na
l

Ro
ot

Fi
na

l
Ro

ot
Fi

na
l

22
0.

1
4.

06
0.

00
3.

88
0.

00
4.

02
0.

00
4.

01
0.

00
4.

01
0.

00
3.

78
0.

00
2.

65
0.

00
2.

47
0.

00
22

0.
3

16
.8

4
2.

30
16

.6
9

2.
33

18
.0

3
2.

22
16

.2
7

1.
87

16
.4

2
1.

78
16

.3
1

1.
76

14
.2

8
0.

33
14

.2
0

0.
32

22
0.

5
20

.3
5

2.
98

20
.6

9
3.

21
21

.0
6

2.
84

19
.9

6
2.

10
20

.1
2

3.
05

20
.0

9
2.

95
19

.6
7

1.
92

19
.2

3
1.

52
22

2.
0

9.
99

0.
00

10
.0

5
0.

00
9.

71
0.

00
8.

74
0.

00
9.

90
0.

00
9.

53
0.

00
9.

77
0.

00
8.

72
0.

00
30

0.
1

15
.9

5
6.

51
15

.5
6

6.
46

15
.7

8
6.

63
15

.8
3

6.
19

15
.8

7
6.

07
15

.2
2

5.
65

12
.3

7
2.

67
12

.3
5

2.
41

30
0.

3
27

.4
7

19
.3

5
27

.4
2

19
.0

9
27

.4
5

19
.2

5
27

.0
0

18
.2

3
27

.4
3

18
.9

5
26

.9
7

18
.6

3
26

.5
2

17
.1

1
25

.9
3

16
.0

2
30

0.
5

24
.3

4
15

.9
6

24
.2

9
16

.2
0

24
.3

4
16

.1
6

23
.7

1
14

.5
4

24
.3

0
16

.0
3

24
.3

0
16

.0
1

23
.9

6
15

.5
1

23
.4

4
14

.0
1

30
2.

0
10

.2
7

0.
83

10
.2

8
0.

77
10

.2
7

0.
74

9.
89

0.
14

10
.2

0
0.

79
10

.2
8

0.
82

10
.2

7
0.

83
9.

89
0.

09
38

0.
1

19
.7

4
15

.0
7

19
.4

7
15

.0
6

19
.7

4
15

.0
2

19
.6

8
14

.8
8

19
.6

9
14

.8
2

18
.9

2
13

.7
9

16
.9

6
9.

45
16

.0
0

8.
88

38
0.

3
28

.7
4

24
.7

4
28

.5
1

24
.7

4
28

.6
1

24
.6

6
28

.5
5

24
.4

9
28

.5
4

24
.7

8
28

.4
5

24
.5

8
28

.2
0

23
.9

3
27

.7
8

22
.3

9
38

0.
5

23
.5

3
19

.5
3

23
.6

3
19

.5
0

23
.5

3
19

.5
4

23
.4

3
19

.0
3

23
.1

5
19

.0
1

23
.5

3
19

.3
7

23
.3

2
18

.9
6

23
.1

5
18

.4
5

38
2.

0
10

.4
7

4.
16

10
.4

8
4.

20
10

.4
7

4.
15

10
.4

3
3.

71
10

.4
4

3.
98

10
.4

3
4.

49
10

.4
7

4.
62

10
.4

3
4.

56
46

0.
1

24
.6

7
21

.5
9

24
.5

7
21

.5
1

24
.6

7
21

.5
6

24
.6

1
21

.5
0

24
.5

8
21

.6
1

23
.7

1
20

.5
4

21
.1

4
15

.8
5

19
.9

4
15

.1
7

46
0.

3
36

.7
9

34
.6

4
36

.7
4

34
.5

9
36

.7
4

34
.4

9
36

.7
0

34
.4

0
36

.7
9

34
.6

7
35

.9
3

33
.5

4
36

.4
0

34
.1

4
35

.2
5

31
.3

5
46

0.
5

29
.6

8
27

.4
0

29
.4

0
27

.4
0

29
.5

6
27

.4
2

29
.6

2
27

.0
7

29
.7

1
27

.4
2

29
.5

7
27

.2
3

29
.5

9
27

.3
7

29
.2

3
26

.1
2

46
2.

0
15

.2
7

12
.8

2
15

.3
2

12
.7

9
15

.2
4

12
.4

3
15

.2
3

11
.9

4
15

.2
6

12
.6

6
15

.2
7

12
.9

6
15

.2
7

12
.8

0
15

.2
3

11
.9

4

Av
er

ag
e

21
.8

2
14

.9
6

21
.7

2
14

.9
6

21
.6

2
14

.6
9

21
.5

7
14

.4
8

21
.7

0
14

.8
1

21
.4

0
14

.5
1

20
.5

0
13

.2
2

18
.3

3
10

.8
3

Ta
bl

e
5.

1:
Ef

fe
ct

of
el

im
in

at
io

n
co

ns
tr

ai
nt

s
an

d
cu

ts
on

th
e

pe
rc

en
ta

ge
ga

ps
be

tw
ee

n
up

pe
r

an
d

lo
w

er
bo

un
d.

92

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

C
P

|N
|=

22
|N
|=

30
|N
|=

38
|N
|=

46

C
H

TS
B&

C
O

PT
C

H
TS

B&
C

O
PT

C
H

TS
B&

C
O

PT
C

H
TS

B&
C

O
PT

0.
1

0
0.

14
0.

00
0.

00
8

1.
79

1.
03

1.
03

7
8.

86
6.

20
6.

20
5

12
.3

4
8.

05
7.

97
0

0.
1

0.
33

0.
37

0.
00

0.
00

8
1.

53
0.

16
0.

16
7

11
.3

8
8.

75
8.

75
2

16
.3

9
12

.4
9

12
.4

9
0

0.
1

0.
67

0.
38

0.
00

0.
00

8
4.

44
3.

39
3.

39
6

13
.2

6
9.

71
9.

71
3

23
.9

6
19

.2
9

19
.2

9
0

0.
1

1
0.

10
0.

00
0.

00
8

5.
94

5.
07

5.
07

4
14

.0
1

10
.8

5
10

.8
5

1
26

.0
0

20
.9

6
20

.9
4

0
0.

3
0

0.
29

0.
00

0.
00

8
18

.1
8

16
.2

6
16

.1
9

1
28

.0
4

22
.9

9
22

.9
9

0
37

.5
8

32
.3

6
32

.3
6

0
0.

3
0.

33
0.

91
0.

00
0.

00
8

20
.4

6
17

.1
9

17
.1

9
0

31
.8

1
26

.9
2

26
.9

2
0

41
.5

2
35

.4
8

35
.4

8
0

0.
3

0.
67

0.
72

0.
00

0.
00

8
19

.3
8

16
.3

7
16

.3
7

0
29

.1
0

22
.5

0
22

.5
0

0
40

.4
4

31
.3

7
31

.3
7

0
0.

3
1

1.
74

1.
27

1.
27

7
18

.5
8

14
.3

5
14

.3
5

0
26

.2
9

17
.1

6
17

.1
6

0
34

.2
7

26
.1

7
26

.1
7

0
0.

5
0

4.
37

2.
14

2.
14

5
23

.9
8

21
.5

3
21

.5
3

0
31

.9
8

25
.7

7
25

.7
7

0
39

.1
8

32
.9

4
32

.9
4

0
0.

5
0.

33
4.

37
2.

67
2.

67
6

20
.6

6
17

.6
0

17
.6

0
0

27
.0

8
24

.5
9

24
.5

9
0

35
.8

4
32

.7
4

32
.7

4
0

0.
5

0.
67

2.
81

0.
74

0.
73

7
16

.3
2

13
.7

6
13

.7
6

1
19

.1
8

16
.6

1
16

.6
1

0
33

.1
4

23
.8

8
23

.8
8

0
0.

5
1

1.
80

0.
68

0.
53

7
4.

39
3.

14
3.

14
4

8.
95

6.
81

6.
81

2
19

.4
7

14
.9

0
14

.9
0

0
2.

0
0

0.
00

0.
00

0.
00

8
0.

28
0.

09
0.

09
7

5.
58

4.
56

4.
56

3
13

.6
4

11
.9

4
11

.9
4

1

Av
er

ag
e

1.
38

0.
58

0.
56

7.
38

11
.9

9
10

.0
0

9.
99

2.
85

19
.6

6
15

.6
5

15
.6

5
1.

23
28

.7
5

23
.2

7
23

.2
7

0.
08

C
PU

se
cs

0.
01

2.
23

43
1

0.
02

10
.3

2
23

98
0.

06
32

.5
6

31
75

0.
14

94
.0

1
35

49

Ta
bl

e
5.

2:
Pe

rc
en

ta
ge

ga
ps

of
th

e
up

pe
r

bo
un

ds
pr

od
uc

ed
by

th
e

co
ns

tr
uc

tiv
e

he
ur

is
tic

,t
he

Ta
bu

re
fin

em
en

t,
an

d
th

e
br

an
ch

-a
nd

-c
ut

al
go

ri
th

m
w

ith
re

sp
ec

tt
o

th
e

be
st

lo
w

er
bo

un
d.

93

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

• a TSP node was randomly selected as the starting and ending depot (TSPPDD nodes 0
and 2n+1). Then n origin-destination pairs were randomly selected from the remaining
TSP nodes, together with the corresponding costs. A TSP node was allowed to be
selected more than once, but not for the same pair;

• the n demands dj were randomly generated in the interval [1,100];

• four sets of instances were obtained by setting the ship capacity to Q = 50 n C , with
C 2

� 1
10 , 3

10 , 1
2 , 2

, as follows:

– for each C 2
� 1

10 , 3
10 , 1

2

, four instances were produced by: (i) randomly selecting,
with probability P 2

�

0, 1
3 , 2

3 , 1

, nodes j (1 j 2n) that will have a binding
draft; (ii) randomly generating the draft l j of each selected node in the interval
[|dj |,Q� 1]; (iii) setting the draft of the non-selected nodes to Q. Note that, for
P = 0, no node has a binding draft, so we can evaluate our methods also on the
special case given by a capacitated TSPPD;

– for the same reason, for C = 2, we only generated a single instance with all nodes
having draft Q = 100 n, i.e., we obtained an uncapacitated TSPPD instance.

In total, we obtained 13 instances for each value of n, i.e., 52 TSPPDD instances for each
TSP instance, and hence an overall benchmark of 416 instances. The computer code and
the instances are available at . The
results of the computational experiments are reported in Tables 5.1 and 5.2.

Table 5.1 examines the impact of strengthening constraints (Section 5.4.1) and valid in-
equalities (Section 5.3). The table considers the separate inclusion of each constraint or cut
and reports, for each of them, the percentage gaps (at the root node and final, i.e. after 1
hour CPU time) with respect to the best known upper bound. For different values of n and
C , the first two columns give the percentage gaps for the basic model (5.6)-(5.14), the last
two columns give the percentage gaps for the branch-and-cut algorithm (Sections 5.4 and
5.5) while the other pairs of columns refer to the separate addition of constraints and cuts.
An additional row gives the average gaps over the 416 instances.

The results after 1 hour CPU time (columns ‘Final’) show that fork cuts are the most
powerful inequalities for smaller capacity values, while subtour elimination cuts frequently
obtain better results for larger capacities. In a single case (|N |= 46, C = 0.3) capacity-draft
cuts prevail: disaggregated results show that they produce the best gap for 14 instances out
of 32. In many cases subtour elimination, generalized order, and capacity-draft cuts produce
similar gaps. The results at the root node (columns ‘Root’) exhibit a similar behavior. The
last two columns show that an effective combination of the various cuts within the branch-
and-cut algorithm produce by far the best results. There is a single exception for |N | = 38
and C = 2.0, where subtour elimination beats branch and cut: it must be noted, however,
that, as previously described, such capacity value produces uncapacitated TSPPD instances.

Table 5.2 provides the percentage gaps of the upper bounds with respect to the best lower
bound. For different values of C and P , the table contains four groups of four columns
(one group for each number of nodes). In each group, the first three columns provide the
percentage gaps between the upper bounds produced by the constructive heuristic of Section

94

https://github.com/alberto-santini/tsppddl

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

5.5.1 (column CH), the tabu refinement of Section 5.5.2 (column TS), and the branch-and-
cut algorithm (column B&C) with respect to the final lower bound value obtained by the
branch-and-cut algorithm of Section 5.4. The fourth column of each group gives the number
of instances (out of 8) solved to proven optimality by the branch-and-cut algorithm. Two
additional rows give the average values over the 104 instances generated for each number
of nodes, and the average CPU times (in seconds) required by the three algorithms.

The results show that the branch-and-cut algorithm is very effective for the instances with
22 nodes (92% of instances solved), while, as it could be expected, its behavior worsens
for larger instances with 30, 38, and 46 nodes (36%, 15%, and 0.01% of instances solved,
respectively). The same consideration holds for the B&C optimality gaps. The heuristic
algorithms exhibit a satisfactory behavior: within very short CPU times (below 2 minutes,
on average), the constructive heuristic and its simple Tabu search refinement give feasible
solutions not much worse than those produced by the branch-and-cut algorithm (starting
from such solutions) after one hour. By restricting the analysis to the 150 instances for which
a provably optimal solution has been obtained, one can observe that the optimality gap of
the constructive heuristic was 0.987% and that of the Tabu search refinement was 0.013%.
Note however that the CPU time requested by branch-and-cut is not uselessly spent, as it
allows to certify optimality or to evaluate the actual optimality gap.

Overall, the outcome of our computational experiments proves that taking into account
realistic constraints like ship capacities and draft limits considerably increases the difficulty
of finding optimal TSP solutions. Consider for example the line of Table 5.2 corresponding
to C = 2.0, i.e., to uncapacitated TSP instances with pickup and delivery, and observe that
both the gaps and the numbers of optimally solved instances are considerably better than the
average values in the subsequent line. This is also confirmed by the fact that the algorithms
in [6] for the TSPPD, as well as those in [3] for the TSPDL were able to solve larger instances
of the respective problems. On the other hand, the good performance of the constructive
heuristic and of its Tabu search refinement indicate that such algorithms can be profitably
used for practical purposes.

5.7 Conclusion

We have studied for the first time a realistic variant of the classical traveling salesman problem
with pickups and deliveries, that arises in maritime transportation. Considering the ship
capacities and the draft limits of the ports to be visited is a crucial addition for realistically
modeling problems in which one has to schedule the sequence of ports to be visited by a
container ship. We have defined an integer linear programming model and we have shown
how valid inequalities developed for the traveling salesman and the vehicle routing problem
can be adapted to our problem. We have developed heuristic approaches and an exact
branch-and-cut algorithm. Extensive computational experiments on instances of realistic size
have shown that exactly solving this problem variant is extremely challenging. However,
we have seen that approximate solutions of good quality (and hence particularly useful to
practitioners) can be obtained within short computing times. Future developments could
extend the study to the multi-vehicle case. Indeed, while the tramp shipping business is

95

5 Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits

usually interested in scheduling one ship at a time, liner shipping operators are faced with
the problem of planning the routes of a whole fleet.

Acknowledgements

Research supported by Air Force Office of Scientific Research (Grants FA9550-17-1-0025 and
FA9550-17-1-0067) and by MIUR-Italy (Grant PRIN 2015).

96

Bibliography

[1] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, and D. Naddef. Separating
capacity constraints in the CVRP using tabu search. European Journal of Operational
Research, 106(2-3):546–557, 1998.

[2] E. Balas, M. Fischetti, and W.R. Pulleyblank. The precedence-constrained asymmetric
traveling salesman polytope. Mathematical Programming, 68(1-3):241–265, 1995.

[3] M. Battarra, A.A. Pessoa, A. Subramanian, and E. Uchoa. Exact algorithms for the
traveling salesman problem with draft limits. European Journal of Operational Research,
235(1):115–128, 2014.

[4] J-F Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations
Research, 54(3):573–586, 2006.

[5] M. Cordeau, J. Nossack, and E. Pesch. Mathematical formulations for a 1-full-truckload
pickup-and-delivery problem. European Journal of Operational Research, 242:1008–
1016, 2015.

[6] I. Dumitrescu, S. Ropke, J.-F. Cordeau, and G. Laporte. The traveling salesman problem
with pickup and delivery: polyhedral results and a branch-and-cut algorithm. Mathe-
matical Programming, 121(2):269–305, 2010.

[7] J. Glomvik Rakke, M. Christiansen, K. Fagerholt, and G. Laporte. The traveling salesman
problem with draft limits. Computers & Operations Research, 39(9):2161–2167, 2012.

[8] M. Grötschel and M.W. Padberg. Lineare charakterisierungen von travelling salesman
problemen. Zeitschrift für Operations Research, 21(1):33–64, 1977.

[9] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44(10):2245–2269, 1965.

[10] H. Ma, B. Cheang, A. Lim, L. Zhang, and Y. Zhu. An investigation into the vehicle
routing problem with time windows and link capacity constraints. Omega, 40(3):
336–347, 2012.

[11] Enrico Malaguti, Silvano Martello, and Alberto Santini. The Travelling Salesman
Problem with pickups, deliveries, and draft limits. Omega (to appear), pages 1–17,
2017. doi: 10.1016/j.omega.2017.01.005.

[12] T.E Notteboom and B. Vernimmen. The effect of high fuel costs on liner service config-
uration in container shipping. Journal of Transport Geography, 17(5):325–337, 2009.

97

Bibliography

[13] M. Padberg and S. Hong. On the symmetric travelling salesman problem: A computa-
tional study. Mathematical Programming Study, 12:78–107, 1980.

[14] G. Reinelt. Tsplib–a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

[15] S. Ropke and J.-F. Cordeau. Branch and cut and price for the pickup and delivery
problem with time windows. Transportation Science, 43(3):267–286, 2009.

[16] S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for
pickup and delivery problems with time windows. Networks, 49(4):258–272, 2007.

[17] K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces and branch-and-
cut algorithm. Computers & Mathematics with Applications, 33(12):1–13, 1997.

[18] P. Tirschwell. Berth productivity: The trends, outlook and market forces impacting ship
turnaround times. Port Productivity (White paper), pages 1–24. Journal of Commerce,
July 2014.

[19] L. Xue, Z. Luo, and A. Lim. Exact approaches for the pickup and delivery problem with
loading cost. Omega, 59:131–145, 2016.

98

6 Railway logistics: the train rescheduling
problem

Abstract We consider the real-time resolution of conflicts arising in real-world train
management applications. In particular, given a nominal timetable for a
set of trains and a set of modifications due to delays or other resources
unavailability, we are aiming at defining a set of actions which must be
implemented to grant safety, e.g., to avoid potential conflicts such as train
collisions or headway violations, and restore quality by reducing the delays.
To be compatible with real-time management, the required actions must
be determined in a few seconds, hence specialized fast heuristics must be
used. We propose a fast and effective parallel algorithm that is based on an
iterated greedy scheduling of trains on a time-space network. The algorithm
uses several sortings to define the initial train dispatching rule and different
shaking methods between iterations. The performance is further enhanced
by using various sparsification methods for the time-space network. The
best algorithm configuration is determined through extensive experiments,
conducted on a set of instances derived from real-world networks and bench-
mark instances. The resulting heuristic proved able to consistently resolve
the existing conflicts and obtaining excellent solution quality within just two
seconds of computing time on a standard personal computer, for instances
involving up to 151 trains and two hours of planning time horizon.

6.1 Introduction

Modern railways represent a major form of transport with an ever-growing user base, as
trains are flexible in terms of travelling distance (they can be used for local, regional and
long-distance services) and capacity (as they are modular by nature). Furthermore, train
transportation is usually the greenest transportation options for both goods and people.

Despite this, railways are confronted with the increase of operational costs and a fierce
competition from other modes of transport. Many users demand more reliability in train

This chapter is based on the contents of: Andrea Bettinelli, Alberto Santini, and Daniele Vigo. A real-time
conflict solution algorithm for the Train Rescheduling Problem. Transportation Research, Part B (under
revision), pages 1–28, 2017.

99

6 Railway logistics: the train rescheduling problem

operations: a long delay, a cancelled train, a missed connection can easily decrease the
perceived quality of service and turn away potential customers.

Most of the events that negatively affect train operations (broadly called conflicts) happen
when, for some reason, there is a difference between the nominal and the actual service.
The causes of such events are usually divided into disturbances and disruptions (Cacchiani
et al. [6]). The former are small perturbations of the system that are handled by network
operators by momentarily changing the timetable. The results of disturbances are usually
minor, such as one or more delayed trains, or a platform change at a station. Disruptions,
on the other hand, are major incidents that not only alter the nominal timetable, but also
require changes in rolling stock and crews. The outcome of a disruption could include major
delays, train cancellations, and long reroutings. Disturbances clearly happen much more
often than disruptions and their impact is not to be underestimated: a train that is delayed
just a few minutes can make a user miss an important connection and increase their travel
time by hours. In this paper we consider both disturbances and disruptions in a unified way,
by defining an algorithmics approach to handle the conflicts they cause.

Increasing systemwide reliability is crucial at every phase of the planning process. It starts
at the strategic and tactical levels (budget allocation for maintenance, timetable robustness,
etc.), but once at the operational level, it is almost impossible to avoid that day-to-day activi-
ties be disturbed by many kinds of unforeseen events.

When such an event occurs, it is the job of the dispatcher to restore the system in a working
state. The job of dispatchers has been traditionally done by hand, based exclusively on
their experience and practice. It was not until recent years that computer algorithms were
developed with the aim of aiding the dispatchers in making the best decision that resolves
the critical situation and minimises deviances from the nominal timetable.

In this paper we present such an algorithm, developed to solve the Train Rescheduling
Problem (TRP): given a nominal timetable which has become infeasible because of one or
more conflicts that have arisen, we are asked to produce a new conflict-free timetable that is
as close as possible to the nominal one. Or, in case it is not possible to produce a conflict-free
timetable, we need to warn the dispatcher about this and provide a timetable with the least
possible number of conflicts.

Conflicts are all those situations that either can’t physically happen (e.g., two trains occu-
pying the same segment of track at the same time) or that can potentially compromise the
safety of operations in the network (e.g., two trains running too close to each other in the
same direction).

The algorithm presented in this paper is the result of a long lasting collaboration with
Alstom, initiated by the company in 2012 with the aim of redesigning the optimisation algo-
rithms incorporated in its Train Management System ICONIS. To this end, Alstom involved
three important Italian research groups in specific research projects investigating various op-
timisation problems arising in the real time conflict resolution. As a result of such initial wide
research effort, the team formed by Optit, an accredited spinoff of the University of Bologna,
and the Department of Electrical, Electronic and Information Engineering of the University of
Bologna, was selected to produce an innovative real-time conflict solution algorithm capable
of taking into account the characteristics and constraints of practical applications which has
been developed and industrialised during 2013, and extensively tested by Alstom in real-

100

6 Railway logistics: the train rescheduling problem

world contexts. Recently, the new algorithm has been fully integrated in ICONIS and will be
deployed at various international Alstom customers.

The paper is structured as follows. In the next section we give an overview of how a railway
system works, how it can be affected by disturbances and what it means to reschedule a train.
In Section 6.3 we review the existing literature on the TRP, based on the classification schema
given by Cacchiani et al. [6]. In Section 6.4 we give a mathematical description of a railway
network, of train timetables and of the relationship between them. We present an heuristic
algorithm for the solution of the TRP in Section 6.5. We then describe the instances used
and provide computational results in Section 6.6. Finally, we draw conclusions and propose
further research paths in Section 6.7.

6.2 Timetables and conflicts

Nominal timetables are the crucial part of any railway systems. They describe in detail the
trip of each train, from its departure to its arrival station, including all the intermediate
stations where the train stops or passes by. This includes not only those parts of the trip
where the train operates passenger service, but also all the movements necessary to perform
service and maintenance, e.g., rolling stock relocation, cleaning, technical service.

Every arrival and departure is scheduled at specific time slots, which are calculated in
advance by taking into account physical properties (e.g., track curvature and gradient, max-
imum allowed speed, train length) and interaction among trains. Clearly two trains can’t
occupy the same portion of tracks at the same time, but other constraints usually have to be
respected. For example trains have to respect headway times, i.e., a minimum amount of time
must be left as a buffer between trains travelling in the same direction. Another example are
dwell times at platforms, which are needed to board and alight passengers.

Timetables can be periodic or aperiodic. Periodic timetables repeat themselves at certain
time intervals (e.g., every second hour and every hour during peak times). Although such
timetables are usually appreciated by customers, as they are easy to memorise and use, they
are difficult to implement in a competitive market where many train operators are likely
to request access to the same resources at the same time. For this reason, trains are often
scheduled in aperiodic timetables. The name aperiodic is slightly misleading, since these
timetables are repeated day after day so, strictly speaking, they have a period of one day.

Timetables are implemented by assigning tasks to rolling stock and crews. When it comes to
passenger transportation, rolling stock are usually composed of one or more locomotives and
many passenger cars; or, in case of multiple unit (MU) trains (MU trains are those composed
by one or more similar self-propelled train cars), by one or more MUs. A crew includes a
train driver and one or more train guards. Finally, a task represents a complete trip of the
rolling stock and the crew from the train origin to its destination. The set of tasks carried out
by rolling stock and crews in a day is called a shift, or duty.

Since in most countries the railway infrastructure is operated by a different actor than the
trains, the timetables are usually created and managed by an infrastructure manager, who
tries to accommodate the requests of train operators as much as possible, while abiding to
safety rules and other operational constraints. Once the timetables are set up, train operators

101

6 Railway logistics: the train rescheduling problem

will assign rolling stock and crews to the corresponding tasks.
During real-life operations a train can easily deviate from its nominal timetable: extra time

might be needed at a station to board and alight passengers, weather conditions might force
the driver to slow down in certain parts of the route, etc. These are examples of primary
delays. A delayed train, in fact, could interfere with the operations of other trains, in turn
delaying them (secondary delays) and many delays can end up knocking on from one train
to another.

As already mentioned in Section 6.1, in this work we consider disturbances and disruptions
(introduced in Section 6.1) under a unified umbrella. A detailed list of the conflicts we
consider is given in Section 6.4.3. The corrective actions that our algorithm will suggest are
limited to retiming, respeeding, and rerouting trains, collectively named rescheduling. Retiming
consists in changing the durations of train stops at stations. Respeeding changes the times
trains enter and leave different parts of the network (i.e., changing their speed). Finally,
rerouting consists in assigning a train a new path in the network.

Several criteria can be considered when rescheduling a set of trains. For example, we may
want to minimise the deviance from the nominal timetable, or the total delay, or the number
of broken connections, etc. In our work, we present a general way of modelling events in
the network, that is able to take into account all of these criteria (and many more).

6.3 Literature Review

Conflict resolution in train applications, often known as the train dispatching problem (see,
e.g., Meng and Zhou [33]), is widely studied in the literature, and research contributions
can be classified in several ways.

A first possible subdivision may take into account the level of detail used in modelling the
physical resources composing the train network. In this respect, the main distinction was
usuallly between microscopic and macroscopic modelling approaches. A microscopic approach
would represent every element of the rail infrastructure in detail (individual tracks, platforms,
etc.). In such a model every network element can be assigned to only one train at a time,
thus leading to explicit capacity requirements on the resources. A typical macroscopic model,
on the other hand, would disregard any fine-grained segmentation of the tracks, thus leading
to cumulative capacity requirements, since each network element could represent several
physical resources. In the literature, such models are also known, respectively, as single-track
and N-track models (see, e.g., Törnquist and Persson [45]). This distinction, however, is often
blurry, and several authors adopted a mixed approach, by considering so-called mesoscopic
models, in which the modelling detail is not specified a priori. Here, network elements can
represent either low level infrastructure, such as specific tracks or platforms, or aggregate
one, such as entire stations or N -track segments.

Another widely used subdivision takes into account the type of conflict resolution actions
available to the decision makers. These include the application of retiming, reordering, re-
tracking, and rerouting of trains (Meng and Zhou [33]). Such actions involve, respectively:
the adjustment of speeds and stopping times; modifying the order in which trains occupy
platforms or track segments; small and large changes in the path followed by trains in the

102

6 Railway logistics: the train rescheduling problem

network.
In their recent survey, Cacchiani et al. [6] also adopted a classification scheme which

mainly takes into account the type of conflict to be managed by the model. More precisely,
the authors distinguished between disturbances and disruptions and analysed the literature
classifying models and solution approaches based on this viewpoint. The reader is also
referred to Törnquist and Persson [45], Meng and Zhou [33] for additional literature analyses
and classification. Other classification schemes proposed in recent surveys mainly focus on
the solution methodology adopted (see Fang et al. [21]) or on dynamic and stochastic
components related to on-line rescheduling (see Corman and Meng [10]). Finally, we direct
the interested reader to the recent book of Hansen and Pachl [22] for a comprehensive analysis
of many aspects of railway timetabling and operations, including train rescheduling.

Many works which employ a more microscopic approach revolve around the concept of
alternative graph, introduced by Mascis and Pacciarelli [31] for the no-wait job shop schedul-
ing. The problem of assigning a train to a track segment for a certain period of time, in fact,
can be seen as a job shop scheduling problem where track segment are machines and the
assignment of a train to a segment is an operation. Additional constraints, such as set-up
times and no-wait constraints, are used to model specific characteristics of the problem. The
alternative graph formulation was widely used to develop solution approaches to various
rescheduling problems (see, e.g., D’Ariano et al. [17]) such as the ROMA tool (see, e.g.,
D’Ariano et al. [18, 19], Corman et al. [11, 12, 13, 14, 15], D’Ariano and Pranzo [16]).

Other approaches, which use alternative solution paradigms, have also been explored. Ro-
driguez [36] solved conflicts using constraint programming techniques and using the job shop
model with additional constraints. Meng and Zhou [32] propose a stochastic programming
model is used to reschedule trains on a single-track line, so that the new schedule is robust.
Pellegrini et al. [35] solve a real-time traffic management problem using a pure Mixed-Integer
Programming (MIP) model which represents a small section of a railway network with fine
granularity. Samà et al. [39] use an ant-colony optimisation metaheuristic to select the best
routing alternative for each train in a real-time setting. A simulation-based approach for train
dispatching was proposed by Li et al. [30]. Finally, Mu and Dessouky [34] employs fuzzy
optimisation techniques to reschedule trains after a low-probability disruption occurs.

Several authors tried to bridge the gap between fine-grained and more aggregate represen-
tations by using different techniques. For example, Lamorgese and Mannino [28, 29] propose
an iterative macro- and microscopic approach, in which the line traffic control problem takes
care of the macroscopic constraints (trains meeting at stations, stations’ capacities respected)
and acts as a master problem. The station traffic control considers instead detailed constraints
at the station level and acts as a subproblem to generate cuts for the master problem, in a way
analogous to Benders decomposition. Other mesoscopic approaches have been based on MIP
formulations: Törnquist and Persson [46] used an exact model for rescheduling on N -track
networks; Törnquist [44] used a MIP-based greedy heuristic starting from the same model;
this model was further extended by Acuna-Agost et al. [1], who also consider intermediate
stops and bidirectional tracks.

While minimising the total delay is a sensible choice, in recent years the focus of reschedul-
ing techniques has been shifting towards a more passenger-oriented point of view, which
aims to minimise the travellers’ delay. In this spirit, Schöbel [42] solved the delay manage-

103

6 Railway logistics: the train rescheduling problem

ment problem, consisting in deciding which connections between trains should be main-
tained, even when this would mean to introduce some delay on certain trains that would
have to wait for others. The work has been expanded in Schöbel [43], Schachtebeck and
Schöbel [41], Dollevoet et al. [20], while Kanai et al. [27] propose a combined optimisa-
tion/simulation algorithm that allows to track additional performance indicators other than
total passenger delay. On the other hand, concering the scheduling of freight trains, Mu and
Dessouky [34] recently proposed effective heuristic approaches based on decomposition.

6.4 Problem description

Given a description of the current state of the network, the goal of our algorithm is to produce
a new timetable for the trains, keeping in mind what was the original, nominal timetable
published to the users. There are, therefore, three main objects that we need to model to
provide input data to the algorithm: the first is a description of the physical network; the
second is the nominal timetable, the third is the current status of the trains in the network
(called the forecast timetable).

6.4.1 Network and timetables

The main tool we use to represent the train network is the network (di)graph GN = (V, A).
Nodes in V represent resources. What a resource is can vary greatly and depends mostly on
the level of detail we want to achieve when modelling the train network. At a microscopic
level, a resource could be a single section of track between two signals, a platform at a station,
a junction between tracks, etc. On a macroscopic level, it could be a whole station, or a set
of parallel tracks between two stations, etc.

There are, of course, trade-offs between macroscopic and microscopic representations.
While the latter will produce a larger graph, using the former will lead us to lose some
information. For example, when we represent a set of parallel tracks as a single resource, we
can’t guarantee that a feasible assignment of trains to the tracks always exists.

Talking about resources rather than more specific railway elements, however, allows us
to generalise many aspects of railway networks and even to mix micro- and macroscopic
representations in the same graph. This is useful, for example, when the central part of the
network is particularly congested and needs a higher level of detail, while peripheral parts
are less loaded and can be modelled at a lower resolution.

For example, Figure 6.1a shows a macroscopic modelling of a station S and two set of tracks
L and R. Figure 6.1b shows the same station and tracks at a microscopic level: the station
has been substituted by three platforms and the generic set of tracks have been replaced by a
node for each physical track. Furthermore, connecting tracks have been introduced, to model
the connections between the platforms and the tracks. Notice that a solution that was feasible
in Figure 6.1a might not be feasible in Figure 6.1b. For example, a train leaving P1 to reach
R2 and a train leaving P2 to reach R1 can’t depart at the same time, as they would violate the
capacity of SR2 (which is 1), but we wouldn’t have been able to rule out this solution just by
looking at Figure 6.1a and the capacities of the aggregate nodes.

104

6 Railway logistics: the train rescheduling problem

L S R

Q = 2 Q = 3 Q = 2

(a) Macroscopic representation of station S with tracks L on its left and R on its right.

L1

L2

SL1

SL2

SL3

P1

P2

P3

SR1

SR2

SR3

R1

R2

platforms connecting tracks

tracks

Q = 1

Q = 1 Q = 1 Q = 1

Q = 1

(b) Microscopic representation of the same station as in Figure 6.1a, with all platforms and physical tracks
modelled explicitly.

Figure 6.1: Differences between the micro- and macroscopic representations of a station. Q represents the
capacity of a resource.

105

6 Railway logistics: the train rescheduling problem

We identified certain properties that apply to all resources, no matter what parts of the
physical network they represent:

• Every node v 2 V has an ideal (or soft) capacity Qv 2 N and a hard capacity Qv 2 N.
The capacity of a resource indicates the number of trains that can occupy it at the same
time. While the soft capacity can be violated (by possibly paying a certain penalty)
the hard capacity cannot be violated under any circumstances. The relation Qv Qv
holds.

• Every node v 2 V also has an associated boolean parameter, !v 2 {0, 1}, that indicates
whether overtaking and crossing between trains can happen at the node.

The arcs in set A represent the possibility for trains to move from one node to another. Arcs
also have capacities, indicating the number of trains that can simultaneously transit from the
source to the destination node of the arc: we indicate the capacity of a 2 A with Qa 2 N. This
quantity is considered as a hard capacity.

The other main actors of a train network are, naturally, trains. Let I be the set of trains
and consider the following properties that link together resources and trains:

• Given a train i 2 I and a resource v 2 V , we give the minimum and maximum travel
times, i.e., the minimum and maximum times that i is allowed to occupy v. We denote
these values with mi,v and Mi,v respectively. The physical meaning of these quantities
can vary depending on what the resource models. In case of a section of track, mi,v is
given by the length of the track and the maximum speed that the train can achieve on
that track. On the other hand, in case of a platform, mi,v is the dwelling time.

• Given a resource v 2 V , we denote with hv the minimum headway at v, i.e., the time
that must elapse between two trains occupying the resource.

The nominal timetable describes the ideal operational status of the network. Each train
i 2 I has a predefined path in the network, denoted as pi = (v1, v2, . . . , vki

), which is simply
a sequence of resources to be visited: v1, . . . , vki

2 V .
For each node in the path of train i, the nominal timetable also provides the times at which

the train is supposed to enter and leave the node. These times are denoted as ✓ in
i,vj

and ✓ out
i,vj

respectively.
The current train plan describes the network as it is at the present moment — and as it

is forecast to be in the future, given the information available. For this reason, such a plan
is also called the forecast timetable. In an ideal scenario, the forecast timetable is always
equal to the nominal one. In practice, when a disturbance or a disruption occurs, the forecast
diverges from the nominal timetable.

The forecast timetable has a formal structure which is similar to that of the nominal
timetable: it gives a sequence of nodes that each train must visit, together with the expected
in- and out-times. Since both timetables describe the (ideal and real, respectively) situation
of the network before the dispatcher takes any decision regarding rerouting, the train paths
must be the same in both.

106

6 Railway logistics: the train rescheduling problem

v1

v2

wL
1

wR
1

wL
2

wR
2

time

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

Figure 6.2: Example of a portion of time expanded graph.

The only new parameters associated with the forecast are, therefore, the in- and out-times.
To account for the uncertainty that comes with the real-time situation of the network, we
actually give pairs of minimum and maximum possible in- and out-times. These values should
be considered as hard values, i.e., the train cannot possibly enter a node before the minimum
in-time or after the maximum in-time.

The minimum in- and out-times are denoted, respectively, as t in
i,vj

and tout
i,vj

, for j = 1, . . . , k.

The maximum in- and out-times are T in
i,vj

and T out
i,vj

.
As we mentioned in Section 6.2, rescheduling a train can involve rerouting it. This means

that the dispatcher is allowed to change the path of the train in the network. In our model,
we assume that it is only possible to choose detours from a predefined set available for each
train. The set of detours associated with train i is Di .

A detour is nothing more than a path in the network, so an element d 2 Di contains a
sequence of nodes: d = (v1, v2, . . . , vk). We only require that both the first and the last node
of the detour are also part of the original train path pi. Furthermore, similarly to what we
have seen for the current train plan, maximum and minimum in- and out-times are given for
each node vj of the detour. These are denoted as t in

i,d,vj
(minimum in-time), T in

i,d,vj
(maximum

in-time), tout
i,d,vj

(minimum out-time), and T out
i,d,vj

(maximum out-time).

6.4.2 Time-space graph

The network graph GN = (V, A) introduced in Section 6.4.1 does not explicitly model the time
component. In this subsection, we present a time-space graph and we construct it starting
from GN and augmenting the number of nodes to take into account time and entry/exit points

107

6 Railway logistics: the train rescheduling problem

of nodes of V . Time-expanded graphs have already been used to model railway networks,
e.g., in Caprara et al. [8] and Cacchiani et al. [5]. The time-space (di)graph of a train i 2 I is
denoted as Gi

TS = (V
i

TS, Ai
TS) and is obtained in the following way.

For every entry and exit point of every node v 2 V , a node is added to V i
TS. The definition

of entry and exit point is strongly dependent on the physical resource modelled by v. For
example, if v represents a set of parallel tracks, there will be one entry and one exit point for
each track; if v models a station, there would be an entry and one exit point for every track
running through the station. In general, the number of entry and exit point does not need
to match (e.g., a station could have more tracks one side than the other). The names entry
and exit are only used to distinguish two physical locations on the resource, but since trains
can generally run on a resource in both directions, a specific train could actually enter the
resource from one of its exit points and leave it from one of the entry points.

We then need to model time into the graph. In order to do this, we first have to decide
a reasonable time horizon and a time discretisation. In practical applications, these values
could be provided to the model by the upstream conflict detection system. Notice, though,
that the flexibility bundled with our model allows us to use different time discretisations
in different parts of the time-space graph: some resources or some time intervals can be
modelled with a more precise time discretisation than others. For example, it is possible to
have a denser time discretisation for peak times and a sparser one for low-congestion times
(e.g., at night). A denser discretisation might also be necessary for short tracks, where the
travelling time could be shorter than the standard time interval. Once the time discretisation
and the time horizon have been fixed, each node gets one further copy per time instant.

Finally, two dummy nodes �i
src and �i

snk are added to each graph Gi
TS. They represent,

respectively, a source and sink node used as the start and end point of the train’s path in the
graph.

Arcs are created between pairs of nodes (w1, w2) 2 V i
TS and they are divided in three types.

The first type links nodes which represent entry and exit point relative to the same resource
v 2 V . Such an arc would model the travelling of a train along the resource modelled by v,
when the difference in time instants represents a feasible travelling time for train i.

The second type links nodes which represent entry and exit points of adjacent resources,
that is of nodes v1, v2 2 V such that (v1, v2) 2 A. Such an arc would model a train that leaves
a resource and (instantaneously) reaches a new one.

Finally, the third type links the source and the sink to the other nodes. Let wi
s and wi

e be
the entry points that train i has to use to access and leave, respectively, its start and end
resources. We then add to the arc set Ai

TS a: (a) arcs from �i
src to nodes of the form (wi

s, t),
where t is a time instant; (b) arcs from nodes of the form (wi

e, t) to �i
snk, where t is a time

instant; (c) arcs from nodes of the form (w, T) to �i
snk, where w is any entry or exit point,

and T is the last time instant of the time horizon, used to represent a train that could not
reach its destination within the time horizon considered.

We list the three type of arcs separately and let Ai
TS = Ai,1

TS[Ai,2
TS[Ai,3

TS, where the three sets
contain, respectively, arcs of the three types listed above.

Figure 6.2 shows a portion of a time-expanded graph. Nodes wL
1 and wR

1 are the left and
right extreme points of v1 2 V , while nodes wL

2 and wR
2 are the left and right extreme points of

108

6 Railway logistics: the train rescheduling problem

v2 2 V . The arcs between wL
1 and wR

1 represent the traversal of resource v1 and, analogously,
the arcs between wL

2 and wR
2 represent the traversal of resource v2. Different arcs having the

same source node model the different travelling times associated to different speeds. The
vertical arcs between wR

1 and wL
2 represent the possibility of moving from v1 to v2.

The arcs in Ai,1
TS can be mapped back to the resources and the time intervals they represent

in the following way. For each arc a 2 Ai,1
TS, let ⇢(a) 2 V be the underlying resource modelled

by the arc; analogously, let ⇢̃(a) 2 V ⇥ {�1,+1} be the directed underlying resource, used
to distinguish the direction in which the resource is being traversed; let l(a) be the length of
the associated resource ⇢(a). Let also �s(a) and �e(a) be the start and end time of arc a, i.e.
the times when the train (respectively) occupies and frees the resource.

6.4.3 Constraints

As defined in Section 6.1, conflicts are those situations that either can’t physically happen
or that would compromise the safety of operations, and their resolution plays the same role
as satisfying a constraint in a Mixed Integer Programme (MIP). In order to give a more
precise description of the contraints presented in the rest of this section, we give some
mathematical formulation in which we use the notation x i

a 2 {0, 1} as a variable in a Mixed
Integer Programme, having value 1 iff the arc a 2 Ai

TS is part of the path of train i.
Preliminary experiments with solving a compact MIP formulation of real-life instances with

a commercial solver have shown that model generation alone can take several minutes, and
solving the root node requires more than a day. For this reason, we do not include a complete
MIP model for the problem we are presenting. Rather, the notation x i

a should be seen as a
way to describe precisely the constraints taken into account by our algorithm, and how they
are reflected on the time-space graph.

Notice, first of all, that a train schedule can be modelled as a path in Gi
TS, starting in �i

src
and ending in �i

snk and abiding to the usual flow conservation constraint. Formally, this
means that:

X

a2Ai,+
TS (�i

src)

x i
a = 1 (6.1)

X

a2Ai,�
TS (�

i
snk)

x i
a = 1 (6.2)

X

a2Ai,�
TS (w)

x i
a =

X

a2Ai,+
TS (w)

x i
a 8w 2 V i

TS \ {�i
src,�

i
snk} (6.3)

where Ai,+
TS (w) (resp. Ai,�

TS (w)) is the set of all arcs outgoing from (resp. incoming to) node
w 2 V i

TS.
In this work we deal with the rescheduling of the trains once the conflicts have already

been detected and reported, so we will assume that the complete list of conflicts is available
together with the current train plan. In other words, the conflict detection system works
upstream of our system. This assumption is not restrictive, as a simple linear-time algorithm
over the current train plan is able to produce the complete list of conflicts.

109

6 Railway logistics: the train rescheduling problem

v

wL

wR

time

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

i1
i2

Figure 6.3: Train i1 overtaking train i2 on resource v. Notice how this situation corresponds to crossing arcs in
the time-space graph.

The presence of conflicts could be formally detected by checking for violations in (hard)
constraints involving the variables x i

a. As we will see in Section 6.4.4, we want to penalise
the violation of certain soft constraints. In a MIP model, for example, a hard capacity limit
can be enforced via a constraint, whereas the extent of the violation of a soft capacity limit
can be penalised, by introducing an auxiliary variable that plays the role of the slack variable
relative to the constraint.

Illegal crossing and overtake

An illegal crossing (overtake) describes a situation when a train would cross (overtake) with
another one, on a resource v where this is illegal, i.e. !v = 0. An example of overtaking is
described in Figure 6.3.

An overtake corresponds to the violation of the following constraints: for each train i, each
resource v where overtaking is forbidden, and each arc a 2 Ai,1

TS such that ⇢(a) = v:
X

j2I
j 6=i

X

a02Aj,1
TS

⇢̃(a0)=⇢̃(a),
�s(a0)>�s(a),
�e(a0)�e(a)

x j
a0 + x i

a 1 (6.4)

Equation (6.4) states that train j overtakes train i on resource v if j arrives in v after i, but
leaves v before i, and both trains travel in the same direction.

Analogously, corresponds to the violation of the following contraints: for each train i, each
resource v on which crossing is forbidden, and each arc a 2 Ai,1

TS such that ⇢(a) = v:
X

j2I
j 6=i

X

a02Aj,1
TS

⇢(a0)=⇢(a),
⇢̃(a0) 6=⇢̃(a),
�e(a)��s(a0)

x j
a0 + x i

a 1 (6.5)

Equation (6.5) states that train j crosses train i on resource v if j arrives in v before i has
left, and the two trains travel in opposite directions.

110

6 Railway logistics: the train rescheduling problem

Capacity violation

A capacity violation occurs when the number of trains simultaneously occupying a resource
is greater of the hard capacity of the resource. Such a conflict corresponds to a violated
inequality of the following type:

X

i2I

X

a2Ai
TS

⇢(a)=v,
�s(a)t,
�e(a)�t

x i
a Qv (6.6)

for each resource v and each time instant t, where we remind that Qv is the hard capacity of
resource v.

Headway violation

Such a conflict occurs when a train occupies a resource that has been occupied by another
train, and not enough time has elapsed between the first train leaving the resource and the
second one entering it. For each train i 2 I and each arc a 2 Ai,1

TS corresponding to a resource
⇢(a) on which crossing and overtaking is forbidden (!⇢(a) = 0, as otherwise the headway
must not be respected), a headway conflict corresponds to a violated constraint:

X

j2I
j 6=i

X

a02Aj,1
TS

⇢(a0)=⇢(a)
�e(a0)��s(a)�hr(a)
�s(a0)�e(a)+hr(a)

x j
a0 + x i

a 1 (6.7)

Time dependencies

Avoiding the conflicts described in the previous subsection is usually enough to come up with
a new plan that allows safe operations and limits the deviations from the nominal timetable.
Unfortunately, this is not always enough to provide a holistic, good solution.

Consider, for example, a passenger on a delayed train that risks missing his connection.
From his point of view, a solution that also delays his next train (to “wait for him”) is preferable
to a solution that does not. But from a train operator’s point of view, a solution that does not
delay the second train may be considered better, since no delay is better than some delay.

Then, if the train operator’s service intention is, for example, “moving passengers from A
to B” (even at the cost of increasing the overall delay, to some extent), this should be taken
into account by the rescheduling algorithm.

In order to take into account service intentions, we introduce the concept of time depen-
dencies (Caimi et al. [7]). A time dependency is a relationship of precedence between two
events happening in the network. For example, a time dependency could mandate that the
event “train i1 leaves node v” can only happen a certain time after the event “train i2 arrives
at node v”; intuitively, we would say that train i1 needs to wait for train i2 at node v.

111

6 Railway logistics: the train rescheduling problem

v

wL
1

wL
2

wR
1

wR
2

time

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

û

Arrival of i1

Departure of i1

Arrival of i2

Departure of i2

Resolution time

Figure 6.4: Resolution time of a time dependency between the arrival of train i2 and the departure of train i1 at
a station.

A service intention can merely suggest a precedence between events, as in the case of
passenger connections: it is preferable that the connection is kept, but this “promise” can be
broken in order to improve the overall quality of service. On the other hand, the precedence
can also be mandatory, as in the case of two trains that share crew or rolling stock.

Let F be the set of time dependencies. We associate to each element f 2 F the following
values:

• The two trains i f ,1, i f ,2 involved in the dependency.

• The two resources vf ,1, vf ,2 at which the linked events need to take place, respectively.

• Two parameters " f ,1," f ,2 2 {0,1} that take value 0 if the corresponding event is an
arrival or value 1 if it is a departure.

• A parameter ⌘ f 2 {0,1} that takes value 1 iff the dependency is mandatory.

• The minimum and maximum resolution time, ' f and � f . The dependency is con-
sidered satisfied if the two events take place at least ' f and at most � f time units
apart.

• For non-mandatory (also called logical) time dependencies, we give a maximum waiting
time wf . The dependency must be satisfied if it is possible to do so by introducing at
most wf time units of delay. If this cannot be done, the dependency can either be
satisfied or not. For example, in the case of a connection between two trains, we might
require that a train waits for the other at most wf time units. If the required wait is
greater, the train can decide to break the connection.

112

6 Railway logistics: the train rescheduling problem

Figure 6.4 shows an example in which train i1 stays at station v for three time intervals
after the arrival of train i2, presumably to wait for passengers travelling on i2. The resources
wL

k, wR
k represent entry and exit points of two platform at the station (k = 1,2).

The violation of a mandatory time dependency f 2 F can be detected as follows. Assume
wlog that the event relative to train i f ,1 needs to take place before the event relative to train

i f ,2. For k = 1, 2 and a 2 A
if ,k ,1
TS such that ⇢(a) = vf ,k, consider the parameter:

� f ,k(a) =

®

�s(a) if " f ,k = 1
�e(a) if " f ,k = 0

We can then formulate the corresponding constraint:

' f
X

a2A
if ,2,1
TS

⇢(a)=vf ,2

x i
a� f ,2(a)�

X

a2A
if ,1,1
TS

⇢(a)=vf ,1

x i
a� f ,1(a) � f (6.8)

Split and merge

Similar to time dependencies are split and merge operations. These are events in which the
trains that enter a node are not the same that leave it. They model real-life operations such
as decoupling some cars from a train, so that they can get a new locomotive and proceed to
a different destination.

In the most general version, any number of trains can enter a certain node and any number
of trains can leave it, so a split/merge is identified by a node v 2 V and two sets of trains
I1, I2 ⇢ I that represent in-trains and out-trains. The out-trains can leave the node only after
a certain amount of time has passed since the last in-train reached it. This time accounts,
in practice, for the time necessary to perform any physical coupling and decoupling, or to
change crew or rolling stock. Special cases of split/merge operations are:

• Split, when one train enters the node, and two or more exit it.

• Merge, when more than one train enter the node, and only one exits it.

• Rename, when one train enters the node and one train exits it.

In case of split/merge events, the node’s capacity is not considered, as it is assumed that it
is always feasible for the event to take place in the node specified. Finally, note that these
events are mandatory: for example, it is not possible that a train will be detoured around a
node in which it has to undergo a split.

In the following we show how a split or merge operation can be modelled in terms of
mandatory time dependencies; in this way, the conflict resulting from a missed split or merge
can be detected by checking for the violation of the corresponding time dependency constraint.
For example, if train i needs to be split into trains i0, i00 at resource v, then said resource will
be set as the destination of i and the origin of i0 and i00. Furthermore, two dependencies will
be created:

113

6 Railway logistics: the train rescheduling problem

• f 0 2 F links trains i and i0 and has: i f 0,1 = i, i f 0,2 = i0; vf 0,1 = vf 0,2 = v; " f 0,1 = 0," f 0,2 =
1; ⌘ f 0 = 1; ' f 0 will be the time needed to perform the split operation; � f 0 will be the
maximum time allowed for the split to take place, if any.

• f 00 2 F , analogously links trains i and i00.

Maximum and minimum entry, exit, and travel times

Maximum and minimum entry, exit, and travel times can be enforced by removing from the
graphs Gi

TS those nodes that would correspond to an infeasible (resource, time) couple. For
example, if a train i 2 I cannot enter resource v before time t, all nodes of V i

TS corresponding
to resource v at a time t 0 < t can be removed from the graph. Analogously, if the minimum
travel time along a resource v is t, all arcs a 2 Ai,1

TS such that �e(a)��s(a)< t can be removed.

6.4.4 Objective function

The objective value can be written as a function of the paths in the time-space graphs, and
therefore of ~x = (x i

a), in the following way:

f (~x) = f1(~x) + f2(~x) + f3(~x) + f4(~x) (6.9)

The four components correspond to delays, logical dependency breaking, soft capacity vi-
olations, and the use of detours. Each of these components represents a sum of penalties
that quantify how undesirable it is to incur in the corresponding violations. The penalty,
therefore, is not only limited to represent the economical disadvantage of taking a particular
decision (e.g., increased energy consumption) but can also represent intangible values, such
as customer satisfaction. In the following, we analyse these four components.

Delays

In the nominal timetable, we associated to each train i and each resource vj in the train’s
path, an ideal in-time ✓ in

i,vj
and an ideal out-time ✓ out

i,vj
. Any deviation from these times can

be penalised, by considering two piecewise-linear functions that respectively assign a cost to
delays in arriving at and departing from the resource. These penalty functions are denoted
as ⇡ind

i,vj
(·) and ⇡outd

i,vj
(·).

Notice that this general definition allows us to assign different penalty profiles to different
resources: for example, if some resource is considered critical for a train, we can assign a
higher penalty to delays at that resource. The function can also operate on negative delays,
allowing us to penalise trains that arrive at a node with excessive advance. Finally, further
flexibility is bundled in the piecewise-linear nature of the function: for example, we might
want to have a penalty that grows linearly with the delay up to a certain point, after which
a big flat penalty is assigned, as any further delay does not worsen the situation any more.
This could be achieved with a penalty profile such as that in Figure 6.5.

114

6 Railway logistics: the train rescheduling problem

2 4 6 8

2

4

Delay

Cost

Figure 6.5: Example of a penalty profile for the arrival of a train at a certain resource, with a “jump” in cost if
the delay is greater than 4 time units.

Dependency breaking

As we mentioned in Section 6.4.3, logical dependencies are not mandatory and therefore we
can decide to break them. In our implementation, when such a dependency f 2 F is broken,
we pay a penalty ⇡dep

f . (Notice that, in principle, a piecewise linear function could be used,
as done for delays.)

Capacity violations

When we violate the soft capacity Qv of a resource v, we pay a penalty ⇡cap
v . In our imple-

mentation, this penalty remains the same no matter how big the capacity violation is. (Notice
that, in principle, a piecewise linear function could be used in this case too.)

Detours

Finally, a fixed penalty ⇡det
d is paid when a train i is re-routed along a detour d 2 Di. This

penalty takes into account all the costs (economical or otherwise) incurred because of the
rerouting. Dependency breaking and capacity violations are calculated separately when a
detour is taken. If some node of the detour can be naturally mapped to nodes of the original
path, the delay penalty can also be calculated. For example, if the detour consists of a platform
change at a station, we can naturally assign to the new platform the in- and out-times at the
old platform.

The penalty ⇡det
d should be considered as a fixed cost incurred by the mere fact of having

rerouted the train. It can include both real and virtual costs. For example, if the detour
consist of a path longer than the original one, there would be increased energy costs. But if
the detour also excludes a station, there would be a much increased passenger dissatisfaction.
Therefore, the magnitude of the penalty depends on the type of detour: a platform change

115

6 Railway logistics: the train rescheduling problem

will have a small associated penalty, while a major change in the train’s path will be associated
with a bigger penalty.

Other terms

Even though in the present work we only consider the four components discussed above,
further terms can be easily introduced in the objective function to take into account other
indicators. For example:

• Number of modifications with respect to the nominal timetable, eventually weighted
differently depending on the nodes or trains involved. This could be done to make sure
that the new timetable does not disrupt too much the current operations (i.e., changes
too many train paths) just to save a few seconds of overall delay.

• Increased travel time on resources, eventually involving a piecewise-linear penalty
profile. This term would help avoiding unnecessary stops or excessive brake-accelerate
cycles, for increased passenger comfort and reduced energy consumption.

6.5 Solution Algorithm

A solution to the TRP is a collection of paths, one for each train, in the time-space graph GTS.
The solution algorithm must be able to modify the forecast timetable in order to solve the
conflicts, and to compute the new objective function. Key requirements for this algorithm,
deriving from its real-time nature, are:

• It must produce solutions of high quality in very short computational times (a few
seconds). This is due to the fact that the algorithm is used on-line by dispatcher, who
needs reasonable advice in few seconds, to guarantee the safety of operations in the
network. For this reason, we focussed on a heuristic approach.

• If the algorithm is not able to find a conflict-free schedule, it has to give the dispatcher
a schedule with the smallest possible number of remaining conflicts. This means that
solving more conflicts needs to always have priority over other factors. In order to
accomplish this, we established an implicit hierarchy through our objective function. A
very high penalty is assigned to each unresolved conflict, so that a solution with fewer
conflicts will always prevail on one which has more, while the “standard” objective
function is used to decide the best one between two solutions with the same number
of remaining conflicts. Therefore, the objective function presented in (6.9) is used as
a part of the overall objective function: f̃ (~x) = P ·NRC(~x) + f (~x), where P is the large
penalty to pay for each conflict, and NRC gives the number of remaining conflicts in the
solution.

• The algorithm should allow for a high degree of parallelisation, allowing to concurrently
produce multiple rescheduled timetables that will be stored in a solution pool, from
which the best one will be selected. This allows the algorithm to employ and evaluate

116

6 Railway logistics: the train rescheduling problem

different strategies in situations where none of them is clearly superior to the others,
thereby focussing on different key aspects of the problem.

With these requirements in mind, we now give a general description of the algorithm
which boradly falls into the category of iterated greedy algorithms (see, e.g., Ruiz and Stützle
[38]). After an initialisation phase in which trains are ranked according to some criterion,
the algorithm iterates among two main phases, until a termination condition is met. The two
phases are:

1. Construction: a new timetable is obtained by rescheduling the trains one by one,
according to their ranking.

2. Shaking: the train ranking is perturbed following a set of rules.

In our case the termination criterion is a hard time limit, with early termination if the solutions
didn’t improve over a certain number of iterations. The next subsections will describe each
phase in detail. Furthermore, in order to speed up the computational time of the construction
phase, we employed a sparsification of the graph GTS. This is a technique used to remove
some edges and vertices from the time-space graph. Its use is justified by the fact that, by
choosing a fine time discretisation, we might create a great number of edges, many of which
can be removed without strongly impacting the quality of the train plans.

Notice that, for the algorithm initialisation, for the shaking phase, and for sparsification we
propose several possible alternatives. Therefore, an instance of our algorithm is completely
defined once we specify which initial sorting, shaking policy, and sparsification method is used.
An extensive experimental testing of the proposed alternatives, described in Section 6.6.1,
will help determining well-performing combinations of the algorithm’s components.

6.5.1 Initial sorting

Since the algorithm constructs a schedule for one train at a time (Step 1), the order in which
the trains are considered is clearly important, as trains scheduled later will be constrained by
those scheduled earlier. Since there is no “natural” order of trains, we used various sorting
criteria:

• Random: the trains are randomly sorted.

• Congestion: the trains are sorted according to the number of conflicts in their forecast
timetable, putting trains with more conflicts first. The rationale behind this choice is
that a train that generates a lot of conflicts is harder to schedule, and therefore should
be scheduled earler. Using the notation introduced earlier, if ~x⇤ is the assignment of
variables corresponding with the forecast timetable, then we sort the trains by decreas-
ing value of N i

RC(~x
⇤), where N i

RC(~x
⇤) is the number of conflicts in train i’s schedule,

and NRC(~x⇤) =
P

i2I N i
RC(~x

⇤).

• Length: the trains are sorted according to the number of nodes in their original path
in decreasing order. The longer the path, in fact, the higher the chances that a conflict
will be present at some node. The trains are therefore sorted in decreasing order of
the size of their set {a 2 Ai : ~x⇤ = 1}.

117

6 Railway logistics: the train rescheduling problem

A B C D E

F G

Figure 6.6: Topological order between nodes (resources) of a simple network.

• Conflict time: the trains are sorted according to the time instant of the earliest conflict
in their forecast timetable. This is because an early conflict can impact the overall
network status at a much later time. In other words, there is more freedom when fixing
conflicts happening earlier, and we want to fully use this freedom.

• Speed: the trains with highest average speed are scheduled earlier. This strategy is
based on the observation that faster trains have schedules that are more sensitive to
variations. The average speed of a train i is given by:

P

a2Ai
TS, ~x⇤a=1

l(a)
�e(a)��s(a)

�

�

�

a 2 Ai
TS : �e(a)> �s(a) and ~x⇤a = 1

�

�

During a preliminary experimental phase, we noticed that using the sorting criteria in reverse
order can sometimes lead to better results. For this reason we also considered the criteria
Reverse congestion and Reverse speed.

6.5.2 Construction

Each train schedule is constructed by solving a shortest-path problem on the time-expanded
graph GTS, where the starting node correspons to the current position of the train and the
ending node corresponds to the train’s desired position at the end of the time horizon.

Since trains run along fixed routes, with only a few possible detours, and since they
have hard constraints on the time at which they can reach and leave certain resources, the
graph GTS can be pruned accordingly for each train. Once this is done, the shortest path is
constructed with a custom label-setting algorithm. Given a partial path to a certain node
(w, t) 2 VTS, the corresponding label will be L = ((w0, t 0), c) where the node (w0, t 0) 2 VTS is
the predecessor of (w, t) in the partial path and c 2 R is the cost of the partial path up to the
current node.

Notice that, since trains are scheduled sequentially and the algorith is ran on a different
time-space graph for each train, we cannot run into deadlocks. A deadlock will indeed
correspond to an unresolved conflict (usually a capacity violation) and be accordingly heavily
penalised in the objective function.

We discuss now two main aspects of this algorithm: the order in which we extend the
labels and how we update the cost component. Labels are extended greedily, i.e., starting

118

6 Railway logistics: the train rescheduling problem

from the one with the lowest cost component, but with one exception: a label related to a
resource w will be extended only after all the labels related to resources w0 � w have already
been extended (independently from the time interval), even if they have a higher cost. The
relation � is the topological order relation between nodes in the subgraph of GN induced
by the union of the path of the train pi and all the detours in Di. To better understand this
rule, consider Figure 6.6, which describes the topological setup of a network with a main
corridor and a possible detour (via F and G). Labels related to resource D, for example, will
be extended only after all labels related to resources A, B, C , F and G have been extended,
since A� B � C � D and A� F � G � D.

The cost component is updated taking into account the various penalties included in the
objective function. Some of these penalties, however, depend on the interaction between
different trains. As an example, consider a connection between trains i1 and i2. If i1 is
scheduled before i2, when we schedule i1 will just assume that the connection will be satisfied.
If, when scheduling i2, we realise that the connection is broken, we will add the penalty on
the objective function of i2.

Finally, we need to take special care in case of split/merge operations, as these require the
presence of multiple trains on the same resource at the same time. When the partial path
of an input train reaches one of these resources, we fix the schedule of the train up to that
point, by choosing the lowest cost partial path (we first explore all non-dominated partial
paths up to the synchronisation point). We proceed with the construction of the schedule for
the output trains, only once all the schedules of the input trains have been fixed up to the
considered resource.

6.5.3 Shaking

In the shaking phase we perturb the ordering of the trains (the dispatching sequence) with the
aim of finding an ordering which leads, through a new construction phase, to an improving
solution. We present two alternative policies, inspired to two well-known metaheuristic
algorithms: Reduced Variable Neighbourhood Search (RVNS) and Tabu Search (TS). As
mentioned in the beginning of this section, these two alternative policies are experimentally
evaluated in Section 6.6.

The RVNS (see, for example, Hansen et al. [23]) explores the solution space of the prob-
lem by employing a sequence of neighbourhood structures N1, . . . ,NK . A neighbourhood
structure defines a way to describe the neighbourhood of any solution x in the solution space.

Starting from a solution x , RVNS generates a new random solution x 0 2 N1(x). If the
new solution is not better than the previous one, it goes on to the second neighbourhood
structure and generates a random x 0 2 N2(x). The procedure continues until either we run
out of neighbourhood structures or the new solution x 0 is better than the current one x . In
the first case, the algorithm terminates; in the second case, the algorithm is restarted using
x 0 as initial solution and going back to using N1.

The neighbourhood structures are typically such that

N1(x) ✓N2(x) ✓ . . . ✓NK(x) (6.10)

119

6 Railway logistics: the train rescheduling problem

for all solutions x . This means that while no improving solution is found, the search space
around x is enlarged.

In our case, the neighbourhood structure Nk(x) consist in considering all dispatching
orders that can be obtained from x by performing at most k swaps. From this definition, it
follows immediately that (6.10) is satisfied. The trains to be moved in the new dispatching
order are selected at random with a roulette wheel selection procedure where the probability
associated to each train is proportional to its contribution to the objective value. The number
of positions each train is moved up is again chosen at random, according to a uniform
distribution in [µmin,µmax].

The second policy is inspired to Tabu Search. Starting from a dispatching sequence, we
produce a new one analogously to what done with the RVNS policy. We will place in our tabu
list the precedence relations between the moved trains. For example, if we transform the
sequence x = (A, B, C , D) into x 0 = (A, D, B, C), we will store the precedence relations (D, B)
and (D, C). While these are in the tabu list, the relative order of trains D, B and D, C will not
be inverted. If, at the next iteration, train B will be selected to be moved up, then train D
will have to move together with B, so not to invert the relation (D, B); the new dispatching
sequence will then be (D, B, A, C).

The number of iterations each precedence move is stored in the tabu list depends on three
factors:

1. The change in the part of the objective function relative to the moved train;

2. The change in the overall objective function;

3. Whether the new solution improved the incumbent solution.

6.5.4 Sparsification

As previously mentioned, the sparsification of the graph GTS is used to remove some edges
and vertices from the time-space graph, to speed up the computation of shortest paths by the
labelling algorithm. Its use is justified by the fact that, by choosing a fine time discretisation,
we might create a great number of edges, many of which can be removed without strongly
impacting the quality of the train plans.

As an example, consider a segment of track 5km long and a train that, at full speed, would
travel on this segment at 100km/h. The running time of this train will be of 3 minutes. If
we choose time intervals to represent 1 second, that would be 180 time instants. If the entry
point is wL and the exit point is wR, when we consider an entry time of t, we would create
all the arcs

��

wL, t
�

,
�

wR, t + 180
��

,
��

wL, t
�

,
�

wR, t + 181
��

,
��

wL, t
�

,
�

wR, t + 182
��

, . . .

up to the end of the time horizon. This level of accuracy is clearly not needed in this situation:
a train that took 181 time instants rather than 180 to travel along that segment, would go at
a speed of 99.45km/h which is indistinguishable from 100km/h for any practical purpose.
So, even if removing some edge from the graph would — in principle — cause the algorithm

120

6 Railway logistics: the train rescheduling problem

to miss some feasible train plan, if these edges are properly selected, we can easily reduce
the probability to miss a train plan that would produce a considerable improvement.

Here we propose four main strategies for graph sparsification. Let v be a node in the
network, i the train under consideration and mi,v the minimum travel time of i along v.
Furthermore, let t be the entry time of the train at the node and t 0 the first feasible exit
time, taking into account both the minimum travel time and the other constraints such as the
minimum and maximum out-times tout

i,v and T out
i,v . The strategies we used are the following:

Fixed step We only consider departure times starting at t 0 and then keeping a time instant
in every s. The set of possible departure times will be

�

t 0 + k · s
�

� k = 0, 1, . . .

Fixed step with threshold The previous strategy can be improved by specifying a threshold
⌧ and keeping all departure times between t 0 and t 0 + ⌧. In this way we keep those
arcs that are close to t 0 and therefore correspond to a minimal delay of the train.

Linear This case is similar to the fixed step sparsification, but the step s is adjusted to be
inversely proportional to mi,v . The set of possible departure times is

n

t 0 + k ·max
⇣

1,
mi,v

s

⌘

�

�

�

k = 0,1, . . .
o

Progressive With this strategy we allow a higher density for time instants close to t 0, while
we retain fewer arcs as long as we move away from that time instant. The idea behind
this criterion is that good train plans are characterised by train schedules that are
delayed as little as possible. The set of possible departure times is

�

t 0k

where t 00 = t 0

and

t 0k = t 0k�1 + 1+
�

t 0k�1 � t

s

⌫

In our testing we used s 2 {2, 3, 5} and ⌧ 2 {5, 10, 15}, leading to a total of 19 combinations,
including the case when sparsification is disabled. Figures 6.7a to 6.7d give a graphical
representation of the sparsification methods for a segment v with endpoints wL

1 and wR
2 and

a minimum travel time mi,v = 2.

6.6 Computational Results

The aim of computational results presented in this section is to verify that the proposed
approach is valid for complex instances coming from real-life applications, that describe an
extended network with many trains, and an extended time horizon with a dense discretisation.
We also want to validate that our algorithm achieves good results in real-time settings, where
running times are limited to few seconds.

To this end, we have initially considered 23 instances, generated from three different
real-world railway networks, provided to us by Alstom Transport. The first set of instances

121

6 Railway logistics: the train rescheduling problem

wL
1

wR
1 •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(a) No sparsification.

wL
1

wR
1 •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b) Fixed step sparsification with s = 2.

wL
1

wR
1 •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(c) Fixed step sparsification with s = 2 and threshold ⌧= 3.

wL
1

wR
1 •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(d) Progressive sparsification.

Figure 6.7: Graphical representation of various graph sparsification techniques on the time-space graph.

122

6 Railway logistics: the train rescheduling problem

Name # Trains # Nodes Time horizon (h) Discretisation (s) # Conflicts
N01 28 108 2 15 24
N02 16 167 2 15 15
N03 28 172 2 15 36
N04 17 112 2 15 4
N05 18 112 2 15 12
N06 17 112 2 15 2
N07 28 126 2 15 12
N08 30 132 2 15 5
N09 28 130 2 15 4
N10 30 135 2 15 3
N11 15 137 1 15 1
N12 20 153 1 15 2
N13 33 135 4 15 37
L01 139 664 1 15 20
L02 103 631 0.75 15 54
L03 131 666 1 15 62
L04 132 675 1 15 25
L05 151 673 1.25 15 97
L06 133 671 1 15 38
P01 55 859 1 10 22
P02 55 814 1 10 22
P03 61 742 1 10 72
P04 71 731 1 10 70

Table 6.1: Main characteristics of the instances provided by Alstom.

(N01-N13) describes a relatively small network chatacterised by the presence of single track
lines used in both directions. The second set of six instances (L01-L06) refers to a busy
regional network with a large main station and several smaller stations. Finally, the third
set includes four instances (P01-P04) describing a high-speed network with frequent long-
distance trains.

Table 6.1 outlines the main characteristics of the instances considered. Column “# Trains”
lists the number of trains present in the instance; “# Nodes” is the number of resources, i.e.,
the cardinality of the set V in the network graph GN (before time expansion); “Time horizon”
is the span, in hours, of the planning horizon; “Discretisation” is the time discretisation step
used, expressed in seconds; “# Conflicts” is the sum of the number of conflicts (as described
in Section 6.4.3: illegal overtaking, hard capacity violation, headway time violation) plus the
number of violated mandatory time dependencies, given as input in the current train plan.

In Section 6.6.1 we perform parameter tuning, to determine which graph sparsification
methods and initial sortings are more likely to produce good solutions when used together
with each policy (RVNS or Tabu) and time limit (2s or 10s). In Section 6.6.2 we run a simple
parallel version of the algorithm on the 23 instances, using the tuned parameters.

123

6 Railway logistics: the train rescheduling problem

Figure 6.8: Schematic hardware configuration of the test machine.

In order to validate and benchmark our approach, we also generated new instances, which
we are making publicly available. We used the network topology of the 2012 RAS Competition
instances (see INFORMS [24]), in two configurations: in the first (letter “N”), each segment
is modelled as a separate resource, giving an N-track scenario; in the second (letter “S”)
parallel tracks are not modelled separately, but as a single resource with the appropriate
capacity, giving a single-track scenario. We generated 15 instances of each type, divided
in groups of 3. The nominal timetable is the same for each group, while the disturbances
change, so to have 5 different forecast timetables for each nominal one. Because the RAS
network is smaller than the networks used in the instances of Table 6.1, in order to obtain
feasible nominal timetables we had to either use fewer trains (instances of the first group),
or a longer time horizon with a more coarse discretisation (instances of the second and third
groups). These instances are available at [40].

To ease the comparison with other algorithms that might be developped in the future, we
did not consider problem-specific features such as time dependencies, and splits and merges.
The conflicts that can arise, therefore, are limited to headway, hard and soft capacity, crossing,
and overtake violations. Soft violations are penalised with a simple linear function. Table 6.2
describes the features of the generated instances; columns “H”, “O”, and “C” give a detailed
breakdown of the type of conflicts: headways, overtake, and hard capacity, respectively. In
Section 6.6.2 we apply the tuned parallel algorithm to the new instances, similarly to what
we do for the proprietary instances.

The tests presented in this section have been run on a dual-core 3.2GHz Intel i5 machine,
with 7803MB of RAM. The CPU configuration and the L1, L2 and L3 cache sizes are detailed
in Figure 6.8, as produced by the software Hwloc (Broquedis et al. [4]).

124

6 Railway logistics: the train rescheduling problem

Conflicts
Name # Trains Time horizon (h) Discretisation (s) H O C
N-1-1 7 4 15 0 0 6
N-1-2 7 4 15 63 0 43
N-1-3 7 4 15 35 2 41
N-1-4 7 4 15 35 1 42
N-1-5 7 4 15 0 0 32
N-2-1 12 12 60 2 0 3
N-2-2 12 12 60 4 0 6
N-2-3 12 12 60 2 0 4
N-2-4 12 12 60 0 0 7
N-2-5 12 12 60 6 0 13
N-3-1 24 12 60 4 0 25
N-3-2 24 12 60 105 0 53
N-3-3 24 12 60 0 0 6
N-3-4 24 12 60 103 0 89
N-3-5 24 12 60 0 0 10
S-1-1 7 4 15 0 0 3
S-1-2 7 4 15 32 0 22
S-1-3 7 4 15 4 1 28
S-1-4 7 4 15 30 1 24
S-1-5 7 4 15 2 0 19
S-2-1 12 12 60 0 0 2
S-2-2 12 12 60 2 0 2
S-2-3 12 12 60 6 0 5
S-2-4 12 12 60 0 0 4
S-2-5 12 12 60 2 0 4
S-3-1 24 12 60 0 0 21
S-3-2 24 12 60 59 0 25
S-3-3 24 12 60 0 0 4
S-3-4 24 12 60 60 0 60
S-3-5 24 12 60 2 0 12

Table 6.2: Main characteristics of the instances generated starting from the 2012 RAS Competition instances.

125

6 Railway logistics: the train rescheduling problem

6.6.1 Parameter tuning

The objective of parameter tuning is to measure the impact of the sparsification methods and
the sorting criteria introduced in Section 6.5, on real-time applications of the algorithm.

We ran six sets of experiments overall, in order to determine which combinations of spar-
sification and sorting are particularly effective with the RVNS and Tabu policies. For each of
these two policies, the three sets of experiments only vary in the hard time limit given to the
algorithm. The first two time limits are of 2 and 10 seconds (real-time); the third time limit
is of 60 seconds, and is used to provide better solutions that can be used as a baseline for
comparisons.

For each set of experiments, the tests were run on all the 23 Alstom instances. For each
instance, we tried all combinations of sparsification methods and initial sortings, using the
parameters described in Section 6.5. In total, we had 19 possible settings for the sparsification
methods and 7 possible sortings, giving 133 tests for each policy, time limit and instance,
giving a grand total of 133 · 2 · 3 · 23= 18354 runs.

Table 6.3 and Table 6.4 show the results we obtained during parameter tuning for the two
solvers, with time limits 2 and 10 seconds. In the first table the results have been aggregated
by sparsification method, while in the second, they have been aggregated by sorting criterion.

Columns “Sparsification” (in Table 6.3) or “Sorting” (in Table 6.4) tell, respectively, for
which sparsification method or sorting criterion the data is being aggregated. For each line
the data are grouped in four blocks, corresponding to the four combinations of policy (Tabu
or RVNS) and time limit (2s or 10s). Column “CF” gives the fraction of tests for which the
algorithm was able to find a conflict-free schedule. Column “Dev” is the average deviation,
calculated as (z � z⇤)/z⇤ where z is the solution value obtained by the algorithm with the
specified configuration, and z⇤ is the best known solution value. This best known value comes
from the 60 seconds runs that we use as baseline, and is the best value across all possible
parameter combinations. Since, as explained in Section 6.5, the objective function has a
hierarchical structure and unresolved conflicts take a very large penalty, the values in this
column tend to be quite large, as one single instance for which a method was not able to
produce a conflict-free schedule can increase the average considerably. This is, however, a
good metric of the desirability of a method, because solving conflicts always has priority on
any other measure of solution quality. In column “CF Dev”, we similarly report the average
deviation, but this time we only consider the conflict-free solutions in the average.

We want to select the best sparsification method for each policy (RVNS or Tabu) and each
time limit (2s or 10s). In order to do this, it is not sufficient to take the policy with the lowest
deviation, but one has to ensure that the differences in deviation are statistically relevant.

For this reason, we ran a Wilcoxon signed-rank test on each pair of sparsification meth-
ods, to measure whether their deviations across the various instances come from the same
distribution or not (in this latter case, a difference in the average deviation is statistically
relevant).

Figure 6.9 and Figure 6.10 give a graphical representation of the outcomes of the Wilcoxon
test. The sparsification methods are represented by nodes of an oriented graph. For each
pair of methods, if the p-value of the Wilcoxon test was < 0.05, an arc is created between
the respective nodes. The arc goes from the node with the better average deviation, to that

126

6 Railway logistics: the train rescheduling problem

Ta
bu

2s
Ta

bu
10

s
RV

N
S

2s
RV

N
S

10
s

Sp
ar

si
fic

at
io

n
C

F
D

ev
C

F
D

ev
C

F
D

ev
C

F
D

ev
C

F
D

ev
C

F
D

ev
C

F
D

ev
C

F
D

ev

di
sa

bl
ed

0.
64

10
91

2.
64

1.
88

0.
78

59
3.

90
1.

33
0.

79
48

8.
43

10
.3

2
0.

80
37

0.
22

1.
43

fix
ed

-2
0.

70
16

25
2.

12
1.

68
0.

77
15

37
4.

42
1.

35
0.

75
15

81
1.

52
1.

73
0.

75
15

55
8.

96
1.

38
fix

ed
-3

0.
71

16
16

1.
95

1.
66

0.
78

15
31

2.
86

1.
34

0.
75

15
68

6.
94

1.
62

0.
76

15
52

8.
27

1.
42

fix
ed

-5
0.

74
15

87
5.

32
1.

62
0.

78
15

32
1.

86
1.

32
0.

74
28

82
0.

40
1.

59
0.

75
26

40
6.

56
1.

40
lin

ea
r-

2
0.

65
63

91
.5

4
1.

85
0.

80
33

9.
41

1.
36

0.
80

37
7.

08
10

.0
6

0.
80

37
0.

23
1.

45
lin

ea
r-

3
0.

64
87

25
.0

4
2.

06
0.

78
41

8.
67

1.
39

0.
79

59
9.

52
10

.2
0

0.
80

37
0.

24
1.

46
lin

ea
r-

5
0.

62
11

32
5.

47
1.

95
0.

77
73

9.
40

1.
43

0.
78

49
81

.0
4

8.
29

0.
80

37
0.

25
1.

47
pr

og
re

ss
iv

e-
2

0.
76

83
4.

95
1.

49
0.

82
31

.9
3

1.
24

0.
78

69
6.

63
1.

51
0.

80
30

8.
66

1.
34

pr
og

re
ss

iv
e-

3
0.

73
13

48
.7

6
1.

41
0.

81
62

.6
6

1.
23

0.
80

49
3.

27
1.

55
0.

80
24

7.
19

1.
34

pr
og

re
ss

iv
e-

5
0.

73
14

39
.3

6
1.

50
0.

82
64

.2
1

1.
23

0.
78

66
3.

47
1.

57
0.

78
37

9.
93

1.
32

th
re

sh
ol

d-
2-

5
0.

66
39

77
.4

9
4.

29
0.

80
21

7.
94

1.
26

0.
80

40
6.

13
7.

95
0.

80
37

0.
16

1.
38

th
re

sh
ol

d-
2-

10
0.

67
38

51
.5

1
4.

25
0.

79
24

7.
15

1.
27

0.
78

44
5.

13
8.

05
0.

79
33

9.
43

1.
38

th
re

sh
ol

d-
2-

15
0.

66
41

57
.3

1
4.

34
0.

79
31

0.
16

1.
27

0.
80

40
6.

14
7.

95
0.

80
37

0.
17

1.
38

th
re

sh
ol

d-
3-

5
0.

70
14

82
.9

7
1.

62
0.

80
24

7.
14

1.
28

0.
79

56
8.

01
7.

93
0.

80
37

0.
15

1.
36

th
re

sh
ol

d-
3-

10
0.

69
16

27
.5

5
1.

63
0.

80
24

7.
15

1.
29

0.
78

47
5.

82
7.

99
0.

79
40

0.
89

1.
36

th
re

sh
ol

d-
3-

15
0.

68
17

42
.6

3
4.

20
0.

80
18

7.
18

1.
24

0.
79

43
6.

84
7.

95
0.

79
37

0.
16

1.
36

th
re

sh
ol

d-
5-

5
0.

73
13

33
.0

8
1.

49
0.

81
93

.4
1

1.
22

0.
79

55
6.

38
3.

63
0.

79
30

8.
66

1.
34

th
re

sh
ol

d-
5-

10
0.

70
17

08
.3

4
1.

56
0.

81
93

.4
2

1.
24

0.
79

52
5.

67
3.

67
0.

79
37

0.
14

1.
34

th
re

sh
ol

d-
5-

15
0.

69
17

50
.1

2
1.

58
0.

81
62

.7
0

1.
27

0.
79

52
5.

69
3.

69
0.

79
40

0.
89

1.
36

Ta
bl

e
6.

3:
Pa

ra
m

et
er

tu
ni

ng
re

su
lts

ag
gr

eg
at

ed
by

sp
ar

si
fic

at
io

n
m

et
ho

d.

127

6 Railway logistics: the train rescheduling problem

Ta
bu

2s
Ta

bu
10

s
RV

N
S

2s
RV

N
S

10
s

So
rt

in
g

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
F

D
ev

C
on

ge
st

io
n

0.
73

31
97

.6
1

1.
58

0.
80

25
09

.9
8

1.
29

0.
79

35
35

.4
1

11
.3

8
0.

80
33

49
.4

7
1.

42
C

on
fli

ct
tim

e
0.

73
79

38
.6

6
4.

92
0.

80
25

89
.9

5
1.

28
0.

78
40

12
.8

3
9.

14
0.

78
37

00
.9

1
1.

31
Le

ng
th

0.
73

33
02

.7
5

1.
64

0.
80

26
35

.4
9

1.
27

0.
78

38
82

.0
8

1.
75

0.
78

37
91

.1
2

1.
44

R
an

do
m

0.
59

13
03

1.
87

2.
01

0.
81

26
37

.8
8

1.
34

0.
76

54
82

.9
5

9.
27

0.
78

26
23

.5
1

1.
45

Re
ve

rs
e

co
ng

es
tio

n
0.

74
51

70
.6

5
1.

72
0.

78
25

89
.0

7
1.

29
0.

78
38

48
.5

9
1.

77
0.

78
37

56
.9

4
1.

37
Re

ve
rs

e
sp

ee
d

0.
65

41
10

.6
0

1.
61

0.
79

25
84

.5
9

1.
26

0.
77

28
90

.2
7

1.
75

0.
77

28
41

.6
3

1.
35

Sp
ee

d
0.

68
41

05
.0

6
1.

70
0.

79
28

61
.4

3
1.

31
0.

82
32

29
.3

9
4.

74
0.

82
32

24
.7

4
1.

33

Ta
bl

e
6.

4:
Pa

ra
m

et
er

tu
ni

ng
re

su
lts

ag
gr

eg
at

ed
by

in
iti

al
so

rt
in

g.

128

6 Railway logistics: the train rescheduling problem

(a) Policy: Tabu, time limit: 2s.

(b) Policy: RVNS, time limit: 2s.

Figure 6.9: Visual representation of the results of the Wilcoxon test (time limit: 2s).

129

6 Railway logistics: the train rescheduling problem

(a) Policy: Tabu, time limit: 10s.

(b) Policy: RVNS, time limit: 10s.

Figure 6.10: Visual representation of the results of the Wilcoxon test (time limit: 10s).

130

6 Railway logistics: the train rescheduling problem

Tabu 2s Tabu 10s RVNS 2s RVNS 10s
progressive-2 progressive-2 linear-2 progressive-3

Deviation Deviation Deviation Deviation

Sorting Avg Std Best Avg Std Best Avg Std Best Avg Std Best

Congestion 441.45 2115.65 8 0.16 0.22 12 11.83 53.76 6 0.36 0.83 8
Conflict time 430.66 2063.77 2 0.22 0.30 2 442.05 2062.05 6 430.57 2063.81 5
Length 1076.20 5159.38 4 0.24 0.38 2 861.38 4127.40 2 215.53 1031.94 1
Random 2461.98 9855.31 3 0.22 0.31 2 227.90 1030.85 1 430.60 2063.80 3
Rev. Congestion 226.44 1083.85 3 0.14 0.16 2 646.11 3095.51 3 430.59 2063.73 1
Rev. Speed 554.88 1887.01 1 0.19 0.33 2 431.11 2063.69 3 215.47 1032.00 1
Speed 646.03 3095.86 2 215.37 1031.95 3 12.15 53.70 2 0.23 0.42 4

Table 6.5: Average deviations of different sortings, for the chosen sparsification methods.

with the worse one. To simplify the graph, whenever there are arc (M1, M2), (M2, M3) and
(M1, M3), this latter arc is removed.

The colour and the thickness of the arc depend on the difference of the deviations: the
greater the difference, the thicker and more blue the arc; on the other hand, small differences
are represented by thin red-ish arcs. Arcs are drawn from top to bottom, so that the best
sparsifications are in the top part of the graph.

The sparisification methods were chosen as follows:

• In the case of policy Tabu and time limit 2s (Figure 6.9a) the only two undominated
methods are “progressive-2” and “progressive-3”; since the average deviation of the
former is 38.1% smaller than that of the latter (see Table 6.3), we decided to take
“progressive-2” as the chosen sparsification method.

• For policy RVNS and time limit 2s, the only undominated method is “linear-2”, which
also has a considerably smaller deviation compared to the other methods.

• An interesting case is that of policy Tabu and time limit 10s (Figure 6.10a), as this is
the case where it is most unclear which sparsification emerges as a winner. However,
since the deviation of method “progressive-2” is the smallest, and it is 49.04% smaller
than the second-smallest one (“progressive-3”), we chose this method.

• Finally, for policy RVNS and time limit 10s, the three undominated methods were
“progressive-2”, “progressive-3”, and “threshold-5-5”. Again, since the average devia-
tion for “progressive-3” is 19.92% smaller than that for the other two (which have the
same deviation), we chose that method.

Table 6.5 shows the chosen sparsification methods and gives the average deviations (columns
“Avg”), together with their standard deviation (column “Std”), obtained by employing the
different initial sortings with each sparsification. Column “Best” tells the number of instances
(out of 23) for which each sorting criterion provided the best result, compared to the other
criteria in the same column.

131

6 Railway logistics: the train rescheduling problem

Tabu 2s Tabu 10s RVNS 2s RVNS 10s
progressive-2 progressive-2 linear-2 progressive-3

Congestion Congestion Congestion Congestion
Length Conflict Time Conflict Time Conflict Time
Reverse Congestion Reverse Congestion Reverse Congestion Speed
Random Reverse Speed Reverse Speed Random

Table 6.6: List of sorting criteria chosen for each policy and time limit, to be used in the parallel algorithm.

6.6.2 Parallel algorithm

In this section we provide computational results for a very simple parallel implementation of
the algorithm. We ran four sets of experiments, namely one for each combination of policy
and time limit, together with the respective sparsification method chosen during parameter
tuning, as described in Section 6.6.1. For each set, the parallel implementation simply consists
of launching four parallel instances of the algorithm, each using one of four sorting criteria.
When the time limit hits, the four solutions provided by the parallel instances are examined
and the best one is returned as the overall solution.

The usage of parallel algorithms in operational research is well-established. We refer the
reader to, e.g., Clausen and Perregaard [9] for parallel strategies for branch-and-bound exact
algorithms, or to Ropke and Santini [37] for a systematic analysis of the speed-ups obtained
by parallelising the Adaptive Large Neighbourhood Search metaheuristic. With respect to the
train rescheduling problem, Iqbal et al. [25, 26] proposed parallel algorithms for rescheduling
under disturbances.

In our case, the implementation of a parallel algorithm is motivated by the high dispersion
of the solution values with respect to the average one, obtained by the different sorting
methods, as witnessed by the high values of Standard Deviation reported in Table 6.5 (this
effect is more evident for the 2s time limit compared to the 10s one, and for the RVNS policy
compared to the Tabu one). This means that, in practice, even the best sorting method
was not able to resolve some solvable conflict, thus resulting in high solution values, due
to the hierarchical nature of our objective function. Furthermore, we observed a certain
complementarity in the capability of resolving conflicts across different sortings, which we
see as a hint towards the parallel use of different sorting criteria.

More formally, we investigated the dependance of sorting criteria to instance characteristics
via simple one-vs-all and one-vs-one multiclass classification algorithms provided by the library

(see, e.g., Aly [2]). These algorithms were based on the binary classifier that, for
a fixed time limit, assigns an instance to an intial sorting criterion (class) if there is at least
one policy (either Tabu or RVNS) for which that sorting provided the best result for that time
limit. The instance features considered were the one listed in Tables 6.1 and 6.2. Neither
the one-vs-all nor the one-vs-one algorithm found statistically significant relationships of the
sorting criteria to the instance features.

Once established the need for an algorithm that employs more than one sorting criteria at
once, it is clearly important to perform a good choice of the criteria. The simplest approach

132

6 Railway logistics: the train rescheduling problem

Instance group Algorithm Sorting Dev Conflicts Infeasible Modified Delay
L Tabu 2s Random, Length, Reverse congestion 0.17 0.50 0.00 104.50 28.64
L Tabu 10s Reverse congestion 0.11 0.50 0.00 104.67 29.00
L RVNS 2s Reverse speed 0.17 0.50 0.00 105.67 33.34
L RVNS 10s Conflict time 0.05 0.50 0.00 100.83 10.64
N Tabu 2s Congestion 0.16 0.38 0.08 7.85 79.43
N Tabu 10s Congestion 0.08 0.38 0.08 8.23 70.12
N RVNS 2s Congestion 0.45 0.38 0.08 7.54 99.30
N RVNS 10s Congestion 0.26 0.38 0.08 8.00 67.69
P Tabu 2s Reverse congestion 0.50 0.00 0.00 59.25 247.17
P Tabu 10s Reverse speed 0.03 0.00 0.00 59.50 220.52
P RVNS 2s Conflict time 0.30 0.00 0.00 59.50 226.83
P RVNS 10s Congestion 0.20 0.00 0.00 59.50 221.58
Overall 2s Congestion 0.29 0.35 0.04 42.09 99.81
Overall 10s Congestion 0.14 0.35 0.04 41.74 82.56
Overall Tabu Congestion 0.15 0.35 0.04 42.15 90.45
Overall RVNS Congestion 0.27 0.35 0.04 41.67 91.92
Overall Congestion 0.21 0.35 0.04 41.91 91.19

Table 6.7: Parallel algorithm results on the Alstom instances.

would be to choose the four criteria that produce the four lowest deviations for a given
policy and time limit (see Table 6.5). This choice, however, has not proven particularly good
especially for the lowest time limit, and in one case we even had one instance (instance “P4”
for the Tabu policy at 2s) for which not all solvable conflicts were actually resolved.

What we aim for is a choice of methods out of which, given any instance, there are high
chances to find one that works reasonably well with that instance, eliminating all solvable
conflicts, and therefore exploting the aforementioned complementarity. For this reason, we
decided to choose the methods in a way to maximise the number of instances for which at
least one of the methods chosen was the best. Table 6.6 lists the chosen sorting criterian for
each policy and time limit.

Table 6.7 reports aggregate results for the parallel algorithm on the Alstom instances.
Column “Sorting” reports which initial sorting produced the optimal solution most often, for
a fixed choice of instance group and algorithm. Column “Dev” gives the average deviation,
calculated as (z�z⇤)/z⇤ where z is the solution value obtained by the algorithm, and z⇤ is the
best known solution value. Column “Conflicts” lists the average number of conflicts remaining
in the output solution, while columns “Infeasible” and “Modified” report, respectively, the
number of trains that are infeasible and whose schedule has been modified in the output
solution. Finally, “Delay” lists the average delay (or advance, in which case the figure is < 0)
reported by trains at their final destination.

By observing the tables, it is clear that the benefit of the parallel algorithm is considerable
when compared to fixed choices of sorting criteria. This is particularly evident for the 2s
time limit, where the best average deviations achieved by using only one sorting (see Ta-
ble 6.5) were of 226.44 for Tabu and 11.83 for RVNS, while the parallel algorithms gives —
respectively — 0.22 and 0.35 (see the detailed results in Tables 6.9 and 6.10). In addition,
by looking at the detailed results, we can notice that all four sortings selected for each set

133

6 Railway logistics: the train rescheduling problem

Instance group Algorithm Sorting Dev Conflicts Infeasible Modified Delay
S-1 Tabu 2s Reverse congestion 2.26 · 10�2 0 0 4.60 132.67
S-1 Tabu 10s Reverse congestion 1.99 · 10�2 0 0 4.60 131.72
S-1 RVNS 2s Reverse speed 3.58 · 10�2 0 0 4.60 134.77
S-1 RVNS 10s Length, Speed 1.64 · 10�2 0 0 4.60 129.30
S-2 Tabu 2s Reverse congestion 3.97 · 10�3 0 0 3.80 63.77
S-2 Tabu 10s Congestion 1.83 · 10�3 0 0 3.80 60.61
S-2 RVNS 2s Conflict time 6.75 · 10�4 0 0 3.80 60.04
S-2 RVNS 10s Speed 3.54 · 10�4 0 0 3.80 59.80
S-3 Tabu 2s Length, Congestion 1.24 · 10�2 0 0 5.20 185.33
S-3 Tabu 10s Congestion 2.65 · 10�3 0 0 5.00 188.68
S-3 RVNS 2s Conflict time 7.52 · 10�3 0 0 5.20 190.85
S-3 RVNS 10s Congestion, Speed 8.02 · 10�5 0 0 5.20 186.63
N-1 Tabu 2s Random, Congestion 6.91 · 10�4 0 0 4.20 125.05
N-1 Tabu 10s Reverse congestion 6.91 · 10�4 0 0 4.20 125.05
N-1 RVNS 2s Conflict time 1.19 · 10�1 0 0 3.80 154.79
N-1 RVNS 10s Congestion 2.25 · 10�4 0 0 4.20 124.86
N-2 Tabu 2s Length 9.90 · 10�4 0 0 4.00 106.31
N-2 Tabu 10s Conflict time 9.90 · 10�4 0 0 4.00 106.31
N-2 RVNS 2s Conflict time 7.52 · 10�4 0 0 4.00 106.42
N-2 RVNS 10s Length 1.32 · 10�4 0 0 4.00 106.06
N-3 Tabu 2s Reverse congestion 2.15 · 10�2 0 0 6.00 219.10
N-3 Tabu 10s Conflict time 7.14 · 10�3 0 0 5.40 203.28
N-3 RVNS 2s Conflict time 9.28 · 10�3 0 0 5.20 205.11
N-3 RVNS 10s Speed 7.40 · 10�3 0 0 5.20 207.49
Overall 2s Conflict time 1.93 · 10�2 0 0 4.20 140.27
Overall 10s Congestion 5.07 · 10�3 0 0 4.23 135.90
Overall Tabu Reverse congestion 7.05 · 10�3 0 0 4.30 137.32
Overall RVNS Conflict time 1.64 · 10�2 0 0 4.20 138.84
Overall Conflict time 1.22 · 10�2 0 0 4.25 138.08

Table 6.8: Parallel algorithm results on the RAS-Based instances.

134

6 Railway logistics: the train rescheduling problem

Figure 6.11: Scatter graph (without outliers) showing the correlation between solution quality and number of
modified trains.

(algorithm and time limit) provide the best solution in some instances, with the “Congestion”
sorting being the one appearing most frequently overall, and also when aggregating by policy
or by time limit.

For what concerns the choice of the heuristic policy, from the detailed results we can notice
that Tabu and RVNS turn out to provide the smallest instance-by-instance deviations almost
the same number of times: namely, both 15 times for 2s, and 18 vs 17 times for 10s. From
Table 6.7 we can see, however, that Tabu provides smaller deviations, at the cost of modifying
more trains. A small further reduction could be achieved by an hypothetical algorithm that
ran the Tabu and RVNS policies in parallel (thereby using 8 concurrent threads): such an
algorithm would achieve an average deviation of 0.17 for 2s, and 0.06 for 10s. Finally, as
we clearly expected, a considerable improvement is obtained by letting the algorithm run for
longer: the average deviation for all methods ran for 10s is less than half than that for all
methods ran for 2s.

Figure 6.11 displays the relation between the deviations achieved by the parallel algorithm
and the number of trains whose schedules have been modified. All the solutions described in
Table 6.9 and Table 6.10 are reported in the figure. The figure seems to suggest that, despite
not having included the number of modified trains as a penalty term in the objective funciont
(see Section 6.4.4) there are no solutions in which a lot of trains are modified and, despite
that, bad solutions are obtained. This can be seen by noticing that the upper-right triangle of
the graph is empty. In summary, the figure seem to suggest that three scenarios can happen.
The first, best scenario is that a high quality solution is found and few trains are modified
(bottom-left cluster of points); in the second scenario a high quality solution is found, but a
lot of trains have to be modified (points on the top-left corner); finally, rarely a bad solution
is found, but in this case only few trains are modified (bottom-right points).

Table 6.8 is analogous to Table 6.7 and reports aggregate results for the parallel algorithm

135

6 Railway logistics: the train rescheduling problem

on the RAS-based instances. Notice that, due to the nature of the instances, the deviation
are smaller compared to those reported in Table 6.7, and all conflicts were resolved in each
instance. Also, the average number of modified trains is smaller for RAS instances than for
Alstom instances; this is not surprising, as the number of train in the nominal timetable was
also smaller. Average delays are, on the other hand, higher, probably due to the fact that the
time horizon is longer for the RAS-based instances.

As in the case of the Alstom instances, there is a lot of variability in which initial sorting cri-
terion leads to the best solution; not only some criterion works best with particular instances,
but also the combination of instance and policy seems to influence the effectiveness of the
sorting criterion. This confirms the negative results obtained by the classification algorithms,
and the potential of a (simple) parallel implementation in order to obtain good practical
results.

6.7 Conclusions

In this paper we have presented a fast algorithm for resolving conflicts in real-time train
timetabling. The algorithm is capable of handling several constraints that arise in real-world
applications. The underlying model, based on a time-space graph, is quite flexible since it
supports both micro- and macroscopic modelling, and even a mix of the two. Computational
results, conducted on instances representing real-world scenarios, show that the model can
resolve all solvable conflicts in very short computing times, which are compatible with a real-
time context. An industrial implementation of the presented algorithm has been integrated
in the ICONIS system of Alstom and will be deployed in several real-world contexts.

The model could be further expanded to take into consideration, e.g., the energy efficiency
of the generated schedules, or their robustness with respect to future disturbances. Another
interesting research avenue concerns the development of relaxations of the problem, based
on (mixed integer) linear programming, that could provide lower bounds on the objective
function value.

Acknowledgements

The authors are grateful to Alstom Transport for providing the test instances used for the
computational validation of our method.

Appendix: Detailed results

Tables 6.9 and 6.10 provide instance-by-instance results for Tabu and RVNS policies, respec-
tively. Column “Sorting” specifies which was the sorting method employed in the thread that
produced the overall best solution. Column “Dev”, analogously to what presented in previous
tables, is the ratio between the objective value produced by the parallel algorithm and the
best known objective value for the same instance. Column “Conflicts” lists the number of
hard and soft constraints violated in the produced solution. Column “Inf Trains” tells how

136

6 Railway logistics: the train rescheduling problem

many trains remain infeasible (i.e., with hard constraints violations). Column “Mod Trains”
gives the number of trains whose schedules have been modified. Finally, column “Avg Delay”
lists, in time units, the average delay (if > 0) or advance (if < 0) that a train reported when
arriving at its destination. A † next to a deviation indicates the best deviation produced for
the corresponding instance, for that time limit. When Tabu and RVNS attained the same
deviation, the † is present in both tables.

Notice that there are instances for which no method was able to resolve all Conflict timelicts
(even when using a time limit of 60s). Manual inspection of these Conflict timelicts has
Conflict timeirmed that they are, indeed, unavoidable.

Tables 6.11 and 6.12 are analogous to Tables 6.9 and 6.10, but provide detailed results
relative to the RAS-based instances.

137

6 Railway logistics: the train rescheduling problem

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 2s progressive-2 N1 Length 0.20 0 0 9 94.14

N2 Length †0.13 0 0 15 198.53
N3 Reverse congestion †0.00 3 1 8 40.71
N4 Congestion †0.00 0 0 5 15.00
N5 Random †0.00 0 0 16 102.63
N6 Congestion †0.00 0 0 1 8.33
N7 Length †0.05 0 0 8 70.34
N8 Congestion †0.24 0 0 9 3.87
N9 Congestion †1.25 0 0 6 32.07
N10 Congestion 0.22 0 0 5 9.19
N11 Congestion †0.00 0 0 3 19.29
N12 Congestion †0.00 0 0 3 30.00
N13 Congestion †0.00 2 0 14 408.53
L1 Random †0.00 1 0 117 -13.71
L2 Reverse congestion †0.10 0 0 96 -39.17
L3 Random †0.00 2 0 113 87.02
L4 Reverse congestion 0.29 0 0 91 33.66
L5 Length 0.38 0 0 117 59.70
L6 Length 0.27 0 0 93 44.33
P1 Reverse congestion 0.47 0 0 54 243.21
P2 Reverse congestion †0.31 0 0 53 256.07
P3 Congestion 0.16 0 0 60 141.05
P4 Random 1.04 0 0 70 348.33
Overall 0.22 0.35 0.04 42.00 95.35

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 10s progressive-2 N1 Reverse speed 0.20 0 0 10 95.17

N2 Conflict time †0.00 0 0 15 192.35
N3 Congestion †0.00 3 1 9 49.29
N4 Congestion †0.00 0 0 5 15.00
N5 Congestion †0.00 0 0 16 102.63
N6 Congestion †0.00 0 0 1 8.33
N7 Congestion †0.01 0 0 9 70.34
N8 Congestion †0.24 0 0 9 3.87
N9 Congestion †0.38 0 0 8 10.34
N10 Congestion †0.22 0 0 5 9.19
N11 Congestion †0.00 0 0 3 19.29
N12 Congestion †0.00 0 0 3 30.00
N13 Congestion †0.00 2 0 14 305.74
L1 Reverse congestion †0.00 1 0 117 -23.14
L2 Reverse congestion 0.09 0 0 96 -42.23
L3 Conflict time †0.00 2 0 113 106.49
L4 Reverse congestion 0.17 0 0 91 28.85
L5 Reverse speed 0.29 0 0 118 73.71
L6 Congestion 0.12 0 0 93 30.34
P1 Reverse speed †0.00 0 0 54 233.84
P2 Conflict time †0.00 0 0 54 236.25
P3 Congestion †0.00 0 0 60 138.87
P4 Reverse speed †0.11 0 0 70 273.12
Overall 0.08 0.35 0.04 42.30 85.55

Table 6.9: Parallel algorithm results for the Tabu solver on the Alstom instances.

138

6 Railway logistics: the train rescheduling problem

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 2s linear-2 N1 Reverse congestion †0.19 0 0 9 94.14

N2 Reverse congestion 0.26 0 0 14 229.41
N3 Reverse congestion †0.00 3 1 9 48.75
N4 Reverse congestion 0.07 0 0 5 15.00
N5 Congestion 0.41 0 0 15 273.95
N6 Congestion †0.00 0 0 1 8.33
N7 Reverse speed 0.10 0 0 7 88.45
N8 Conflict time 0.52 0 0 6 49.35
N9 Conflict time 0.25 0 0 7 20.69
N10 Conflict time †0.11 0 0 5 6.77
N11 Congestion †0.00 0 0 3 19.29
N12 Congestion †0.00 0 0 3 30.00
N13 Congestion †0.00 2 0 14 406.76
L1 Conflict time †0.00 1 0 118 -5.25
L2 Conflict time 0.30 0 0 96 -17.48
L3 Reverse speed †0.00 2 0 113 81.07
L4 Reverse congestion †0.23 0 0 93 36.87
L5 Reverse speed †0.26 0 0 120 49.17
L6 Reverse speed †0.23 0 0 94 55.63
P1 Congestion †0.00 0 0 54 235.71
P2 Conflict time 0.32 0 0 54 236.25
P3 Conflict time †0.08 0 0 60 150.97
P4 Congestion †0.81 0 0 70 284.38
Overall 0.35 0.35 0.04 42.17 104.27

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 10s progressive-3 N1 Random †0.13 0 0 9 97.76

N2 Random 0.12 0 0 15 198.53
N3 Speed †0.00 3 1 9 47.68
N4 Congestion †0.00 0 0 5 15.00
N5 Conflict time †0.00 0 0 16 101.05
N6 Congestion †0.00 0 0 1 8.33
N7 Conflict time 0.06 0 0 8 88.45
N8 Speed 1.45 0 0 7 28.55
N9 Speed 1.29 0 0 6 33.62
N10 Congestion 0.29 0 0 5 9.68
N11 Congestion †0.00 0 0 3 19.29
N12 Congestion †0.00 0 0 3 30.00
N13 Random †0.00 2 0 17 202.06
L1 Conflict time †0.00 1 0 116 -21.96
L2 Congestion †0.06 0 0 96 -46.75
L3 Conflict time †0.00 2 0 113 60.34
L4 Conflict time †0.03 0 0 82 19.01
L5 Congestion †0.15 0 0 114 14.21
L6 Speed †0.06 0 0 84 38.96
P1 Congestion †0.00 0 0 54 232.50
P2 Conflict time †0.00 0 0 54 234.91
P3 Random †0.00 0 0 60 134.52
P4 Congestion 0.81 0 0 70 284.38
Overall 0.19 0.35 0.04 41.17 79.57

Table 6.10: Parallel algorithm results for the RVNS solver on the Alstom instances.

139

6 Railway logistics: the train rescheduling problem

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 2s progressive-2 S-1-1 Length 4.10 · 10�2 0 0 5 200.20

S-1-2 Reverse congestion †0 0 0 4 109.23
S-1-3 Length 3.32 · 10�2 0 0 5 78.11
S-1-4 Reverse congestion 2.55 · 10�2 0 0 5 186.38
S-1-5 Reverse congestion †0 0 0 4 84.69
S-2-1 Reverse congestion 3.37 · 10�3 0 0 2 791
S-2-2 Reverse congestion 3.44 · 10�3 0 0 2 48.95
S-2-3 Reverse congestion 7.26 · 10�4 0 0 2 50.81
S-2-4 Reverse congestion 1.16 · 10�2 0 0 3 94.20
S-2-5 Reverse congestion 7.11 · 10�4 0 0 2 53.97
S-3-1 Reverse congestion 1.99 · 10�4 0 0 12 604.70
S-3-2 Length 2.41 · 10�4 0 0 1 16.96
S-3-3 Length †0 0 0 2 88.69
S-3-4 Congestion 1.28 · 10�2 0 0 7 95.06
S-3-5 Congestion 4.89 · 10�2 0 0 4 121.25
N-1-1 Random 2.24 · 10�4 0 0 5 168.34
N-1-2 Length 1.13 · 10�3 0 0 4 106.44
N-1-3 Congestion 4.60 · 10�4 0 0 3 82.44
N-1-4 Random 1.16 · 10�3 0 0 4 171.13
N-1-5 Congestion 4.85 · 10�4 0 0 5 96.89
N-2-1 Random 2.22 · 10�3 0 0 2 69.46
N-2-2 Length †0 0 0 4 97.16
N-2-3 Length 1.82 · 10�3 0 0 3 67.38
N-2-4 Random †0 0 0 4 153.92
N-2-5 Length 9.13 · 10�4 0 0 7 143.64
N-3-1 Reverse congestion 2.11 · 10�2 0 0 13 690.42
N-3-2 Reverse congestion 1.95 · 10�4 0 0 1 17.13
N-3-3 Reverse congestion †0 0 0 2 106.09
N-3-4 Congestion 8.59 · 10�2 0 0 10 162.78
N-3-5 Random 3.64 · 10�4 0 0 4 119.06
Overall 9.92 · 10�3 0 0 4.37 138.55

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 10s progressive-2 S-1-1 Reverse congestion 5.62 · 10�2 0 0 5 205.71

S-1-2 Reverse congestion †0 0 0 4 109.23
S-1-3 Reverse congestion 3.32 · 10�2 0 0 5 78.11
S-1-4 Congestion 2.38 · 10�2 0 0 5 185.61
S-1-5 Reverse speed †0 0 0 4 84.69
S-2-1 Reverse speed 3.37 · 10�3 0 0 2 70.91
S-2-2 Congestion 3.44 · 10�3 0 0 2 48.95
S-2-3 Congestion 7.26 · 10�4 0 0 2 50.81
S-2-4 Congestion 9.02 · 10�4 0 0 3 78.43
S-2-5 Congestion 7.11 · 10�4 0 0 2 53.97
S-3-1 Reverse speed 1.99 · 10�4 0 0 12 604.70
S-3-2 Congestion 2.41 · 10�4 0 0 1 16.96
S-3-3 Congestion †0 0 0 2 117.50
S-3-4 Congestion 1.28 · 10�2 0 0 7 95.06
S-3-5 Congestion †0 0 0 3 109.17
N-1-1 Reverse congestion 2.24 · 10�4 0 0 5 168.34
N-1-2 Reverse congestion 1.13 · 10�3 0 0 4 106.44
N-1-3 Reverse congestion 4.60 · 10�4 0 0 3 82.44
N-1-4 Conflict time 1.16 · 10�3 0 0 4 171.13
N-1-5 Conflict time 4.85 · 10�4 0 0 5 96.89
N-2-1 Conflict time 2.22 · 10�3 0 0 2 69.46
N-2-2 Conflict time †0 0 0 4 97.16
N-2-3 Conflict time 1.82 · 10�3 0 0 3 67.38
N-2-4 Conflict time 0 0 0 4 153.92
N-2-5 Conflict time †9.13 · 10�4 0 0 7 143.64
N-3-1 Reverse speed 4.53 · 10�4 0 0 12 657.50
N-3-2 Conflict time 1.95 · 10�4 0 0 1 17.13
N-3-3 Conflict time †0 0 0 2 106.09
N-3-4 Reverse speed 3.47 · 10�2 0 0 8 116.63
N-3-5 Conflict time 3.64 · 10�4 0 0 4 119.06
Overall 5.99 · 10�3 0 0 4.23 136.10

Table 6.11: Parallel algorithm results for the Tabu solver on the RAS-based instances.

140

6 Railway logistics: the train rescheduling problem

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 2s linear-2 S-1-1 Reverse speed 5.51 · 10�2 0 0 5 204.39

S-1-2 Conflict time 5.37 · 10�2 0 0 4 117.14
S-1-3 Reverse speed †2.04 · 10�2 0 0 5 73.57
S-1-4 Reverse speed 3.69 · 10�2 0 0 5 190.15
S-1-5 Conflict time 1.28 · 10�2 0 0 4 88.57
S-2-1 Conflict time †0 0 0 2 70.05
S-2-2 Conflict time †0 0 0 2 47.51
S-2-3 Conflict time 7.26 · 10�4 0 0 2 50.81
S-2-4 Conflict time 9.02 · 10�4 0 0 3 78.43
S-2-5 Conflict time 1.42 · 10�4 0 0 2 53.40
S-3-1 Reverse speed †0 0 0 12 604.23
S-3-2 Conflict time 7.22 · 10�4 0 0 1 17.20
S-3-3 Conflict time †0 0 0 2 117.50
S-3-4 Conflict time 3.57 · 10�2 0 0 8 106.61
S-3-5 Conflict time 1.17 · 10�3 0 0 3 108.69
N-1-1 Conflict time 5.81 · 10�1 0 0 3 314.07
N-1-2 Congestion †0 0 0 4 106.27
N-1-3 Conflict time 5.06 · 10�3 0 0 3 84.08
N-1-4 Conflict time 1.45 · 10�3 0 0 4 171.13
N-1-5 Conflict time 5.10 · 10�3 0 0 5 98.41
N-2-1 Conflict time 1.78 · 10�3 0 0 2 69.36
N-2-2 Conflict time 6.33 · 10�4 0 0 4 97.68
N-2-3 Conflict time 3.03 · 10�4 0 0 3 66.86
N-2-4 Conflict time 3.83 · 10�4 0 0 4 154.45
N-2-5 Congestion 6.64 · 10�4 0 0 7 143.75
N-3-1 Reverse speed †0 0 0 12 657.15
N-3-2 Conflict time 1.95 · 10�4 0 0 1 17.13
N-3-3 Conflict time †0 0 0 2 106.09
N-3-4 Conflict time 4.53 · 10�2 0 0 7 125.96
N-3-5 Reverse speed 9.09 · 10�4 0 0 4 119.21
Overall 2.87 · 10�2 0 0 4.16 141.99

Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 10s progressive-3 S-1-1 Congestion †0 0 0 5 185.71

S-1-2 Length 2.90 · 10�2 0 0 4 113.67
S-1-3 Speed 3.22 · 10�2 0 0 5 77.76
S-1-4 Length †2.05 · 10�2 0 0 5 184.59
S-1-5 Speed 3.02 · 10�4 0 0 4 84.74
S-2-1 Speed 3.37 · 10�3 0 0 2 70.91
S-2-2 Speed †0 0 0 2 47.51
S-2-3 Speed †0 0 0 2 50.24
S-2-4 Speed †0 0 0 3 77.10
S-2-5 Speed †0 0 0 2 53.25
S-3-1 Length 1.66 · 10�4 0 0 12 604.58
S-3-2 Speed †0 0 0 1 16.96
S-3-3 Speed †0 0 0 2 117.50
S-3-4 Congestion †0 0 0 8 85.42
S-3-5 Congestion 2.35 · 10�4 0 0 3 108.69
N-1-1 Congestion †0 0 0 5 168.25
N-1-2 Congestion 1.13 · 10�3 0 0 4 106.44
N-1-3 Congestion †0 0 0 3 82.27
N-1-4 Length †0 0 0 4 170.62
N-1-5 Length †0 0 0 5 96.72
N-2-1 Random †0 0 0 2 68.94
N-2-2 Length 5.06 · 10�4 0 0 4 97.58
N-2-3 Length †0 0 0 3 66.76
N-2-4 Length 1.53 · 10�4 0 0 4 154.13
N-2-5 Length †0 0 0 7 142.91
N-3-1 Length 2.34 · 10�2 0 0 12 697.16
N-3-2 Speed †0 0 0 1 17.08
N-3-3 Speed †0 0 0 2 106.14
N-3-4 Speed †1.36 · 10�2 0 0 7 98.21
N-3-5 Speed †0 0 0 4 118.86
Overall 4.15 · 10�3 0 0 4.23 135.69

Table 6.12: Parallel algorithm results for the RVNS solver on the RAS-based instances.

141

Bibliography

[1] Rodrigo Acuna-Agost, Philippe Michelon, Dominique Feillet, and Serigne Gueye. A
mip-based local search method for the railway rescheduling problem. Networks, 57(1):
69–86, 2011.

[2] Mohammed Aly. Survey on multi-class classification methods. Technical report, Caltech,
2015.

[3] Andrea Bettinelli, Alberto Santini, and Daniele Vigo. A real-time conflict solution
algorithm for the Train Rescheduling Problem. Transportation Research, Part B (under
revision), pages 1–28, 2017.

[4] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice
Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: A generic
framework for managing hardware affinities in hpc applications. In Parallel, Distributed
and Network-Based Processing (PDP), 2010 18th Euromicro International Conference on,
pages 180–186. IEEE, 2010.

[5] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Scheduling extra freight trains
on railway networks. Transportation Research Part B: Methodological, 44(2):215–231,
2010.

[6] Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth, Lucas Veelen-
turf, and Joris Wagenaar. An overview of recovery models and algorithms for real-time
railway rescheduling. Transportation Research Part B: Methodological, 63:15–37, 2014.

[7] Gabrio Caimi, Marco Laumanns, Kaspar Schüpbach, Stefan Wörner, and Martin Fuchs-
berger. The periodic service intention as a conceptual framework for generating timeta-
bles with partial periodicity. Transportation Planning and Technology, 34(4):323–339,
2011.

[8] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Operations research, 50(5):851–861, 2002.

[9] Jens Clausen and Michael Perregaard. On the best search strategy in parallel branch-
and-bound: Best-first search versus lazy depth-first search. Annals of Operations Re-
search, 90:1–17, 1999.

[10] Francesco Corman and Lingyun Meng. A review of online dynamic models and algo-
rithms for railway traffic management. IEEE Transactions on Intelligent Transportation
Systems, 16(3):1274–1284, 2015.

142

Bibliography

[11] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Evaluation
of green wave policy in real-time railway traffic management. Transportation Research
Part C: Emerging Technologies, 17(6):607–616, 2009.

[12] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Central-
ized versus distributed systems to reschedule trains in two dispatching areas. Public
Transport, 2(3):219–247, 2010.

[13] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A tabu
search algorithm for rerouting trains during rail operations. Transportation Research
Part B: Methodological, 44(1):175–192, 2010.

[14] Francesco Corman, Andrea D’Ariano, Marco Pranzo, and Ingo A Hansen. Effectiveness
of dynamic reordering and rerouting of trains in a complicated and densely occupied
station area. Transportation Planning and Technology, 34(4):341–362, 2011.

[15] Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Bi-objective
conflict detection and resolution in railway traffic management. Transportation Research
Part C: Emerging Technologies, 20(1):79–94, 2012.

[16] Andrea D’Ariano and Marco Pranzo. An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe disturbances.
Networks and Spatial Economics, 9(1):63–84, 2009.

[17] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

[18] Andrea D’Ariano, Francesco Corman, Dario Pacciarelli, and Marco Pranzo. Reordering
and local rerouting strategies to manage train traffic in real time. Transportation Science,
42(4):405–419, 2008.

[19] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. Assessment of flexible timetables
in real-time traffic management of a railway bottleneck. Transportation Research Part
C: Emerging Technologies, 16(2):232–245, 2008.

[20] Twan Dollevoet, Dennis Huisman, Leo Kroon, Marie Schmidt, and Anita Schöbel. Delay
management including capacities of stations. Transportation Science, 49(2):185–203,
2014.

[21] Wei Fang, Shengxiang Yang, and Xin Yao. A survey on problem models and solu-
tion approaches to rescheduling in railway networks. IEEE Transactions on Intelligent
Transportation Systems, 16(6):2997–3016, 2015.

[22] IA Hansen and J Pachl. Railway timetabling & operations. Eurailpress, Hamburg, 2014.

143

Bibliography

[23] Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José Pérez. Variable neighbor-
hood search. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Meta-
heuristics, volume 146 of International Series in Operations Research & Management
Science, pages 61–86. Springer, 2010. ISBN 978-1-4419-1663-1.

[24] Railways Applications Section INFORMS. Problem description and released
data set for the ras problem solving competition, 2012. URL

.

[25] Syed Muhammad Zeeshan Iqbal, Håkan Grahn, Törnquist Krasemann, et al. A parallel
heuristic for fast train dispatching during railway traffic disturbances: Early results.
In 1st International Conference on Operations Research and Enterprise Systems, ICORES,
2012.

[26] Syed Muhammad Zeeshan Iqbal, Håkan Grahn, and J Törnquist Krasemann. Multi-
strategy based train re-scheduling during railway traffic disturbances. In Proceedings of
the 5th International Seminar on Rail Operations Modeling and Analysis (RailCopenhagen
2013, pp. 387-405), Technical University of Denmark, Denmark, 2013.

[27] Satoshi Kanai, Koichi Shiina, Shingo Harada, and Norio Tomii. An optimal delay
management algorithm from passengers’ viewpoints considering the whole railway
network. Journal of Rail Transport Planning & Management, 1(1):25–37, 2011.

[28] Leonardo Lamorgese and Carlo Mannino. The track formulation for the train dis-
patching problem. Electronic Notes in Discrete Mathematics, 41:559 – 566, 2013. doi:
http://dx.doi.org/10.1016/j.endm.2013.05.138.

[29] Leonardo Lamorgese and Carlo Mannino. An exact decomposition approach for the
real-time train dispatching problem. Operations Research, 63(1):48–64, 2015.

[30] Feng Li, Ziyou Gao, Keping Li, and Lixing Yang. Efficient scheduling of railway traffic
based on global information of train. Transportation Research Part B: Methodological,
42(10):1008–1030, 2008.

[31] Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, 2002.

[32] Lingyun Meng and Xuesong Zhou. Robust single-track train dispatching model un-
der a dynamic and stochastic environment: a scenario-based rolling horizon solution
approach. Transportation Research Part B: Methodological, 45(7):1080–1102, 2011.

[33] Lingyun Meng and Xuesong Zhou. Simultaneous train rerouting and rescheduling
on an n-track network: A model reformulation with network-based cumulative flow
variables. Transportation Research Part B: Methodological, 67:208–234, 2014.

[34] Shi Mu and Maged Dessouky. Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological, 45(7):1103–1123, 2011.

144

https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition

Bibliography

[35] Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez. Optimal train routing and
scheduling for managing traffic perturbations in complex junctions. Transportation
Research Part B: Methodological, 59:58–80, 2014.

[36] Joaquín Rodriguez. A constraint programming model for real-time train scheduling at
junctions. Transportation Research Part B: Methodological, 41(2):231–245, 2007.

[37] Stefan Ropke and Alberto Santini. Parallel adaptive large neighbourhood search. Tech-
nical Report OR-16-11, DEI University of Bologna, 2016.

[38] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177(3):2033 – 2049, 2007. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.
2005.12.009. URL

.

[39] Marcella Samà, Paola Pellegrini, Andrea D’Ariano, Joaquin Rodriguez, and Dario Pac-
ciarelli. Ant colony optimization for the real-time train routing selection problem.
Transportation Research Part B: Methodological, 85:89–108, 2016.

[40] Alberto Santini. cr-ras-derived-instances: Initial release, Feb 2017. URL
.

[41] Michael Schachtebeck and Anita Schöbel. To wait or not to wait, and who goes first?
delay management with priority decisions. Transportation Science, 44(3):307–321,
2010.

[42] Anita Schöbel. Integer programming approaches for solving the delay management
problem. In Frank Geraets, Leo Kroon, Anita Schoebel, Dorothea Wagner, and Chris-
tosD. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359
of Lecture Notes in Computer Science, pages 145–170. Springer Berlin Heidelberg, 2007.

[43] Anita Schöbel. Capacity constraints in delay management. Public Transport, 1(2):
135–154, 2009.

[44] Johanna Törnquist. Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transportation Research Part C:
Emerging Technologies, 20(1):62–78, 2012.

[45] Johanna Törnquist and Jan Persson. N-tracked railway traffic re-scheduling during
disturbances. Transportation Research Part B: Methodological, 41(3):342–362, 2007.

[46] Johanna Törnquist and Jan A Persson. N-tracked railway traffic re-scheduling during
disturbances. Transportation Research Part B: Methodological, 41(3):342–362, 2007.

145

http://www.sciencedirect.com/science/article/pii/S0377221705008507
http://www.sciencedirect.com/science/article/pii/S0377221705008507
https://doi.org/10.5281/zenodo.322571
https://doi.org/10.5281/zenodo.322571

7 Acceptance criteria for ALNS: a
benchmark on logistic problems

Abstract Adaptive Large Neighborhood Search (ALNS) is a useful framework for solv-
ing difficult combinatorial optimisation problems. As a metaheuristic, it
consists of some components that must be tailored to the specific optimi-
sation problem that is being solved, while other components are problem
independent. The literature is sparse with respect to studies that aim to
evaluate the relative merit of different alternatives for specific problem in-
dependent components. This chapter investigates one such component, the
move acceptance criterion in ALNS, and compares a range of alternatives.
Through extensive computational testing, the alternative move acceptance
criteria are ranked in three groups, depending on the performance of the
resulting ALNS implementations. Among the best variants, we find ver-
sions of criteria based on Simulated Annealing, Threshold Acceptance, and
Record-to-Record Travel. Additional analyses focus on the search behavior,
and multiple linear regression is used to identify characteristics of search
behavior that are associated with good search performance.

7.1 Introduction

The Adaptive Large Neighborhood Search (ALNS) metaheuristic [27] has become a popular
template for implementing heuristic solution methods, especially for vehicle routing appli-
cations [7, 12, 14, 22, 25]. The metaheuristic allows the use of problem specific knowledge
when specifying operators for partially destroying and then repairing a solution to an op-
timisation problem. Problem independent components of the ALNS dictate how different
destroy and repair operators are used and control the search trajectory. One presumably
important component that influences the search trajectory is the move acceptance criterion.
In the original ALNS, this criterion was based on Simulated Annealing [27], whereas earlier
work on Large Neighborhood Search (LNS) by Shaw [31] accepted only improving solutions.
Recently, some implementations have used the Record-to-Record Travel acceptance criterion

This chapter is based on the contents of: Alberto Santini, Stefan Ropke, and Lars Magnus Hvattum. Measuring
the impact of acceptance criteria on the Adaptive Large Neighbourhood Search metaheuristic. Submitted to
the Journal of Heuristics, pages 1–25, 2017.

146

7 Acceptance criteria for ALNS: a benchmark on logistic problems

instead [20], and in one case it was found to perform better than the standard Simulated
Annealing criterion [13].

Currently, however, there are no guidelines available to recommend one acceptance cri-
terion over another. This paper intends to fill this gap by investigating a large number of
different move acceptance criteria by subjecting them to extensive computational testing.
Through empirical experiments we attempt to 1) quantify the effect on performance from
using different acceptance criteria, 2) suggest which move acceptance criterion is better
suited for an implementation of ALNS, and 3) attempt to measure in which way the move
acceptance criteria influence the search behavior.

In particular, two main hypotheses can be tested with respect to the choice of acceptance
criterion in ALNS. First, a hypothesis is that the standard Simulated Annealing acceptance
criterion is the best criterion, in that it leads to better solutions within a standard running
time than when using any other criterion. This hypothesis is reasonable based on the fact
that most publications describing ALNS implements this acceptance criterion. Second, a
hypothesis is that the influence of the acceptance criterion on the performance and behavior
of the search is negligible, that is, the effect size is small compared to random variations in
search performance.

The remainder of this paper is structured as follows. In Section 7.2 we give a brief descrip-
tion of the ALNS metaheuristic; Section 7.3 lists the acceptance criteria we are comparing
with this work. Sections Sections 7.4 and 7.5 describe the test problems and give details of
the implementation of ALNS used to solve them. Section 7.6 explains the process with which
we tuned the parameters related to the acceptance criteria. We report computational results
in Section 7.7 and finally summarise our findings in the conclusions, in Section 7.8.

7.2 The ALNS Framework

ALNS was introduced by Ropke and Pisinger [27] and extends the LNS metaheuristic first
proposed by Shaw [31]. In the LNS, we consider a neighbourhood which is implicitely defined
by the sequential application of a destroy and a repair method. A destroy method turns a
feasible solution into an incomplete solution, by destroying parts of it; a repair method then
takes an incomplete solution and turns it into a feasible solution. In ALNS, we consider a
collection of destroy and repair methods. A neighbourhood is implicitly defined for each
possible pair of destroy and repair methods, assuming that any repair method is able to
reconstruct a solution from an incomplete solution created by any destroy method.

Some element of randomness is commonly introduced in the process. This element is
usually included in the destroy method, by randomising the the choice of which parts of the
solution to destroy. In most implementations, the repair methods aim to, myopically, obtain
a best possible solution starting from an incomplete solution; however, it is also possible
that some stochastic element is introduced in the repair methods. At each iteration, the
destroy and repair methods are chosen based on their past performance, reflected by a score:
the methods are picked with a roulette-wheel selection, where the probabilities are directly

147

7 Acceptance criteria for ALNS: a benchmark on logistic problems

proportional to the scores. Initially all methods are assigned the same score.

Algorithm 2: General Framework
Input : Initial solution: x0
Input : Initial acceptance parameters
Input : Initial destroy/repair scores

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Choose a destroy method d
6 Choose a repair method r
7 x 0 r(d(x))
8 if Accept new solution x 0 then
9 x = x 0

10 end
11 if f (x)< f (x⇤) then
12 x⇤ = x
13 end
14 Update(Destroy/repair scores)
15 Update(Acceptance parameters)
16 i = i + 1
17 end
18 return x⇤

A synthetic formulation of the ALNS algorithm is given in Algorithm 2. Once the destroy
and repair methods are chosen, a new solution (the incumbent) is produced. The algorithm
then has to decide whether or not to replace the current solution with the incumbent — thus
accepting or rejecting the new solution. The criterion used to decide whether or not the
incumbent is accepted is therefore called the acceptance criterion. The criterion itself can
base the acceptance decision on some internal state, which can vary during the course of
the solution process. For example, a Simulated Annealing (SA) criterion has been the most
popular choice when implementing ALNS: in the case of SA, the varying state is represented
by the temperature, which starts at a high value and exponentially decreases during the
execution of the algorithm.

When the incumbent is a new global best solution, the scores of the corresponding destroy
and repair methods are increased by a relatively large value; otherwise, if the new solution
is accepted, their scores are increased by a relatively smaller value; otherwise, if the new
solution is not accepted, their scores are decreased.

In our implementation, the solution process ends when we reach a predetermined number
of iterations. Other criteria that have been used include a hard time limit, and a predetermined
number of consecutive iterations without improvement.

7.3 Acceptance Criteria

In this section we describe the different acceptance criteria tested within the ALNS framework.
In the following we denote by N(x) the neighbourhood of a solution x , defined by a selection
of destroy and repair heuristics. The cost of a solution x is denoted by f (x). We refer

148

7 Acceptance criteria for ALNS: a benchmark on logistic problems

to the current solution as x; when it is important to specify which iteration of the ALNS
algorithm we are considering, we use the notation xi, where i is the iteration number. The
new incumbent solution chosen by the destroy and repair heuristics in N(x) is denoted by
x 0, while we indicate the best encountered solution as x⇤. The initial solution is denoted by
x0. Finally, K is the total number of iterations. In the pseudo-code, we will assume that we
are minimising the objective function f (·).

The acceptance criteria depend on a given number of parameters, that in our case range
from 0 to 4. Some acceptance criteria make use of an internal state, which varies during the
solution process, and we assume that the internal state is updated at each iteration of the
ALNS algorithm. Alternative criterion-based approaches exist in the literature. For example,
one could decide to update certain values of the internal state only when there is apparent
convergence with the current settings. Since these strategies cannot be applied uniformly
across all the acceptance criteria, we resort to our simpler approach.

Since we are dealing with problem instances that are very diverse in nature and size, we
update the internal state used by the acceptance criteria using information relative to the
cost of either the best or the current solution, rather than absolute numbers.

7.3.1 Hill Climbing

Hill Climbing (HC), presented in Algorithm 3, accepts an incumbent solution iff it is better
than the current one.

Algorithm 3: Hill Climbing
Input : Initial solution: x0

1 x = x0
2 i = 1
3 while i K do
4 Pick x 0 2 N(x)
5 if f (x 0) f (x) then
6 x = x 0

7 end
8 i = i + 1
9 end

10 return x

7.3.2 Random Walk

At the other end of the spectrum from HC, there is Random Walk (RW), presented in Algo-
rithm 4. In this case, we accept every incumbent solution.

7.3.3 Late Acceptance Hill Climbing

This criterion, presented in Algorithm 5, is similar to HC, but the new incumbent solution
is compared to what was the current solution L iterations ago. In order to implement this

149

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Algorithm 4: Random Walk
Input : Initial solution: x0

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 x = x 0

7 if f (x)< f (x⇤) then
8 x⇤ = x
9 end

10 i = i + 1
11 end
12 return x⇤

acceptance criterion, it is necessary to keep a circular list of length L that stores the last L
current solutions. The criterion was first introduced by Burke and Bykov [3, 4].

Algorithm 5: Late Acceptance Hill Climbing
Input : Initial solution: x0
Input :List length: L

1 x = x0
2 x⇤ = x0
3 x�1, . . . , x�L+1 = x0
4 i = 1
5 while i K do
6 Pick x 0 2 N(x)
7 if f (x 0) f (xi�L) then
8 x = x 0

9 end
10 if f (x)< f (x⇤) then
11 x⇤ = x
12 end
13 i = i + 1
14 end
15 return x⇤

Parameters related to acceptance: This acceptance criterion only uses parameter: the length
L of the look-back list.

Variants: The standard version of this acceptance criterion would not accept the incumbent
in case f (xi�L) < f (x 0) < f (x). As proposed by Burke and Bykov [4], the criterion can be
emended to accept the incumbent if either it is better than the current solution L iterations
ago, or it is better than the current solution at the present iteration. In this variant, called
Improved LAHC, we edit line 7 to become f (x 0) f (xi�L) _ f (x 0) f (x) (where _
denotes logical or).

150

7 Acceptance criteria for ALNS: a benchmark on logistic problems

7.3.4 Threshold Acceptance

With the Threshold Acceptance (TA) criterion introduced by Dueck and Scheuer [9] and
presented in Algorithm 6, an incumbent solution is accepted if the gap between the incumbent
and the current solution is smaller than a threshold T . The threshold starts at a large value
and decreases at every iteration.

Algorithm 6: Threshold Acceptance
Input : Initial solution: x0
Input : Initial threshold: T

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 if f (x 0)� f (x)

f (x 0) < T then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(T)
13 i = i + 1
14 end
15 return x⇤

Parameters related to acceptance: The user-provided parameters are the start threshold T start

and the end threshold T end. The initial threshold T is set to its start value. At every iteration,
the threshold is updated to move towards its end value.

Variants: We tested two rates of decay: linear and exponential. In the first case, the Linear
Threshold Acceptance method, we update the threshold as: T T � (T start � T end)/K .
In the second case, the Exponential Threshold Acceptance method, we update it as T
T · (T end/T start)1/K .

7.3.5 Simulated Annealing

Simulated Annealing (SA), presented in Algorithm 7, is the acceptance criterion most com-
monly used within the ALNS framework. It was originally introduced by Kirkpatrick et al.
[17] and it was used with the ALNS since its debut by Ropke and Pisinger [27]. The basic
idea behind SA is similar to TA: moves to solutions that are worse than the current one are
allowed, but the probability of doing so depends on the state of the search and on the gap
between f (x) and f (x 0).

Parameters related to acceptance: The probability that a new solution of value f (x 0) is
accepted is

e
f (x)� f (x0)

T

151

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Algorithm 7: Simulated Annealing
Input : Initial solution: x0
Input : Initial temperature: T

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)

6 if rand(0,1) e
f (x)� f (x0)

T then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(T)
13 i = i + 1
14 end
15 return x⇤

Given a reference solution value z, if we wanted to accept with probability p 2 [0,1] in-
cumbent solutions of cost f (x 0) = hz, we would have to set the temperature T according
to:

p = e
z�hz

T) ln p =
z(1� h)

T
) T =

z(1� h)
ln p

If we use the reference probability p = 0.5 this becomes

T =
z(1� h)
ln0.5

(7.1)

We can therefore use two user-provided parameters hstart, hend that define how much worse
solutions we accept with probability 0.5 at the beginning and the end of the procedure. The
corresponding start and end temperatures T start and T end can then be calculated using (7.1).

Variants: It remains an open question how to choose the reference value z. One option
is to use the initial solution: z = f (x0). The parameter T should then be initialised as
T start and then updated at every iteration, as T T · (T end/T start)1/K . We refer to this
method, introduced as the default acceptance criterion for ALNS by Ropke and Pisinger [27],
simply as Exponential Simulated Annealing. A variant of this method has been proposed by
Pisinger and Ropke [23], where the authors noticed that the start and end temperature values
can be sensitive to the size of the instance. How this size is defined is problem dependent
(for example, it can be the number of customers in a Vehicle Routing Problem). In the
following we just assume that it is a positive real number s � 1 . In the variant of SA that
we called Instance-Scaled Exponential Simulated Annealing, we divide the start and end
temperature by a coefficient sM , where M 2 N is a parameter. Since Pisinger and Ropke
[23] only considered the case where M = 1, we take this as the base case upon which we
build the following additional variations. The first variation builds on the observation that
the best known solution at a certain iteration could be much better than the initial one.

152

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Therefore, the reference value z can be updated every time the best solution value improves,
as T end = (f (x⇤) · (1 � h))/ ln0.5. This variant, which we call Exponential Simulated
Annealing With Adaptive Probability coincides with the base method if the value of the
initial solution is never improved. Similarly to what we did for TA, we also considered a
version of SA where the decrease between start and end temperature is linear. We named this
version Linear Simulated Annealing. The update function for T is T T�(T start�T end)/K .
Another common variant is SA with reheating, discussed by Connolly [6]. Reheating is used
to escape local minima in later phases of the exploration, when the temperature is too small
to accept a (worsening) diversifying solution. In our implementation we perform reheating
a fixed number of times R. When reheating occurs, the temperature is set to the temperature
T ⇤ recorded the last time the best solution was improved, multiplied by a coefficient r > 1:

T rT ⇤ (every K/(R+ 1) iterations)

We call this variant Exponential Simulated Annealing With Reheating. On top of the
parameters hstart and hend, this variant has two additional parameters R and r.

7.3.6 Great Deluge

With the Great Deluge (GD) criterion, introduced by Dueck [8] and presented in Algorithm 8,
an incumbent solution is accepted only if its cost is smaller than a threshold, called the water
level. The water level starts at a high value and decreases at each iteration.

Algorithm 8: Great Deluge
Input : Initial solution: x0
Input : Initial water level: W

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 if f (x 0)<W then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(W)
13 i = i + 1
14 end
15 return x⇤

Parameters related to acceptance: The two key parameters used for GD are the initial water
level and the decrease rate. The initial water level is set to W = ↵ · f (x0), where ↵ > 1
is a user-provided parameter. The water level is then decreased at each iteration, W
W � �(W � f (x)), according to another parameter � 2 (0,1).

153

7 Acceptance criteria for ALNS: a benchmark on logistic problems

7.3.7 Non-Linear Great Deluge

The Non-Linear Great Deluge criterion (NLGD), presented in Algorithm 9, builds on the
same idea of the GD, with a few variations. The water level decreases more quickly in the
beginning of the search process, more slowly towards the end, and can also increase. The
NLGD was introduced by Landa-Silva and Obit [18] for a course timetabling problem; in
our implementation we change some of the fixed values, which the authors tuned for their
specific problem, and we replace them with parameters.

Algorithm 9: Non-Linear Great Deluge
Input : Initial solution: x0
Input : Initial water level: W

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 if f (x 0)<W _ f (x 0)< f (x) then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(W)
13 i = i + 1
14 end
15 return x⇤

The general form of this acceptance criterion is similar to the criterion in Algorithm 8.
The only difference is that the acceptance criterion checks that either the new solution has
a cost lower than the current water level, or it improves over the current solution. This is
done because in NLGD the water level is not guaranteed to be above the cost of the current
solution.

Parameters related to acceptance:
The initial water level is chosen similarly as for GD: W = ↵ · f (x0), with a user-provided

parameter ↵> 1. Three additional parameters — � ,�, and �— are used to update the water
level at each iteration, according to the decision flow in Algorithm 10: if the new incumbent
solution is worse than the water level, then the water level tends to increase, to increase the
chance of accepting new solutions. If the last solution is better than the water level, but not
much better (the gap is smaller than �), then again we increase the water level, for similar
reasons. On the other hand, if the gap is larger than � , we decrease the water level and the
decrease function is exponential.

154

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Algorithm 10: Update(W)

1 G = W� f (x 0)
W

2 if G < � then
3 return W + � · | f (x 0)�W |
4 else
5 return W · e��· f (x⇤) + f (x⇤)
6 end

7.3.8 Record-to-Record Travel

The Record-to-Record Travel (RRT) criterion presented in Algorithm 11 is similar to TA, but
the incumbent solution is accepted if the gap between the incumbent and the best (rather
than the current) solution is smaller than a threshold T . The threshold starts at a large value
and decreases at every iteration to reach its predetermined value at the end of the search
process.

Algorithm 11: Record-to-Record Travel
Input : Initial solution: x0
Input : Initial threshold: T

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 if f (x 0)� f (x⇤)

f (x 0) < T then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(T)
13 i = i + 1
14 end
15 return x⇤

Parameters related to acceptance: The user-provided parameters are the start threshold
T start and the end threshold T end. The initial threshold T is set to its start value and, at each
iteration, moves towards the end value.

Variants: Analogous to what was done for TA, we tested two rates of decay that give rise
to two variants that we call Linear Record-to-Record Travel and Exponential Record-to-
Record Travel.

7.3.9 Worse Accept

The Worse Accept (WA) criterion presented in Algorithm 12 tries to increase diversification
by accepting an incumbent solution if it improves over the current one, or — regardless of

155

7 Acceptance criteria for ALNS: a benchmark on logistic problems

its cost — with a given probability, p. This probability is higher at the beginning and smaller
at the end of the solution process. This is, to our best knowledge, the first time that such a
method is considered in the literature.

This criteria is particularly suited in cases when the objective value of the problem typically
holds a few discrete values, and passing from a value to the next better one is a relatively
rare occurrence. An example of such a problem is the Vertex Colouring Problem (VCP), in
which one has to produce a colouring of a graph, using the smallest number of colours. WA
was employed as the acceptance criterion in an ALNS-based metaheuristic for the Partition
Colouring Problem (a generalisation of the VCP) by Furini et al. [10].

Algorithm 12: Worse Accept
Input : Initial solution: x0
Input : Initial probability: p

1 x = x0
2 x⇤ = x0
3 i = 1
4 while i K do
5 Pick x 0 2 N(x)
6 if f (x 0)< f (x) _ rand(0,1)< p then
7 x = x 0

8 end
9 if f (x)< f (x⇤) then

10 x⇤ = x
11 end
12 Update(p)
13 i = i + 1
14 end
15 return x⇤

Parameters related to acceptance: The user-provided parameters are the start probability
pstart and the end probability pend.

Variants: The probability decay, similarly to what done for other methods, can be linear or
exponential. This gives rise to two criteria: Linear Worse Accept and Exponential Worse
Accept.

7.3.10 Parameter space reduction

For the linear variants of methods TA, SA, WA and RRT, it is sensible to set the end parameter
(be it threshold, temperature or probability) to values very close to zero. We can therefore
reduce the dimension of the parameter space, by simply fixing these end parameters to 0. The
resulting new methods are referred to by using the additional suffix “(fixed end)”. Notice
that, on the other hand, an exponential decay function can never reach the value 0, by
definition.

156

7 Acceptance criteria for ALNS: a benchmark on logistic problems

7.4 Test Problems

To evaluate the different acceptance criteria, we consider ALNS implementations for two
different combinatorial optimisation problems, as presented below.

7.4.1 Capacitated Vehicle Routing Problem

In the Capacitated Vehicle Routing Problem (CVRP) we have to deliver goods from a depot
to a set of customers, using an unlimited fleet of identical vehicles. Each customer demands
a certain quantity of goods and the vehicles have a limited capacity. Our task is to construct
routes starting and ending at the depot that minimise the total travel distance and that obey
the capacity of the vehicles. We assume that travel distances are symmetric in the sense that
the distance from A to B is the same as the distance from B to A. The problem can be modelled
on a directed graph G = (N , A) where the node set is N = {0, . . . , n} and node 0 represents
the depot, while nodes C = {1, . . . , n} represent the customers. Each customer i 2 C has an
associated demand qi � 0 and the vehicles all have the same capacity Q �maxi2C qi .

In the literature on heuristics for the CVRP, researchers have typically also considered
instances that include a distance or duration limit for each route. In the standard benchmark
instances, customers have a service time and for each route the sum of service times plus
distance driven has to be less than or equal to a threshold L. For more information the reader
is referred to Irnich et al. [16] and Laporte et al. [19].

7.4.2 Capacitated Minimum Spanning Tree Problem

In the (symmetric) Capacitated Minimum Spanning Tree (CMST) we have to construct a
spanning tree subject to a capacity constraint. The problem is defined on a undirected graph
G = (N , E) where N is the node set and E are the edges. For each edge e 2 E we are given an
associated cost ce � 0. In the node set N = {0, . . . , n}, node 0 is the root node. The remaining
nodes i 2 N \{0} are associated with a demand di � 0 and we are given a maximum demand
or capacity Q. Removing node 0 from any spanning tree results in the tree splitting into one
or more connected components. In the CMST, the solution has to satisfy the property that
the sum of the demands of each component (or sub-tree) is less than or equal to Q (capacity
constraints). We seek the spanning tree that minimizes the sum of edge costs while satisfying
capacity constraints. For more information on this problem, see Uchoa et al. [32].

7.5 ALNS applied to Test Problems

In the following we describe details of ALNS implementations for each of the two optimisation
problems that we are solving. We point out that we used the parallel version of ALNS described
in Ropke and Santini [29], with the number of parallel threads set to 8.

157

7 Acceptance criteria for ALNS: a benchmark on logistic problems

7.5.1 ALNS for the CVRP

Let n be the number of customers in the instance. We determine an upper bound for the
number of customers to remove based on two parameters: an absolute upper bound !̄+ and
a relative one !+. The upper bound is then n+ = min{!̄+,!+n}. Similarly a lower bound
is based on the parameters !̄� and !�; the lower bound is n� = min{n+,max{!̄�,!�n}}.
Based on the upper and lower bound we select the number of customers to remove, r, as a
uniformly random number in the interval {n�, . . . , n+}.

The destroy method used are: random removal, relatedness removal (introduced by Shaw
[31]), and history-based removal. These methods are described in detail in Ropke and
Pisinger [28, Section 5]. The repair method used is called regret repair, first introduced for
vehicle problems by Potvin and Rousseau [24] and described in detail in Ropke and Pisinger
[27, Section 3.2.2]. A steepest descent algorithm based on a small neighborhood is also
implemented to improve the solution found by the regret heuristic. The descent algorithm
uses the 2-opt neighborhood, both considering the intra-route and the inter-route variant
(also known as 2-opt*, see Laporte et al. [19]). In order to save running time, it is not used
every time a partial solution has been repaired, but only with a given probability p2-opt.

A random starting solution is created by constructing routes iteratively. Let U be the set
of customers that are still not placed in the solution. Initially U contains all customers. In
order to start a new route, a random seed customer is selected from U . Customers are then
added to the route until the capacity or the length constraint on the route disallow further
insertions. When choosing the customer to insert into a growing route, the algorithm simply
selects the customer whose insertion increases the cost of the route the least. Whenever a
route is full, a new route is created following the same procedure. This process continues
until all customers have been inserted.

7.5.2 Simple LNS for the CVRP

A simplified version of the ALNS is also considered for the CVRP. The reason for this is that
the full ALNS was developed using the SA acceptance criterion, and that the selection of
components in the full ALNS could therefore be biased towards components that fit well with
the behavior of the SA criterion. The simple LNS for the CVRP uses a single destroy and
a single repair method. The destroy method is random removal and the repair method is
the deterministic regret method. The repair method does not include the local improvement
method. The number of customers to remove and the initial solution are found in the same
way as for the more complex ALNS method. We sometimes refer to this combination of an
ALNS implementation and test problem as Simple CVRP.

7.5.3 CMST

To the best of our knowledge, the first application of the ALNS metaheuristic to the CMST
problem is presented in Ropke and Santini [29]. In the following, we give a brief summary
of the implementation, while referring the reader to the cited article for more details.

The number of nodes of the graph to remove is determined in the same way as for the CVRP
(see Section 7.5.1). The destroy methods used are relatedness removal and history-based

158

7 Acceptance criteria for ALNS: a benchmark on logistic problems

removal, which are analogous to the CVRP methods with the same names. Similarly, the
repair method, regret repair, is analogous to the method used for the CVRP. Furthermore, we
also used a greedy insertion repair method. The solutions produced by the repair methods
are improved by solving a minimum spanning tree problem for each sub-tree of the solution.

Unlike what is done for the CVRP, the initial solution is created deterministically by a two-
stage procedure that first estimates the number of sub-trees that need to be created, and then
assigns nodes to the subtrees.

7.5.4 Problem-specific parameters

Some parameters of the ALNS implementations, relative to the problem-specific destroy and
repair heuristics, and to local improvement methods, are kept at fixed values. Table 7.1
describes the values of these parameters.

Problem Param type Parameter Values
CMST Destroy Number of nodes to destroy !̄+ = 30,!+ = 0.4, !̄� = 5,!� = 0.1
CMST Destroy Destroy close nodes ⌘ = n

2 , pfix = 4
CMST Destroy Historical node-pair destroy phist = 5
CMST Repair Regret repair pregret = 1.5 (stochastic version)
CVRP Destroy Number of nodes to destroy !̄+ = 50,!+ = 0.4, !̄� = 10,!� = 0.1
CVRP Destroy Relatedness destroy method prel = 5
CVRP Destroy Historical node-pair destroy phist = 5
CVRP Repair Regret repair pregret = 1.5 (stochastic version)
CVRP Local impr. 2-opt⇤ local search p2-opt = 0.1

Table 7.1: Problem-specific parameters which have been kept fixed.

7.6 Parameter Tuning

With a few exceptions, all acceptance criteria described in Section 7.3 depend on one or
more parameters. In order to tune these parameters an algorithmic approach is preferred to
a manual one in order to avoid bias toward acceptance criteria that the authors know well.
A substantial amount of literature is available on algorithms for automatic parameter tuning,
and some prominent examples are described in the works by Birattari et al. [2] and Hutter
et al. [15]. In this work we have implemented a simple iterated local search procedure to
perform parameter tuning, as described below.

Given an acceptance criterion and a problem chosen among the ones we consider in this
work (CMST, CVRP, and Simple CVRP), let N be the number of parameters we are tuning. Let n
be the number of integer parameters and r the number of real-valued parameters. We assume
without loss of generality that the parameters are numbered ↵1, . . . ,↵n,↵n+1, . . . ,↵n+r , and
that N = n+ r. The parameter space will then be P = Nn ⇥Rr .

The aim of the parameter tuning is to explore the parameter space, starting from an initial
parameter assignment ↵0 = (a0

1, . . . , a0
N) 2 P , in a certain number M 2 N of iterations, and

return the assignment that gives, on average, the best results for the acceptance criterion
and problem considered. Let I1, . . . , IK be the instances used for parameter tuning and let
B1, . . . , BK be the best objective function values known from the literature for the instances

159

7 Acceptance criteria for ALNS: a benchmark on logistic problems

(these might not be the optimal ones, if the instance is open). For any given parameter
assignment ↵, the algorithm is (re-)run � 2 N times, unchanged, on each instance. This
produces K average results, one for each instance, calculated as

A↵,k =
1
�

�
X

i=1

v↵,i,k

where v↵,i,k is the solution value obtained by the algorithm for instance Ik at the i-th rerun,
with parameter assignment ↵.

We can then calculate the deviation from the best known result, for each instance:

D↵,k =
A↵,k � Bk

A↵,k

The score of assignment ↵ is calculated as the average deviation across all instances:

S↵ =
1
K

K
X

k=1

D↵,k

The lower the score and, in particular, the closer it is to 0, the better is the parameter assign-
ment ↵.

Algorithm 13: Parameter Tuning Algorithm
Input : Initial parameters ↵0

Input : Initial steps: �0

1 for k = 1, . . . , M do
2 ↵new = BestInNb(↵k�1,�k�1)
3 if ↵new 6= ↵k�1 then
4 ↵k = ↵new

5 �k = �k�1

6 else
7 ↵0,↵00 = BestTwo()
8 ↵k = NewCentre(↵0,↵00)
9 �k = NewSteps(↵0,↵00)

10 if ↵k = ↵new or StepsTooSmall(�k) then
11 ↵k = Diversify(↵k)
12 �k = �0

13 end
14 end
15 end
16 return argmink=1,...,M {S↵k}

A general overview of the parameter tuning algorithm is given in Algorithm 13. An initial
parameter assignment ↵0 is given, together with an initial step �0. The step defines the
neighbourhood of the current assignment:

N (↵) =
�

(↵01, . . . ,↵0N) | ↵0i �↵i 2 {��i , 0,�i} 8i = 1, . . . , N

(7.2)

160

7 Acceptance criteria for ALNS: a benchmark on logistic problems

(↵1 ��1,↵2 ��2)
•

(↵1 ��1,↵2)
•

(↵1 ��1,↵2 +�2)
•

(↵1,↵2 ��2)
•

(↵1,↵2)
•

(↵1,↵2 +�+ 2)
•

(↵1 +�1,↵2 ��2)
•

(↵1 +�1,↵2)
•

(↵1 +�1,↵2 +�2)
•

(a) Case N = 2.

(↵1,↵2,↵3)
•

(↵1 +�1,↵2,↵3)
•

(↵1 ��1,↵2,↵3)
•

(↵1,↵2 +�2,↵3)
•

(↵1,↵2 ��2,↵3)
•

(↵1,↵2,↵3 ��3)
•

(↵1,↵2,↵3 +�3)
•

(b) Case N = 3. The diagonal dotted lines
represent movement along a third axis.

Figure 7.1: Representation of neighbourhood N (↵).

The neighbourhood is defined by all possible combination of moves, in all the directions
defined by the components of the parameter vector, each by its corresponding step, with
�0

1, . . . ,�0
n 2 N and �0

n+1, . . . ,�0
N 2 R. For larger values of N , the exploration of the neigh-

bourhood defined above is computationally expensive. Therefore, for values of N � 3, we
define the alternative neighbourhood:

N (↵) = {(↵01, . . . ,↵0N) |
9i 2 {1, . . . , N} : ↵0i �↵i 2 {��i , 0,�i} and

8 j 6= i ↵0j = ↵ j} (7.3)

According to definition (7.3), therefore, we can only move along one direction at a time.
Figure 7.1a and Figure 7.1b give a graphical representation of N (↵) for N = 2 and N = 3.

At each iteration of the algorithm, the next parameter assignment is chosen in the neigh-
bourhood of the current one (line 2) as the one with the best score:

↵k+1 = arg min
�

S↵0 | ↵0 2 N (↵k)

When ↵k+1 = ↵k, we have reached a local optimum and the search must be interrupted and
restarted somewhere else in the parameter space. In order to do this, we retrieve the best
and second-best parameter configuration encoutered during the whole search, ↵0 and ↵00

respectively (line 7), and we set the current parameter configuration as the centre of mass
between ↵0 and ↵00 (line 8):

↵k =
✓

↵01 +↵
00
1

2
, . . . ,

↵0N +↵
00
N

2

◆

where integer components are rounded to the nearest integer. The step sizes are also recal-
culated (line 9) and set as:

�k =
✓ |↵01 �↵001 |

3
, . . . ,
|↵0N �↵00N |

3

◆

161

7 Acceptance criteria for ALNS: a benchmark on logistic problems

and, again, integer components are rounded. If, after recalculating ↵k, all steps are below
their minimum step size (which is a predetermined parameter), or if it happened that ↵k did
not change (line 10) we proceed with a stronger diversification (line 11) and we reset the
step sizes (line 12). The strong diversification consists in setting:

↵k =
�

↵k�1
1 +⇢1�

0
1, . . . ,↵k�1

N +⇢N�
0
N

�

where each ⇢i is taken randomly from the intervals [�3,�1][[1,3].
Table 7.2 summarises the results of parameter tuning for the three problems considered,

using six tuning instances for each problem. Column “Acceptance Criterion” shows the ac-
ceptance criteria, column “Score” gives the value of S↵⇤ for the best parameter assignment
↵⇤ 2 P , while column “Parameters” gives the values of the parameters in ↵⇤, using the same
notation as in Section 7.3. The maximum number of tuning iterations has been set to M = 20,
the number of reruns to �= 10 and the number of iterations of each run (exit criterion) to
150,000.

When the number of parameters is less than three, it is also possible to easily visualise the
progress of the parameter tuning algorithm, constructing a heat map with the score of each
parameter assignment. Figure 7.2 shows such an example, for CVRP with the acceptance
criterion Linear Record-to-Record Travel, where the horizontal axis represents the values of
T start and vertical axis represents T end.

7.7 Results

The computational experiments have been conducted on the following instances. For CMST:
104 instances, available as the test set in the OR Library of Beasley [1], containing
from 41 to 200 nodes. For CVRP: 14 instances by Christofides et al. [5]; 13 instances by
Rochat and Taillard [26]; 20 instances by Golden et al. [11]; 12 instances by Li et al. [21];
100 instances by Uchoa et al. [33]. The CVRP instances contain between 50 and 1200
customers. The number of iterations and reruns were the same as used for parameter tuning:
150,000 iterations and 10 reruns.

Table 7.3 summarises the main results, reporting for each acceptance criterion the average
deviation to the best known solution from both the average (column “aDev”) and the best
(column “bDev”) solution obtained over the 10 runs for each instance. The results are shown
separately for the CMST, the CVRP using a full ALNS, and the CVRP using a simple LNS.
The last column (“aTime”) reports the average solution time. Notice that the Random Walk
criterion has consistently higher running time, and this is due to a technical reason in the
implementation of the algorithm: every time a solution is accepted (which is, for Random
Walk, at every iteration) a potentially expensive copy is performed, to store the solution
object and replace the current solution object.

The results have further been analysed using the Wilcoxon signed-rank test, by comparing
each pair of acceptance criteria under the null-hypothesis that the deviations between the
average solution found and the best known solution are drawn from identical distributions.
Figure 7.3 summarises the Wilcoxon test for the CMST, with one node per acceptance criterion
and an arc going from the better criterion to the worse criterion if the null-hypothesis is

162

7 Acceptance criteria for ALNS: a benchmark on logistic problems

C
M

ST
C

V
R

P
Si

m
pl

e
LN

S
fo

r
C

V
R

P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
Sc

or
e

Pa
ra

m
et

er
s

Sc
or

e
Pa

ra
m

et
er

s
Sc

or
e

Pa
ra

m
et

er
s

G
D

2.
21

6
·1

0�
2
↵
=

1.
01

67
,�
=

0.
00

01
1.

38
6
·1

0�
2
↵
=

1.
01

67
,�
=

0.
00

02
3.

36
2
·1

0�
2
↵
=

1.
12

41
,�
=

0.
00

02
H

C
4.

56
3
·1

0�
2

1.
89

0
·1

0�
2

4.
84

5
·1

0�
2

LA
H

C
1.

96
0
·1

0�
2

L
=

22
50

0
1.

39
7
·1

0�
2

L
=

15
00

0
3.

51
6
·1

0�
2

L
=

10
83

3
Im

pr
ov

ed
LA

H
C

2.
02

4
·1

0�
2

L
=

91
80

1.
34

0
·1

0�
2

L
=

41
66

3.
47

2
·1

0�
2

L
=

42
48

N
LG

D
2.

79
4
·1

0�
2
↵
=

2.
17

14
,�
=

0.
04

65
,�
=

0.
10

57
,�
=

0.
00

96
1.

47
0
·1

0�
2
↵
=

1.
25

00
,�
=

0.
00

75
,�
=

0.
02

08
,�
=

0.
01

00
3.

48
1
·1

0�
2
↵
=

1.
10

42
,�
=

0.
00

50
,�
=

0.
00

00
,�
=

0.
01

83
RW

5.
82

8
·1

0�
2

3.
06

2
·1

0�
2

4.
73

0
·1

0�
2

Li
n.

R
RT

1.
77

6
·1

0�
2

T
st

ar
t
=

0.
07

50
,T

en
d
=

0.
00

37
9.

06
0
·1

0�
3

T
st

ar
t
=

0.
02

22
,T

en
d
=

0.
00

00
2.

33
3
·1

0�
2

T
st

ar
t
=

0.
01

76
,T

en
d
=

0.
00

00
Li

n.
R

RT
(fi

xe
d

en
d)

1.
77

3
·1

0�
2

T
st

ar
t
=

0.
05

00
8.

73
3
·1

0�
3

T
st

ar
t
=

0.
01

67
2.

40
5
·1

0�
2

T
st

ar
t
=

0.
02

22
Ex

p.
R

RT
2.

04
4
·1

0�
2

T
st

ar
t
=

0.
02

50
,T

en
d
=

0.
02

89
1.

13
3
·1

0�
2

T
st

ar
t
=

0.
00

42
,T

en
d
=

0.
03

76
2.

67
9
·1

0�
2

T
st

ar
t
=

0.
01

25
,T

en
d
=

0.
09

06
Ex

p.
SA

w
ith

A
d.

Pr
ob

ab
.

1.
64

9
·1

0�
2

hst
ar

t
=

9.
75

00
,h

en
d
=

2.
00

93
1.

21
8
·1

0�
2

hst
ar

t
=

4.
75

00
,h

en
d
=

0.
69

44
2.

86
2
·1

0�
2

hst
ar

t
=

20
.2

73
,h

en
d
=

0.
51

41
Ex

p.
SA

1.
69

8
·1

0�
2

hst
ar

t
=

0.
11

28
,h

en
d
=

0.
01

04
1.

13
0
·1

0�
2

hst
ar

t
=

0.
12

11
,h

en
d
=

0.
00

04
2.

64
7
·1

0�
2

hst
ar

t
=

0.
13

67
,h

en
d
=

0.
00

08
Li

n.
SA

1.
60

6
·1

0�
2

hst
ar

t
=

11
.5

00
,h

en
d
=

1.
79

17
1.

13
2
·1

0�
2

hst
ar

t
=

3.
75

00
,h

en
d
=

0.
40

97
2.

78
8
·1

0�
2

hst
ar

t
=

9.
00

00
,h

en
d
=

0.
00

00
Li

n.
SA

(fi
xe

d
en

d)
1.

65
1
·1

0�
2

hst
ar

t
=

12
.1

93
1.

18
0
·1

0�
2

hst
ar

t
=

6.
81

52
2.

75
0
·1

0�
2

hst
ar

t
=

12
.3

47

In
st

an
ce

-s
ca

le
d

Ex
p.

SA
1.

60
1
·1

0�
2

hst
ar

t
=

13
.5

07
,h

en
d
=

2.
09

03
,M
=

1.
00

00
1.

12
2
·1

0�
2

hst
ar

t
=

4.
20

83
,h

en
d
=

0.
61

81
,M
=

1.
00

00
2.

73
3
·1

0�
2

hst
ar

t
=

14
.2

29
,h

en
d
=

0.
62

50
,M
=

1.
00

00

Ex
p.

SA
w

ith
Re

he
at

in
g

1.
61

1
·1

0�
2

hst
ar

t
=

12
.0

00
,h

en
d
=

1.
87

50
,r
=

3.
50

00
,R
=

1.
00

00
1.

13
8
·1

0�
2

hst
ar

t
=

13
.5

00
,h

en
d
=

0.
62

50
,r
=

0.
50

00
,R
=

1.
00

00
2.

82
1
·1

0�
2

hst
ar

t
=

12
.7

50
,h

en
d
=

0.
75

00
,r
=

2.
41

67
,R
=

2.
58

33
Li

n.
TA

1.
64

8
·1

0�
2

T
st

ar
t
=

0.
07

08
,T

en
d
=

0.
00

14
1.

09
9
·1

0�
2

T
st

ar
t
=

0.
02

50
,T

en
d
=

0.
00

00
2.

59
9
·1

0�
2

T
st

ar
t
=

0.
02

12
,T

en
d
=

0.
00

03
Li

n.
TA

(fi
xe

d
en

d)
1.

66
7
·1

0�
2

T
st

ar
t
=

0.
08

75
1.

12
3
·1

0�
2

T
st

ar
t
=

0.
02

92
2.

59
7
·1

0�
2

T
st

ar
t
=

0.
02

08
Ex

p.
TA

2.
25

9
·1

0�
2

T
st

ar
t
=

0.
01

25
,T

en
d
=

0.
00

23
1.

29
6
·1

0�
2

T
st

ar
t
=

0.
00

16
,T

en
d
=

0.
00

17
3.

08
7
·1

0�
2

T
st

ar
t
=

0.
00

33
,T

en
d
=

0.
00

59
Ex

p.
W

A
1.

79
4
·1

0�
2

pst
ar

t
=

0.
78

51
,p

en
d
=

0.
09

79
1.

75
4
·1

0�
2

pst
ar

t
=

0.
05

00
,p

en
d
=

0.
01

50
3.

12
1
·1

0�
2

pst
ar

t
=

1.
00

00
,p

en
d
=

0.
10

90
Li

n.
W

A
1.

81
9
·1

0�
2

pst
ar

t
=

0.
65

80
,p

en
d
=

0.
04

30
1.

74
4
·1

0�
2

pst
ar

t
=

0.
15

00
,p

en
d
=

0.
01

67
2.

97
4
·1

0�
2

pst
ar

t
=

1.
00

00
,p

en
d
=

0.
00

22
Li

n.
W

A
(fi

xe
d

en
d)

1.
86

7
·1

0�
2

pst
ar

t
=

0.
55

00
1.

42
6
·1

0�
2

pst
ar

t
=

1.
00

00
3.

04
6
·1

0�
2

pst
ar

t
=

0.
98

33

Ta
bl

e
7.

2:
Pa

ra
m

et
er

tu
ni

ng
re

su
lts

su
m

am
ry

fo
r

C
M

ST
,C

VR
P

an
d

Si
m

pl
e

LN
S

fo
r

C
VR

P.

163

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Figure 7.2: Parameter tuning heatmap for CVRP and acceptance criterion “Linear RRT”. The horizontal and
vertical axes represent, respectively, parameters T start and T end. The tuning algorithm only attempted
parameter configurations indicated by the filled cells. Each filled entry reports average deviation S↵
(in percentage) for the corresponding parameter assignment ↵, and the cells are colored according
to average deviation with green cells indicating the best results. Notice that labels on both axes are
unevenly distributed and that the tuning algorithms attempts some parameter configuration where
the initial threshold is larger than the final threshold.

164

7 Acceptance criteria for ALNS: a benchmark on logistic problems

rejected at a 0.05 significance level. The same is shown for the full ALNS for CVRP in
Figure 7.4 and for the simple LNS for CVRP in Figure 7.5.

One of the goals of this study was to quantify the effect that different move acceptance
criteria have on the performance of an ALNS. From Table 7.3 it is clear that the consequences
of using a substandard move acceptance criterion can be quite large. There are two criteria
that are clearly much worse than all the others: RW and HC, whose average performance is
between one and two percentage points worse than the best acceptance criteria. Even when
disregarding RW and HC, the difference between the best criteria and the worst of the rest
is more than 0.5 percentage points for the full ALNS implementations, and even larger for
the simpler LNS method.

Another goal of the study was to determine which move acceptance criterion is best suited
for the ALNS. The results are not entirely clear at this point, but by extracting information
from the Wilcoxon signed-rank tests, some conclusions can be reached. The simple criteria
RW and HC are clearly inferior to the alternatives. The order of the other acceptance criteria
vary between problems, but they can be separated in two groups: criteria that are close to
being top ranked for at least one problem, and criteria that are always mediocre. In the first
category we find variants of SA, RRT, and TA, and in the latter category we find variants of
LAHC, GD, NLGD, and WA.

Differentiating between the three best types of acceptance criteria is not straightforward: a
variant of SA is best for CMST, whereas a variant of RRT is best for CVRP. On the other hand,
a version of TA is better than RRT on CMST and better than SA on CVRP. Further analysis
of these three criteria may be necessary. As each of SA, RRT, and TA were implemented in
different variants, it is possible to compare whether linear or exponential versions are better,
and whether it is better to fix the end point (fixed end), or to allow the parameter tuning
process to potentially find better end points for the control parameters: The linear version
of RRT is better than the exponential version of RRT, with statistical significance for each of
CMST, CVRP and simple CVRP. The linear version of TA is better than the exponential version
of TA, again with statistical significance for all three test sets. There are never any statistically
significant differences between the exponential and linear versions of SA. Regarding versions
with fixed end, no interesting pattern emerges: it seems that the parameter tuning process
was able to obtain similar performance whether or not the end point for the control parameter
was fixed.

Regarding the two hypotheses stated in the introduction, we cannot reject the notion that
SA is one of the best move acceptance criteria as, even though linear RRT is performing better
for CVRP, linear SA is better for CMST. On the other hand, we can reject the hypothesis that
the effect of the move acceptance criterion is small compared to random effects when solving
each instance: we find clear evidence that some move acceptance criteria perform worse than
others, for example that WorseAccept is worse than linear SA with statistical significance.

A third goal of this study was to measure how different move acceptance criteria may
influence the search behavior. To analyse this, statistics were collected during each run and
analysied using multiple linear regression. In the regression, the dependent variable is the
deviation between the average objective function in a run and the best known solution value.
Hence, there is one observation for each combination of an instance and a move acceptance
criterion. Eleven independent variables are included, corresponding to the following statistics

165

7 Acceptance criteria for ALNS: a benchmark on logistic problems

C
M

ST
A

cc
ep

ta
nc

e
C

ri
te

ri
on

aD
ev

%
bD

ev
%

aT
im

e
(s

)

Li
n.

SA
0.

39
9

0.
10

8
9.

36
7

In
st

an
ce

-s
ca

le
d

Ex
p.

SA
0.

40
0

0.
15

0
9.

22
3

Li
n.

SA
(fi

xe
d

en
d)

0.
40

7
0.

11
9

9.
22

4
Ex

p.
SA

0.
40

9
0.

12
7

9.
08

7
Li

n.
TA

(fi
xe

d
en

d)
0.

41
8

0.
11

9
9.

47
0

Ex
p.

SA
w

ith
Re

he
at

in
g

0.
42

8
0.

17
4

9.
08

6
Li

n.
R

RT
0.

47
3

0.
21

3
7.

88
8

Li
n.

TA
0.

47
4

0.
12

0
9.

15
6

Ex
p.

SA
w

ith
A

d.
Pr

ob
ab

.
0.

50
9

0.
15

9
8.

66
5

Li
n.

R
RT

(fi
xe

d
en

d)
0.

51
4

0.
23

4
7.

69
1

Li
n.

W
A

(fi
xe

d
en

d)
0.

51
8

0.
20

3
8.

18
6

Ex
p.

W
A

0.
55

2
0.

18
1

8.
39

4
Li

n.
W

A
0.

56
6

0.
19

5
8.

36
1

Im
pr

ov
ed

LA
H

C
0.

64
4

0.
22

1
7.

15
6

Ex
p.

R
RT

0.
64

6
0.

26
9

6.
75

8
LA

H
C

0.
65

5
0.

24
4

7.
38

0
G

D
0.

68
2

0.
37

1
6.

58
6

Ex
p.

TA
0.

75
9

0.
31

5
8.

81
8

N
LG

D
0.

99
5

0.
49

2
7.

66
5

H
C

2.
22

6
1.

21
5

6.
58

6
RW

2.
82

4
2.

30
5

12
.1

10

C
V

R
P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
aD

ev
%

bD
ev

%
aT

im
e

(s
)

Li
n.

R
RT

(fi
xe

d
en

d)
0.

39
1

0.
11

2
17

.8
71

Li
n.

R
RT

0.
42

3
0.

14
8

18
.4

43
Li

n.
TA

0.
49

7
0.

17
9

20
.0

56
Li

n.
TA

(fi
xe

d
en

d)
0.

51
1

0.
19

7
20

.2
85

Ex
p.

SA
w

ith
Re

he
at

in
g

0.
52

7
0.

17
5

18
.5

08
Li

n.
SA

0.
52

7
0.

16
7

17
.5

00
Ex

p.
SA

0.
52

9
0.

17
3

18
.3

74
Li

n.
SA

(fi
xe

d
en

d)
0.

53
8

0.
20

0
18

.4
61

In
st

an
ce

-s
ca

le
d

Ex
p.

SA
0.

54
2

0.
15

9
17

.3
28

Ex
p.

R
RT

0.
55

1
0.

12
6

16
.3

08
Ex

p.
SA

w
ith

A
d.

Pr
ob

.
0.

57
8

0.
21

2
17

.2
43

Li
n.

W
A

(fi
xe

d
en

d)
0.

66
1

0.
30

1
19

.2
63

LA
H

C
0.

71
6

0.
28

2
17

.0
56

Im
pr

ov
ed

LA
H

C
0.

72
0

0.
30

7
17

.7
19

G
D

0.
72

6
0.

46
3

17
.9

01
Ex

p.
TA

0.
73

5
0.

27
6

16
.4

16
Li

n.
W

A
0.

96
3

0.
49

6
16

.3
48

N
LG

D
0.

98
9

0.
39

3
15

.4
53

Ex
p.

W
A

1.
14

7
0.

51
0

14
.2

85
H

C
1.

16
3

0.
55

7
14

.0
08

RW
2.

58
3

2.
22

6
24

.1
43

Si
m

pl
e

LN
S

fo
r

C
V

R
P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
aD

ev
%

bD
ev

%
aT

im
e

(s
)

Li
n.

R
RT

(fi
xe

d
en

d)
0.

75
4

0.
24

1
11

.6
85

Li
n.

R
RT

0.
76

8
0.

21
8

11
.5

47
Ex

p.
R

RT
0.

93
9

0.
31

5
10

.4
21

Li
n.

TA
(fi

xe
d

en
d)

0.
97

2
0.

35
8

13
.4

97
Li

n.
TA

0.
97

3
0.

32
8

13
.5

29
Ex

p.
SA

1.
06

2
0.

36
3

13
.2

02
In

st
an

ce
-s

ca
le

d
Ex

p.
SA

1.
07

6
0.

39
9

13
.1

29
Li

n.
SA

(fi
xe

d
en

d)
1.

08
6

0.
44

3
13

.5
07

Li
n.

SA
1.

11
2

0.
42

7
13

.2
06

Ex
p.

SA
w

ith
Re

he
at

in
g

1.
15

0
0.

44
5

12
.7

44
Li

n.
W

A
(fi

xe
d

en
d)

1.
27

0
0.

58
0

10
.2

16
Ex

p.
SA

w
ith

A
d.

Pr
ob

.
1.

39
8

0.
52

6
12

.9
79

Ex
p.

TA
1.

42
5

0.
59

1
12

.1
65

N
LG

D
1.

69
5

0.
71

3
11

.0
33

G
D

1.
70

9
1.

18
9

11
.9

58
LA

H
C

1.
87

0
0.

98
6

8.
20

8
Im

pr
ov

ed
LA

H
C

1.
87

9
0.

98
8

7.
32

9
Li

n.
W

A
2.

46
1

1.
27

2
6.

34
7

Ex
p.

W
A

2.
51

6
1.

31
2

6.
15

3
H

C
2.

59
5

1.
38

1
5.

81
0

RW
3.

94
6

3.
34

0
15

.1
26

Ta
bl

e
7.

3:
Fi

na
lr

es
ul

ts
fo

r
C

M
ST

,C
VR

P
an

d
Si

m
pl

e
LN

S
fo

r
C

VR
P.

166

7 Acceptance criteria for ALNS: a benchmark on logistic problems

GD

NLGD

HC RW

LAHC

Lin. RRT

Lin. WA

Exp. RRT

Exp. WAExp. SA with Ad. Prob.

Exp. TA Improved LAHC

Lin. SA

Lin. RRT (fixed end) Lin. WA (fixed end)

Lin. TAExp. SA

Lin. SA (fixed end) Lin. TA (fixed end)

Exp. SA with Reheating Instance-scaled Exp. SA

Figure 7.3: Graph based on the Wilcoxon test for problem CMST and using the deviation between the average
run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs
mean that the difference in deviation is greater.

167

7 Acceptance criteria for ALNS: a benchmark on logistic problems

GD

NLGD Lin. WA

HC Exp. WA

RW

LAHC

Lin. RRT

Lin. SA

Lin. TA Exp. RRT

Exp. SA

Lin. TA (fixed end)

Exp. SA with ReheatingInstance-scaled Exp. SA

Exp. SA with Ad. Prob.

Improved LAHC Exp. TA Lin. WA (fixed end)

Lin. SA (fixed end)

Lin. RRT (fixed end)

Figure 7.4: Graph based on the Wilcoxon test for problem CVRP and using the deviation between the average
run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs
mean that the difference in deviation is greater.

168

7 Acceptance criteria for ALNS: a benchmark on logistic problems

GD

LAHCImproved LAHC

HC Lin. WA Exp. WA

RW

NLGD

Lin. RRT

Lin. TA

Exp. SA

Lin. TA (fixed end)Instance-scaled Exp. SA

Lin. SA Lin. SA (fixed end) Exp. SA with Reheating

Exp. TALin. WA (fixed end)Exp. SA with Ad. Prob.

Exp. RRT

Lin. RRT (fixed end)

Figure 7.5: Graph based on the Wilcoxon test for the Simple LNS for CVRP and using the deviation between
the average run and the overall best. Methods on top dominate methods on the bottom. Bluer and
thicker arcs mean that the difference in deviation is greater.

169

7 Acceptance criteria for ALNS: a benchmark on logistic problems

calculated for each run: the iteration of the last accepted move, the iteration of the last
improved best found, the longest streak of rejected moves, the maximum distance between
accepted moves, the total distance between accepted solutions, the maximum distance from
the initial solution, the number of solutions accepted, the number of times that the best
solution was improved, the number of times that the current solution was improved, the
relative average accepted objective function value, and the relative average rejected objective
function value. The distance between solutions is calculated as the Hamming distance where
each edge is represented by a binary digit. The relative objective function value of a move is
calculated as the ratio of the new solution and the old solution, so that values greater than
one imply worsening moves.

Regression coefficients are determined using the method of ordinary least squares, which
implies minimising the sum of the squares of the error terms

PN
i=1 "

2
i where N is the number

of observations, and the model is:

yi = �0 +�1 xi,1 + . . .+�11 xi,11 + "i i = 1, . . . , N (7.4)

with �0 being the intercept and �1, . . . ,�11 the parameters to estimate, yi the observed values
of the dependent variables and xi j the observed values of the independent variables.

After running the regression analysis with all the independent variables, the variables that
did not have regression coefficients significantly different from 0, at a 0.05 significance level,
were removed and the regression repeated. To better gauge the relative importance of the
different independent variables, the values of each of them were normalized by subtracting
the population mean and dividing by the standard deviation.

The results of the regression analyses are summarised in Table 7.4. A negative regression
coefficient means that a higher value of the corresponding independent variable is associated
with a better performance. There are some differences between the results for each of CMST,
CVRP and Simple CVRP, but also some consistent similarities: a worse performance is associ-
ated with high values of the iteration of the last accepted solution and the iteration of the last
improvement of the best solution found. This may indicate that an intensification phase with
a high probability of rejecting solutions should not be delayed for too long. Higher values
for the length of the longest streak of rejected moves is associated to a worse performance,
meaning that move acceptance criteria should be designed so as to avoid being stuck in the
same solution for too many iterations. Increased values of the maximum distance between
accepted moves are associated with improved performance. This may suggest that move
acceptance should not be based solely on the quality of the resulting solution but also, to
some extent, on how similar the new solution is to the current one. For the other independent
variables, the results are less clear. The relative average objective function value of rejected
solutions is found to influence the performance: as the regression coefficients are negative,
good performance is found when the solutions rejected are worse. This could simply mean
that it is good that those solutions are not accepted. There is also a trend that a higher
number of accepted solutions leads to better performance.

170

7 Acceptance criteria for ALNS: a benchmark on logistic problems

CMST CVRP Simple LNS for CVRP

Independent Variable Regression Coeff. p-value Regression Coeff. p-value Regression Coeff. p-value

(Intercept) 0.005 — 0.006 — 0.013 —
Iter. Last Accept. 0.005 0.000 0.001 0.020 0.005 0.001
Iter. Last Impr. Best 0.003 0.000 0.001 0.000 0.002 0.000
Longest Reject Streak 0.005 0.001 0.002 0.001 0.005 0.001
Max. Dist. btw Accepted �0.001 0.000 �0.006 0.000 �0.004 0.000
Max. Dist. from Init. �0.002 0.001 0.009 0.000 0.004 0.000
Tot. Dist. by Accept. 0.001 0.000
Num. Sol. Accept. �0.001 0.001 �0.001 0.000
Num. Sol. Impr. Best 0.007 0.000 �0.002 0.000 0.004 0.000
Num. Sol. Impr. Current �0.003 0.000
Rel. Avg. Accept. Obj. �0.002 0.000 0.011 0.000 0.013 0.000
Rel. Avg. Reject. Obj. �0.012 0.000 �0.016 0.000

Table 7.4: Regression analysis results from CMST, CVRP and Simple LNS for CVRP. The dependent variable is
the deviation between the average run and the overall best. The table only includes values for the
significant independent variables.

7.8 Conclusions

Many different move acceptance criteria are available when implementing a heuristic based
on the ALNS framework. These include Hill Climbing (HC), Random Walk (RW), Late
Acceptance Hill Climbing (LAHC), Threshold Acceptance (TA), Simulated Annealing (SA),
Great Deluge (GD), Non-Linear Great Deluge (NLGD), and Record-to-Record Travel (RRT).
In addition, a new criterion called Worse Accept (WA) was introduced in this paper. Based
on current literature, it is difficult to ascertain whether any of these are better choices than
the others in the context of the ALNS framework.

We presented a large computational study, where the results point out that HC and RW are
bad choices for a move acceptance criterion in three different settings, including an ALNS for
a capacitated minimum spanning tree problem (CMST), an ALNS for the capacitated vehicle
routing problem (CVRP), and a simple LNS for the CVRP. In the same tests, SA, RRT, and TA
performed best, whereas LAHC, GD, NLGD, and WA performed better than HC and RW but
worse than SA, RRT, and TA. Several sub-variants of these move acceptance criteria were
also tested and analyzed.

It was found that the effect of using different move acceptance criteria can be fairly large,
affecting the average gap to the best known solutions by more than 0.5 percentage points.
Multiple linear regression was used to find relationships between the performance of the move
acceptance criteria and statistics gathered during the runs. Better performance is associated
with 1) accepting the last move in an early iteration, 2) finding the last improvement of the
best solution in an early iteration, 3) not having long streaks of rejecting moves, 4) having
a short maximum distance between accepted solutions, and 5) having high relative average
objective function values for rejected solutions.

We also observed that linear versions, where the crucial parameter for acceptance changes
linearly from a start to an end value, of many well-established criteria fare better than or
similarly to the standard exponential versions. Furthermore, the linear versions have the
advantage that the end value for the aforementioned parameter can often be fixed to zero.

171

7 Acceptance criteria for ALNS: a benchmark on logistic problems

Such an approach does not lead to deteriorated solution quality, but reduces the dimension
of the parameter space by one.

To summarise, we can make the following reccommendations for implementing an ALNS
heuristic:

• Use an acceptance criterion based on SA, TA, or RRT. If time permits, it may pay off to
attempt all three.

• Use a linear acceptance parameter function endiing at zero: this reduces the number of
parameters by one and makes tuning easier, without sacrificing on the solution quality.

Of course the conclusions drawn from the experiments described in this paper will not neces-
sarily apply to all other implementations, and we expect these reccommendations to be most
useful when solving problems related to the CVRP and the CMST.

172

Bibliography

[1] J.E. Beasley. Or-library: distributing test problems by electronic mail. Journal of the
operational research society, 41(11):1069–1072, 1990.

[2] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated f-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Ex-
perimental methods for the analysis of optimization algorithms, pages 311–336. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[3] E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing for exam timetabling
problems. In PATAT 2008 Conference, Montreal, Canada, 2008.

[4] E.K. Burke and Y. Bykov. The late acceptance hill-climbing heuristic. Technical Report
CSM-192, University of Stirling, Tech. Rep, 2012.

[5] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Optimization,
pages 315–338. John Wiley & Sons, 1979.

[6] D. Connolly. General purpose simulated annealing. Journal of the Operational Research
Society, 43(5):495–505, 1992.

[7] E. Demir, T. Bektaş, and G. Laporte. An adaptive large neighborhood search heuristic
for the pollution-routing problem. European Journal of Operational Research, 223(2):
346–359, 2012.

[8] G. Dueck. New optimization heuristics: the great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104:86–92, 1993.

[9] G. Dueck and T. Scheuer. Threshold accepting: a general purpose optimization algo-
rithm appearing superior to simulated annealing. Journal of Computational Physics, 90:
161–175, 1990.

[10] F. Furini, E. Malaguti, and A. Santini. Exact and heuristic algorithms for the partition
colouring problem. Submitted to Computers and Operations Resarch, pages 1–17, 2016.

[11] B. L. Golden, E. A. Wasil, J. P. Kelly, and I. M. Chao. The impact of metaheuristics
on solving the vehicle routing problem: algorithms, problem sets, and computational
results. In T. Crainic and G. Laporte, editors, Fleet management and logistics, pages
33–56. Springer, 1998.

173

Bibliography

[12] P. Grangier, M. Gendreau, F. Lehuédé, and L.-M. Rousseau. An adaptive large neigh-
borhood search for the two-echelon multiple-trip vehicle routing problem with satellite
synchronization. European Journal of Operational Research, 254(1):80–91, 2016.

[13] A. Hemmati and L.M. Hvattum. Evaluating the importance of randomization in adap-
tive large neighborhood search. International Transactions in Operational Research,
2016. forthcoming.

[14] V.C Hemmelmayr, J.-F. Cordeau, and T.G. Crainic. An adaptive large neighborhood
search heuristic for two-echelon vehicle routing problems arising in city logistics. Com-
puters and operations research, 39(12):3215–3228, 2012.

[15] F. Hutter, H.H Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36(1):267–306,
2009.

[16] S. Irnich, P. Toth, and D. Vigo. The family of vehicle routing problems. In P. Toth and
D. Vigo, editors, Vehicle Routing: Problems, Methods, and Applications, chapter 1, pages
1–33. SIAM, 2nd edition, 2014.

[17] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[18] D. Landa-Silva and J.H. Obit. Great deluge with non-linear decay rate for solving
course timetabling problems. In Intelligent Systems, 2008. IS’08. 4th International IEEE
Conference, volume 1, pages 8–11. IEEE, 2008.

[19] G. Laporte, S. Ropke, and T. Vidal. Heuristics for the vehicle routing problem. In P. Toth
and D. Vigo, editors, Vehicle Routing: Problems, Methods, and Applications, chapter 4,
pages 87–116. SIAM, 2nd edition, 2014.

[20] H. Lei, G. Laporte, and B. Guo. The capacitated vehicle routing problem with stochastic
demands and time windows. Computers and Operations Research, 38(12):1775–1783,
2011.

[21] F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: new test problems,
algorithms, and results. Computers and Operations Research, 32(5):1165–1179, 2005.

[22] L.F. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood
search heuristic for lot-sizing with setup times. European Journal of Operational Research,
218(3):614–623, 2012.

[23] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers
and Operations Research, 34(8):2403–2435, 2007.

[24] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of Operational
Research, 66(3):331–340, 1993.

174

Bibliography

[25] G.M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research, 39
(3):728–735, 2012.

[26] Y. Rochat and É. D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of heuristics, 1(1):147–167, 1995.

[27] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):455–
472, 2006.

[28] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, 171(3):750–775, 2006.

[29] S. Ropke and A. Santini. Parallel adaptive large neighbourhood search. in preparation,
2016.

[30] Alberto Santini, Stefan Ropke, and Lars Magnus Hvattum. Measuring the impact of
acceptance criteria on the Adaptive Large Neighbourhood Search metaheuristic. Sub-
mitted to the Journal of Heuristics, pages 1–25, 2017.

[31] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In CP-98 (Fourth International Conference on Principles and Practice
of Constraint Programming), volume 1520 of Lecture Notes in Computer Science, pages
417–431, 1998.

[32] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. De Aragao, and D. Andrade. Robust
branch-cut-and-price for the capacitated minimum spanning tree problem over a large
extended formulation. Mathematical Programming, 112(2):443–472, 2008.

[33] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, A. Subramanian, and T. Vidal. New benchmark
instances for the capacitated vehicle routing problem. Technical report, UFF, Rio de
Janeiro, Brazil, 2014. URL

.

175

http://www.optimization-online.org/DB_HTML/2014/10/4597.html
http://www.optimization-online.org/DB_HTML/2014/10/4597.html

	Introduction
	Topics
	Maritime logistics
	Railway transport

	Methodological toolbox
	Exact methods
	Metaheuristics

	Maritime landside logistics: the quay crane assignment problem
	Introduction
	Mathematical model
	Computational results
	Conclusions

	Maritime landside logistics: is the berth allocation problem solvable by partition colouring?
	Introduction
	Modelling the Berth Allocation Problem
	Literature review: the PCP
	Literature review: the BAP
	Paper Contribution

	Integer Linear Programming Formulations
	A New Branch-and-Price Algorithm
	Solving the Linear Programming Relaxation of ILPE
	Branching scheme for ILPE

	Heuristic algorithms
	Tabu Search
	ALNS-based heuristic
	Local Search refinement

	Computational Results: PCP
	Instances
	Initial Heuristics
	Branch-and-price Algorithm

	Computational results: BAP
	Instances
	Algorithm

	Conclusions
	Acknowledgments

	Maritime seaside logistics: the feeder network design problem
	Introduction
	Literature review
	Model
	Graphs
	Integer formulation

	Solution of the pricing subproblem
	Greedy-randomised heuristic for the ESPPRC
	Exact dynamic programming algorithm for the ESPPRC
	Exact dynamic programming algorithm for the SPPRC
	Acceleration techniques

	Branch-and-price algorithm
	Column generation
	Column management
	Branching
	Upper bounding

	Results
	Instance generation
	Computational results
	Scenario Analysis

	Conclusions

	Maritime seaside logistics: the travelling salesman problem with pickup, delivery, and draft limits
	Introduction
	Mathematical model
	Integer Linear Program
	Arc removal due to precedence, capacity and draft constraints

	Valid inequalities
	Subtour elimination cuts
	Generalized order cuts
	Capacity-draft cuts
	Fork cuts

	Branch-and-cut algorithm
	Strengthened model
	Cut separation

	Heuristic algorithms
	Constructive heuristics
	Refinement

	Computational experiments
	Conclusion

	Railway logistics: the train rescheduling problem
	Introduction
	Timetables and conflicts
	Literature Review
	Problem description
	Network and timetables
	Time-space graph
	Constraints
	Objective function

	Solution Algorithm
	Initial sorting
	Construction
	Shaking
	Sparsification

	Computational Results
	Parameter tuning
	Parallel algorithm

	Conclusions

	Acceptance criteria for ALNS: a benchmark on logistic problems
	Introduction
	The ALNS Framework
	Acceptance Criteria
	Hill Climbing
	Random Walk
	Late Acceptance Hill Climbing
	Threshold Acceptance
	Simulated Annealing
	Great Deluge
	Non-Linear Great Deluge
	Record-to-Record Travel
	Worse Accept
	Parameter space reduction

	Test Problems
	Capacitated Vehicle Routing Problem
	Capacitated Minimum Spanning Tree Problem

	ALNS applied to Test Problems
	ALNS for the CVRP
	Simple LNS for the CVRP
	CMST
	Problem-specific parameters

	Parameter Tuning
	Results
	Conclusions

