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Abstract

In the present work we study the dynamics of non-rigid or of active particles

dispersed in liquid crystals. This is important to develop the theoretical tools needed

to interpret experimental data from a variety of techniques, such as fluorescence

depolarization and magnetic resonance.

In the first part of the thesis the dynamics of non-rigid particles is studied in the

roto-diffusional framework, where the particle movements are described by a ran-

dom walk in an anisotropic medium. The interaction between the solvated particles

and the liquid crystal host is handled through an effective field potential, which is,

in turn, shape dependent. This treatment allowed us to develop expressions to cal-

culate any time correlation function related to changes in shape and/or orientation.

We expect that the availability of this framework will provide an incentive for the

development of experimental techniques in this field.

Until a few years ago the study of particles dispersed in liquid crystals was con-

fined to inert ones, whose time evolution was determined by some sort of anisotropic

stochastic motion. However, a fascinating new class of systems, where the particles

can be in addition self propelled has recently became of great interest. These systems

of active particles can give rise to new non equilibrium organizations corresponding

to well defined stationary states, stable as long as the propelling of the active parti-

cles is maintained. Most of the studies available until now on these unconventional

liquid crystals have been of the continuum, hydrodynamic type, while here we have

been interested in developing a microscopic, molecular level, approach. Thus, in the

second part of the thesis, a study of active particles suspended in a liquid crystal host,

formed from normal non active mesogens, was performed using molecular dynamics

simulations. We modelled both type of particles as uniaxial ellipsoids interacting

with a Gay-Berne potential. The distinction between active and passive particles is

done by adding a propelling non conservative force to the equation of motion of the

former. We found that the long range order of the liquid crystals host can induce the

self assembly of active particles in lanes, clusters of particles flowing in the same

direction. We also showed that the thermal energy added by the active particles in-

creases the sample temperature, which in turn reduce the orientational order of the
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host. In particular no laning is obtained from active particles in an isotropic host.
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Chapter 1

Introduction

1.1 Liquid Crystals

Liquid crystals (LC) are a class of intermediate phases of matter between solid

crystals, that possess three dimensional positional order as well as orientational long

range order, and isotropic liquids which lack both. Liquid crystals phases exhibit in-

stead orientational order and no positional order (nematics) or reduced one dimen-

sional order (smectics). Nematics can flow like liquids, but their constituents parti-

cles have their axis aligned on average along a common direction, the director. More

importantly, the alignment direction is usually maintained for lengths much larger

than inter-particle distances. As a consequence, a series of phenomena connected to

the molecular organization anisotropy typically observed in crystalline solids, are

also observed in liquid crystals [1]. However, differently from them, in liquid crystals

these properties can be controlled by externals perturbations, for example, electric

or magnetic fields, but also surface forces or flow. These characteristics make LC

very versatile materials with diverse kind of applications, ranging from the ubiqui-

tous LC displays to biological sensors [2]. A sketch of the particles organization in a

liquid crystal, a crystalline solid and a isotropic liquid is shown in Fig. 1.1.

The sub-classes of liquid crystals phases are classified by the type and degree

of ordering, geometry of their constituents and by the features responsible for their

phase transition. For example, liquid crystals formed by elongated rods are named

calamitic, while the ones formed by flat disks-like molecules are named discotic. In

the classification based on the phase transition, there are two main groups: ther-
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(a) (b) (c)

Figure 1.1: Sketch of the constituents organization of the phases (a) solid crystalline,
(b) liquid crystalline and (c) isotropic liquid. In the sketches, each ellipsoid represents
a particle forming the phase.

motropics, where the phase transitions take place due to a change in temperature

and lyotropics solute-solvent systems, where the phase transitions are caused by a

variation in the concentration of the mixture.

The main groups in terms of ordering category are (as already mentioned) the

nematics and smectics. In nematics, the centre of mass of the particles forming the

phase are distributed as in a fluid, however the particles are aligned over domains

of a few hundreds nm along a common direction. Furthermore, the application of a

weak external field ( e.g. electric field ∼ 1V /µm or magnetic field ∼ 1T) can easily

align the domains and form a uniformly aligned sample. We can further subdivide

nematics by the number of preferred directions. Systems with just one preferential

orientation (the usual case) are named uniaxial nematics while systems possessing a

preferential orientation also around a secondary, transversal, axis are called biaxial

nematics.

The smectic phases posses essentially the same kind of orientational order present

in nematics, but their defining feature is to also have some type of positional order.

Indeed the particles forming a smectic phase are organized in layers, which are ap-

proximately equally spaced and parallel. The sub-divisions of smectics is based first

on the tilt angle between the director and the layer normal (e.g. smectic A and smec-

tic B have the director perpendicular to the layer and smectic C have it tilted). The

second element of classification for smectics is the positional order inside the layers

(none for smectic A and hexagonal for smectic B). A sketch illustrating the similari-

ties and differences between nematics and smectics is shown in Fig. 1.2.

2



(a) (b) (c)

Figure 1.2: Representation of the liquid crystals phases: (a) uniaxial nematic, (b) bi-
axial nematic and (c) smectic A. In the sketches the ellipsoids represents uniaxial
constituents, while the boxes represents biaxial ones.

The microscopic description of a nematic phase requires in general the specifi-

cation of the preferential alignment direction, n̂, and of the probability distribution

P(n̂ · û) of finding the axis of a molecule, û, assumed to be rod-like for simplicity, at

a certain orientation from the director. As the distribution is normally not available

to be determined in full from experiments, the orientational order can be quantified

using the first few moments of the probability distribution. The simplest and more

common order parameter is obtained from just the first non vanishing moment of the

distribution, the second one 〈(n̂ · û)2〉, as

〈P2〉 = 〈P2(n̂ · û〉 = 1
2
〈3(n̂ · û)2 −1〉 (1.1)

where P2 ≡ P2(cosβ) is the second Legendre polynomial and the angular brackets

indicate an average over all particles. Notice that 〈P2〉 is one for complete order and

goes to zero in the isotropic phase. One of the most interesting features of liquid

crystals is that guest particles dissolved in them tend to follow the ordering present

in the phase. For example, particles dissolved in nematics tends to align along the

same direction as the host. This property has long been used in technological appli-

cations, e.g. one of the first display prototypes, dating back from 1968, was based on

the reorientation of dye molecules doping a nematic liquid crystal [3]. Nowadays, liq-

uid crystals materials are being applied as tunable solvents. The possibility of easily

varying their orientational order is then being used to organize synthetic and biolog-

ical suspensions [2,4,5]. Furthermore, their average orientational direction can also
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Figure 1.3: Representation of micelles formed by amphiphilic molecules. Adapted
with permission from Qingkun Liu; Corinne Beier; Julian Evans; Taewoo Lee; Sail-
ing He; Ivan I. Smalyukh; Langmuir 2011, 27, 7446-7452. Copyright 2011 American
Chemical Society

be used to guide self-propelled particles and living micro organism [6,7].

1.2 Shape changing particles

The assumption nearly invariable made in modelling the orientational order and

the dynamics of LC mesogens as well as of particles suspended in ordered phases

is that of assuming them to be rigid uniaxial or biaxial objects. While this is a very

successful simplification in a number of cases, it is clearly inadequate to treat two

classes of problems that we wish to investigate in this thesis. The first is the case of

particles hosted in anisotropic solvents, that rather than maintaining the same rigid

shape while reorienting, can actually change from a shape to another. In practice

this can be appropriate for a variety of systems. For instance, anisotropic micelles

whose overall, envelope, shape is the result of the aggregation of a number of flexible

amphiphilic molecules [8](see Fig. 1.3) or temperature responsive gel micro-particles

[9,10] (see Fig. 1.4).

Here we developed the theory needed to describe various limiting cases of parti-

cles of uniaxial ellipsoidal shape that can switch from an elongated to spherical to

oblate aspect ratio, while reorienting in a uniaxial or biaxial LC host.
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(a)

(b)

Figure 1.4: Example of non-rigid temperature responsive micro-particles . (a) Liquid
crystals elastomers which change shape in response to variation in the environment
temperature. (b) PLGA particles that change shape in response to temperature and
environment PH. Figure (a) was reprinted with permission from Jean E. Marshall;
Sarah Gallagher; Eugene M. Terentjev; Stoyan K. Smoukov; J. Am. Chem. Soc. 2014,
136, 474-479. Copyright 2013 American Chemical Society and figure (b) was reprinted
with permission from [9].

1.3 Active matter

Apart from rigidity another assumption normally made on particles embedded in

a LC solvent is that they are passive, I.e. not capable of autonomous propulsion. How-

ever there are system, named active system, whose components can extract energy

from external sources and convert it into motion. This general definition comprises

a wide range of systems with length scales varying from nano to macroscopic. For

instance, groups of living beings such as bacterial suspensions, schools of fish and

flocks of birds fit well into this category, but so also do synthetic particles like certain

Janus colloids, motor driven cytoskeletal filaments and shaken granular rods.

The source of activity has very different origins and forms for each specific sys-

tem. In living matter, it usually comes from the consumption of some kind of food.

For example fishes or birds extract energy needed for movement from the food con-

sumed, or in bacterial suspensions the energy source comes from the consumption
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of ATP [6]. In the synthetic counterpart, the mechanism of conversion is more intri-

cate. For example, Janus particles can be endowed with different chemical affinities

on the two hemispheres [11](see Fig. 1.5). When they are illuminated by a source of

light, a reaction is induced in just one of its poles. In another example platinum is de-

posited on one of the Janus faces and this, when the particles are immersed in H2O2

act as a catalytic agent for a chemical reaction generating oxygen. This reaction, in

turn, produces a flow of matter which propels the particles forward. In a system of

granular rods, the vibrations of its container shakes the particles, putting them in

motion [12].

(a)

Figure 1.5: SEM image of silanated silica particles (one type of Janus particles) show-
ing that one of its pole its is coated with gold. reproduced with permissions from [11].

Even though active matter comprises a huge set of different systems, some uni-

fying characteristic can still be identified. Due to the presence of non -conservative

interactions, these system are intrinsically out of equilibrium. Moreover, the balance

between the interactions with the environment and the system activity can gener-

ate coherent movement, which in turn can organize the system in various sorts of

ordered structures. For instance, schools of fish assembly themselves in flocks with

polar order, while the granular rods can show nematic order [13](see Fig. 1.6) .

Besides the orientational ordering, active particles can also show positional or-

ganization, for example, Janus particles can organize themselves in clusters when

illuminated by light [14] (i.e. see Fig. 1.7), while schools of fish can organizes them-

selves in "lanes".

In systems of this type a problem of great interest that we shall tackle here, is to
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(a) (b)

Figure 1.6: Examples of orientational ordering formed in active system. In figure (a)
a school of fishes organizes in polar order, while in (b) a system of shaken granular
rods are organized with polar order. Photo (a) taken by Matthew Hoelscher (Flickr)
and Figure (b) was reprinted from ref. [13].

Figure 1.7: Aggregation of Janus particles in clusters. Figure reproduced with per-
missions from [14].

7



examine the possibility of novel non-equilibrium ordered organization which can be

stable as long as the external energy lasts.

1.4 Outline of the thesis

As already mentioned the present thesis is divided in two parts. In the first part

we study the rotational-diffusion of shape switching particles suspended in nematic

liquid crystal environments. In chapter 2, we develop the theoretical framework to

study the rotational-diffusion of a shape changing particle in nematic environments.

We apply the framework to study the dynamics of a uniaxial particle solvated in an

uniaxial solvent in chapter 3, and to study uniaxial particles solvated in a biaxial

nematic in chapter 4.

In the second part, we used molecular dynamics simulations to study active par-

ticles suspended in liquid crystals phases. In chapter 5 we review the techniques of

molecular dynamics, which in turn are used in chapter 6 to study the active parti-

cles suspended in smectic and nematic liquid crystals phases with different degree

of ordering.
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Part I

Rotational-Diffusion of Shape

Switching particles
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Chapter 2

The Rotational-Diffusion problem

The interpretation of a variety of experimental results dealing with the dynam-

ics of molecules, proteins, or colloidal nanoparticles in liquids, liquid crystals, mem-

branes, or soft polymers relies on assuming some model for the reorientation of the

particle in its environment [15–18]. Classical assumptions are that reorientation

takes place according to some kind of Markov process by small angular displace-

ments or alternatively by large uncorrelated jumps, the so-called strong collision

model [19]. In the first case, the stochastic evolution equation for the conditional

probability P(Ω0|Ω, t) of finding the particle, assumed to be rigid, at a certain orien-

tation Ω at time t if it was at Ω0 at time t0 (as illustrated in Fig. 2.1), can be written

as a "local in space", differential equation describing a rotational diffusion process. If

the process occurs with finite orientational jumps, a first order kinetic equation with

a transition matrix giving the probability of leaping from one state to another can be

set up.

The rotational diffusion problem has been treated in detail in what are now clas-

Figure 2.1: Conditional probability P(Ω0|Ω, t)
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sical papers for liquids [20, 21] and liquid crystals [19]. The procedure, assuming

that the motion of the particle whose evolution is followed, takes place in an effec-

tive mean field potential describing the overall effect of the anisotropic solvent, e.g.

a liquid crystal or a membrane bilayer, has been pioneered by Nordio et al. [19, 22]

and Freed et al. [23, 24] who dealt with uniaxial molecules reorienting in a uniaxial

solvent. This approach has been widely used to interpret results from Electron Spin

Resonance (ESR) [22, 23, 25], Dielectric Relaxation [22], Fluorescence Depolariza-

tion [26] etc. Generalizations applicable to uniaxial particles reorienting in a biaxial

nematic [27] or to molecules of arbitrary symmetry reorienting in a uniaxial [28] or

biaxial [29] phase have also been put forward. A variety of experimental observables

for biaxial molecules dissolved in liquid crystals, ranging from Nuclear Magnetic

Resonance spectral densities [30,31] to Fluorescence Polarized intensities [32], have

been interpreted using this approach, allowing the determination of the molecular

rotational diffusion tensor components and correlation times. The determination of

diffusion coefficients for other systems, e.g. macromolecules, can also be obtained by

other optical techniques like Fluorescence Correlation Spectroscopy [33,34].

It is important to stress that all the theories and applications mentioned concern

rigid molecules, or rather molecules that can be approximated with rigid particles,

where a centre of mass and a Cartesian frame can be rigorously defined. On the

other hand, there are various important problems that defy this simplification. One

classical molecular example is that of internal conformational motions being impor-

tant [35, 36], for instance due to the presence of flexible alkyl chains or other inter-

nal mobile moieties [36]. More generally, this happens for many macromolecules, for

proteins [37] and polymers [9], but also for deformable vesicles [38, 39], gel parti-

cles [40, 41] and red blood cells [42, 43]. Recently, the rigid particle rotational model

was extended to include non-conserving shape dynamics but with a theory that is

applicable only to particles dissolved in an isotropic environment [44,45].

In this chapter we develop a theoretical framework suitable for studying the dy-

namics of soft particles that can switch shape while tumbling. These could be for

instance micro- or nano-size gel particles that can change from an elongated to a

discoidal shape while embedded in a nematic. We do not discuss here the origin of

the shape change in details, but possible mechanisms could be spontaneous fluc-
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tuations, taking place in a particle or a micelle with some internal core structure

or even fluctuations driven by some external event. For instance, we could imagine

micro-particles formed by a liquid crystal elastomer [46] containing photosensitive

azobenzene moieties [47, 48] that can change their shape following a more or less

random sequence of UV light bursts.

2.1 Experimental observables

We will study the effect of the complex motion of a non-rigid particle on correla-

tion functions and correlation times and, as far as possible, try to present our results

in a way suitable for future comparison with experiments (e.g. NMR or Fluorescence

Depolarization). Indeed, even if we are currently not aware of experimental data for

shape switching particles in anisotropic environments, we expect these to become

available, e.g. for proteins in membranes, extending the work presented by various

groups on isotropic environments [44,45].

The measurements of observable dynamical quantities are performed in the lab-

oratory frame H, although the equations can be expressed more conveniently in the

particle fixed frame P. According to linear response theory, dynamic observables can

normally be written in term of correlation functions between some properties of sys-

tem [49], which we can generically call A and B, at different times:

CAB(t)= 〈AH(0)B∗
H(t)〉, (2.1)

where the angular brackets indicate an average over time.

According to the model just described which assumes the particle to switch be-

tween “rigid for a while” shapes, we can consider A and B for each shape as tensor

properties, that we further write in their spherical representations [50] in the lab

frame as AL,m
H , BL,m ∗

H , where L is the tensor rank of the property and m a specific

component. We can then write the spherical components in the lab frame in terms of

12



those in the particle fixed frame as

〈AL,m
H (0)BL′,m′ ∗

H (t)〉
= ∑

n,n′
〈DL∗

m,n(Ω0)DL′
m′,n′(Ω)AL,n

P (χ0)BL′,n′∗
P (χt)〉 (2.2)

where DL
m,n(Ωt) ≡ DL

m,n(ΩP(t)−H) are Wigner rotation matrices and Ω = (α,β,γ) rep-

resents the set of three Euler angles giving the orientation of the particle starting

from the laboratory frame [50]. We notice that the components AL,n
P , BL′,n′

P cannot be

brought outside the average, as for rigid molecules, since they are still changing with

time as the particles shape switches.

The number of relevant correlation functions depends on the symmetry of the

probe particle and of the anisotropic solvent studied. In this thesis, we study the

process under different symmetries for the host and the “solute” particles.

2.2 Correlation Functions

Even though the full calculation of the particle motions involved in processes

like the ones specified in Eq. (2.2) is possible in principle, e.g. from fully atomistic

molecular dynamics simulations, practical applications require a different approach.

Here we will treat the problem within a probabilistic framework.

Stochastic processes are described by a set of variables x = {x0, x1, . . . , xn} whose

values are taken randomly from a probability distribution P(x, t). The variables xi

can be any physical parameter, for example, the 3 coordinates of the centre of mass

of a particle. Since we are studying dynamic processes, the probability distribution

for one or more variables will generally change with time t.

Processes specified for the Eq. (2.2) require not only the probability of finding a

stochastic variable at a certain time, but also the probability of finding it other values

later. To take this into consideration, we define the joint probability Wn(x0, t0; . . . ;xn, tn)

as the probability of finding x at x0 at time t0, x1 at time t1 and further until xn at

tn.
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The joint probability possess the properties of being always positive [51]:

Wn(x0, t0; . . . ;xn, tn)≥ 0 ∀ x0, . . . ,xn, (2.3)

normalized ∫ ∫
. . .

∫
Wn(x0, t0; . . . ;xn, tn)dx0 . . .xn = 1 (2.4)

and reducible

Wn−1(x0, t0; . . . ;xn−1, tn−1)=
∫

Wn(x0, t0; . . . ;xn, tn)dxn, (2.5)

here we integrated over the last term xn for simplicity, but the reduction can be

performed over any stochastic variable xi. As a consequence, with the knowledge of

Wn(x0, t0; . . . ;xn, tn) we can recover any lower distribution desired applying the rule

in Eq. (2.5) repeatedly. Moreover, knowing Wn(x0, t0; . . . ;xn, tn) allows us to calculate

any time correlation function involving the stochastic variables x. Suppose Y (xt) is

a function that depends only on the values xt; here we used the superscript t to

indicate that x is taken at some time t, therefore, Y depends implicit on t. We can

calculate any time correlation function of property Y with the equation

〈Y (t0)Y (t1) . . .Y (tn)〉 =
∫ ∫

· · ·
∫

Wn(x0, t0; . . . ;xn, tn)Y (x0)Y (x1) · · ·Y (xn)

×dx0dx1 . . .dxn. (2.6)

Until now we have just discussed the general properties of Wn without making

any assumption about the kind of stochastic process involved. For instance, if we

assume our process to be completely random, there will be no dependence of x1 over

x0 and further until xn. In this way the joint probability Wn can be factored as the

product of the individual W1(xi, ti). Taking the times appearing in Wn ordered in the

form that t0 < t1 < ·· · < tn, if we assume the probability distribution of xn to depend

only on the value of xn−1, i.e. the process to be Markovian, we can write

Wn(x0, t0; . . . ;xn, tn)=Wn(x0, t0; . . . ;xn−1, tn−1)P(xn−1, tn−1|xn, tn) (2.7)
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where P(xn−1, tn−1|xn, tn) is the conditional probability of finding xn at tn given it

was at xn−1 at tn−1, normalized by

∫
P(xn−1, tn−1|xn, tn)dxn = 1 (2.8)

and subject to the initial condition

∫
P(xn−1, tn−1|xn, tn−1)dxn = δ(xn −xn−1). (2.9)

Here we can apply the rule stated in Eq. (2.7) recursively and express the joint

distribution as a product of conditional probabilities. Markovian processes are usu-

ally used to describe Brownian motion, where the position of the particle at the next

instant of time depends only on where the particle was at the immediately precedent

time and on the conditional probability. We can use this property and write the tran-

sition probability {x0, t0} → {x, t} as a two step process described by the Chapman-

Kolmogorov equation [31]

P(x0, t0|x, t)=
∫

P(x0, t0|x1, t−τ)P(x1, t−τ|x, t)dx1, (2.10)

where τ is an intermediate instant o time which satisfies t0 < t−τ < t. If the condi-

tional probabilities are continuous functions, we can take τ as small as we want and

with a Taylor expansion from the initial time, we can cast, to O (t2) Eq. 2.10 in the

master equation form [31]

∂

∂t
P(x0, t0|x, t)=

∫
R(x1,x)P(x0, t0|x1, t1)dx1, (2.11)

being R(x1,x)= ∂P(x1, t1|x, t)/∂t|t=t0 .

Finally, if a stochastic process is stationary, than the joint distribution is indepen-

dent of t0 and the transition probabilities depend only on the time differences ti− t0.

Hence we can write

Wn(x0, t0; . . . ;xn, tn)=Wn(x0;x1, t1 − t0; . . . ;xn, tn − t0). (2.12)

Now we are going to apply the formalism we developed to study the roto-diffusion
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dynamics of non-rigid particles solvated in a liquid crystal environment. The exper-

imental observables require knowledge of the particle orientation Ω and internal

degrees of freedom χ, which will be our stochastic variable x = {Ω,χ}. Therefore we

can rewrite Eq. (2.2)

〈AL,m
H (0)BL′,m′ ∗

H (t)〉 = ∑
n,n′

∑
χ0,χ

Ï
dΩ0dΩW(χ0,Ω0, t0;χ,Ω, t)DL∗

m,n(Ω0)

×DL′
m′,n′(Ω)AL,n

P (χ0)BL′,n′∗
P (χ). (2.13)

where W(χ0,Ω0, t0;χ,Ω, t) is the joint probability of finding the same particle with

shape χ0 and orientation Ω0 at t = 0 and to find the particle with shape χ and orien-

tation Ω at time t.

We will now assume all stochastic processes to be Markovian, which allows us to

rewrite the joint distribution as

W(χ0,Ω0, t0;χ,Ω, t)= P(χ0,Ω0, t0)P(χ0,Ω0, t0|χ,Ω, t) (2.14)

where P(χ0,Ω0, t0) is the probability of finding the particle at {χ0,Ω0} at time t = 0

and P(χ0,Ω0|χ,Ω, t) is the conditional probability of finding the particle with the

orientation Ω and shape χ at time t given it had the orientation Ω0 and shape χ0 at

time 0 (illustrated in Fig. 2.2). The conditional probability is normalized as follows:

∑
χ

∫
dΩ P(χ0,Ω0, t0|χ,Ω, t)= 1, (2.15)

with the initial time boundary condition:

P(χ0,Ω0, t0|χ,Ω, t = t0)= δχ0,χδ(Ω0 −Ω). (2.16)

In a stable thermodynamic equilibrium, the stochastic processes are stationary,

therefore, we can drop t0 from the probability distribution defining

W1(Ω0,χ0, t0)≡ Peq(Ω0,χ0), (2.17)
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Figure 2.2: Conditional probability of a shape changing probe particle.

and rewrite Eq. (2.13) as

〈AL,m
H (0)BL′,m′ ∗

H (t)〉 = ∑
n,n′

∑
χ0,χ

Ï
dΩ0dΩPeq(χ0,Ω0)P(χ0,Ω0|χ,Ω, t)

×DL
mn(Ω0)DL′∗

mn(Ω)AL,n
P (χ0)BL′,n′∗

P (χ). (2.18)

To calculate the components of Eq.(2.18), we need to describe how the probe par-

ticle interacts with the environment in order to derive the stochastic dynamics. The

solute - solvent interactions depend on the molecular distribution of solvent around

the probe particle and on the other particles of the same type of the probe one. If

we assume our system to be in infinite dilution, there will be only solvent molecules

around our probe particle, allowing us to describe their interaction by means of an

effective, anisotropic, potential taking into account the effect of the surrounding en-

vironment on the particle of interest.

Since our probe particle is non rigid, in addition to the anisotropic potential, we

should consider the intrinsic probability associated with different shapes [52]. For

instance, we might consider that each shape has a different internal elastic energy,

due to its constituent anisotropic material and structure [53]. To take this behaviour

into account, we add to the mean-field potential a term dependent only on χ. The

complete form of the effective potential U(χ,Ω) will be given by

U(χ,Ω)
kBT

= u(χ,β)= u0(χ)+ ∑
lu,mu,nu

ulu
mu,nu (χ)D lu

mu,nu (Ω), (2.19)

where kB is the Boltzmann constant, T the temperature, ulu
mu,nu (χ) are the shape

dependent anisotropic strength and u0(χ) is the intrinsic shape dependent energy
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term. We take β as the angle between the nematic host director, defining the Z lab

axis and the particle z axis. In biaxial environments α is the angle between the

probe particle and the host second director, taken to define X axis. γ is the angle

between the molecule X axis and laboratory X axis. It is important to notice that the

Wigner functions form a complete basis set, therefore, taking an appropriate number

of Wigner functions we can obtain any other function depending on Ω. However, for

the present work we will proceed as Nordio and Segre [19] and consider expansion

of the effective potential until L = 2, to reduce the number of phenomenological free

parameters.

In thermodynamic equilibrium, the probability of finding a particle with orienta-

tion Ω and shape χ in the anisotropic solvent, from now on referred as Peq(χ,Ω), will

be given by the Boltzmann distribution

Peq(χ,Ω) = e−u(χ,Ω)∑
χ′

∫
e−u(χ′,Ω′)dΩ′

= p0(χ)exp
[−∑

L,m,n uL
m,n(χ)DL

m,n(Ω)
]∑

χ′ p0(χ′)S0
0,0(χ′)

. (2.20)

In the last expression we have introduced the intrinsic shape distribution

p0(χ)= e−u0(χ)∑
χ′ e−u0(χ′) , (2.21)

that can be interpreted as a normalized “a priori” (independent of the environment)

probability density of observing a certain shape χ, and S0(χ) is a special, L = 0,m =
0,n = 0, case of the rank-L integrals

SL
m,n(χ) = 〈exp

[
− ∑

lu,mu,nu

ulu
mu,nu (χ)D lu

mu,nu (Ω)

]
DL

m,n(Ω)〉Ω

≡
∫

dΩexp

[
− ∑

lu,mu,nu

ulu
mu,nu (χ)D lu

mu,nu (Ω)

]
DL

m,n(Ω). (2.22)

Even though we are interested in the correlation functions 2.13, it is more conve-
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nient to treat each term in the summation (2.2) separately, defining

φ
L,L′
mm′,nn′,AB(t)≡ ∑

χ0,χ

Ï
dΩ0dΩPeq(χ0,Ω0)P(χ0,Ω0|χ,Ω, t)DL

mn(Ω0)DL′∗
mn(Ω)

×AL,n
P (χ0)BL′,n′∗

P (χ). (2.23)

There is an infinite number of correlation functions (2.23), however, any experi-

mental setup has only access to a finite (typically small) combination of them. As an

example, here we will focus on two types of correlation functions.

In the first case we will consider that the orientational correlations functions are

modulated by fluctuations in shape, but both AL,n
P (χ0)= AL,n

P and BL′,n′∗
P (χ)= BL′,n′∗

P

do not depend on χ. From now on, we will call these function angular correlation

functions. They can be calculated as

φ
L,L′
mm′,nn′(t)=

∑
χ0,χ

Ï
dΩ0dΩPeq(χ0,Ω0)P(χ0,Ω0|χ,Ω, t)DL

mn(Ω0)DL′∗
m′n′(Ω). (2.24)

For the second kind we will consider the family of functions that depend on shape,

but are independent of the particle orientation, i.e φ0,0
00,00,AB(t)≡φAB(t), which can be

calculated by:

φAB(t)= ∑
χ0,χ

Ï
dΩ0dΩPeq(χ0,Ω0)P(χ0,Ω0|χ,Ω, t)A(χ0)B(χ), (2.25)

where A ≡ A0
0,0 and B ≡ B0

0,0. One example of such a function is φaia j (t), which mea-

sures the correlation of a particle axis length ai, here called axial correlation func-

tion. Due to its simplicity, we will use this function to study orientational indepen-

dent functions.

Together with each correlation functions we can also measure the associate cor-

relation time, given by

τ
L,L′
mm′,nn′ =

∫ ∞

0

(
φLL′

mm′,nn′(t)−φLL′
mm′,nn′(∞)

)
dt (2.26)
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for the first kind and

τAB =
∫ ∞

0

(
φAB(t)−φAB(∞)

)
dt, (2.27)

for the second.

The initial and asymptotically long time values are of course independent of the

dynamics of the system and can be written in terms of order parameters [54]. When

t = 0 we have P(χ0,Ω0|χ,Ω, t = 0) = δχ,χ′δ(Ω−Ω0) which can be substituted in Eq.

(2.24) to give

φ
L,L′
mm′,nn′(0)=∑

χ

∫
dΩPeq(χ,Ω)DL

mn(Ω)DL′∗
m′n′(Ω)

=
∑
χ p0(χ)〈exp

[
−∑

uL′′
m′′,n′′

uL′′
m′′,n′′(χ)DL′′

m′′,n′′(Ω)
]

DL
mn(Ω)DL′∗

m′n′(Ω)〉Ω
4π2 ∑

χ′ p0(χ′)S0
0,0(χ′)

.

(2.28)

We can obtain the explicit dependence on order parameters coupling the Wigner

rotation matrices as

DL
mn(Ω)DL′∗

m′n′(Ω)= (−1)m′−n′ L+L′∑
J=|L−L′|

C(L,L′, J;m,−m′)

×C(L,L′, J;n,−n′)DL
m−m′,n−n′(Ω),

(2.29)

where the Clebsch-Gordian coefficients C(a,b, c;d, e) are tabulated elsewhere [55]

and writing

φ
L,L′
mm′,nn′(0)= (−1)m′−n′ L+L′∑

J=|L−L′|
C(L,L′, J;m,−m′)

×C(L,L′, J;n,−n′)

∑
χ p0(χ)SJ

m−m′,n−n′(χ)∑
χ′ S0

0,0(χ′)p0(χ′)
. (2.30)

As t → ∞ the conditional probability will be completely uncorrelated, therefore
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P(χ0,Ω0|χ,Ω,∞)= Peq(χ0,Ω0)Peq(χ,Ω), which allows us to write:

φ
L,L′
mm′,nn′(∞)= ∑

χ0,χ

Ï
dΩdΩ0 Peq(χ0,Ω0)DL

mn(Ω0)Peq(χ,Ω)DL′∗
mn(Ω) (2.31)

= (−1)m′−n′
∑
χ p0(χ)SL

m,n(χ)∑
χ′ S0

0,0(χ′)p0(χ′)

∑
χ p0(χ)SL′

−m′,−n′(χ)∑
χ′ S0

0,0(χ′)p0(χ′)
.

The initial values for second kind of correlation functions can be obtained with

the same procedure. Substituting the initial conditions (2.16) in (2.25) we obtain for

t=0:

φAB(0)=∑
χ

∫
dΩPeq(χ,Ω)A(χ)B(χ)

=
∑
χ p0(χ)A(χ)B(χ)∑
χ p0(χ)S0

0,0(χ)
, (2.32)

and for the asymptotic behaviour

φAB(∞)= ∑
χ0,χ

Ï
dΩdΩ0Peq(χ0,Ω0)A(χ)Peq(χ,Ω)B(χ)

=
∑
χ p0(χ)A(χ)∑

χ p0(χ)S0
0,0(χ)

p0(χ′)B(χ′)∑
χ′ p0(χ′)S0

0,0(χ′)
, (2.33)

2.3 Evolution operator

The last quantity we need to determine is the evolution operator in Eq. 2.11. To

proceed, we now need to introduce some models for the time evolution of the proba-

bility distribution. Here we will assume two distinct stochastic processes. The first is

the usual rotational rotational diffusion, where the particle rotates by small jumps.

The jump probability is shape dependent, but the particle remains rigid during this

step. The last is the shape-changing process, which can be orientation dependent,

but the orientation remain fixed during the change.

We shall assume for reorientations a rotational-diffusion process [19, 28, 56, 57],

which implies that orientations change by small angular steps. This model is of very

general use, but is particularly appropriate when the deformable probe particle is

much bigger than the surrounding solvent ones, as we expect the case for a vesicle

or gel particle.
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Models for shape change are not so well developed, even though some significant

contributions have been put forward [44, 45]. Here we shall assume a jump model

where the shape remains constant for a time much longer than that required to

switch to a new one, so that we can be approximate the conversion, as in the so

called strong collision models, with an instantaneous transition [58].

The interaction between the particle and the anisotropic solvent environment is

assumed to be modelled by an effective field potential of the Maier-Saupe type [59,

60]. If all the shapes share the same symmetry, we can take the angular dependence

of the mean field potential to be the same before and after the shape transition, with

only the strength of the interaction changing.

Restating our assumptions mathematically, we are assuming that at a given in-

stant of time each particle is characterized by an orientation Ω and a “shape” χ

degrees of freedom. We assume for simplicity that χ can take a discrete, finite even if

arbitrary large set of values {χi}, corresponding to a finite set of shapes ranging from

an elongated, to a spherical, up to an oblate discotic one. The particle can behave as

a rigid rotor with its rotational diffusion tensor Dχ for a certain time and during this

time lapse it is subject to an anisotropic effective field determined by the solvent and

by its own anisotropy, but it is prone to changing its shape adopting a different χ.

Under these assumptions, the we can write the master equation as:

∂

∂t
P(χ0,Ω0|χ,Ω, t)=Γ(χ,Ω)P(χ0,Ω0|χ,Ω, t), (2.34)

where Γ(χ,Ω) is the evolution operator. We can further separate the operator Γ(χ,Ω)

as the sum of the roto-diffusion operator Γχ(Ω) plus the shape change operators

kχχ′(Ω) connecting each shape possibility χ and χ′. We can therefore rewrite Eq.

(2.34) as

∂

∂t
P(χ0,Ω0|χ,Ω, t)=Γχ(Ω)P(χ0,Ω0|χ,Ω, t)+∑

χ′
kχχ′(Ω)P(χ0,Ω0|χ′,Ω, t).
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Following [27,28] we the stochastic operator Γχ(Ω) is given by

Γχ(Ω)=−Dχ
x {L2

x +Lx
[
Lxu(χ,Ω)

]
}

−Dχ
y{L2

y +L y
[
L yu(χ,Ω)

]
}

−Dχ
z {L2

z +Lz
[
Lzu(χ,Ω)

]
}, (2.35)

where Lx,L y,Lz are the angular momentum operators and {Dχ
x ,Dχ

y,Dχ
z } are the χ

shape diffusion tensor components. This is the most general case for the roto-diffusion

operator. In the next sessions, we will develop a specific version for each case studied.

Now we need to define the operator that performs shape transitions kχχ′(Ω). In

our model, the symmetry axis of the particle is conserved during the shape change. In

this way the switch operator will connect only functions with the same orientation.

According to detailed balance in stationary conditions, the transition between two

states will obey

kχχ′(Ω)Peq(χ′,Ω)= kχ′χPeq(χ,Ω), (2.36)

which allows us to assume

kχχ′(Ω)= e−u(χ,Ω)/2

e−u(χ′,Ω)/2
ζ(χ,χ′) ∀ χ′ 6= χ, (2.37)

where ζ(χ,χ′) are and ζ(χ′,χ) = ζ(χ,χ′). If we consider that every shape can have a

different intrinsic persistence time and ζ(χ) represents the inverse of the residence

time of the particle in its shape χ, then we could think of ζ(χ′,χ)= [ζ(χ)+ζ(χ′)]/2.

The conservation of overall probability condition can be satisfied, as for every

Markov process, by defining the diagonal elements of the transition matrix as

kχχ(Ω)=− ∑
χ′ 6=χ

kχ′χ(Ω). (2.38)

Here we derived a mathematical expression for kχ′χ(Ω), but the physics of the

problem can impose some constraints on the connectivity of the shapes. For instance,

we can have a system where just shapes with similar forms can be visited, here called

neighbouring shapes. The number of neighbouring shapes depends on the symmetry

of the probe particle, for example, a uniaxial particle could have two neighbours, one
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(a) First neighbors (b) All connected

Figure 2.3: Shape connectivity model.

shape that is more elongated and another one more squashed. A biaxial probe parti-

cle can transform in more dimensions, and will probably have at least 4 neighbours.

We call this connection model first neighbour connectivity.

On the other way, we can also have all shapes direct accessible to all shapes. This

is the analogue of the strong collision model, but for shape exchange. In Fig. 2.3 we

can see a sketch of the models.

The set of differential equations (2.35), together with the initial conditions (2.16),

describes the dynamics of the orientation and their solution allows calculations of

the correlation functions in Eq. (2.24).
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Chapter 3

Uniaxial particles in uniaxial

nematic liquid crystals

In this chapter we will apply the formalism developed in chapter 2 to study the

roto-diffusion of uniaxial particles dissolved in a uniaxial liquid crystal. Since we

are taking the host to be uniaxial, an arbitrary rotation of ψ around the laboratory

Z axis, which multiplies the r.h.s of Eq. (2.2) for exp[i(ψ(m−m′)] should leave the

results invariant, therefore allowing only the correlation functions φL,L′
mm′,nn′(t) with

m = m′ to be different from 0, i.e., δmm′ .

If we assume that the change of shape, however large, corresponds to a sort of

breathing mode that maintains the particle uniaxial around its z axis, then we also

have δnn′ . In practice, the particle is assumed here to have a uniaxial ellipsoidal

shape, with axes

ax(χ)= ay(χ)= a⊥(χ),

az(χ)= a∥(χ), (3.1)

which allows us to define the aspect ratio ρχ = a⊥(χ)/a∥(χ).

With these symmetries, we can reduce some of the parameters used in the model;

for instance the diffusion tensor can also be rewritten as

Dχ
x (χ)= Dχ

y(χ)= Dχ

⊥(χ),

Dχ
z (χ)= Dχ

∥ (χ). (3.2)
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The symmetries also reduce the number of parameters involved in the mean-field

potential. More specifically, we have ul
m,n(χ)= 0 for all m 6= 0 and n 6= 0, which allows

us to write

u(χ,Ω)= u0(χ)+u2(χ)P2(cosβ), (3.3)

where we replaced u2
0,0(χ)= u2(χ) for simplicity.

With these parameters we setup the set of evolution equations.

3.1 Evolution equation

The stochastic rotation operator for our probe particle can be obtained substitut-

ing Eqs. (3.2) in Eq. (2.35) to obtain

Γχ(Ω)=−Dχ

⊥{L2
x +Lx

[
Lxu(χ,Ω)

]
}−Dχ

⊥{L2
y +L y

[
L yu(χ,Ω)

]
}

−Dχ

∥ {L2
z +Lz

[
Lzu(χ,Ω)

]
}. (3.4)

Following Zare formalism [61], the angular momentum operator components can

be written in terms of Euler angles derivatives as

Lx =−i cosγ
(
cotβ

∂

∂γ
− 1

sinβ
∂

∂α

)
− isinγ

∂

∂β

L y = isinγ
(
cotβ

∂

∂γ
− 1

sinβ
∂

∂α

)
− i cosγ

∂

∂β

Lz =−i
∂

∂γ
. (3.5)

Replacing equations (3.5) in Eq. (3.4), gives after some algebraic manipulations

Γχ(Ω)= 1
2

(
Dχ

⊥ cot2β+Dχ

⊥ csc2β−Dχ

⊥+2Dχ

∥
) ∂2

∂γ2

+Dχ

⊥

(
∂2

∂β2 +csc2β
∂2

∂α2 −2cotβcscβ
∂2

∂α∂γ

)
+Dχ

⊥

(
cotβ+ ∂u(β)

∂β

∂

∂β

)
+Dχ

⊥

(
∂2u(β)
∂β2 +cotβ

∂u(β)
∂β

)
. (3.6)

For a vanishing effective field term u(χ,Ω), i.e., for an isotropic liquid, the eigen-

functions of Γ(Ω) for a particle of a given shape are the Wigner functions: DL
mn(Ω) =

exp(−imα)dL
mn(β)exp(−inγ). In our current case we have u(χ,Ω)= u(χ,β), thus both
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operators Γχ(Ω) and kχχ′(Ω) depend only on β. Therefore, we can use the uniax-

ial symmetry around the laboratory and particle frame principal axis to write the

eigenfunctions of Γχ(Ω) as Ψmn(Ω) = exp(−imα)Pm,n(χ0,β0|χ,β, t)exp(−inγ), effec-

tively separating variables in equation 2.35.

In the space being considered, the angles α= 0 and α= 2π are equivalent; conse-

quently we need to ensure that the conditional probability takes it into consideration

and that is possible only if m is an integer. The same considerations must hold for

γ; as a consequence, we have that n is also an integer. Therefore, after applying the

initial condition, the conditional probability can be written as

P(χ0,Ω0|χ,Ω, t)= 1
4π2

∑
m,n

e−im(α−α0)Pm,n(χ0,β0|χ,β, t)e−in(γ−γ0). (3.7)

Substituting (3.7) in (3.6) we will obtain for each term m and n

Γχ(β)Pm,n = Dχ

⊥
{∂2Pm,n

∂β2 +cotβ
∂Pm,n

∂β

−
[

m2 +n2 −2mncosβ
sin2β

+
(

Dχ

∥
Dχ

⊥
−1

)
n2

]
Pm,n

+
[

1
sinβ

∂

∂β

(
sinβ

du(β)
dβ

Pm,n

)] }
, (3.8)

where Pm,n ≡ Pm,n(χ0,β0|χ,β, t). With the substitution x = cosβ

Γχ(x)Pm,n = Dχ

⊥
{
(1− x2)

d2Pm,n

dx2 +
[
−2x+ (1− x2)

du(x)
dx

] dPm,n

dx

+
[(

1−
Dχ

∥
Dχ

⊥

)
n2 − m2 +n2 −2mnx

1− x2

]
Pm,n

−2x
du(x)

dx
Pm,n + (1− x2)Pm,n

d2u(x)
dx2

}
. (3.9)
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Assuming an anisotropic potential like that in Eq. (3.3), we obtain

Γχ(x)Pm,n

= Dχ

⊥
{
(1− x2)

d2Pm,n

dx2 + [−2x+3u2(χ)(1− x2)
] dPm,n

dx

+
[(

1−
Dχ

∥
Dχ

⊥

)
n2 − m2 +n2 −2mnx

1− x2

]
Pm,n

+3u2(χ)x(1−3x2)Pm,n

}
. (3.10)

Since the evolution operator Γχ(Ω) can be symmetrized by a unitary transfor-

mation (see e.g. [28]), its eigenvalues will be real and its eigenfunctions for non-

degenerate eigenvalues orthogonal. Due to the orthogonality of Ψm,n(Ω), the only

eigenfunctions needed to calculate φ
L,L′
m,n are Ψm,n(Ω) and to calculate φAB(t) just

Ψ0,0(Ω). Therefore, we can solve the Eq. (3.10) using only the desired value of m and

n corresponding to the required correlation function.

While the present formulation is still relatively general, in the absence of avail-

able experimental results to try to interpret, we now wish to consider in detail some

special cases, where we can concentrate on the physics of the interplay between

shape and orientational fluctuations and the general effects of the shape changing on

the correlation times in our system. Therefore, the equation we will solve explicitly

will be that for m = n = 0:

Γχ(x)P0,0 = Dχ

⊥
{
(1− x2)

d2P0,0

dx2

+ [−2x+3u2(χ)(1− x2)
] dP0,0

dx

+3u2(χ)x(1−3x2)P0,0

}
. (3.11)

This equation can be solved numerically in various ways. Here we have used a

finite differences algorithm as detailed later.

From now on we shall focus, for simplicity, only on the calculation of correlations

for axial properties, where AL,n
P (χ0)= AL,0

P (χ)δn0, BL,n ∗
P (χ)= BL,0∗

P (χ)δn0 and accord-

ingly we shall only consider the subset of correlation functions φL
0,0(t) ≡ φ

L,L
0,0 , which

will be sufficient to characterize the rotational motion of the particle principal axis,

i.e., its tumbling motion and the corresponding orientational correlation times τL:
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τL =
∫ ∞

0
[φL

0,0(t)−φL
0,0(∞)]dt, (3.12)

associated to the relaxation of a physical property of rank L. Referring to just a

few of the many experimental techniques available [62], we can think of a dielectric

relaxation experiment where L = 1. and we assume the particle dipole moment to be

along the particle axis. Alternatively, for a deuterium NMR experiment, referring to

a case where the quadrupolar tensor monitored is along the same axis (L = 2 in this

case).

3.2 Numerical formulation

The solution of the set of equations (2.35) and the calculation of the correlation

functions and their respective correlation times is performed numerically. In partic-

ular, we have introduced a matrix representation of the evolution operator over an

angular grid in x using a finite differences approach [57] and proceeded to write P00

in terms of the eigenvalues and eigenvectors of the evolution matrix [28].

These equations have been solved using a finite differences method with a uni-

form grid in x = cosβ space, from x =−1 to x = 1. Therefore, the distance ∆ between

two adjacent points is ∆ = 2/(N −1). The conditional probabilities in this space will

be denoted by P0,0(χ0, x0|χ, xi, t).

We used centred differences for the first order derivatives and symmetric differ-

ences for the second order derivative, in this way

∂

∂x
P0,0(χ0, x0|χ, xi, t)= P0,0(χ0, x0|χ, xi+1, t)−P0,0(χ0, x0|χ, xi−1, t)

2∆
(3.13)

∂2

∂x2 P0,0(χ0, x0|χ, xi t)=
P0,0(χ0, x0|χ, xi+1, t)+P0,0(χ0, x0|χ, xi−1, t)−2P0,0(χ0, x0|χ, xi, t)

∆2 .

Using equations (3.13) we can write the rotational operator Γ as a matrix with

elements Γχi,ν j connecting the shape ν and orientation j with shape χ and orientation
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i as [63]:

Γχi,ν j =



Dχ

[
1− x2

i

∆2 − −2xi +3u2(χ)xi −3u2(χ)x3
i

2∆

]
∀ j = i−1 and ν= χ

Dχ

[
−2

1− x2
i

∆2 +3u2(χ)(1−3x2
i )

]
∀ i = j and ν= χ

Dχ

[
1− x2

i

∆2 + −2xi +3u2(χ)xi −3u2(χ)x3
i

2∆

]
∀ j = i+1 and ν= χ

0 otherwise.

(3.14)

We have assumed reflective boundary conditions, i.e., that the particle is not al-

lowed to move beyond the limiting angles. Mathematically, this can be achieved mak-

ing the flux equals to 0 across the borders, attained by the expressions:

Γχ1,χ1 =−Γχ2,χ1

ΓχN,χN =−ΓχN−1,χN .

The operator kχν(x) will be written as a matrix K with elements Kχi,ν j that con-

nects the shape ν and orientation j with shape χ and orientation i as:

Kχi,ν j =



e−[u(χ,x j)−u(ν,xi)]/2ζ(ν,χ) ∀ j = i and χ 6= ν

−∑
χ′ 6=χ e−[u(χ′,x j)−u(χ,xi)]/2ζ(χ,χ′) ∀ j = i and χ= ν

0 otherwise.

(3.15)

Therefore, we can write the general operator as

Wχi,ν j =Γχi,ν j +Kχi,ν j (3.16)

and

∂

∂t
P0,0(χ0, x0|χ, xi, t)=∑

ν, j
Wχi,ν jP0,0(χ0, x0|ν, x j, t). (3.17)
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Given the initial conditions x0 and χ0, we can write the conditional probability

P0,0(χ0, x0|χ, xi, t) as a column vector P0,0(t). In this way, the linear system of equa-

tions (3.17) can be written in matrix form

∂

∂t
P0,0(t)=WP0,0(t), (3.18)

which can be solved straightforwardly diagonalizing the matrix W:

W=RwLT , (3.19)

where R and L are a matrix whose columns are composed by the right and left eigen-

vectors W and w is the diagonal eigenvalues matrix. The left and right eigenvectors

are orthogonal, therefore, the product R and L are orthogonal and have to be nor-

malized as

LTR= I. (3.20)

Consequently, the solution is:

P0,0(t)=RewtLTP0,0(0). (3.21)

Applying the initial conditions, the solutions will be

P0,0(χ0, x0|χ, xi, t)=∑
ν j

(R)χi,ν j ewν j t(LT)ν j,χ0x0 . (3.22)

The convergence of the algorithm was tested comparing the values calculated by

the algorithm proposed here for t = 0 and t =∞ with the ones calculated using Eq.

(2.30) and Eq. (2.31).
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3.3 Estimating the shape dependence of the diffu-

sion coefficients and of the effective field poten-

tial

To estimate the shape dependence of the mean field potential, we assume that

its interaction strength can be related to the instantaneous anisotropy of the guest

particle [64]. In the limit of vanishingly small concentration of solute particles, the

mean field theory for mixtures [25,60,65] yields

u2(χ)= c200(χ)〈P2〉LC, (3.23)

where 〈P2〉LC is the order parameter of the liquid crystal host, that carries the dom-

inant temperature dependence of u2(χ) and in particular brings it to zero when the

host system becomes isotropic. The interaction strength c200(χ) depends on both the

solvent and the solute particles properties. In a few cases [60], c200 can be separated

in a product of particle and solvent contributions. In particular if, at molecular level,

the orienting potential is determined by dispersion forces, via anisotropic polariz-

ability interactions, the interaction coefficients become [64]

c200 = ξ12α
2,0
LCα

2,0
P , (3.24)

where ξ12 is a proportionality constant and α
2,0
LC, α2,0

P spherical components of the

polarizability tensors for the nematogen and the deformable particle, αLC αP . If,

instead, the deformable particle is much larger than the solvent ones, e.g. a gel

nanoparticle or a micelle, and it can be considered as a dielectric bead of ellipsoidal

shape its polarizability and aspect factor are related and explicit forms for the shape

dependent polarizability are available [66, 67]. An alternative mechanism for par-

ticle alignment focuses purely on its shape via steric repulsions [68, 69]. Although

the mechanism for alignment is very different, the functional form of the effective

potential is not specific to dispersive interactions but applies to any potential that
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decouples in a similar way into solute and solvent factors.

c200(χ)= ξ′12F2,0
LCF2,0

P (χ), (3.25)

where ξ′12 is a proportionality constant. Establishing a precise relation between the

shape of the particle and the actual dominant type of interaction, even if there was

a single one, is hardly possible and beyond the scope of this work. However, since

the actual particle shape anisotropy is at the core of many types of relevant interac-

tions, e.g. steric repulsion ones, we can assume to a first approximation a form like

eq. (3.25) and try to evaluate this shape anisotropy. To do this, we adopt an approach

similar to the one used in [60], introducing a shape tensor F, similar to the inertia

tensor, but with the distribution of local masses replaced by a distribution of local

sizes. This can be easily visualized in two cases. The first (see, e.g., ref. [60] ) is when

where we deal with specific molecules, and the constituents are just atoms or, in

the second case, when we deal with berry-like nanoparticles formed by aggregates of

spherical sub-units [70]. In these cases we could use, to quantify the size of the indi-

vidual constituents of the particles, their van der Waals radii (di) of each constituent

and write

Fab =
∑

i
di(r i ·r iδab − r i

ar i
b), (3.26)

where ri is the position vector of the ith constituent of the particle, and r i
a its com-

ponents.

Another simple case is when, instead, we can assume that the particle is approx-

imately homogeneous, e.g. for colloidal gel particles, in which case we can substitute

the discrete summation with an integral over its volume. If the particles have uniax-

ial ellipsoidal shape like we assume here, the principal Cartesian components of the

steric tensor will then be

F ∝


(a∥2 +a⊥2) 0 0

0 (a2
∥+a⊥2) 0

0 0 2a⊥2

 . (3.27)
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therefore we will have F2,0 ∝ (a⊥2 −a∥2). This allow us to write

u2(χ)= ξa∥2(ρ2 −1), (3.28)

where the proportionality constant ξ can be used as a free parameter.

Having established a procedure for determining the effective potential, we still

have to adopt an explicit expression for the rotational diffusion tensor Dχ for a par-

ticle of a give shape χ and in practice we shall employ for this, assuming that the

classical stick boundary condition holds, the Stokes-Einstein-Perrin expressions [71].

Even though these expressions strictly apply to an anisotropic body reorienting in an

isotropic solvent with sticky boundary conditions, an equivalent expression does not

exist to the best of our knowledge for anisotropic media and moreover we can expect

that the major effect of the medium will be to bias the preferred orientation, taken

into account by the distribution, rather than the mean square angular fluctuations

around each orientation. For a spherical particle of radius R immersed in a fluid of

viscosity η, the rotational diffusion coefficient Ds(R) can be written as

Ds(R)= kBT
8πηR3 . (3.29)

The coefficients for an ellipsoid also have well known expressions depending on

the aspect ratio ρ = a⊥/a∥ and the hydrodynamic radius d = 3
√

a∥a⊥2. For prolate

ellipsoids (ρ < 1) the rotational coefficient perpendicular to the symmetry axis can be

written as [34,72]

Dprolate
⊥ = Ds(d)

3ρ2

2(1−ρ4)

[
2−ρ2√
1−ρ2

ln

(
1+

√
1−ρ2

ρ

)
−1

]
. (3.30)

Similarly, for a squashed ellipsoid (ρ > 1) the diffusion coefficient can be written

as:

Doblate
⊥ = Ds(d)

3ρ2

2(ρ4 −1)

[
ρ2 −2√
ρ2 −1

arctan
(√

ρ2 −1
)
+1

]
. (3.31)
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Figure 3.1: The shape switching process between rod-like, spherical and disk-like
ellipsoidal particles.

3.4 Results

We can now show the general behaviour of the proposed model performing cal-

culations for a range of parameters and analysing how the correlation functions of

interest will change.

Although our model can be applied to an arbitrary discrete number of shapes,

here we assume for simplicity only three distinct cases: a prolate ellipsoid (rod), an

oblate ellipsoid (disk) and a sphere. In all the cases we choose the axis lengths size in

a way that the hydrodynamic radius across different particles is equal, i.e. a∗
∥a∗

⊥
2 = 1.

We can see a sketch of the switching shapes in Fig. 3.1.

The analysis of the results is made simpler as well as more general using dimen-

sionless units, i.e., performing the set of substitutions

t∗ = Dst, ζ∗(χ,ν)= ζ(χ,ν)/Ds(d),

a∗
∥ = a∥/d, a∗

⊥ = a⊥/d

Dχ,∗
⊥ = Dχ

⊥/Ds(d) . (3.32)

The axis lengths and the calculated rotational diffusion coefficients are reported

in Table 3.1, where we also provide the order parameters calculated for a rigid probe

particle with the same dimensions and interaction parameters.

To understand how the shape exchange influences the dynamics of the correlation
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Table 3.1: Value of the shape dependent parameters for the three shapes. φL
χ,0,0 are

the angular correlation functions calculated for the rigid shape χ. Here we have used
ξ= 1 in the mean field calculation.

χ Shape Dχ,∗
⊥ u2(χ) a∗

∥ a∗
⊥ φL

χ,0,0(0) φL
χ,0,0(∞)

1 Rod 0.42 -3.85 2.08 0.69 0.58 0.49
2 Spherical 1.0 0.00 1.00 1.00 0.2 0.0
3 Disk 0.54 2.36 0.4 1.59 0.16 0.09
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Figure 3.2: Angular correlation functions for the particle described in Table 3.1. The
curves were obtained using p0(χ) = 1/3 for all shapesχ and switching rate ζ∗ = 0 (A),
0.01 (B), 0.05 (C), 0.1(D), 0.5 (E) , 1 ( F), 5 (G), 20 (H).

functions, we will consider two cases in turn. In the first, we examine how the shape

exchange rate affects the orientational correlations functions. In the second, we will

examine how the intrinsic aspect ratios distribution affects the orientational and

shape correlation functions and correlation times.

For the first case, we have assumed the same intrinsic probability for each shape,

p0(χ)= 1/3 for all χ and varied the shape switching rates ζ∗. To simplify the analysis,

we also assumed, as already mentioned, the same transition rate between any two

distinct shapes. i.e., (ζ∗(χ,χ′) = ζ∗). A summary of our numerical results for angular

correlation functions are shown in Fig. 3.2, for axial correlation functions in Fig. 3.3

and the correlation times in Fig. 3.4.

The plots show two distinct trends, one for ζ∗ ¿ 1 and the other for ζ∗ À 1. In the

first regime shape transitions are very infrequent and in the limit ζ∗ → 0 each shape

will evolve independently of each other, therefore the angular correlation function
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Figure 3.3: Correlation functions of the shape deformation for parallel (top) and per-
pendicular axis (bottom). The parameters used in the calculations is described in Table
3.1. The curves correspond to p0(χ)= 1/3. for all shapes χ and switching rate ζ∗ = 0.01
(A), 0.05 (B), 0.1 (C), 0.5 (D), 1 (E), 5(F), 20 (G).

will be given by

φL
0,0(t∗)≈∑

χ

cχφL
χ,0,0(t∗)≡φL, f rozen

0,0 (t∗) (3.33)

where

cχ = p0(χ)S0(χ)∑
ν p0(ν)S0(ν)

. (3.34)

For comparison φ
2, f rozen
0,0 (t∗) can also be seen in Fig. 3.2. Note that for small val-

ues of ζ∗ the correlation function is similar to φ
L, f rozen
0,0 (t∗) for short times, but the

difference increases with time. This is reasonable since, if the change shape events

are rare, they only take place on a long enough time scale. For the axial correlation

function (i.e. FIG. 3.3), there is no equivalent frozen regime. In the absence of shape
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Figure 3.4: Correlation times τ2 for p0(rod)/p0(disk) = 0.2 (A), 0.5 (B), 1(C), 2 (D), 5
(E) and 10 (F)

transition, the correlations function will be constant in time with value equal to the

weighted average of the particle sizes.

The second limiting case is for rapid shape switching: ζ∗ À 1. As ζ∗ increases, the

shape exchange starts to happen in the same time scale as the roto-diffusion process.

The correlation time (i.e. 3.4) decreases with the increase in ζ∗, but saturates to a

plateau, with is consistent with the fact that the correlation function of a changing

shape particle cannot decay faster than the fastest rigid correlation function among

the possible shapes.

In our second analysis, we varied the intrinsic p0(χ) keeping the shape transition

rate ζ∗ constant. To keep the analysis simple we varied the coefficient of the rod-like

ellipsoid (p0(rod)) while keeping p0(sphere) = p0(disk). To check the consistence of

our model we also calculated the correlation function for the rigid prolate ellipsoid

and for a system where this shape is absent (i.e., just the sphere and disk are al-

lowed.) The numerical results can be seen in Fig. 3.5, while the relative parameters

and other informations for a given p0(rod) can be seen in Table 3.2.

Figures 3.5 and 3.4 show that the results are consistent. The ratio between dif-

ferent p0(χ) controls the sampling of shapes in the initial conditions and during the

relaxation process. For p0(rod) À p0(disk), the probe particle behaves like a rigid

rod-like ellipsoid, for p0(rod) ¿ p0(disk) the probe particle should behave as if this

shape was not allowed, while a mixed behavior is found for intermediate values.
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Figure 3.5: Angular correlation functions for the particle described in Table 3.1 . Here
ζ= 1 and p0(rod)/p0(disk)= (A) ∞, (prolate); (B) 10; (C) 5; (D) 2; (E) 1; (F) 0.5; (G) 0.2;
(H) 0.0.

Table 3.2: Equilibrium values and relative concentration for a particle which can
assume all the shapes specified in table 3.1. We performed the calculations with
p0(sphere)= p0(disk).

p0(rod)/p0(disk) crod csphere cdisk φ2
0,0(0) φ2

0,0(∞)
0.0 0.0 39.6 60.3 0.174 3.30×10−2

0.2 26.6 29.0 44.3 0.281 2.77×10−3

0.5 47.6 20.8 31.6 0.366 5.62×10−2

1.0 64.5 14.1 21.4 0.433 0.149
2.0 78.4 8.56 13.0 0.490 0.258
5.0 90.1 3.93 5.99 0.536 0.373

10.0 94.8 2.07 3.15 0.555 0.426
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Chapter 4

Uniaxial particles dispersed in

biaxial liquid crystals

In this chapter we will apply the formalism developed in chapter 2 to study the

roto-diffusion of uniaxial particles dispersed in a biaxial liquid crystal. Here we will

make the same assumptions for the solute particle made in the previous chapter. We

are taking all shapes that our probe particle can assume to be uniaxial, furthermore,

the change of shape also happens as a sort of breathing mode that maintains the par-

ticle uniaxial around its z axis. As a consequence the correlation functions φL,L′
mm′,nn′(t)

where n 6= n are intrinsically 0, however, since the host is biaxial, now we can have

correlation functions with m 6= m′.

Since all shapes are uniaxial, we can define

ax(χ)= ay(χ)= a⊥(χ),

az(χ)= a∥(χ), (4.1)

and aspect ratio ρχ = a⊥(χ)/a∥(χ). The diffusion coefficients can again be reduced to

Dχ
x (χ)= Dχ

y(χ)= Dχ

⊥(χ),

Dχ
z (χ)= Dχ

∥ (χ). (4.2)

Due to the biaxiality of the host, the α angle now defines the laboratory X axis
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and secondary director. The mean-field potential U(χ,Ω) will have the form

U(χ,Ω)
kBT

≡ u(χ,Ω)= u0(χ)+u2
0,0(χ)D2

0,0(Ω)

+u2
2,0(χ)

(
D2

2,0(Ω)+D2
−2,0(Ω)

)
, (4.3)

where kB is the Boltzmann constant, T is the temperature, uL
m,n(χ) is the shape

dependent mean field interaction intensity and DL
m,n(Ω) are Wigner functions. We

like to call attention to u0(χ) which is the intrinsic shape dependent energy term.

4.1 Evolution Operator

The time evolution of the conditional probabilities P(χ0,Ω0|χ,Ω, t) in the roto-

diffusion model is governed by the following set of differential equations

∂

∂t
P(χ0,Ω0|χ,Ω, t)=Γχ(Ω)P(χ0,Ω0|χ,Ω, t)

+∑
χ′

kχχ′(Ω)P(χ0,Ω0|χ′,Ω, t), (4.4)

subject to the initial conditions

P(χ0,Ω0|χ,Ω, t)= δ(Ω−Ω0)δχ,χ0 , (4.5)

where δχ,χ0 is a Kronecker delta, δ(Ω−Ω0) is a Dirac delta, Γχ(Ω) is the rotational-

diffusion operator for a particle with shape χ and kχχ′(Ω) the transition operator

from shape χ′ to χ.

In the particle main frame, ignoring the coupling between diffusion and rota-

tional diffusion we have:

Γχ(Ω)=−Dχ

⊥
{
L2

x +Lx
[
Lxu(χ,Ω)

]}
−Dχ

⊥
{
L2

y +L y
[
L yu(χ,Ω)

]}
−Dχ

∥
{
L2

z +Lz
[
Lzu(χ,Ω)

]}
, (4.6)

where Lx,L y,Lz are the x, y, z quantum angular momentum operators, Dχ

∥ and Dχ

⊥
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are the shape χ roto-diffusion coefficient parallel and perpendicular to the particle z

axis, respectively.

In the actual form, the system of Eqs. (4.4) is closed and can be solved by the

formalism we will further develop, but the equations are more convenient to manip-

ulate algebraically if the functions and operators are symmetric in relation to {χ0,Ω0}

and {χ,Ω}. The symmetric set of conditional probabilities P̂(χ0,Ω0|χ,Ω, t) functions

can be obtained by the similarity transformation

P̂(χ0,Ω0|χ,Ω, t)= P−1/2
eq (χ,Ω)P(χ0,Ω0|χ,Ω, t)P1/2

eq (χ0,Ω0), (4.7)

and they are subject to the initial conditions

P̂(χ0,Ω0|χ,Ω,0)= δ(Ω−Ω0)δχ0,χ. (4.8)

The symmetric version of the roto-diffusion operators can be obtained by the fol-

lowing similarity transformation

Γ̂χ(Ω)= P−1/2
eq (χ,Ω)Γχ(Ω)P1/2

eq (χ,Ω)

=−Dχ

⊥L2 −
(
Dχ

∥ −Dχ

⊥
)
Lz

2 − Dχ

⊥
2

L2u(χ,Ω)

+ Dχ

⊥
4

L+u(χ,Ω)L−u(χ,Ω)− 1
2

(
Dχ

∥ −Dχ

⊥
)
Lz

2u(χ,Ω)

+ 1
4

Dχ

∥
(
Lzu(χ,Ω)

)2 , (4.9)

here we used L2 = Lx
2 +L y

2 +Lz
2 and L± = Lx ± iL y . While the symmetric shape-

exchange operator can be obtained

k̂χχ′(Ω)= P−1/2
eq (χ,Ω)kχχ′(Ω)P1/2

eq (χ′,Ω). (4.10)

Since kχχ′(Ω)= P1/2
eq (χ,Ω)P−1/2

eq (χ′,Ω)ζ(χ,χ′) for χ 6= χ′ and kχχ(Ω)=−∑
χ′ 6=χ kχχ′(Ω)

we will have:

k̂χχ′(Ω)=


ζ(χ,χ′) ∀ χ 6= χ′

−∑
χ′ 6=χP1/2

eq (χ′,Ω)P−1/2
eq (χ,Ω)ζ(χ′,χ) otherwise.

(4.11)
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Therefore, the symmetrized evolution equation will be given

∂P̂(χ0,Ω0|χ,Ω, t)
∂t

= Γ̂(χ)P̂(χ0,Ω0|χ,Ω, t)

+∑
χ′

k̂χ,χ′(Ω)P̂(χ0,Ω0|χ′,Ω, t), (4.12)

which have the same form as Eqs. (4.4), however, with the operators and functions

involved replaced by the symmetrized version. The symmetrized conditional proba-

bilities can be used to calculate the correlation functions by the relation

φLL′
mm′nn′(t)=

Ï
dΩ0dΩDL

m,n(Ω0)DL′∗
m′,n′(Ω)P1/2

eq (Ω0)P1/2
eq (Ω)P̂(χ0,Ω0|χ,Ω, t)

φaia j (t)=
Ï

dΩ0dΩai(χ0)P̂(χ0,Ω0|χ,Ω, t)P1/2
eq (Ω0)P1/2

eq (Ω)a j(χ). (4.13)

4.2 Eigenfunction expansion

The evolution equation for the conditional probability function can be solved us-

ing the eigenfunction expansion as developed in [27–29]. Expanding each function

P(χ0,Ω0|χ,Ω, t) in a series of normalized Wigner functions DL
m,n(Ω)=

√
(2L+1)/(8π2)DL

m,n(Ω)

we obtain:

P̂(χ0,Ω0|χ,Ω, t)= ∑
L,m,n

CL
m,n(χ0,Ω0;χ, t)DL

m,n(Ω). (4.14)

The dual space of the normalized Wigner functions is defined by: DL∗
m,n(Ω) =√

(2L+1)/(8π2)DL∗
m,n(Ω) with inner product:

∫
dΩDL′∗

m′,n′(Ω)DL
m,n(Ω)= δL′,Lδm′,mδn′,n. (4.15)

Substituting the equations (4.14) in (4.12) we will obtain:

∑
L,m,n

∂

∂t
CL

m,n(χ0,Ω0;χ, t)DL
m,n(Ω)= ∑

L,m,n
CL

m,n(χ0,Ω0;χ, t)Γ̂(χ)DL
m,n(Ω)

+ ∑
χ′,L,m,n

CL
m,n(χ0,Ω0;χ′, t)k̂χχ′(Ω)DL

m,n(Ω). (4.16)

Multiplying both sides of the equation by DL′∗
m′,n′(Ω) and integrating in dΩ and
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performing the summation on the r.h.s we will obtain:

∂

∂t
CL′

m′,n′(χ0,Ω0;χ, t)= ∑
L,m,n

ĜL′,m′,n′;L,m,n(χ)CL
m,n(χ0,Ω0;χ, t)

+ ∑
χ′,L,m,n

K̂L′,m′,n′;L,m,n(χ,χ′)CL
m,n(χ0,Ω0;χ′, t), (4.17)

where

ĜL′,m′,n′;L,m,n(χ)=
∫

dΩDL′∗
m′,n′(Ω)Γ̂χ(Ω)DL

m,n(Ω), (4.18)

and

K̂L′,m′,n′;L,m,n(χ,χ′)=
∫

dΩDL′∗
m′,n′(Ω)k̂χχ′(Ω)DL

m,n(Ω). (4.19)

We can collect all the coefficients related to the shape χ in the column vector

C(χ)=



C0
0,0(χ0,Ω0;χ, t)

...

C3
−2,2(χ0,Ω0;χ, t)

...

CL
m,n(χ0,Ω0;χ, t),


(4.20)

and further organize them in the block column vector

C=



C(χ1)

C(χ2)
...

C(χn)

 . (4.21)

Proceeding with the formalism, we can organize the operators in a block matrix
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R̂=



Ĝ(χ1)+K(χ1,χ1) K(χ1,χ2) . . . K(χ1,χn)

K(χ2,χ1) Ĝ(χ1)+K(χ2,χ2) . . . K(χ2,χn)
...

... . . . ...

K(χn,χ1) K(χn,χ2) . . . Ĝ(χn)+K(χn,χn)

 , (4.22)

and write equation (4.17) as:

∂

∂t
C= R̂C. (4.23)

Since R̂ is symmetric, there is a unitary matrix X̂ that:

R̂X̂= X̂r̂, (4.24)

where r̂ is a diagonal matrix. Left multiplying the equation by X̂T and reorganizing

the terms we obtain

∂

∂t

(
X̂TC

)
= X̂TR̂X̂

(
X̂TC

)
. (4.25)

Defining Ĉ= X̂TC, we can write

∂

∂t
Ĉ= r̂Ĉ. (4.26)

Since the matrix r̂ is diagonal, each element of Ĉ is connected just to itself, as a

consequence, the set of linear differential equation will have as solution:

Ĉ(t)= er̂tĈ(t = 0), (4.27)

which can be transformed back to the original form by the relations C = X̂Ĉ. Pro-

ceeding this way we obtain

C(t)= X̂er̂tX̂TC(t = 0). (4.28)
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Therefore, each element of the vectors is given by

CL
m,n(χ0,Ω0;χ, t)= ∑

K ,χ′,L′,m′,n′
X̂χ,L,m,n;K

[
er̂t

]
K

X̂K ;χ′, j′,p′,q′C j′
p′,q′(χ0,Ω0;χ′, t = 0),

(4.29)

where K = {χ′′,L′′,m′′,n′′} and the summation is performed over all possible values.

Applying the initials conditions (4.8), we have

C j
p,q(χ0,Ω0;χ, t = 0)=D

j∗
p,q(Ω)δχ0,χ,

which can be replace in Eq. (4.29) obtain:

CL
m,n(χ0,Ω0;χ, t)= ∑

K ,χ′,L′,m′,n′
X̂χ,L,m,n;K

[
er̂t

]
K

X̂K ;χ′, j′,p′,q′D
j′∗
p′,q′(Ω0)δχ′,χ0 . (4.30)

The coefficients from Eq. (4.30) can substituted in Eq. (4.14) to give

P̂(χ0,Ω0|χ,Ω, t)= 1
8π2

∑
K

∑
j,p,q

∑
j′,p′,q′

√
(2 j+1)(2 j′+1)

×X̂χ, j,p,q;K X̂χ0, j′,p′,q′;K

[
er̂t

]
K

D j
p,q(Ω)D j′∗

p′,q′(Ω0). (4.31)

As t →∞ all exponentials decay to 0 except the values with rK = 0, which can be

identified with the equilibrium value. Therefore we have

lim
t→∞ P̂(χ0,Ω0|χ,Ω, t)= P1/2

eq (χ,Ω)P1/2
eq (χ0,Ω0)

= 1
8π2

∑
j′′,p′′,q′′

∑
χ′′′, j′′′,p′′′,q′′′

√
(2 j′′+1)(2 j′′′+1)

× X̂χ, j′′,p′′,q′′;0X̂χ0, j′′′,p′′′,q′′′;0D j′′
p′′,q′′(Ω)D j′′′∗

p′′′,q′′′(Ω0), (4.32)

where we used K = 0 to identify the index of the equilibrium value.

Substituting Eq. (4.32) and Eq. (4.31) in (4.13) and performing some algebraic
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simplifications, we obtain

φLL′
mm′nn′(t)=

∑
K

∑
χ,χ0

∑
j,p,q

∑
j′,p′,q′

∑
j′′, j′′′

X̂χ, j,p,q;K X̂χ0, j′,p′,q′;K√
(2 j′′+1)(2 j′′′+1)(2 j+1)(2 j′+1)

(2L+1)(2L′+1)
X̂χ, j′′,m′−p,n′−q;0

× X̂χ0, j′′′,m−p′,n−p′;0C( j, j′′,L′; p,m′− p)C( j, j′′,L′; q,n′− q)

×
[
er̂t

]
K

C( j′, j′′′,L; p′,m− p′)C( j′, j′′′,L; q′,n− q′) (4.33)

To obtain the axial φai ,a j (t) correlation functions we can substitute Eq. (4.32) and

Eq. (4.31) in Eqs. (4.13) and simplify the Clebsch-Gordan coefficients C( j, j′,0; p,−p)=
δ j, j′(−1) j−m/

√
2 j+1 to give

φai ,a j (t)=∑
K

(∑
χ0

∑
j′,p′,q′

X̂χ0, j′,p′,q′;K X̂χ0, j′,−p′,−q′;0ai(χ0)

)
[
er̂t

]
K

(∑
χ

∑
j,p,q

X̂χ0, j,p,q;K X̂χ, j,−p,−q;0a j(χ)

)
. (4.34)

The solution to the proposed equation is formally exact, but it involves the evalu-

ation of an infinite number of matrix elements. For practical use, we can truncate the

expansion in Wigner functions after a certain number of elements, and evaluate the

operators numerically. Compared with the algorithm we developed in the chapter 3,

this algorithm is mathematically more cumbersome and the generalization to cases

where there is a rotation-shape switching is far from trivial. However, it has the ad-

vantage of requiring the diagonalization of the matrix R̂ just once for all values of

{L,L′,m,m′,n,n′}. Moreover, for the biaxial potential, the matrix generated by this

algorithm is much smaller than the one it would be required by the finite differences

method. We believe the advantages overplay the difficulties.

4.2.1 Shape change operator

In this section we will obtain in details the elements of the shape transition op-

erator. The elements for K̂(χ,χ′) where χ 6= χ′ can be obtained substituting the first
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case of Eq. (4.11) in (4.19) and performing the integration in Ω to obtain

K̂L′,m′,n′;L,m,n(χ,χ′)= ζ(χ,χ′)δL,L′δm,m′,δn,n′ ∀ χ 6= χ′, (4.35)

while the elements of K̂(χ,χ′) for χ= χ′ can be obtained substituting the second case

of Eq. (4.11) in (4.19) to give

K̂L′,m′,n′;L,m,n(χ,χ)=− ∑
χ′ 6=χ

ζ(χ′,χ)
∫

dΩP−1/2
eq (χ,Ω)

×P1/2
eq (χ′Ω)DL′

m′,n′(Ω)DL′∗
m′,n′(Ω). (4.36)

The elements of this matrix could be calculated evaluating the integral in equa-

tions (4.35) and (4.36) for each element of K̂, but it is computationally unfeasible due

to the high number of elements in the matrix. To avoid this problem we will reduce

drastically the number of integrals expanding the exponential in a combination of

Wigner functions, where we can take advantage of the orthogonality of the function

space.

Therefore, we can rewrite the exponentials P−1/2
eq (χ,Ω)P1/2

eq (χ′,Ω) as

P−1/2
eq (χ,Ω)P1/2

eq (χ′,Ω)=
√

p0(χ)
p0(χ′)

e−∆u2
0,0(χ,χ′)D2

0,0(Ω)

×e−∆u2
2,0(χ,χ′)

(
D2

0,0(Ω)+D2
−2,0(Ω)

)
, (4.37)

where

∆ul
mn(χ,χ′)= ul

m,n(χ′)−ul
m,n(χ)

2
. (4.38)

Since our potential is a limited function, with no singularities we can expand each

potential in series of functions and combine then later.

The exponential exp[−∆u2
2,0(χ,χ′)

(
D2

2,0(Ω)+D2
−2,0(Ω)

)
] is a analytic function of

its arguments, consequently, we can expand it in a Maclaurin series relative to the
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potential coefficients ∆ul
m,n(χ,χ′) with terms given by

exp
[
−∆u2

2,0(χ,χ′)D2
2,0(Ω)−∆u2

2,0(χ,χ′)D2
−2,0(Ω)

]
=

∞∑
j=0

(−1) j

j!

[
∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)] j
, (4.39)

where each terms within brackets can be further expanded using the binomial series:

[
∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)] j =∑
k1+k2= j

j!
k1!k2!

∆u2
2,0(χ,χ′) jD2

2,0(Ω)k1 D2
−2,0(Ω)k2 (4.40)

Since we are summing in j from 0 to ∞, we can reorganize the series as

exp
[
−∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)]
=

∞∑
k1=0

∞∑
k2=0

(−1)k1+k2

k1!k2!
∆u2

2,0(χ,χ′)k1+k2 D2
2,0(Ω)k1 D2

−2,0(Ω)k2 . (4.41)

Each Wigner function raised to some power k can be recursively expanded using

a Clebsch-Gordan series. For our specific case, we have the functions D2
2,0(Ω) and

D2
−2,0(Ω) raised to some power, performing some algebraic work we can show that for

any k the recurrent Clebsch-Gordan expansions reduce to the following expressions

D2
2,0(Ω)k2 =Υ(k2)D2k2

2k2,0(Ω)

D2
−2,0(Ω)k3 =Υ(k3)D2k3

−2k3,0(Ω) (4.42)

where

Υ(k)≡


1 if k = 0∏k

i=1 C(2,2k−2,2k;0,0)C(2,2k−2,2k;2,2k−2),

where C(i, j,k, l,m) are Clebsch-Gordan coefficients.
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Finally, substituting equations (4.42) into Eq. (4.41) we obtain

exp
[
−∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)]
=

∞∑
k1=0

∞∑
k2=0

Υ(k1)

×Υ(k2)
(−1)k2+k3

k1!k2!
∆u2

2,0(χ,χ′)k1+k2 D2k1
2k1,0(Ω)D2k2

−2k2,0(Ω). (4.43)

Unfortunately, we cannot use the same technique in the term exp[
(
−∆u2

0,0(χ,χ′)D2
0,0(Ω)

)
],

since the functions D2
0,0(Ω)k cannot be reduced to an expression as simple as Eq.

(4.42). As an alternative, we can express the exponential directly as a series of

Wigner functions, given by

e
(
−∆u2

0,0(χ,χ′)D2
0,0(Ω)

)
=

∞∑
i=0
Λi(χ,χ′)D2i∗

0,0 (Ω) (4.44)

where

Λi(χ,χ′)≡ 4i+1
8π2

∫
dΩe

(
−∆u2

0,0(χ,χ′)D2
0,0(Ω)

)
D2i∗

0,0 (Ω). (4.45)

Since D2
0,0(Ω) is independent of α and γ, any integral in Eq. (4.45) with m 6= 0 and

n 6= 0 is identically 0. The same results holds for terms with L odd, because the

exponential argument is an even function.

Combining Eq. (4.44) with (4.43) we obtain

exp
[
−∆u2

0,0(χ,χ′)D2
0,0(Ω)−∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)]
=

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1) j+k

j!k!
Λi(χ,χ′)Υ( j)Υ(k)∆u2

2,0(χ,χ′) j+kD2i
0,0(Ω)D2 j

2 j,0(Ω)D2k
−2k,0(Ω).

We can further reduce the product of the three Wigner functions using Clebsch-

Gordan coefficients:

exp
[
−∆u2

0,0(χ,χ′)D2
0,0(Ω)−∆u2

2,0(χ,χ′)
(
D2

2,0(Ω)+D2
−2,0(Ω)

)]
=

∞∑
i=0

∞∑
j=0

∞∑
k=0

j+k∑
L=| j−k|

L+i∑
L′=|L−i|

(−1) j+k

j!k!
Λ(∆U2

0,0, i)Υ( j)Υ(k)∆u2
2,0(χ,χ′) j+kC(2i,2L,2L′;0,0)

×C(2i,2L,2L′;0,2 j−2k)C(2 j,2k,2L;0,0)C(2 j,2k,2L;2 j,−2k)D2L′
2 j−2k,0(Ω). (4.46)
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Formally, equation (4.46) is already the solution that we wanted, since it involves

summation of terms containing a single Wigner function without being raised to

any power. However, the terms are summed in random order. This can be avoided

rearranging the summation in the following form

e−∆u2
0,0(χ,χ′)D2

0,0(Ω)e−∆u2
2,0(χ,χ′)

(
D2

2,0(Ω)+D2
−2,0(Ω)

)
=

∞∑
L′=0

L′∑
m=−L′

∞∑
k=max(0,−m)

m+2k∑
L=|m|

L′+L∑
i=|L−L′|

(−1)m+2k

(m+k)!k!
Λ(χ,χ′)i

×Υ(m+k)Υ(k)∆u2
2,0(χ,χ′)m+2kC(2i,2L,2L′;0,0)

×C(2m+2k,2k,2L;0,0)C(2i,2L,2L′;0,2m)

×C(2m+2k,2k,2L;2m+2k,−2k)D2L′
2m,0, (4.47)

which allows us to define the elements

ΞL′
m′(χ,χ′)=

∞∑
k=max(0,−n′)

n′+2k∑
L=|n′|

L′+L∑
i=|L−L′|

(−1)m+2k

(m+k)!k!
Λi(χ,χ′)

×Υ(m+k)Υ(k)∆u2
2,0(χ,χ′)m+2kC(2i,2L,2L′;0,0)

×C(2m+2k,2k,2L;0,0)C(2i,2L,2L′;0,2m)

×C(2m+2k,2k,2L;2m+2k,−2k), (4.48)

therefore, we can cast Eq. (4.47) in the much simpler form

e−∆u2
0,0(χ,χ′)D2

0,0(Ω)e−∆u2
2,0(χ,χ′)

(
D2

2,0(Ω)+D2
−2,0(Ω)

)
=

∞∑
L=0

L∑
m=−L

ΞL
m(χ,χ′)D2L

2m,0(Ω). (4.49)

The elements of the shape operator K̂L′,m′,n′;L,m,n(χ,χ) can be obtained substitut-

ing Eq. (4.49) in Eq. (4.36) giving

K̂L′,m′,n′;L,m,n(χ,χ)=− ∑
χ′ 6=χ

∞∑
L′′=0

L′′∑
m′′=−L′′

√
p0(χ)
p0(χ′)

×
√

2L+1
2L′+1

ΞL′′
m′′(χ,χ′)C(2L′′,L,L′,2m′′,m)

×C(2L′′,L,L′,0,n)δm′−m,2m′′δn,n′ . (4.50)
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Finally, we can simplify the Kronecker deltas to obtain

K̂L′,m′,n′;L,m,n(χ,χ)= 0 if m−m′ odd,

K̂L′,m′,n′;L,m,n(χ,χ)= 0 if n 6= n′, (4.51)

otherwise

K̂L′,m′,n′;L,m,n(χ,χ)=− ∑
χ′ 6=χ

∑
L′′
ζ(χ′,χ)

√
p0(χ)
p0(χ′)

×
√

2L+1
2L′+1

C(2L′′,L,L′,m′−m,m)

×C(2L′′,L,L′,0,n)ΞL′′
(m′−m)/2(χ,χ′). (4.52)

The solution we presented here is formally exact, but each element ofΞL′′
(m′−m)/2(χ,χ′)

involves summation of infinite terms.

4.2.2 Roto-diffusion operator

In this section we will develop in detail the elements of the operators perform-

ing the roto-diffusion, derived in Eq. (4.9). The full version of Γ̂(χ) can be obtained

substituting Eq. (4.9) in Eq. (4.18) as follows:

ĜL′,m′,n′;L,m,n(χ)=
∫

dΩDL′∗
m′,n′(Ω)

{
−Dχ

⊥L2 −
(
Dχ

∥ −Dχ

⊥
)
Lz

2 − Dχ

⊥
2

L2u(χ,Ω)

+ Dχ

⊥
4

L+u(χ,Ω)L−u(χ,Ω)− 1
2

(
Dχ

∥ −Dχ

⊥
)
Lz

2u(χ,Ω)

+ 1
4

Dχ

∥
(
Lzu(χ,Ω)

)2
}
DL

m,n(Ω) (4.53)

The evaluation of Eq. (4.54) is possible, but however inconvenient due to high

number of operators involved. We can simplify the expression using the linearity of
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the integral operator:

ĜL′,m′,n′;L,m,n(χ)=−Dχ

⊥

∫
dΩDL′∗

m′,n′(Ω)L2DL
m,n(Ω)

−
(
Dχ

∥ −Dχ

⊥
)∫

dΩDL′∗
m′,n′(Ω)Lz

2DL
m,n(Ω)

− Dχ

⊥
2

∫
dΩDL′∗

m′,n′(Ω)L2u(χ,Ω)DL
m,n(Ω)

+ Dχ

⊥
4

∫
dΩDL′∗

m′,n′(Ω)L+u(χ,Ω)L−u(χ,Ω)DL
m,n(Ω)

− 1
2

(
Dχ

∥ −Dχ

⊥
)∫

dΩDL′∗
m′,n′(Ω)Lz

2u(χ,Ω)DL
m,n(Ω)

+ 1
4

Dχ

∥

∫
dΩDL′∗

m′,n′(Ω)
(
Lzu(χ,Ω)

)2
DL

m,n(Ω), (4.54)

in this way instead of evaluating the elements of Eq. (4.54) as a whole, we will eval-

uate each term in the sum separately and combined them afterwards.

Furthermore, the evaluation of Γ̂(χ) requires the application of a series of quan-

tum angular momentum operators on Wigner functions, that can be obtained by the

following rules [50]

L2DL
m,n(Ω)= L(L+1)DL

m,n(Ω)

LzDL
m,n(Ω)= nDL

m,n(Ω)

L±DL
m,n(Ω)=

√
L(L+1)−n(n±1)DL

m,n±1(Ω). (4.55)

Applying these rules to the integral operators, gives

∫
dΩDL′∗

m′,n′(Ω)L2DL
m,n(Ω)= L(L+1)δ(L′,L)δ(m′,m)δ(n′,n) (4.56)

∫
dΩDL′∗

m′,n′(Ω)L2
zD

L
m,n(Ω)= n2δ(L′,L)δ(m′,m)δ(n′,n) (4.57)

∫
dΩDL′∗

m′,n′(Ω)
[
L2u(χ,Ω)

]
DL

m,n(Ω)=
√

2L+1
2L′+1

∑
Lu,mu,nu

uLu
mu,nu (χ,Ω) [Lu(Lu +1)]

×C(L,Lu,L′,n,nu)C(L,Lu,L′,m,mu)δ(m′,m+mu)δ(n′,n+nu)

(4.58)
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∫
dΩDL′∗

m′,n′(Ω)
[
Lz

2u(χ,Ω)
]
DL

m,n(Ω)=
√

2L+1
2L′+1

∑
Lu,mu,nu

uLu
mu,nu (χ) n2

u

×C(L,Lu,L′,n,nu)C(L,Lu,L′,m,mu)δ(m′,m+mu)δ(n′,n+nu) (4.59)

∫
dΩDL′∗

m′,n′(Ω)
[
Lzu(χ,Ω)

]2
DL

m,n(Ω)=
√

2L+1
2L′+1

∑
Lu,mu,nu

∑
Lu′ ,mu′ ,nu′

uLu′
mu′ ,nu′ (χ)uLu

mu,nu (χ)

×nu′nu

Lu+Lu′∑
J=|Lu−Lu′ |

C(Lu,Lu′ , J,nu′ ,nu)C(Lu,Lu′ , J,mu′ ,mu)C(L, J,L′,n,nu +nu′)

×C(L, J,L′,m,mu +mu′)δ(m′,m+mu +mu′)δ(n′,n+nu +nu′)

(4.60)

∫
dΩDL′∗

m′,n′(Ω)[L−u(χ,Ω)L+u(χ,Ω)]DL′∗
m′,n′(Ω)=

√
2L+1
2L′+1

∑
Lu,mu,nu

∑
Lu′ ,mu′ ,nu′

uLu′
mu′ ,nu′ (χ)

×uLu
mu,nu (χ)

Lu+Lu′∑
J=|Lu−Lu′ |

√
Lu(Lu +1)−nu(nu −1)

√
Lu′(Lu′ +1)−nu′(nu′ +1)

×C(Lu,Lu′ , J,nu′ +1,nu −1)C(Lu,Lu′ , J,mu′ ,mu)C(L, J,L′,n,nu +nu′)

×C(L, J,L′,m,mu +mu′)δ(m′,m+mu +mu′)δ(n′,n+nu +nu′).

(4.61)
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Finally, combining all the terms we gives

ĜL′,m′,n′;L,m,n(χ)=−k1

√
1+2L
1+2L′ C(L,4,L′,n,0)C(L,4,L′,m,−4)δ′,m−4

−k2

√
1+2L
1+2L′ C(L,2,L′,n,0)C(L,2,L′,m,−2)δm′,m−2

−k3

√
1+2L
1+2L′ C(L,4,L′,n,0)C(L,4,L′,m,−2)δm′,m−2

−k4

√
1+2L
1+2L′ C(L,2,L′,n,0)C(L,4,L′,m,0)δm′,m

−k5

√
1+2L
1+2L′ C(L,4,L′,n,0)C(L,4,L′,m,0)δm′,m

−
[
k6+Dχ

⊥L(L+1)− (Dχ

∥ −Dχ

⊥)n2
]
δm′,mδL′,L

−k2

√
1+2L
1+2L′ C(L,2,L′,n,0)C(L,2,L′,m,2)δm′,m−2

−k3

√
1+2L
1+2L′ C(L,4,L′,n,0)C(L,4,L′,m,2)δm′,m+2

−k1

√
1+2L
1+2L′ C(L,4,L′,n,0)C(L,4,L′,m,4)δm′,m+4 (4.62)

where we substituted numerical values of the Clebsch-Gordon coefficients and sim-

plified the Kronecker when possible. We also organized all the constants in the coef-

ficients k:

k1 =−3

√
2

35
u2

2,0(χ)
2Dχ

⊥

k2 =−3
7

(
−7+u2

0,0(χ)
)
u2

2,0(χ)Dχ

⊥

k3 =−6
7

u2
0,0(χ)u2

2,0(χ)Dχ

⊥

k4 = 3
14

(u2
0,0(χ)(14+u2

0,0(χ)−2u2
2,0(χ)

2
)Dχ

⊥

k5 =− 6
35

(
3u2

0,0(χ)
2
)
Dχ

⊥

k6 = 3
10

(u2
0,0(χ)

2 +2u2
2,0(χ)

2
)Dχ

⊥. (4.63)
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4.3 Numerical Implementation details

Until now, all the results we have are exact, even though in practice it is not

possible to evaluate some of the equations we obtained, since they involve either the

evaluation of infinite terms in a summation, or the diagonalization of a infinitely

large square matrix. Here we will develop a numerical procedure to solve the system

of equations. The basic idea behind the computer algorithm is to truncate both series

in Eq. (4.14) and (4.47) after a finite number of elements. The operators are evaluated

for the chosen elements and the transition matrix in Eq. (4.22) is filled. With the

finite transition matrix we can perform the calculations specified in section 4.2.

In general, the total algorithm precision depends on the combination of errors in

the truncation of Eq. (4.14) and Eq. (4.47). For the former, the number of required

coefficients grows with the mean field potential constants ul
m,n. For the values of

potentials studied in this chapter, the algorithm showed good precision and efficiency

if we take elements in the series until L = 12, m = 8 and n = 8.

In the evaluation of the shape transition matrix, the number of terms necessary

to attain a certain precision grows with the potential difference ∆u2
2,0(χ,χ′). To eval-

uate these series, we found it computationally more efficient to use Eq. (4.46), deter-

mining the maximum values for i, j,k and accumulate the terms in the elements of

ΞL
m.

The integrals in Λ(χ′,χ) were performed using the Romberg integration [73] im-

plemented in the Scypy library version 0.18.1. We used the eigh routine provided by

the same library to diagonalize the transition matrix.

Even though the solution obtained in Eq. (4.33) is formally correct, it is unsuit-

able for numerical computations due to the elevate number of indexes in the sum-

mations. We can proceed as Tarroni and Zannoni [28], thus defining the vector

V L
m,n(K)=∑

χ0

∑
j′′′

∑
j′,p′,q′

(√
(2 j′+1)(2 j′′′+1)

2L+1

× X̂χ0, j′,p′,q′;K C( j′, j′′′,L; q′,n− q′)

× X̂χ0, j′′′,m−p′,n−q′;0C( j′, j′′′,L; p′,m− p′)
)
, (4.64)
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and rearranging the summation in the following form

φLL′
mm′nn′(t)=

∑
K

V L
m,n(K)

[
er̂t

]
K

V L′
m′,n′(K). (4.65)

In this way, we can calculate each element of V L
m,n(K) separately, which involves

summation over only 5 indexes. Note also that if we are interested in calculating a

series of correlations function, for any type of index {L,m,n} we need to calculate

the vector V L
m,n(K) just once and store its values for future usage, improving the

performance even further.

The same process can be applied to reorganize the summations involved in Eq.

(4.34) to speed up numerical calculations. For this aim, we define the vector

Va j (K)=∑
χ

∑
j,p,q

X̂χ0, j,p,q;K X̂χ, j,−p,−q;0a j(χ), (4.66)

in order to rewrite φai ,a j (t) as

φai ,a j (t)=
∑
K

Vai (K)
[
er̂t

]
K

Va j (K). (4.67)

We can use this formalism to evaluate also the correlation times. Substituting

Eq. (4.65) in Eq. (2.26), performing the integral over t and simplifying the results,

we obtain

τLL′
mm′,nn′ =

∑
K 6=0

V L
m,n(K)V L′

m′,n′(K)

[r̂]K
. (4.68)

Repeating the process to the axial correlation time gives

τai ,a j =
∑

K 6=0

Vai (K)Va j (K)

[r̂]K
. (4.69)

We can test the precision of the algorithm by two complementary methods. The

first method, is to inspect the maximum eigenvalue of the transition matrix R̂. The

second method is to compare the asymptotically solution for the equation (4.65) when

t = 0 and t →∞ with the static values computed by Eqs.(2.30) and (2.31) with the in-

tegrals performed by another numerical package (in our case, we used Mathematica
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and Scypy).

4.4 Model parameters

To proceed we need to define the values for the parameters used in the model.

Even though, we are not interested to fit any particular case; in order to product a

set of plausible values, we will use existing theories to estimate the model constants

whenever possible.

The rotational diffusion of particle solvated in fluid with viscosity coefficient γ

can be estimated using the Perrin-Einstein relations [71, 72], which are obtained

solving the Stokes-Einstein equation with stick boundary conditions. For a sphere

with radius R, the roto-diffusion coefficient Ds(R) is given by

Ds(R)= kBT
8πγR3 . (4.70)

For particles with anisotropic shape, we will have different coefficients for differ-

ent axes, for instance, a uniaxial ellipsoid have two of them , one parallel D∥ and one

perpendicular D⊥ to its axes of symmetry.

The equations for the coefficients take different forms depending on the aspect

ratio ρ ≡ a⊥/a∥. For a prolate ellipsoid (ρ < 1) roto-diffusion coefficient parallel to the

director Dprolate
∥ is given by

Dprolate
∥

Ds(d)
= 3

2(1−ρ2)

{
1− ρ2√

1−ρ2
ln

[
1+

√
1−ρ2

ρ

]}
(4.71)

while the coefficient perpendicular to the director Dprolate
⊥ by

Dprolate
⊥

Ds(d)
= 3ρ2

2(1−ρ4)

[
2−ρ2√
1−ρ2

ln

{
1+

√
1−ρ2

ρ

]
−1

}
, (4.72)

where Ds(d) is the roto-diffusion of a sphere with hydrodynamic radius d = 3
√

a⊥2a∥.

For an oblate ellipsoid (ρ > 1), the roto-diffusion coefficients parallel to the sym-
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metry axis is given by

Doblate
∥

Ds(d)
= 3

2(1−ρ2)

[
1− ρ2√

ρ2 −1
arctan

(√
ρ2 −1

)]
(4.73)

and the perpendicular roto-diffusion Doblate
⊥ by

Doblate
⊥

Ds(d)
= 3ρ2

2(1−ρ4)

[
2−ρ2√
ρ2 −1

arctan
(√

ρ2 −1
)
−1

]
. (4.74)

To the best of our knowledge, there is no analytic expression to obtain effective

potential as a function of the solute particle shape, however we can use the method

developed in the previous chapter to make an estimate of the shape-dependence of

the effective parameter u2
0,0(χ). Since we are studying the effect of the environment

biaxiality on the experimental observables, instead of estimating also u2
2,0(χ), here

we will take

u2
2,0(χ)=λu2

0,0(χ) (4.75)

where λ will be used as a free parameter. In this way, we can analyse the effect of

the extra interaction in the correlation functions and correlations times, and conse-

quently in the experimental observables.

4.5 Results

As in chapter 3, our particle can assume three shapes: a sphere, a prolate and a

oblate ellipsoid. In all three shapes the axis lengths were chosen to give an unitary

hydrodynamics radius d(χ) = 1. We also assume that any shape can switch to any

shape as sketched in figure 4.1 and that the exchange-ratio is equal for all transi-

tions, i.e ζ(χ,χ′)= ζ for all χ and χ′. Since we are interested in the general properties

of the proposed model, we can make the analyses much more convenient performing

the following set of transformations:

t∗ = Dst, ζ∗(χ,ν)= ζ(χ,ν),

Dχ∗
∥ = Dχ

∥ /Ds, Dχ,∗
⊥ = Dχ

⊥/Ds.

59



k
13

k
31

k
23

k
32

k
12

k
21

Figure 4.1: Sketch of shape switching process.

.

Table 4.1: Parameters used in the numerical calculations.

χ Shape a⊥ a∥ Dχ

⊥ Dχ

∥ u2
0,0

Prolate 1 0.69 2.08 0.42 1.35 -3.85
Sphere 2 1.00 1.00 1.00 1.00 0.00
oblate 3 1.59 0.40 0.54 0.44 2.36

The parameters for each shape can be visualized in Tab. 4.1. For the numerical al-

gorithm, we took Wigner functions until Lmax = 12,nmax = mmax = 8 and imax =
12, jmax = kmax = 8 for the shape transition operator. With these values, the biggest

equilibrium eigenvalue was r̂K ≈ 10−8.

In our first group of analyses, we kept the intrinsic shape distribution constant

and varied the exchange ratio ζ∗ and the biaxiality λ. We chose three values for

ζ∗, giving different shape-exchange regime relatively to the roto-diffusion: 0.1 (one

scale slower), 1.0 (same scale) and 10.0 (one scale faster). For λ we chose the values

λ = {0,0.15,0.3}. We call attention to the fact that a λ = 0.0 represents an uniaxial

sample, while the maximum value possible for λ is 1/
p

6. The first rank correlation

functions can be seen in Fig. 4.2 and the second rank in Fig. 4.3.

We can separate the correlation functions in families by their general features.

Functions like φLL
00,00 are modulated only by β angle, therefore, they show the same

fast and slow shape transition regime reported for the uniaxial potential in chapter

3. However, here the curves shapes are mildly altered by the biaxiality λ.

Other functions with characteristic behaviour are φLL
L−L,nn. They are intrinsically

0 in absence of biaxiality and their shapes are strongly dependent on λ. Even though
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Figure 4.2: First order correlation functions. In all calculations we used p0(χ) = 1/3
for all shapes.
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Figure 4.3: Second order correlation functions. In all calculations we used p0(χ)= 1/3
for all shapes.
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they also show fast and slow diffusion regimes when ζ∗ >> 1 and ζ∗ << 1, as the index

n increases the different regimes become less distinguishable due to the modulation

by the Euler angle γ.

Another group of functions are formed by φLL
LL,00 and φLL

00,LL. Here we can not dis-

tinguish the fast and slow relaxation regimes, although the shape of the correlation

functions is weak dependent on λ. As expected, set φLL
mm,00 modulated by γ is more

dependent on λ.

Surprisingly, the fourth family of correlation functions φLL
LL,LL are almost inde-

pendent of exchange ratio and biaxiality λ.

In the second part of our analyses, we let the exchange ratio ζ∗ constant while

we varied p0(χ) and λ. All three shapes have completely distinct dynamics; there-

fore, we expect the dynamics and static behaviour of all correlation functions to be

dependent on p0. In order to consider only some representative examples, without

loosing generality, we are going to always keep p0(disk) = p0(sphere) while varying

p0(rod). The results can be visualized in two sets of figures: the first order correlation

functions can be seen in Fig. 4.4 and the second order can be seen in Fig. 4.5

The biggest visible difference is when m = −m′, where each correlation function

show a very distinct behavior. For instance, the shape of the first rank seems more

dependent on p0(χ), while the second rank is mainly dependent on the biaxiality λ.

Again the shape of the correlation functions φ11
11,11(t) and φ22

22,22(t) shows little

dependence on p0, and consequently little to none dependence on biaxiality λ. We

deduce that deconvoluting data from these correlation function in a noise experiment

will be harder, if not unfeasible.

The remaining correlation functions show similar behaviour. If we take the same

index, the functions which share the same distribution p0(χ) possess very similar

behaviour, while the biaxiality acts as a perturbation. If these are the only correlation

functions available experimentally, we expect the shape effects to be visible, however

the information about the biaxiality parameter λ will be hard to obtain.

In the last part of our analyses, we are going to investigate the relaxation times

of the correlation functions. Even though the shape of the correlation curves gives

an idea of the relaxation process, the correlation times provides numerical values

that we can use for comparison. The correlation times of some selected correlation
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Figure 4.4: First rank correlation functions calculate for various values of p0 and
ζ∗ = 1.0.
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Figure 4.5: Second rank correlation functions calculated for various values of p0 and
ζ∗ = 1.0.
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functions can be found in figure 4.6

Before we start, is important to state that the direct comparison of correlations

times absolute values associates with functions with different indexes can lead to

errors due to their difference in scale, for instance φ22
00,00 is two order of magnitude

bigger than φ22
2−2,00. In the correlation times, we can observe all the similar trends

we identified for the correlations functions, but we can also directly evaluate the

interplay between ζ∗ and p∗
0 .

The correlation times show better than any other parameter the complexity of

the problem we are dealing with. In general, the correlation times are strongly de-

pendent on p0. All correlation function functions that showed clearly fast and slow

regime relaxation process are, of course, strongly dependent on ζ∗, while λ can be dis-

regarded. The parameter λ plays an important role in the relaxation with m = −m′

and on a minor scale in τLL
00,nn with n 6= 0.
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Figure 4.6: First rank correlation times.
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Figure 4.7: Second rank correlation times.
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Part II

Active particles
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Chapter 5

Introduction to Molecular

Dynamics Simulations

The formation of non-equilibrium ordered structures in system of active, self-

propelled particles or living individuals systems is a fascinating topic, that has re-

cently received much attention for isotropic and anisotropic systems [13,74].

Currently, there is no universal framework which can capture the complexity of

all kinds of active systems. However, some theories are being developed which at-

tempt to provide an unified description based on the conserved quantities and on

the system symmetries. Models in which the total momentum is conserved, denomi-

nated “wet”, take into account the exchange of moment between the active particles

and the environment. This framework is generally used to study synthetic particles

dispersed in different types of medium, for instance, active gels [74].

In the so called “dry” models, there is no momentum conservation due to a fric-

tion with the substrate [74]. Some living systems are studied in this framework, for

example, flow of bacterial suspensions, flocks of birds and schools of fishes1 [75]. Dry

models are also used to study synthetic systems such as systems of granular rods

subjected to a outside shocking [13].

A continuum type theory description of the macroscopic properties of active sys-

tems can be obtained within the framework of non-equilibrium statistical mechanics.

For instance, the flow of a low density suspension of active particles can be investi-

gated by coarse-graining a modified version of Boltzmann equation [74,76]. In partic-

1Is really sarcastic that the models used to study school of fishes are classified as “dry”.
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ular, the hydrodynamic of systems of self-propelled rods [77,78], active filaments [79],

and active nematics [80] has been investigated by this methodology. One problem of

the Boltzmann approach is that it works better when most of particle collisions are

binary, however some interesting phenomena, like the formation of polar patterns

need multi-particle collisions [81].

One alternative is to derive the hydrodynamics equations phenomenologically

taking advantage of the system symmetries, using a procedure similar to the one

used to derive the nematodynamics equations [1]. This approach provides a set of

equations with a few free parameters, which can be used to fit the behaviour of spe-

cific systems. This framework, pioneered by Toner and Tu [82, 83], was successfully

used to study active nematics [80, 84], nematic colloids [11, 85] and defect dynamics

in active nematics [86]. One of its drawbacks is the absence of information about the

free parameters or the microscopic behaviour which gives rise to it.

A complementary approach to either the Boltzmann and the phenomenological

hydrodynamic ones is to use molecular dynamics simulations to model the system at

the microscopic, particle, level. In this way, multi-particle collisions enter naturally

in the particle dynamics and macroscopic properties can be computed using out of

equilibrium statistical mechanics. Furthermore, the same framework can be used to

study the order of the system and the emergence of self-organized structures.

The investigation of liquid crystal systems containing active particles appears

particularly interesting for the combination of spontaneous order at equilibrium with

dynamic effects due to the presence and action of self-propelled swimmers. Moreover,

the long-range orientational order of liquid crystals can be used to guide the active

particles in the sample, for example, the liquid crystal director can direct the swim-

ming direction of bacteria [6] or even determine the trajectory of synthetic nano-

motors [7].

In this chapter we will develop the theoretical framework necessary to describe

active particles dissolved in liquid crystals, using molecular dynamics simulations.
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5.1 Molecular Dynamics Simulations

Whenever we perform an experimental measurement of a physical observable

A, we are in fact measuring the average of A(t), whose values can and do fluctuate

during the measurement. The average value of A(t) can be obtained as

Ā(t0, t)= 1
∆t

∫ t

t0

A(t′)dt′. (5.1)

with t− t0 =∆t being the measurement time. The time dependence Ā(t0, t) refers not

only to the duration of the measurement, but also to the initial conditions t0. As we

increase the measurement time, the random fluctuations are averaged out, and the

measurement of A becomes independent of time. In this way, as we increase t, we

have:

〈A〉t ≡ lim
t→∞

1
t

∫ t

0
A(t′)dt′. (5.2)

Macroscopically, we can look at A(t) as an observable which fluctuates from time

to time. At microscopic level, however, we will see a system of particles evolving

between many different states. Here we will refer to the state of a group of particles

as Γ. In quantum systems, Γ is specified by the eigenstates of each particle, while for

classical systems, it refers to set the coordinates of particles in the phase space.

The bridge between the macroscopic and microscopic descriptions is laid by sta-

tistical mechanics, whose main purpose is to derive the macroscopic behavior of a

system based on the interaction of its constituents. In this way, if we know how to

compute A as a function of Γt, whose time dependence is now implicit in the micro-

scopic state, we can rewrite Eq. (5.2) as [87,88]:

〈A(Γ)〉t ≡ lim
t→∞

1
t

∫ t

0
A(Γt)dt. (5.3)

reducing the problem to the knowledge of the of Γt over the time t.

If our thermodynamic system is completely isolated from its surroundings, there

will be no exchange of matter, volume or energy, therefore the number of particles N,

the volume V and the energy E will be kept constant. In this case, we have no a priori

reason to infer that one of the possibles micro states Γ is favoured over the others.

Therefore, it is reasonable to suppose that after an infinitely long time, each micro
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state will be visited an equal amount of time. As a consequence, we can substitute

the time average in Eq. (5.3) with an average over all phase space given by

〈A(Γ)〉Γ ≡
∫
Γ A(Γ)δ(E−H(Γ))dΓ∫
Γδ(E−H(Γ))dΓ

, (5.4)

where δ is a Dirac delta and H is the system Hamiltonian, which will be discussed

later. This is the so called micro-canonical ensemble, also called NVE ensemble2.

Now suppose our system is constrained in volume V and has a fixed number of

particles N, but is in thermal equilibrium with a reservoir at a temperature T. In this

case, the energy E of our sample can fluctuate in time and, as a consequence, there

will be no energy constraint in the micro states in which our system can be found.

Furthermore, we cannot suppose that all micro states will be equally visited, since

the presence of the thermal reservoir will favour some temperatures over others. If

the thermal reservoir do not change its temperature while exchanging heat with the

sample, the phase space average can be performed with the following equation:

〈A(Γ)〉Γ ≡
∫
Γ A(Γ)e−H(Γ)/kBT dΓ∫
Γ e−H(Γ)/kBT dΓ

, (5.5)

where kB is the Boltzmann constant, T is the temperature of the thermal reservoir

and the integral is performed over the phase space Γ. This is called canonical ensem-

ble or NVT ensemble. In a statistical sense, we are performing a weighted average,

where the exponential exp[−H(Γ)/kBT] is the weight of each micro state. For this

reason, it is often called Boltzmann weight or measure.

In general, both the time integral in Eq. (5.3) and the ensemble averages in equa-

tions (5.5) and (5.4) can be treated analytically just for the simplest cases. A wide

range of numerical methods were developed to tackle this problem. In this thesis,

we shall derive the observables of interest from classical molecular dynamics simu-

lations.

In molecular dynamics, we model the objects in the investigated system as classi-

cal particles interacting with each other by virtue of inter-particle potentials. Using

one of the classical dynamic formalisms3 we can set the equations of motion for each

2Most textbooks on molecular dynamics refer to the NVE convention.
3Newtonian, Lagrangian, Gaussian and Hamiltonian are some examples [89].
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particle in our sample and solve them numerically.

Here we will use the Hamiltonian formalism, since it generates a first order set of

differential equations and it deals naturally with constrained degrees of freedom. To

model a system in this formalism, we need to specify the dynamic variables, called

generalized coordinates xi and generalized momentum Xi, for each particle i. As a

consequence, the micro state of a system composed by N particles can be specified as

Γ= {x1,X1, . . . ,xN ,XN }, and its Hamiltonian can be written as

H(Γ)= K(Γ)+U(x1, · · · ,xN) (5.6)

Where K(Γ) is the kinetic energy and U(x1, · · · ,xN) is the system potential, which

is assumed to depend only on the generalized coordinates x1, · · · ,xi. The dynamic

evolution of the the elements of Γ are governed by the canonical equations

∂

∂t
xi

j =
∂

∂X i
j

H(Γ),

∂

∂t
X i

j =− ∂

∂xi
j

H(Γ). (5.7)

In this way, knowing the potential, the kinetic energy and the initial coordinates Γ0,

we can derive the dynamic variables Γ at any time t.

It is not possible to obtain an explicit solution for equations (5.7) which is contin-

uous in time. Instead, given a initial state Γ(t = 0), we can use a discretized version of

Eqs. (5.7) to estimate the value of Γ(t =∆t), where ∆t is a small interval of time. We

can repeat this procedure recursively and estimate Γ(t = n∆t) for any finite integer

value of n. With the values of Γ computed in discrete time intervals, we can evaluate

the integral in Eq. (5.3) or, even better, the ensemble averages.

The solution of the system of Eqs. (5.7) provides a time sequence of micro states.

Moreover, the micro states will be visited with equal probability in the micro-canonical

ensemble, while they will be populated according to a Boltzmann distribution in the

canonical ensemble. If we possess a large number N of micro states, we can estimate

the values of any 〈A〉Γ of both Eq. (5.5) and Eq .(5.4) by

〈A(Γ)〉Γ ≈ 1
N

N∑
i=1

A (Γ(i∆t)) . (5.8)
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Even though the problem is simple to define, its solutions are not trivial to obtain.

A typical macroscopic thermodynamic system is composed by a number of molecules

of the order of 1023. Actually, the storage of this amount of information is technically

prohibitive. Moreover, even if we were able to store all the data, its manipulation

would pose another problem. Assuming only pairwise interactions as the best case

scenario, a system composed of N molecules requires the calculation of ∼ N2/2 pair-

wise terms and the solution of system of ∼ N ordinary differential equations, which

is only feasible for systems composed of up to a few millions of particles, sufficient to

get good estimates of observable properties.

The sample size problem related to the number of particles can be tackled by

using approximate techniques to find numerical solutions. In the next sections we

will discuss the principal numerical methods available and, in particular, those used

in this work. A brief overview of other methods is also provided for completeness.

More detailed explanations and a discussion of a wider range of methods can be

found in references [87,88,90].

5.2 Modelling rigid particles

In active systems, the component particles have typical sizes which can range

from the nanometre to the micrometer scale, with the possibility of being composed

of thousands of atoms [91]. The description of a system of active particles at an atom-

istic level of detail is impossible to achieve with the current computational power.

Therefore, instead of treating particles as a collection of atoms, we will use coarse-

grained models with a reduced number of interaction sites.

Several types of coarse-grained models are available, which vary depending on

the level of description provided. In the united atoms approach, we remove the light

and fast moving atoms, (typically hydrogen atoms) and include their effect directly

into the heavier atom they are bound to. This level of description can be successfully

used to model big organic molecules [92], but it is still too detailed for dealing with

the kind of systems we aim to study.

The computational cost of a model can be further reduced by representing a

molecule as a set of interacting sites, which is known as a site-site potential [88].
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(a) Full atomistic (b) United atoms (c) 4 sites (d) Single object

Figure 5.1: The molecule of the nematic liquid crystal 5CB represented at different
levels of description.

The sites are described by short-range repulsion potentials, while the long-range

electrostatic interactions are added to the model by a distribution of point charges

or multipole expansion [88]. A drawback of the site-site potential is that the compu-

tation cost increases rapidly with the number of sites used, and often an adequate

representation requires many of them [88].

A coarser level of description can be achieved by representing a whole molecule

with a single rigid body. In this approach, the pairwise interactions between particles

are chosen to represent the symmetries found in the original molecule, if present. A

comparison between different levels of coarse graining is shown in Figure 5.1.

In this thesis work we aim to describe systems of active particles dispersed in a

liquid crystal medium. To reach this goal, we will represent every molecule in the

system as a single anisotropic object, whose position is described by the three coor-

dinates ri = {ri
x, ri

y, ri
z} for its centre of mass, with an additional set of coordinates

for its orientation [89]. The orientation can be expressed in several different ways,

for example, in the previous chapters we used Euler angles Ω= {α,β,γ} for this task.

Unfortunately, the equations of motions written in the Euler formalism have a incon-

venient spurious singularity when β= 0 [89]. This problem can be avoided by using
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quaternions to represent the orientation of particles.

Therefore, the generalized set of coordinates for each particle i will be:

• The centre of mass ri to represent the position of the particle in the Cartesian

space.

• The quaternion qi to describe the orientational degrees of freedom.

• The conjugate momenta p and Q for the position and orientation, respectively.

In this way, the micro state of a system composed of N particles (is configuration) is

completely specified by Γ= {r1,q1,p1,Q1, · · · ,rN ,qN ,pN ,QN }.

It is beyond the scope of this thesis to show how quaternions generate the rotation

group. Here, we will only show how to use quaternions to represent the orientation

and how to convert the Newtonian torques and angular velocities in and out of this

representation. For the reader interested in a more detailed review, we refer the book

of Altman [93].

Quaternions are elements of four dimensional space q = {q0, q1, q2, q4} with the

operations of addition q+q′, multiplication by constant a0q and dot product q ·q′

defined as normal vectors, a norm defined as |q| =∑
i qi

2, plus an outer product q′′ =
q′q defined as [94]

q′′ =S(q′)q=



q′
0 −q′

1 −q′
2 −q′

3

q′
1 q′

0 −q′
3 q′

2

q′
2 q′

3 q′
0 −q′

1

q′
3 −q′

2 q′
1 q′

0





q0

q1

q2

q3

 , (5.9)

the matrix in the product definition can be inverted to give the quaternion inversion

rule: q−1 = {q0,−q1,−q2,−q3}/|q|. Notice that if the quaternion is of norm one, we

also have S−1(q)=ST(q).

We can represent any Cartesian vector u = {u1,u2,u4} as a quaternion by the

rule u(4) = {0,u1,u2,u3}, where the superscript (4) indicates the quaternion repre-

sentation of a vector. In the quaternion representation, any rotation of a vector u(4)

around an axis indicated by the unit vector n̂ by an angle α can be obtained by

u(4)
r =q−1(α, n̂)u(4)q(α, n̂), (5.10)
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where u(4)
r is the rotated quaternion and q(α, n̂) is the rotation quaternion, whose

components are q0 = cos(α/2), q1 = nx sin(α/2), q2 = ny sin(α/2) and q3 = nz sin(α/2).

The double quaternion multiplication in Eq. (5.10) can be summarized by [94]

u(4)
r =



1 0 0 0

0 1− q2
2 − q3

2 2q1q2 +2q0q3 2q1q3 −2q0q2

0 2q1q2 −2q0q3 1− q1
2q3

2 2q3q2 +2q0q1

0 2q1q3 +2q0q2 2q2q3 −2q0q1 1− q2
2 − q1

2





0

u1

u2

u3

=R(4)(q)u(4),

(5.11)

where we dropped the dependence on (α, n̂), since any quaternion which satisfies

|q| = 1 can be mapped into a rotation matrix.

Due to the block nature of the matrix R(4)(q), we can write an equivalent rotation

matrix for a Cartesian vector as

R(q)=


1− q2

2 − q3
2 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 1− q1
2q3

2 2q3q2 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 1− q2
2 − q1

2

 , (5.12)

again with |q| = 1.

With the relations (5.10) and (5.12) we can rotate any vector rLAB = {rLAB
x , rLAb

y , rLAb
z }

from the laboratory system of reference (i.e. LAB frame) , where the measurements

are performed, to the molecular fixed frame (i.e. MOL frame) rMOL:

rMOL =R(q)rLAB, (5.13)

therefore, with the knowledge of the particle quaternion q, we can determine any

orientation-dependent quantity.

Now we need to specify how to obtain other mechanical quantities in terms of

quaternions, and how they are related to their Cartesian analogues. By defining the
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extended inertia tensor I(4)
MOL in the molecular frame as

I(4)
MOL =



1 0 0 0

0 Ixx 0 0

0 0 I yy 0

0 0 0 Izz

 , (5.14)

where I ii are the usual inertia tensor components in the molecular frame, we can

write the rotational kinetic energy of particle i as [95]

Krot(qi,Qi)= 1
8

Qi TS(q)I(4)−1
MOL ST(q)Qi, (5.15)

therefore the Hamiltonian of the system can be written as

H(Γ)=∑
i

(
1
8

Qi TS(q)I(4) i
MOL

−1
ST(q)Qi +∑

j

pi
j p

i
j

2mi

)
+U(r1,q1 · · · ,rN ,qN), (5.16)

where mi is the ith particle mass. The Eq. (5.16) can be substituted in Eq. (5.7) to

give the equations of motion for all the generalized coordinates and their conjugate

moments.

The conjugate moments and torques can be easily related to their Cartesian coun-

terparts. For instance, the angular velocities ω(4) i
MOL = {0,ωMOL

x ,ωMOL
y ,ωMOL

z } in the

molecular frame can be calculated by [95]

ω(4) i
MOL = 2ST(qi)q̇i, (5.17)

where the dot indicates the time derivative. The Cartesian torques τ(4) i
LAB = {0,τx,τy,τZ}

in the laboratory frame, can be obtained from a quaternion-dependent potential

U(r1,q1 · · · ,rN ,qN) by using the relation [95]:

τ(4) i
LAB =−1

2
ST(qi)∇qiU(r1,q1 · · · ,rN ,qN), (5.18)

where ∇qi = {∂qi
0
,∂qi

1
,∂qi

2
,∂qi

3
} is the quaternion gradient. The forces can be obtained
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from the potential gradient expression

fi =−∇riU(r1,q1 · · · ,rN ,qN), (5.19)

being ∇ri = {∂ri
x
,∂ri

y
,∂ri

z
} the translational gradient.

5.3 Interaction with an external reservoir

In most active system, the active propellers are suspended in some sort solvent,

that can work as a thermal bath. In these situations, the time evolution of Γt requires

to model each element of the thermodynamic system together with the elements of

the thermal reservoir, which is virtually impossible.

To avoid this problem, we need to decouple the degrees of freedom due to the

thermal reservoir. One approach is to abandon Eq. (5.3) and focus on generating

an equilibrium distribution of microscopic states, which can averaged to obtain the

desired properties. One of the most used method derived from this approach is the

Nose-Hoover thermostat [87, 88]. However, in active systems there are additional

problems hindering its use. Since the active particles are constantly introducing en-

ergy into the system due to the active force, the system is intrinsically out of equilib-

rium, and we cannot be sure that the distribution of micro states follows Boltzmann

statistics. Moreover, the temperature of active systems is more complicated to define,

since it is not easy to separate the velocity due to thermal motions from the coherent

motion due to active forces.

In order to thermalize these systems, it is necessary to use procedures acting on

each particle individually. Such procedures are called local thermostats. To this aim,

the work presented here will be based on the Langevin thermostat. This thermostat

was originally developed to model the movements of particles in solutions, but it

was shown that at long times it actually generates micro states with a Boltzmann

distribution. Therefore, it can be used to thermalize pure systems as well [90].
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Langevin thermostat

In the systems of active particles cited previously, all samples are composed of

dissolved particles which are much bigger than solvent particles. Due to their re-

duced size, the time scale of solvent particles can be one to two orders of magnitude

faster than the dissolved ones. If we write and solve the Hamiltonian for the whole

system, most part of the computing time will be spent on calculating trajectories

that, in principle, we are not interested in.

To avoid these problems, instead of describing each degree of freedom of the ther-

mal reservoir, we will take into account the average effect that it has on the particles

of the system of interest. Following the Mori-Zwanzig projection operator approach,

it is possible to remove the degrees of freedom of the bath and include their effect

on the guest particles by adding a frictional and a random term in their equations

of motion [90]. If we assume that the thermal bath responds to the particles move-

ment instantaneously, we can show that a particle with the Hamiltonian described

in equation (5.16) will obey the following Langevin type equations of motion:

ṗi(t)= fi(t)−γpi(t)+σt
i(t),

ṙi(t)=pi(t) (5.20)

where γ is the friction parameter modulating the interaction between the system

and the thermal-dissipative medium, and σt
i(t) = {σt

i,x(t),σt
i,y(t),σt

i,z(t)} are three di-

mensional vectors, where each element is a Gaussian white noise with correlation

〈σt
α,i(t)σ

t
β, j(t

′)〉 =
√

2γmkBTδ(t− t′)δi, jδα,β, (5.21)

being kB is the Boltzmann constant and T the bath temperature. The (5.21) ensures

that the fluctuation dissipation theorem is respected.

The only free parameter in this thermostat is the friction term γ. For spherical

particles, γ can be related to the friction term η present in the Perrin-Einstein equa-

tion. The use of a friction term gives the right diffusive behaviour to the simulated

particles. In this case, even though any simulation will show different molecular tra-

jectories due to the random term, any trajectory can be assumed to be a particular
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realization from the space of all possible trajectories.

Even though the Langevin thermostat was formally developed for particles dis-

solved in a large system acting as a thermal bath, it can still be used for particles

belonging to a pure systems. In this situation, the solution of the Langevin equations

of motion ensures that the succession of micro states in the trajectory obeys a Boltz-

mann distribution. As a consequence, the resulting trajectory can be used to perform

the ensemble averages in Eq. (5.8). This result holds for any reasonable value of γ.

This formalism can be extended to rigid anisotropic particles by adding a com-

bination of random and a dissipative torques representing the interaction with the

bath. The equations of motion expressing the orientation are then given by

L̇i
LAB(t)= τi

LAB(t)−γrIi
MOLω

i
LAB(t)+σr

i (t),

q̇i(t)= 1
2

S
(
ω(4) i

LAB(t)
)
qi(t), (5.22)

where Li
LAB(t), τi

LAB(t) and ω(4) i
LAB(t) = {0,ωi

x,ωi
y,ωi

z} are the ith particle angular mo-

mentum, torque and angular velocity in the LAB frame, γr is another friction con-

stant and σr
i (t)= {σr

i,x(t),σr
i,y(t),σr

i,z(t)} is another Gaussian white-noise which corre-

lations given by

〈σr
α,i(t)σ

r
β, j(t

′)〉 =
√

2γImol
i j kBTδ(t− t′)δi j. (5.23)

where Imol
i j are the components of the inertia tensor in the molecular frame.

5.3.1 Interaction Potential

In this work we approximate all the molecules in a given system with single par-

ticles having the properties of a non-spherical rigid body. The crucial part of this

approximation is to derive an interaction potential that reproduces, at least approx-

imately, the physics of a real system or of a system simulate with atomistic detail.

For instance, an anisotropic molecule will be represented by an ellipsoid, and the

potential acting between ellipsoidal particles needs to display different interaction

energies when the particles are aligned in different orientations. An example of the

relative orientation of ellipsoidal particles and the corresponding nomenclature of

82



each configuration is given in Figure 5.2.

A successful example of such potential is that developed by Gay and Berne [96] for

uniaxial ellipsoids and generalized by to arbitrary particles by Berardi et. al. [97].

The uniaxial Gay-Berne potential considers the interacting particles as revolution

ellipsoids with breadth and length σs and σe. The potential is pairwise, which means

that the total energy for a system of N particles will be:

UGB(r1,q1 · · · ,rN ,qN)=
N∑

i=1

N∑
j>i

UGB(ri,qi,r j,q j), (5.24)

where ri is the centre of mass of the ith particle and qi the ith particle quaternion.

More specifically, the Gay-Berne potential energy of two ellipsoids with symmetry

axis aligned along the unit vectors ûi(qi) and û j(q j) with the inter-molecular vector

ri j = ri −r j connecting their centre of mass will be given by [98]

UGB(ri,qi,r j,q j)≡UGB(ûi, û j,ri j)

= 4ε(ûi, û j, r̂i j)
{(

σs

ri j −σ(ûi, û j, r̂i j)+σs

)12
−

(
σs

ri j −σ(ûi, û j, r̂i j)+σs

)6}
(5.25)

where σ(ûi, û j, r̂i j) is approximately the contact distance between the ellipsoids i and

j, which is expressed as

σ(ûi, û j, r̂i j) = σs

{
1− χ

2

[
(ûi · r̂i j + û j · r̂i j)2

1+χ(ûi · û j)
+ (ûi · r̂i j − û j · r̂i j)2

1−χ(ûi · û j)

]}−1/2

with

χ= κ2 −1
κ2 +1

Figure 5.2: Representation of the particle alignment side–by–side, end–to–end and T.
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being κ≡σe/σs the shape anisotropy.

The term ε(ûi, û j, r̂i j) is a weighting factor for the energy, based on the relative

orientation of the particles, expressed as

ε(ûi, û j,ri j) = ε0 ε
′µ(ûi, û j,ri j)εν(ûi, û j) (5.26)

where µ and ν are parameters that can be used to tune the shape of the potential

well in a way appropriate to the chemical nature of the particles, with

ε(ûi, û j) =
[
1−χ2(ûi · û j)2

]−1/2
(5.27)

and ε
′µ(û1, û j,ri j) given by

ε′(ûi, û j, r̂i j) =
{

1− χ′

2

[
(ûi · r̂i j + û j · r̂i j)2

1+χ′(ûi · û j)
+ (ûi · r̂i j − û j · r̂i j)2

1−χ′(ûi · û j)

]}−1/2

(5.28)

with

χ′ = κ1/µ−1
κ1/µ+1

where κ′ = εs/εe is the interaction anisotropy. The parameters εs and εe correspond

to the depth of the potential wells when the particles are aligned side–by–side and

end–to–end, respectively.

Finally, if the symmetry axis are aligned along with z axis in the molecular frame

( i.e. ûi
mol = {0,0,1}), the components of ûi in the LAB frame can be computed by the

expression:

ûi = RT(qi)ûi
mol =


2(qi

1qi
3 + qi

2qi
0)

2(qi
2qi

3 − qi
0qi

1)

qi
0

2 − qi
1

2 − qi
2

2 + qi
3

2

 . (5.29)

The phase diagram of systems of particles described by the Gay-Berne potential

has been studied in the literature for a few parametrizations. In particular, the phase

diagram of a system of particles interacting only via a Gay-Berne potential with pa-

rameters {µ = 1,ν = 3,κ = 3,κ′ = 5} has been show to display the isotropic, nematic,
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Figure 5.3: Gay-Berne potential energy curves calculated for the geometries: side–
by–side (black), end–to–end (blue) and T (green). For both panels, κ= 3, κ′ = 5 and the
distance is expressed in units of σs.

and smectic phases typical of liquid crystals [98]. Conversely, the set of parameters

{κ= 3,κ′ = 5,µ= 2,ν= 1} generates isotropic, nematic, smectic A, smectic B and crys-

tal phases [99]. An example of Gay-Berne potentials energy curves calculated for

different geometries and sets of parameters, is given in Figure 5.3.

Calculation of forces and torques

In this section we will carry out in detail the calculations of forces and torques

involved in the uniaxial Gay-Berne potential. Following Luckhurst et. al. [99], we

can simplify the algebraic manipulations defining:

R = ri j −σ(ûi, û j, r̂i j)+σs

σs
(5.30)

and

g(χ)= 1− χ

2ri j 2

[
(ûi ·ri j + û j ·ri j)2

1+χ(ûi · û j)
+ (ûi ·ri j − û j ·ri j)2

1−χ(ûi · û j)

]
. (5.31)

The function g(χ) is related to σ(ûi, û j, r̂i j) and ε′(ûi, û j, r̂i j) by the relations:

g(χ)−1/2 = σ(ûi, û j, r̂i j)
σs

,

g(χ′)= ε′(ûi, û j, r̂i j). (5.32)
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Since the Gay-Berne potential is pairwise, the total force and torque acting on

each particle can be obtained calculating the pairwise components separately and

summing them together:

fi =∑
j
−∇riUGB(ûi, û j,ri j)=∑

j
fi j

τ(4) i
LAB =∑

j
−∇qiUGB(ûi, û j,ri j)=∑

j
τ

(4) i j
LAB . (5.33)

The x component of the force in the ith particle due to the interaction with the

jth particle (fi j) can be obtained by

f i j
x =− ∂

∂ri
x
UGB(ûi, û j,ri j)=−ε0

{
ε(ûi, û j)gµ(χ′)

[
6R−7 −12R−13](

∂

∂ri
x

R
)

+(R−12 −R−6)µgµ−1(χ′)
∂

∂ri
x

g(χ)
}

(5.34)

where

∂

∂ri
x

R = ∂

∂ri
x

ri j + σs

2
g−3/2(χ)

∂

∂ri
x

ri j, (5.35)

with

∂

∂ri
x

ri j = ri j
x

ri j (5.36)

and

∂

∂ri
x

g(χ)=− χ

ri j2

[ (ûi · û j + û j · r̂i j)
1+χ(ûi · û j)

{
∂

∂ri
x
(ri j · ûi)+ ∂

∂ri
x
(ri j · û j)

}
+ (ûi · û j − û j · r̂i j)

1−χ(ûi · û j)

{
∂

∂ri
x
(ri j · ûi)− ∂

∂ri
x
(ri j · û j)

}]
+ xχ

ri j

[
(ûi · û j + û j · r̂i j)2

1+χ(ûi · û j)
+ (ûi · û j − û j · r̂i j)2

1−χ(ûi · û j)

]
(5.37)

with

∂

∂ri
x
(ri j · ûi)= ûi

x. (5.38)

Due to the symmetries in the set of equations, the calculation of the other compo-
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nents of the force can be performed substituting x by y or z in all vectors.

We will proceed in a similar manner to compute the torques. The quaternion

gradient of the Gay-Berne potential is given by

∂

∂qi
1

UGB(ûi, û j,ri j)=∑
l

∂

∂ûi
l

UGB(ûi, û j,ri j)
∂

∂qi
k

ûi
k, (5.39)

which can be organized in the matrix form



∂

∂qi
1

UGB(ûi, û j,ri j)

∂

∂qi
2

UGB(ûi, û j,ri j)

∂

∂qi
3

UGB(ûi, û j,ri j)

∂

∂qi
4

UGB(ûi, û j,ri j)


=



qi
2 −qi

1 qi
0

qi
3 −qi

0 −qi
1

qi
0 qi

3 −qi
2

qi
1 qi

2 qi
3





∂

∂ûi
x
UGB(ûi, û j,ri j)

∂

∂ûi
y
UGB(ûi, û j,ri j)

∂

∂ûi
z
UGB(ûi, û j,ri j)

 , (5.40)

where we substituted the values of ûi to evaluate the first matrix in the r.h.s.

To integrate the equations of motion (5.22), we need the torques expressed in the

Cartesian frame. If we substitute Eq. (5.40) in Eq. (5.18) and perform the matrix

operation, we obtain



0

τ
i j
LAB, x

τ
i j
LAB, y

τ
i j
LAB, z

=−



2qi
0qi

2 +2qi
1qi

3 2qi
2qi

3 −2qi
0qi

1 1−2qi 2
1 −2qi 2

2

0 2qi 2
1 +2qi 2

2 −1 2qi
2qi

3 −2qi
0qi

1

1−2qi 2
1 −2qi 2

2 0 −2qi
0qi

2 −2qi
1qi

3

2qi
0qi

1 −2qi
2qi

3 2qi
0qi

2 +2qi
1qi

3 0





∂UGB(ûi, û j,ri j)
∂ûi

x
∂UGB(ûi, û j,ri j)

∂ûi
y

∂UGB(ûi, û j,ri j)
∂ûi

z
.


.

(5.41)

In the previous equations we can recognize the elements of the first matrix on

the r.h.s as the components of the unit vector û. Therefore, this equation can be

simplified to

τ
i j
LAB = ûi× ∂

∂ûiUGB(ûi, û j,ri j). (5.42)

The derivatives of the Gay-Berne potential relative to the orientation unit vector
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components ûi are given by

∂

∂ûi
x
UGB(ûi, û j,ri j)= (R−12 −R−6)

∂

∂ûi
x
ε(ûi, û j, r̂i j)

+ε(ûi, û j, r̂i j)(6R−7 −12R−13)
∂

∂ûi
x

R (5.43)

where

∂

∂ûi
x
ε(ûi, û j, r̂i j)= ε0ε

ν(ûi, û j)µgµ−1(χ′)
∂

∂ûi
x

g(χ′)

+ε0 gµ(χ′)νεν−1(ûi, û j)
∂

∂ûi
x
ε(ûi, û j) (5.44)

and
∂

∂ûi
x
ε(ûi, û j)= χ2ε3(ûi, û j)û j

x (5.45)

being
∂

∂ûi
x

R = 1
2

[
σ(ûi, û j, r̂i j)

σs

]3
∂

∂ûi
x

g(χ). (5.46)

Finally, the derivative of g(χ) can obtained from the expression

∂

∂ûi
x

g(χ)=−χ
2

[
r̂i j

x

{
2(ûi · r̂i j + û j · r̂i j)

1+χ(ûi · û j)
+ 2(ûi · r̂i j − û j · r̂i j)

1−χ(ûi · û j)

}
+χû j

x

{
(ûi · r̂i j + û j · r̂i j)2

1+χ(ûi · û j)
+ (ûi · r̂i j − û j · r̂i j)2

1−χ(ûi · û j)

}]
(5.47)

5.3.2 Self Propelling Force

Besides the interaction potential and the thermal bath, the active particles are

also endowed with a “molecular propeller” which can be switched on providing an

external source of energy, whose effect will depends on the details of the active par-

ticles themselves. Here we are interested in self-propelled rods which are pushed by

the active engine in the direction of the symmetry axis û. This can be accomplished

by adding a velocity or an acceleration term to the usual list of interactions [76,100].

In practice we have used propelling force fs
i, which acts on each active particle

according to

fs
i = fsûi. (5.48)
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The only free parameter in this model is fs, which modulates the strength of the

propelling action and is assumed to be the same for all active particles.

5.4 Integration of the equations of motion

Now that all the internal and external agents acting in our sample are defined,

we can finally integrate the equations of motion. Before developing the numerical

algorithms, we need to rewrite some expressions in a more convenient way.

Knowing that v̇i = ṗi/mi, we can write the equation of motion for the translation

as

ṙi(t)= vi(t),

v̇i(t)= fi
G(t)

mi , (5.49)

where fi
G(t) is a generalized force with the form

fi
G(t)= fi(t)−γmvi(t)+σr

i (t)+ fsûi. (5.50)

We can perform a similar transformation with the terms in Eq. (5.22) to obtain

L̇i
LAB(t)= τi

G(t),

q̇i(t)=S
(
ω(4) i

LAB(t)
)
qi(t), (5.51)

where τi
G(t) is a generalized torque given by

τi
G(t)i = τi

LAB(t)−γIi
MOLω

i
LAB(t)+σr

i (t), (5.52)

where the first terms in r.h.s. are the Cartesian torques obtained using the transfor-

mation in Eq. (5.18).

The integration of the translational degrees of freedom can be performed in a

straightforward way with the velocity Verlet algorithm [88], which comprises the

following steps:

• Use the forces calculated at t to update the velocity of all particles by half a
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timestep:

vi
(
t+ 1

2
∆t

)
= vi(t)+ 1

2
∆tfi(t) (5.53)

• Use the new velocities vi (t+ 1
2∆t

)
to update the position of all particles by a

full timestep:

ri (t+∆t)= ri(t)+∆tvi
(
t+ 1

2
∆t

)
(5.54)

• Use the new positions ri (t+∆t) to calculate the forces fi (t+∆t) and to update

the velocities for the last half timestep:

vi (t+∆t)= vi
(
t+ 1

2
∆t

)
+ 1

2
∆tfi (t+∆t) (5.55)

In the calculation of the forces, the only point that needs more attention is the

computation of the random noise σr
i (t). Even though it was said that the random

noise needs to be Gaussian, Duwheg and Paul showed that a uniform distribution

can be used with little loss of accuracy [101]. Therefore, the components of each

vector can be computed as

σt
i, j =

√
2γmkBTδ,

where δ is a uniform distribution with range [-0.5,0.5].

The rotational degrees of freedom are integrated with a similar version of the

velocity Verlet, but the quaternions are updated with the Richardson method [73] to

reduce the error. To proceed this way, we are going to estimate q′ i(t+∆t) and q′′ i(t+
∆t) before performing the actual estimation of qi(t+∆t). Here we used primed letters

to indicate auxiliary variables that can be discarded at the end of the procedure.The

algorithm is thus composed of the following steps:

• Use the current torques to update the angular momentum by a half timestep:

Li
LAB

(
t+ 1

2
∆t

)
=Li

LAB(t)+ 1
2
∆tτi

LAB(t). (5.56)

• Use the updated angular momenta Li
LAB

(
t+ 1

2∆t
)

and orientations qi(t) to com-
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pute the angular velocity for all particles at
(
t+ 1

2∆t
)
:

ω′ i
LAB

(
t+ 1

2
∆t

)
=R(qi(t))

(
Ii

MOL

)−1
R(qi(t))

TLi
LAB

(
t+ 1

2
∆t

)
. (5.57)

where R(qi(t)) are the rotation matrices specified in (5.12).

• Use the angular velocity to compute the quaternion derivative using:

q̇′ i
(
t+ 1

2
∆t

)
= 1

2
S

(
ω(4) ′ i

LAB

(
t+ 1

2
∆t

))
q(t). (5.58)

• Carry out a full timestep integration of the quaternion derivative q′ i(t):

q′ i (t+∆t)=q′ i(t)+∆tq̇′ i
(
t+ 1

2
∆t

)
. (5.59)

which completes the estimation of q′ i (t+∆t).

• Compute the derivative of quaternions q′′ i, using q̇′ i (t+ 1
2∆t

)
by half a timestep:

q′′ i
(
t+ 1

2
∆t

)
=qi(t)+ ∆t

2
q̇′ i

(
t+ 1

2
∆t

)
. (5.60)

• Use the new positions q′′ i (t+ 1
2∆t

)
to estimate the angular velocity:

ω′′ i
LAB

(
t+ 1

2
∆t

)
=R

(
q′′ i

(
t+ 1

2
∆t

))(
Ii

MOL

)−1

×R
(
q′′ i

(
t+ 1

2
∆t

))T
Li

LAB

(
t+ 1

2
∆t

)
. (5.61)

• Use the angular velocity to compute the derivative of quaternions by half a

timestep:

q̇′′ i
(
t+ 1

2
∆t

)
= 1

2
S

(
ω(4) ′′ i

LAB

(
t+ 1

2
∆t

))
q′′ i

(
t+ 1

2
∆t

)
. (5.62)

• The last half time step is performed in the quaternion

q′′ i (t+∆t)=q′′ i
(
t+ 1

2
∆t

)
+ 1

2
∆q̇′′ i

(
t+ 1

2
∆t

)
. (5.63)

• Use the auxiliary quaternion q′′ i (t+∆t) and q′ i (t+∆t) to compute the new
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quaternions qi (t+∆t) for the last half timestep:

qi (t+∆t)= 2q′′ i (t+∆t)−q′ i (t+∆t) . (5.64)

In this process, each quaternion is re-normalized after any manipulation.

The random torque component was calculated by

σr
α,i =

√
2γImol

i j kBTδ (5.65)

where δ is a uniform distribution with range [-0.5,0.5].
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Chapter 6

Simulations of Active particles

suspended in liquid crystals

In the previous chapter we developed the theory necessary for performing molec-

ular simulations of active systems. A similar framework was used several times to

study different models for active matter in the simpler case of two dimensions. For

instance, the organization in 2 dimensions of living matter has been studied with

the model pioneered by Viczek and with its variants [102–104]. A version of the

Lennard-Jones soft potential in a (quasi)two-dimensional liquid was used to study

agglomeration of isotropic active particles [105, 106], and a long range repulsive in-

teraction model was also developed for the same reason [107]. However, in these

cases the particles were constrained to move in a plane. In 3D, the segregation of

active Brownian particles interacting by Weeks– Chandler–Andersen potential was

studied by Stenhammar et al. [108].

In materials composed by anisotropic particles, Backwell et al developed a 2D

model for motor driven liquid crystals and studied their hydrodynamics for differ-

ent densities [109]. Segregation and clustering of (quasi)two-dimensional mixture of

active and passive rods was studied by S.R. McCandlish et al. (low and high densi-

ties) [110]. However we did not find studies at microscopic level for active particles

dissolved in liquid crystals in three dimensions, clearly the system of more obvious

importance.

Here we wish to consider a fully 3D system and we investigate a sample composed

of a mixture of "active" anisotropic particles capable of self propelling, and identical
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but passive particles. The questions we ask are (i) if it is possible to get dynamic

orientational order from a system which is isotropic at equilibrium and (ii) if not,

if there are differences in the type of ordering or structuring upon activating the

propelling force, when the phase at rest (when all particles are in their inactive state)

is already nematic or smectic. In particular, does the activation destroy or enhance

the order? Here we address the problem using the very successful Gay-Berne model,

where as already mentioned, system of uniaxial or biaxial particles endowed with

attractive and repulsive forces have shown able to generate isotropic, nematic and

smectic.

6.1 Model parameters

More in detail to study effects due solely to the activity, we model the self-propelled

rods with exactly the same physical parameters of length and interaction as the pas-

sive ones in the pair potential.

For the inter-particle interactions we have chosen the Gay-Berne parametrized

by Berardi et. al [98], using µ= 1.0, ν= 4, ε0 = 1, σe = 3.0, σs = 0.1, εs = 1.0, εe = 0.2

and cutoff= 4.0 for both active and passive particles, where we employ the following

set of dimensionless units: lengths are expressed in units of σs, masses in m, energies

in ε0, temperature in ε0/kB and time in
√

m0σ2/ε0. The remaining parameters are

expressed as combinations of the previous ones.

Our samples have in total N ≈ 10000 particles each, contained in a cubic box with

periodic boundary conditions in all three dimensions. The length of the box edges are

L ≈ 31 σs, giving a packing fraction of φ ≈ 0.5 and a density ρ = 0.3. The detailed

lengths and number of particle for each will be discussed in a later section.

All simulations were performed in the NVT ensemble with the temperature con-

trolled using a Langevin thermostat for both active and passive particles. Even

though some properties might depend on the value of γ [111], here we will treat

γ as a fixed parameter. We used γ= γr = 1.0 for all simulations, since it gave reason-

able values for the sample temperature. When tested the value γ = γr = 10 gave an

over damped regime, while the value γ= γr = 0.1 showed strong instabilities. Small

variations of {γ,γr} around the value 1 did not change the computed parameters sig-
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nificantly.

We modelled activity by adding a constant self-propelling force fs in the direction

of the long axis of the active particles, as explained in section 5.3.2. Even though the

Gay-Berne interaction is apolar (it does not distinguish ellipsoids heads and tails),

the self-propelling force introduces polarity in the active particles. Finally, we used

δt = 0.01
√

m0σ2/ε0 for the timestep and each simulation was performed typically

for 4×106 timesteps.

The simulations were performed using the open source LAMMPS code, version

05/09/2014, which we have slightly modified to remove the friction and noise around

the molecule symmetry axis and to add the self-propelled forces for active particles.

We performed a grid of simulations varying 3 parameters: thermostat tempera-

ture, concentration of active particles and self-propelled force intensity. We varied

the active particles concentration p from 5% to 16% in steps of 1% and from 16%

to 30% in steps of 2%. We chose the values of fs to be 0.75 ε/σ, 1.5 ε/σ, 2.25 ε/σ

and 3.0 ε/σ, and the thermostat temperature of T = 2.1 ε0/kB, T = 3.0 ε0/kB and

T = 3.3 ε0/kB which yield a smectic liquid crystal, a well oriented nematic, a weak

oriented nematic and an isotropic fluid, respectively. In total we run approximately

250 simulations over many months of work.

6.2 Sample preparation

To get as close as possible to simulate the effect of a liquid crystalline environ-

ment, we equilibrated our sample with the self-propelling force deactivated, and ac-

tivated it only in the production run. As a consequence we could use the same initial

conditions for all simulations with the same thermostat temperature T.

The starting structures for each sample were taken from a previous work [98].

In the present work, we replicated the samples 3 times on each direction x,y,z and

performed an equilibration run for 2×106 timesteps. After that, we sliced the central

cube of the simulation and re-equilibrated it for another 2×106. The details about

the box sizes together with the number of particle in each sample can be seen in Tab.

6.1 and the snapshot of the starting configurations can be visualized in Fig. 6.1.

With the samples in thermodynamic equilibrium we chose randomly a fraction of
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Table 6.1: Detailed information of box sizes σiand number of particles N for samples
with different thermostats temperatures.

Box length
T σx σy σz 〈P2〉 N

2.10 31.705 31.705 31.7050 0.93 9561
3.00 31.950 31.9506 31.9506 0.73 9785
3.30 31.9376 31.9376 31.9376 0.66 9773
3.8 31.8972 31.8972 31.8972 0.12 9736

(a) T = 2.10 (b) T = 3.00

(c) T = 3.30 (d) T = 3.80

Figure 6.1: Starting configuration for different temperatures.
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particles to be the active ones. The production runs were then performed assigning

fs 6= 0 to the active particles and fs = 0 to the passive ones.

6.3 Results

6.3.1 Aggregation of self-propelled particles

Depending on the parameters {T, p, fs}, after turning on the self-propelled force,

the randomly dispersed active particles started to aggregate in clusters, which then

further evolved to flowing particle lanes similar to the ones reported in [108]. An

example can be visualized in Fig. 6.2.

The condition for the onset of the aggregation phenomenon depends on all three

parameters studied: self-propelling force, thermostat temperature and concentration

of active particles. In particular, force and thermostat temperature show a critical

behaviour. We have found no aggregation for self-propelling force fs = 0.75 ε/σ nor

in the isotropic phase, when temperatures was set T = 3.8 ε0/kB. Even performing a

series of simulations with high concentrations (until p = 50%) for fs = 0.75 ε/σ, no ag-

gregation was observed. There is also a concentration threshold for the aggregation

phenomenon, however its value depends on both temperature and force.

The cluster formation shows a nucleation like dynamics. At the beginning of the

aggregation, we have the formation of small clusters that grow independently of each

other. During this process, clusters flowing in the same direction tend to fuse when

they approach. Clusters can also divide in smaller ones, although this phenomenon

happens less often. In this way, in most samples, after a sufficient amount of time,

there will be two giant lanes, flowing in opposite directions. A series of snapshots

illustrating these findings can be visualized in Fig. 6.3.

The only notable exceptions are the samples simulated with fs = 3.00 ε/σ, where

the giant lanes are not stable. In this case, the fast movement of the particles inside

these lanes causes bending deformations which grow in time. The intensity of the

deformations increases until the lane breaks into small clusters. These spare parti-

cles form new small clusters or are absorbed by the closest flock increasing its size.

A sequence of snapshots showing this phenomenon can be observed in Fig. 6.4.
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Figure 6.2: Lane formation for the system with parameters fs = 1.5 ε/σ, p = 20%
and T = 2.1 ε0/kB at t = 0

√
m0σ2/ε0 (top left) and t = 25000

√
m0σ2/ε0 (bottom left).

Passive particles are coloured in grey and self-propelled one in a scale of red-blue
depending on the direction and intensity of the component ẑ of the velocity. On the
right hand side we report the same snapshots, t = 0 (top right) and t = 25000

√
m0σ2/ε0

(top left) with passive particles removed to facilitate the visualization.
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(a) t= 100000 timesteps (b) t= 175000 timesteps

(c) t= 250000 timesteps (d) t= 325000 timesteps

(e) t= 400000 timesteps (f) t= 475000 timesteps

Figure 6.3: Top view of snapshots illustrating cluster formation. The simulation pa-
rameters were: T = 2.10 ε0/kB, fs = 2.25 ε/σ and p = 16%. Particles that are moving
upstream are coloured in blue while particles moving downstream were coloured in
red,. For both cases the colours intensity were assigned following a scale depending on
the value of vz.
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(a) t=1750000 timesteps (b) t=1800000

(c) t=1850000 (d) t=1900000

(e) t=1950000 (f) t=2000000

Figure 6.4: Snapshots showing cluster bending. The figures were taken from the sim-
ulation with T = 2.10 ε0/kB, fs = 3.00 ε/σ and p = 20%. Particles that are moving
upstream are coloured in blue, while particles moving downstream were coloured in
red,. For both cases the colour intensities were assigned following a scale depending
on the value of vz.
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To analyse quantitatively the aggregation of active particles, we used a modified

DBSCAN algorithm (the original version of the algorithm is reported in appendix A).

Since each combination of {T, p, fs} produced clusters with different sizes and charac-

teristics lengths, tuning the DBSCAN parameters to perform a proper division in all

cases was no easy task. First, the phase is highly anisotropic due to the existence of

the liquid crystal director and moreover our particles are anisotropic with a certain

length to breadth ratio. As a consequence molecules positioned end–to–end are found

at distances higher than the ones positioned side–by–side. Second, as we have seen,

the clusters usually appears in pairs flowing in opposite directions. A classification

taking into account solely the particles distances would recognize them as a single

unit when they approach each other.

To overcome these problems, we found easier to set minPoints = 1 and to ma-

nipulate the metric function (see Appendix). We defined three different metrics D i,

each one involving a different couple of parameters with their respective threshold

distances εi. A particle is considered connected to another if D i < εi ∀ i, where

D1(ri,r j)= |ri −r j|2,

D2(ui,u j)=−ui ·u j,

D3(vi,v j)=−vi ·v j. (6.1)

In the present work we used {ε1 = 3.5,ε2 = 0.0,ε3 = 0}.

To compare samples with different concentrations of self-propelling particles, we

will present cluster sizes as the fraction of the number of active particles in the

sample, expressed by:

X i(t)= Ni(t)
Nactive

, (6.2)

being Ni the number of active particles in the ith cluster and Nactive the number of

active particles in the system. Since tiny clusters can hinder the statistical analyses

of the phenomenon, we discarded any cluster with number of particles smaller then

20. The time average of the cluster size can be visualized in figure 6.5.

The clusters formed at the temperature T = 2.1 ε0/kB are the most stable ones,

also, they are bigger than the ones formed at T = 3.00 ε0/kB and at T = 3.30 ε0/kB.
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Figure 6.5: Average cluster size calculate from t = 40000
√

m0σ2/ε0 to t =
50000

√
m0σ2/ε0, with values taken every t = 50

√
m0σ2/ε0.
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Table 6.2: Time averaged principal values of the gyration tensor. In table Ne is the
number of clusters detected in the period, and the number in parenthesis is the stan-
dard deviation. Values extracted from simulations performed with fs = 1.5 ε/σ and
T = 2.10 ε0/kB.

p Ne λ1 λ2 λ3
7 0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
8 4 0.98 (0.21) 3.26 (1.14) 19.31 (12.36)
9 46 0.96 (0.41) 2.54 (1.18) 17.04 (13.58)

10 74 0.91 (0.48) 2.63 (1.15) 18.40 (18.27)
11 523 2.02 (0.79) 4.00 (1.78) 52.87 (31.59)
12 424 2.84 (0.68) 4.62 (1.90) 75.24 (19.62)
13 421 3.01 (0.66) 4.52 (0.97) 76.85 (18.18)
14 400 3.58 (0.54) 5.81 (2.28) 82.25 (8.04)
15 404 3.90 (0.43) 5.33 (0.66) 82.28 (7.85)
16 402 4.47 (0.42) 5.91 (0.51) 82.97 (5.33)
22 402 6.80 (0.45) 8.19 (0.50) 83.55 (2.90)
28 400 8.92 (2.00) 11.82 (5.07) 83.59 (1.97)
30 400 10.41 (2.76) 12.60 (5.20) 83.80 (1.70)

The results also indicates that high concentrations favour aggregation in bigger clus-

ters, rather than forming groups of smaller ones. Again we have an exception for the

force fs = 3.00 ε/σ which shows a non monotonic behaviour with p and shows giant

fluctuations (.i.e instabilities) for p > 15%.

To study the cluster geometry, we calculated the distribution of self-propelled

particles around the geometric centre of each cluster formed in the sample, given by

the gyration tensor

Si j = 1
2N2

N∑
k=1

N∑
l=1

(rk
i − rl

i)(r
k
j − rl

j) (6.3)

where Si j are the components of the gyration tensor, rk
i is the ith position compo-

nent of the kth particle and N the number of particles present in the cluster. The

eigenvalues of the gyration tensor λi give the shape of the distribution of particles

around the axis given by the associated eigenvector. The eigenvalues averaged over

the number of cluster and time are reported in table 6.2.

We can identify two different transitions, the first happening at p = 8%, marking

the formation of the first clusters, and the second at p = 11%, where there is a jump

in the number of clusters and their geometry. These points will be used to divide

our data into regions that we will analyse separately. The region between p = 8%

and p = 11% possesses a small number of small clusters, which are organized with
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no clear shape λ1 6= λ2 6= λ3. The leading dimension λ3 is usually oriented along

the liquid crystal director. Even though we have just 4 cluster at p = 8%, the trend

repeats itself in the region p = 10∼ 11%, allowing us to make this inference.

The second phase transition shows a change in the cluster geometry, where the

aggregates increased in all sizes, being the leading dimension the one that growth

the most. Also, the flock shape shows a clear cylindrical geometry λ1 ≈λ2 <λ3.

6.3.2 Ordering and activity

Berardi et al. [98] described the ordering of a passive sample with the same pa-

rameters of the ones presented here, however, the introduction of active particles can

change the phase behaviour and the order parameter.

In order to investigate this effect, we need a precise definition of the thermody-

namic parameters involved. However, the definition of temperature in active sys-

tems is non trivial, since it is difficult to distinguish the coherent motion induced by

the activity from the random thermal movement. For this reason, we computed the

temperature just for the passive particles. Also, in out-of-equilibrium simulations it

is important to distinguish between the thermostat temperature T and the sample

temperature Ts.

The self-propelling force introduces energy into the system that is not removed

instantaneously, increasing the medium temperature [111, 112]. If we assume the

equipartition theorem to hold for the passive particles, their temperature can be

calculated from the following expression

Ts(t)= 1
6Npas

Npas∑
i=1

(
pi(t) ·pi(t)

2mi + ω
i
MOL(t)Ii

MOLω
i
MOL(t)

2

)
, (6.4)

where the summation is performed over all passive particles Npas. Here we are going

to monitor only the passive particles temperature, in this way, we avoid the men-

tioned problems.

The ordering of both active and passive particles can be quantified by the order

parameter 〈P2〉. To compute 〈P2〉, first we calculate the order tensor Qi j whose com-
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ponents are given by

Q i j = 1
N

(
N∑

k=1
ûk

i ûk
j −

1
3
δi, j

)
, (6.5)

where uk
i are the components of the unit vector aligned with the symmetry axis of

the kth particle and defining its orientation. The order parameter at a given time

can be computed by

P2 = 3
2

max(λ1,λ2,λ3) (6.6)

being λi the eigenvalues of Q.

To distinguish the possible self-organization of both active and passive particles

in the system, we calculated their order parameter separately. The time averaged

order parameter, for both active and passive particles, as a function of active particles

concentration p can be seen in Fig. 6.6.

We can notice that the increase the self propelled force intensity or active parti-

cle concentration, reduces the order in both active and passive particles. Comparing

the results for the various choices of parameters, we see that the order reduction

is more dependent on the self-propelling force intensity, while concentration plays a

secondary role. For lower to intermediate forces ( fs < 3.00), as we increase concen-

tration the order parameter saturates at plateau. However, when fs = 3.00, the order

parameter decays faster and does not shows the same saturation point.

We attribute the order reduction in the passives particles to the increase in the

sample temperature. A scatter plot showing the dependence of the order parameter

on the sample temperature for both active and passive particles can be seen on Fig

6.7.

In the passive particles plot, points with the same temperature have close val-

ues of order parameter 〈P2〉, independent of the self-propelling force intensity. This

supports our argument that the rise in the sample temperature is the reason of the

reduction of order parameter of the passive particles.

The same evidence is not valid for the active particles. We can observe that there

is a reduction of order coupled with increase of temperature, however, for intermedi-

ate forces ( fs = 1.5 and fs = 2.25) there is a saturation point where the temperatures

increases, but is not accompanied by a decrease in the order parameter.
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Figure 6.6: Time averaged order parameter 〈P2〉 as a function of active particles con-
centration calculated separately for active (left) and passive particles (right) and for
the temperatures T = 2.10 ε0/kB (top), T = 3.00 ε0/kB (middle) and T = 3.30 ε0/kB
(top). For the average we have taken snapshots from t = 40000

√
m0σ2/ε0 until

t = 50000
√

m0σ2/ε0 in steps of ∆t = 50
√

m0σ2/ε0. With self-propelling set to 0 ( fs = 0)
the sample temperature is Ts = 2.10 ε0/kB and the order parameter is 〈P2〉 = 0.93.
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Figure 6.7: Time averaged order parameter 〈P2〉 for the active (top) and passive (bot-
tom) for the temperatures T = 2.10 ε0/kB (left) and T = 3.00 ε0/kB (right). For the av-
erage we have taken snapshots from t = 40000

√
m0σ2/ε0 until t = 50000

√
m0σ2/ε0 in

steps of ∆t = 50
√

m0σ2/ε0. Without the self-propelling force the sample temperature
is Ts = 2.10 ε0/kB and the order is 〈P2〉 = 0.93.
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The usual order parameter provide information on how the system is ordered,

but another useful information that we can extract is how the velocities are ordered.

Here we define the velocity ordering tensor as

V̂i j = 1
N

(
N∑

k=1
v̂k

i v̂k
j −

1
3
δi, j

)
, (6.7)

where vk
i is the ith component of the kth particle velocity unit vector. We can obtain

the velocity order parameter is by

P2v = 3
2

max(λv
1,λv

2,λv
3) (6.8)

being λv
i the eigenvalues of the velocity order tensor. We can use this parameter to

decouple movement noise from coherent movement. We calculated the velocity order

parameter as a function of time and the time-averaged velocity order parameter for

the active particles in our system, the results can be visualized in Fig. 6.8.

When fs = 0.75, the velocity order is close to 0 indicating that particles move-

ments are due exclusively to thermal noise and thermal collisions, this behavior is

sustained independent of the concentration of the active particles. Increasing the

force to fs = 1.5, we have exactly the same behavior for simulations with low concen-

tration p of active particles, but after the threshold p = 11% there is a increase in

〈P2v〉. This is surprising, since we already have cluster formations at p = 10 ∼ 11%

but not coherent velocity orientation. This suggests that the clusters formation do

not depends on the velocity alignment.

For higher forces fs = 2.25 and fs = 3.00 we have 〈P2v〉 6= 0 for all studied concen-

trations, even for the cases where there is no clustering,which reinforces our argu-

ment that the clustering do not need velocity alignment
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Figure 6.8: Velocity/Dynamic order parameter (top) and average Velocity/Dynamic
order parameter 〈P2v〉 (bottom) for concentration for p=12%. We start the averaging
process after 2×106 timesteps and finishes it after another 2×106 timstesps taking
values every 50000 timesteps.
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Chapter 7

Concluding Remarks

7.1 Shape Changing particles

In the first part of the thesis we proposed a simple model to describe the roto-

diffusion of a shape changing particle in an anisotropic environment. We developed

the mathematical formalism and operators and numerically solved the system of

equations obtained for two cases: a uniaxial particle dissolved in a uniaxial and a

biaxial liquid crystal phase. The solutions can be used to calculate correlation func-

tions and correlation times depending on the changes in the orientations or in the

shape of the particles.

For the uniaxial case, we analysed the correlation times for a probe particle which

can assume three shapes. For exchange rates much smaller than the rotational dif-

fusion coefficient, the correlation functions of the probe particle are the weighted

average of the individual correlation functions of each rigid shape.

We also analysed the relation between the shape exchange rate and the correla-

tion times and noticed that increasing the shape exchange rate decreases the corre-

lation times until a certain limiting value is reached. The limiting value depends on

the intrinsic distribution of shapes.

For the biaxial case, we developed a completely different numerical procedure.

The new approach is mathematical more cumbersome, however, it is more efficient

for numerical calculations.

We solved an example of a particle which can assume the three distinct shapes

and we analysed how the biaxiality of environment affects the time dependence of
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some selected correlation functions. We also identified in which case we can perform

the uniaxial approximation without loss of information.

Even though we used a small discrete set of shapes in both cases, the model can be

easily generalized to the quasi continuum case by increasing the number of shapes

to be taken into account and by adding some restrictions to the operator kχ,ν(x).

The same procedure can be used to take into account fluctuations in the particle

orientation that can happen during the shape changing process.

We hope that the availability of a theory for the interpretation of spectroscopic

data for particles reorienting and changing shape while being embedded in a fluid

anisotropic environment will stimulate experimental investigations as was the case

e.g. for rigid biaxial particles where experiments (see, e.g. [30, 113]) followed the

development of a theoretical framework.

In future work we plan to extend the formalism to include particles with arbi-

trary shape and also develop a explicit framework for particles that change shape

continuously instead of doing discrete jumps.

7.2 Active particles

In the second part of the present thesis, we have studied self-propelled particles

dispersed in a isotropic liquid and, more importantly, smectic and nematic liquid

crystal phases. We modelled all particles as Gay-Berne ellipsoids, where the active

particles were also endowed with a constant force along their symmetry axis.

We observed that active particles can aggregate and flow in coherent lanes when

certain conditions are met. The sizes and geometry of the lanes depends on both the

self-propelled particle concentration and self-propelling force. Interestingly, the size

of the stable lanes formed in the sample decays fast as we increase the temperature.

This suggest that in this specific system, the order of the host is essential to the

formation of lanes.

We also studied the ordering of the active and passive particles. We found that the

introduction of energy by the activity increases the temperature of the host, which in

turn disorder it. The order of the active particles is also reduced as we increase the

activity, however, it decays slower than the passive ones. Furthermore, for the sam-
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ples simulated with the thermostat temperature set to T = 2.10 ε0/kB, we identified

a limiting value for the decrease in the order parameter, suggesting that the active

particles can organize themselves differently than the passive ones.

In future works, we plan to repeat the simulations with the same system param-

eters, however, this time with the sample composed only of active particles. In this

way we hope to understand if the host order is strictly necessary for the formation

of lanes. We also plan to extend our model to simulate other kind of systems, for

instance, increasing the size of the active particles to make them behave more like

colloids or a Janus particle.

We also have the intention to add a feedback force in a manner similar to the one

done by Viczek. In this way we should be able to extend our model to simulate living

matter in three dimensions as well.
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Appendix A

Clustering with DBSCAN

One interesting characteristic of active systems is to display a collective behaviour

leading to phenomena like: self-assembly, aggregation in clusters or phase separa-

tion. Even though these phenomena can be qualitatively identified by visual inspec-

tion in trajectories computed from molecular dynamics simulations, the quantitative

study of these phenomena relies on clustering algorithms. The importance of big data

grew enormously in recent years. With it, the array of clustering techniques became

a science by itself, whose main interest is to recognize patterns in data mixed with

noise. There is a wide range of techniques at stake, but all of them need some infor-

mation on the system, for instance, the K-means clustering [114] divides the system

in a pre-defined number of clusters, which needs to be defined a priori.

In our case, we may know the number of clusters at one point of the simula-

tion by visual inspection, however this number may change over time. Moreover,

during the simulation there may be particles that do not belong to any cluster, and

need to be treated as noise. The most suitable algorithm available in this scenario is

the GDBSCAN (Generalized Density Based Spatial Clustering of Applications with

Noise) [115,116], which groups data into clusters based on the density of data, in our

case using the density of particles in space.

Before looking at how GDBSCAN works, we need to make some definitions. Given

a metric function D(p1, p2) that computes the distance between two data points p1

and p2, we can define a neighbour region of p1, here called N(p1), as one containing

all points which satisfy

D(p1, p2)< ε (A.1)
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N

Figure A.1: Graphical example of the concepts at the base of the DBSCAN al-
gorithm. Setting minPoints = 3, we have: Core points in red, border point sin yel-
low and noise points in blue. Notice that the border points B and C are not core
points themselves, but they are density reachable from from A, therefore, they be-
long to the same cluster. Figure provided by Chire (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

where ε is a chosen threshold value for the distance. We now define a core point,

which is any point with a number of neighbouring points |N(p1)| satisfying

|N(p1)| > minPoints (A.2)

where the minPoints is an integer number given as input to the algorithm.

Following the nomenclature introduced by Ester et al. [115], we call a particle

p2 “directly density reachable” from p1 if: p1 is a core particle and p2 belongs to

p1 neighbourhood. Also, we call a particle pn “density reachable” from p1 if there

is a chain of directly density-reachable particles {p2, p3..pN−1}, from which p1 and

pn are directly density reachable from one of its members. Finally, a point pi that is

density reachable from a core p j, but it is not a core in itself, is called a border point.

A graphical representation of the concepts used in DBSCAN is given in Figure A.1.

GDBSCAN is an algorithm to separate a database into a set of density reachable

points, given a distance ε and a minimum of points minPoints. The procedure can be

visualized as a flow chart in figure A.2 and explained below.

1. A list of neighbours N(pi) is computed for a point pi, chosen randomly from

the database composed of all points.
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Figure A.2: Flow chart for the DBSCAN algorithm.
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2. If pi is not a core point, e.g. |N(p1)| < minPoints, remove pi from the database

and restart the process at (1). If pi is a core point, assign a new cluster cluster

index i to pi and remove it from the database.

3. For each one of the reaming points which p j ∈ N(pi), assign to it the same

index a and calculates it’s neighbourhood N(p j).

4. If any p j is a core point, take each element of N(p j) and repeat the process. The

process is repeated until all points in all neighbourhoods are examined and no

more core points were found. Assign the same cluster index i to the core points

and to the points in its neighbourhood.

5. Remove from the database all points which had a cluster index assigned to

them.

6. If there still points in the database, restart procedure at (1). If not, assign any

point without a cluster index as noise and terminate the algorithm.

All core points are assigned in a deterministic way to their respective cluster.

However, in the original version the border points can be assigned differently de-

pending on the order with which the particles are chosen. This issue can be solved

by adding a second stage to the algorithm [117]. Now, whenever we identify a border

point, instead of assigning it to a index, we will move it to a second database (border

database) and proceed as usual. At the end of the algorithm, when all core points are

already assigned to their respective clusters, we can decide if to assign the border

points to the clusters detected, for example, we can assign a point to the cluster con-

taining the closest core point. This procedure generates clusters in a deterministic

way [117].

The DBSCAN algorithm have some characteristics which we would like to re-

mark. All clusters have at least minPoints points since every cluster has at least one

core point. Due to its ability to handle noise separately from the cluster, GDBSCAN

produces robust results which are not affected by the presence of outlying points.
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nematic colloids,” Soft Matter, vol. 5, p. 3905, 2009.

[12] P. H. Colberg, S. Y. Reigh, B. Robertson, and R. Kapral, “Chemistry in Mo-

tion: Tiny Synthetic Motors,” Accounts of Chemical Research, vol. 47, pp. 3504–

3511, 2014.

[13] V. Narayan, S. Ramaswamy, and N. Menon, “Long-Lived Giant Number Fluc-

tuations,” Science, vol. 317, pp. 105–108, 2007.

[14] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, “Dy-

namical clustering and phase separation in suspensions of self-propelled col-

loidal particles,” Physical Review Letters, vol. 110, pp. 1–5, 2013.

[15] L. T. Muus and P. W. Atkins, eds., Electron Spin Relaxation in Liquids. New

York: Plenum Press, 1972.

[16] B. J. Berne and R. Pecora, Dynamic Light Scattering. New York: Dover, 2000.

[17] W. Haase and S. Wrobel, eds., Relaxation Phenomena. Berlin: Springer, 2003.

[18] G. R. Luckhurst and e. Veracini (eds), C. A., The Molecular Dynamics of Liquid

Crystals. C. A. Dordrecht: Kluwer, 2012.

[19] P. L. Nordio and U. Segre, “Rotational diffusion,” in The Molecular Physics

of Liquid Crystals (G. R. Luckhurst and G. Gray, eds.), pp. 411–426, London:

Academic Press, 1979.

[20] W. H. Furry, “Isotropic rotational Brownian motion,” Physical Review, vol. 107,

pp. 7–13, 1957.

118



[21] L. D. Favro, “Theory of the rotational Brownian motion of a free rigid body,”

Physical Review, vol. 119, pp. 53–62, 1960.

[22] P. L. Nordio and P. Busolin, “Electron Spin Resonance line shapes in partially

ordered systems,” The Journal of Chemical Physics, vol. 55, pp. 5485–5490,

1971.

[23] C. F. Polnaszek and J. H. Freed, “Electron-Spin Resonance studies of

anisotropic ordering, spin relaxation, and slow tumbling in liquid-crystalline

solvents,” The Journal of Chemical Physics, vol. 79, pp. 2283–2306, 1975.

[24] J. H. Freed, “Theory of slow tumbling ESR spectra for nitroxides,” in Spin

Labeling. Theory and Applications (L. J. Berliner, ed.), pp. 53–132, New York:

Academic Press, 1976.

[25] G. R. Luckhurst, M. Setaka, and C. Zannoni, “Electron Spin Resonance in-

vestigation of molecular motion in the smectic mesophase of a liquid crystal,”

Molecular Physics, vol. 28, pp. 49–68, 1974.

[26] A. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, “Time resolved fluores-

cence depolarization in a nematic liquid crystal,” Molecular Physics, vol. 61,

pp. 1161–1181, 1987.

[27] E. Berggren, R. Tarroni, and C. Zannoni, “Rotational diffusion of uniaxial

probes in biaxial liquid crystal phases,” The Journal of Chemical Physics,

vol. 99, pp. 6180–6200, 1993.

[28] R. Tarroni and C. Zannoni, “On the rotational diffusion of asymmetric

molecules in liquid- crystals,” The Journal of Chemical Physics, vol. 95,

pp. 4550–4564, 1991.

[29] E. Berggren and C. Zannoni, “Rotational diffusion of biaxial probes in biaxial

liquid- crystal phases,” Molecular Physics, vol. 85, pp. 299–333, 1995.

[30] S. Huo and R. R. Vold, “Deuterium NMR relaxation study of fluorene-d(10) in

licristal-phase-5,” The Journal of Chemical Physics, vol. 99, pp. 12391–12400,

1995.

119



[31] R. Y. Dong, Nuclear Magnetic Resonance of Liquid Crystals. New York:

Springer, 1997.

[32] A. Arcioni, M. A. M. J. van Zandvoort, P. Bartolini, R. Torre, R. Tarroni,

R. Righini, and C. Zannoni, “Effective shape and the dynamics of chlorophyll

A in a nematic liquid crystal,” The Journal of Physical Chemistry B, vol. 102,

pp. 1624–1631, 1998.

[33] A. Loman, I. Gregor, C. Stutz, M. Mund, and J. Enderlein, “Measuring rota-

tional diffusion of macromolecules by fluorescence correlation spectroscopy.,”

Photochemical & Photobiological Sciences, vol. 9, pp. 627–36, 2010.

[34] C. M. Pieper and J. Enderlein, “Fluorescence correlation spectroscopy as a tool

for measuring the rotational diffusion of macromolecules,” Chemical Physics

Letters, vol. 516, pp. 1–11, 2011.

[35] Orville-Thomas, ed., Internal Rotations in Molecules. London: Wiley, 1974.

[36] C. Zannoni, “An internal order parameter formalism for non-rigid molecules,”

in Nuclear Magnetic Resonance of Liquid Crystals (J. Emsley, ed.), vol. 141,

pp. 35–52, Dordrecht: Reidel, 1985.

[37] D. Torchia, “NMR studies of dynamic biomolecular conformational ensembles,”

Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 84, pp. 14–32, 2015.

[38] N. J. Zabusky, E. Segre, J. Deschamps, V. Kantsler, and V. Steinberg, “Dynam-

ics of vesicles in shear and rotational flows: Modal dynamics and phase dia-

gram,” Physics Fluids, vol. 23, p. 041905, 2011.

[39] J. Deschamps, V. Kantsler, and V. Steinberg, “Phase diagram of single vesicle

dynamical states in shear flow,” Physical Review Letters, vol. 102, p. 118105,

2009.

[40] S. Bolisetty, M. Hoffmann, S. Lekkala, T. Hellweg, M. Ballauff, and L. Harnau,

“Coupling of rotational motion with shape fluctuations of core-shell microgels

having tunable softness,” Macromolecules, vol. 42, pp. 1264–1269, 2009.

120



[41] J. Crassous, A. Mihut, L. Mansson, and P. Schurtenberger, “Anisotropic re-

sponsive microgels with tuneable shape and interactions,” Nanoscale, vol. 7,

pp. 15971–15982, 2015.

[42] A. Viallat and M. Abkarian, “Red blood cell: from its mechanics to its motion in

shear flow,” International Journal of Laboratory Hematology, vol. 36, pp. 237–

243, 2014.

[43] J. L. McWhirter, H. Noguchi, and G. Gompper, “Ordering and arrangement

of deformed red blood cells in flow through microcapillaries,” New Journal of

Physics, vol. 14, p. 085026, 2012.

[44] V. Wong, D. A. Case, and A. Szabo, “Influence of the coupling of interdo-

main and overall motions on NMR relaxation.,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 106, pp. 11016–

11021, 2009.

[45] Y. Ryabov, G. M. Clore, and C. D. Schwieters, “Coupling between internal

dynamics and rotational diffusion in the presence of exchange between dis-

crete molecular conformations,” The Journal of Chemical Physics, vol. 136,

p. 034108, 2012.

[46] C. Kim, S. Mukherjee, P. Luchette, and P. Palffy-Muhoray, “Director orienta-

tion in deformed liquid crystal elastomer microparticles,” Soft Mater., vol. 12,

pp. 159–165, 2014.

[47] Y. Zhao and T. Ikeda, eds., Smart Light-Responsive Materials. Azobenzene Con-

taining Polymers and Liquid Crystals. Hoboken, NJ: Wiley, 2009.

[48] G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-

cis photoisomerization of azobenzene take place in organic solvents?,”

ChemPhysChem, vol. 11, pp. 1018–1028, 2010.

[49] C. Zannoni, “Liquid crystal observables. static and dynamic properties,” in Ad-

vances in the Computer Simulations of Liquid Crystals (P. Pasini and C. Zan-

noni, eds.), vol. 545, pp. 17–50, Dordrecht: Kluwer, 2000.

121



[50] M. E. Rose, Elementary Theory of Angular Momentum. New York: Wiley, 1967.

[51] L. Reichl, A Modern Course in Statistical Physics. Wiley, 1998.

[52] L. Muccioli and C. Zannoni, “A deformable Gay-Berne model for the simulation

of liquid crystals and soft materials,” Chemical Physics Letters, vol. 423, pp. 1–

6, 2006.

[53] I. B. Bischofs, S. A. Safran, and U. S. Schwarz, “Elastic interactions of active

cells with soft materials,” Physical Review E, vol. 69, p. 021911, 2004.

[54] C. Zannoni, “A theory of time dependent fluorescence depolarization in liquid

crystals,” Molecular Physics, vol. 38, pp. 1813–1827, 1979.

[55] P. Pasini and C. Zannoni, “Tables of Clebsch - Gordan coefficients for integer

angular momentum j=0-6,” tech. rep., INFN, 1984.

[56] P. L. Nordio, G. Rigatti, and U. Segre, “Dielectric relaxation theory in nematic

liquids,” Molecular Physics, vol. 25, pp. 129–136, 1973.

[57] R. Gordon and T. Messenger, “Magnetic resonance line shapes in slowly tum-

bling molecules,” in Electron Spin Relaxation in Liquids (L. T. Muus and P. W.

Atkins, eds.), pp. 387–537, New York: Plenum Press, 1972.

[58] G. Moro, P. L. Nordio, and U. Segre, “ESR lineshapes of free radicals undergo-

ing jump diffusion,” Gazzetta Chimica Italiana, vol. 109, pp. 585–588, 1979.

[59] G. R. Luckhurst, “Molecular field theories of nematics,” in The Molecular

Physics of Liquid Crystals (G. Gray and G. Luckhurst, eds.), pp. 85–119, Lon-

don: Academic Press, 1979.

[60] D. Catalano, C. Forte, C. A. Veracini, and C. Zannoni, “The orientational order-

ing of some non cylindrically symmetric solutes in nematic solvents.,” Israel J.

Chem., vol. 23, pp. 283–289, 1983.

[61] R. N. Zare, Angular Momentum. Understanding Spatial Aspects in Chemistry

and Physics. New York: Wiley, 1988.

122



[62] R. Berardi, F. Spinozzi, and C. Zannoni, “A multitechnique maximum entropy

approach to the determination of the orientation and conformation of flexible

molecules in solution,” The Journal of Chemical Physics, vol. 109, pp. 3742–

3759, 1998.

[63] C. Bacchiocchi, M. Brunelli, and C. Zannoni, “Energy Transfer and Orienta-

tional Dynamics,” Chemical Physics Letters, vol. 336, pp. 253–261, 2001.

[64] R. Luckhurst, G, C. Zannoni, P. L. Nordio, and U. Segre, “A molecular field the-

ory for uniaxial nematic liquid crystals formed by non-cylindrically symmetric

molecules,” Molecular Physics, vol. 30, pp. 1345–1358, 1975.

[65] R. L. Humphries, P. G. James, and G. R. Luckhurst, “Molecular field treatment

of liquid crystalline mixtures,” Faraday Society Symposia, vol. No. 5, pp. 107–

118, 1971.

[66] G. R. Luckhurst and C. Zannoni, “Theory of dielectric relaxation in anisotropic

systems,” Proceedings of the Royal Society A, vol. 343, pp. 389–398, 1975.

[67] A. Sihvola, “Dielectric polarization and particle shape effects,” J. Nanonateri-

als, p. 45090, 2007.

[68] H. C. Andersen, D. Chandler, and J. D. Weeks, “Roles of repulsive and attrac-

tive forces in liquids: the equilibrium theory of classical fluids,” Advances in

Chemical Physics, vol. 34, pp. 105–156, 1976.

[69] E. E. Burnell and C. A. de Lange, “Prediction from molecular shape of solute

orientational order in liquid crystals,” Chemical Reviews, vol. 98, pp. 2359–

2387, 1998.

[70] S. Orlandi, E. Benini, I. Miglioli, D. Evans, V. Reshetnyak, and C. Zannoni,

“Nanoparticle suspensions in nematics. a computer simulations study,” Physi-

cal Chemistry Chemical Physics, vol. 18, pp. 2428–2441, 2016.

[71] F. Perrin, “Mouvement brownien d’un ellipsoide - I. Dispersion diélectrique

pour des molécules ellipsoidales,” J. Phys. Radium, vol. 5, pp. 497–511, 1934.

123



[72] S. H. Koenig, “Brownian motion of an ellipsoid. A correction to Perrin’s results,”

Biopolymers, vol. 14, pp. 2421–2423, 1975.

[73] G. Miller, Numerical Analysis for Engineers and Scientists. Cambridge Uni-

versity Press, 2014.

[74] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,

and R. A. Simha, “Hydrodynamics of soft active matter,” Reviews of Modern

Physics, vol. 85, pp. 1143–1189, 2013.

[75] J. Parrish and W. Hamner, Animal Groups in Three Dimensions: How Species

Aggregate. Psychiatry and Medicine, Cambridge University Press, 1997.

[76] G. de Magistris and D. Marenduzzo, “An introduction to the physics of ac-

tive matter,” Physica A: Statistical Mechanics and its Applications, vol. 418,

pp. 65–77, 2014.

[77] A. Baskaran and M. C. Marchetti, “Nonequilibrium statistical mechanics of

self-propelled hard rods,” Journal of Statistical Mechanics: Theory and Exper-

iment, vol. 2010, P04019, 2010.

[78] A. Baskaran and M. C. Marchetti, “Enhanced diffusion and ordering of self-

propelled rods,” Physical Review Letters, vol. 101, pp. 1–4, 2008.

[79] A. Ahmadi, T. B. Liverpool, and M. C. Marchetti, “Nematic and polar order in

active filament solutions,” Physical Review E, vol. 72, pp. 4–7, 2005.

[80] A. Baskaran and M. C. Marchetti, “Self-regulation in self-propelled nematic

fluids,” European Physical Journal E, vol. 35, 2012.

[81] R. Suzuki, C. a. Weber, E. Frey, and A. R. Bausch, “Polar pattern formation

in driven filament systems requires non-binary particle collisions,” Nature

Physics, vol. 11, pp. 839–843, 2015.

[82] J. Toner and Y. Tu, “Long-range order in a two-dimensional dynamical XY

model: How birds fly together,” Physical Review Letters, vol. 75, pp. 4326–4329,

Dec 1995.

124



[83] J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of flock-

ing,” Physical Review E, vol. 58, pp. 4828–4858, Oct 1998.

[84] M. L. Blow, S. P. Thampi, and J. M. Yeomans, “Biphasic, Lyotropic, Active Ne-

matics,” Physical Review Letters, vol. 113, 248303, 2014.
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