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Nonparametric construction of probability maps
under local stationarity

P. García-Soidána∗ and R. Menezesb

Summary: The environmental contamination risk can be evaluated in a specific area by approximating the probability

that the pollutant under study exceeds a critical value. This issue requires the estimation of the distribution function

involved, which can be addressed by applying the indicator kriging methodology or by approximating the sill of

the variogram of the underlying indicator process. These approaches demand an appropriate characterization of the

indicator variogram, which in turn requires a previous specification of the trend function, if the latter is suspected

to be non-constant. Since accuracy of the results will be strongly dependent on the adequate approximation of both

functions, we suggest proceeding in a different way to avoid these requirements. Thus, in the current paper, two kernel-

type estimators are proposed, based on first approximating the distribution at the sampled sites and then obtaining

a weighted average of the resulting values, to derive a valid estimator at each (sampled or unsampled) location.

Consistency of the kernel approaches is proved under rather general conditions, such as local stationarity and the

existence of derivatives up to the second order of the distribution function. Numerical studies have been carried out

to illustrate the performance of our proposals when compared to those procedures requiring the approximation of the

indicator variogram. In a final step, the kernel-type estimation of the distribution function has been applied to map

the risk of contamination by arsenic in the Central Region of Portugal. With this aim, biomonitoring data of arsenic

concentrations were used to detect those zones with higher risk of arsenic accumulation, which is mainly located on

the northern part of the region.
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1. INTRODUCTION

Assessment of human exposure to toxic elements is increasingly concerning the authorities and the

agents responsible for it, since contamination poses a threat to the population health and may lead

to the payment of significative fines when surpassing the regulatory thresholds. Arsenic (As) is one

of those pollutants under control, as it can cause adverse health effects and has even been linked

to cancer (IARC, 2004). The maximum admissible concentrations of As have been established

in different regulations, such as the European Directives for drinking water (EC, 1998) or food

(EC, 2006; amended in EC, 2015), among others. These are some of the reasons why in practice

monitoring data are regularly collected, at a number of spatial sites. The information obtained can

be used to estimate the level of As at an unsampled location or to approximate the probability that it

exceeds (or does not exceed) a given threshold. In the current study, we will deal with the ultimate

goal, which will allow us to construct a probability map of the observation region, showing the

distribution function of the pollutant at a fixed maximum or its complementary value, depending

on the issue of interest. The probability map in the second case is usually called a risk map in the

environmental setting, as it displays the contamination risk, namely, the probability of surpassing

a fixed maximum value.

To construct a probability map, the distribution function of a spatial random process

{Z(s) : s ∈ D ⊂ IRd} must be approximated, where Z(s) represents the variable of interest (in

this case, As) and D is the observation region. We will write Fs(x) for the distribution function of

Z(s) at x, given by:

Fs(x) = P (Z(s)≤ x) (1)

Then, 1−Fs(x) will denote the probability that the random process exceeds threshold x at location

s.

The classical methods applied to estimate the distribution function have originally been designed
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for independent data. These procedures are referred to as parametric or nonparametric methods,

depending on whether they assume or avoid knowledge of the distribution model, respectively. The

main drawback of the former ones is that they require selection of an existing model, which cannot

always be supported by the data provided. Under independence, nonparametric methods, such as

the empirical distribution or the kernel estimator, enjoy good properties, as proved in Sanov (1961)

and Nadaraya (1964), although neither method incorporates the spatial correlation of data.

Other approaches for approximating the distribution function have been specifically designed for

spatial data and, therefore, they take into account the underlying dependence structure. Some of

these methods are based on estimating the indicator variogram, through the sample variogram, and

then deriving the required value by computing the sill (Journel, 1983) or by applying the indicator

kriging techniques (Goovaerts, 1997). An alternative is introduced in García-Soidán and Menezes

(2012), which suggests using a kernel-type estimator in the first step, as it provides a smoother

approximation of the indicator variogram than the sample estimator. In environmental sciences,

the indicator kriging is the typical tool employed to establish the probability of exceeding critical

and/or regulatory thresholds, using the sample variogram. Examples of some studies derived

through the latter approach have been adopted to estimate the risk contamination by As (Hassan

and Atkins, 2011; Antunes and Albuquerque, 2013). The application of this methodology can

be extended to the assessment of other elements in a variety of settings, such as nitrates (Pardo-

Igúzquiza et al., 2015) or other toxic elements (Cinti et al., 2015) in groundwater, the human

exposure to dioxins (Augusto et al., 2007) or different airborne pollutants (Finazzi et al., 2013), as

well as for the analysis of heavy metal concentrations in soil (Ihl et al., 2015; Reza et al., 2015),

among other examples.

A drawback of the aforementioned methods for construction of probability maps is that

their accuracy strongly relies on the appropriate specification of the indicator variogram, which

characterizes the dependence structure of the indicator process involved. Furthermore, the referred

techniques have been designed for stationary processes, although they can be adapted to more
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general settings. For instance, if a deterministic trend µ(s) = E[Z(s)] can be assumed from the

underlying process, this trend function must be approximated and removed from the data, prior to

deriving the distribution estimates. However, care must be taken when proceeding in this way, since

these attempts can lead to biased results (Papritz, 2009). On the other hand, when approximation

of the entire distribution is needed, the resulting function can be affected by the order relation

problem, namely, it may not satisfy the monotonic property of the theoretical distribution, so that

Fs(x) ≤ Fs(x′), whenever x < x′. To solve this issue, additional tools (Sullivan, 1984) must be

applied to correct the achieved values in order to yield to a non-decreasing function.

In view of the above-mentioned problems, a different strategy to approximate the distribution

function will be suggested in the current paper. This task will be accomplished through a

nonparametric method and, more specifically, by using the kernel methodology, which has

been extensively applied to tackle a variety of problems on random fields. For instance, the

approximation of the density or the regression functions has been dealt with the classical kernel

approaches in Tran (1990), Hallin et al. (2004) or Carbon et al. (2007), to investigate the properties

of these estimators in the spatial setting. Other studies incorporate the spatial dependency to derive

new kernel-based proposals, through distinct procedures. If the issue of interest is not referred

to any particular site of the observation region, as for characterizing the dependence structure

of a stationary random process (Hall et al., 1994), the kernel-type estimator can be obtained in a

simple way, by assigning appropriate weights to the information provided by the sampled locations.

However, sometimes the problem under study requires deriving an estimator at a specific site. For

such a situation, two kernel-based procedures have been applied, which are mainly dependent on

whether the value of the random process at the target location is needed. When this observation

is not required, as in the derivation of a kernel predictor at a specific site (Menezes et al., 2010),

the kernel approach can be designed so as to account for the lags between the target site and the

sampled locations. This way of proceeding offers the advantage that it can be applied to random

processes departing from the stationarity condition. Other approaches demand using the value of
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the process at the specified location and they are solely applicable to the sampled sites, as suggested

for density estimation in Dabo-Niang et al. (2014) and even extended to functional data in Ternynck

(2014).

Our proposals are focused on approximating the distribution function through kernel-

type estimators that take into account the spatial dependence. With this idea, some of the

aforementioned strategies have been combined in a two-step procedure, where we first derive

kernel-type approaches at the sampled sites and then use them to obtain the distribution estimator

at each generic location. Consistency of the resulting kernel estimators will be proved under

rather general conditions. Thus, instead of a restrictive (global) stationarity condition, we will

simply require local stationarity from the random process, so that close locations follow similar

distributions and distant sites tend to present uncorrelated patterns. The existence of second-

order derivatives of the distribution function will be also assumed, which is not so demanding.

Among the main advantages of the kernel proposals herein presented, we can highlight that neither

knowledge of the trend is necessary for their implementation, nor an approximation of the indicator

variogram is needed. Furthermore, our approaches overcome the order relation problem, as they

yield non-decreasing functions.

A further step in our research is the application of the kernel distribution estimation to determine

those zones with higher risk of As accumulation in the Central Region of Portugal, as detection of

these hot spots seems crucial, in terms of health prevention. The data set considered for this study

was not collected by conventional sampling of the pollutant, using monitoring stations spread over

the ecosystem of interest (water, air, sediments, etc.), but from organisms used as biomonitors. In

particular, the assessment was made through the moss technique, developed in Sweden in the

late 1960s, which is considered a valuable means of identifying sources of airborne pollution

(Figueira et al., 2007). It provides biomonitoring data obtained by measuring the concentrations of

the element under study (As) that mosses absorb (Ruhling and Steinnes, 1998). An advantage of

this sampling method, over the traditional ones, is the larger number of sites that can be included
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in the same survey with a smaller cost (Szczepaniak and Biziuk, 2003).

This paper is organized as follows. Section 2 presents the methods proposed for approximation of

the distribution function. In Section 2.1, we introduce the new discrete and continuous distribution

estimators, whose consistency will be checked in the Appendices. The specification of the

bandwidth parameters involved is addressed in Section 2.2. The numerical studies carried out

to analyze the behavior of our proposals are described in Section 3. With the new distribution

estimators, the risk contamination by As is evaluated in Section 4, from biomonitoring data

collected in the Central Region of Portugal. Finally, the main conclusions are summarized in

Section 5.

2. METHODS

Let us assume that {Z(s) : s ∈ D⊂ IRd} is a spatial random process, which can be modeled as:

Z(s) = µ(s)+Y (s) (2)

where {Y (s) ∈ IR : s ∈ D ⊂ IRd} is a zero-mean strictly stationary random process and µ(·)

represents the deterministic trend, namely, E[Z(s)] = µ(s), for all s ∈ D. Function µ(·) is

usually unknown and the estimators provided in the current work will not demand a specific

characterization of the trend component, unlike other proposals.

Our aim is to estimate the univariate distribution function of Z(s) at threshold x, defined in (1) and

denoted by Fs(x), for all s ∈ D and x ∈ IR. This problem will be addressed in Section 2.1, where

discrete and continuous kernel-type distribution estimators are introduced. Their convergence in

probability will be established under similar hypotheses as those required in Hall et al. (1994),

related to the following issues:

• A mixed increasing domain asymptotic structure for the sampling design, where the

observation region grows to infinity and the distance between neighboring sampling sites
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tends to zero.

• An α-mixing condition for the spatial process, to guarantee an adequate decreasing rate of

the data correlation, as the distance between locations grows.

• Some assumptions on the kernel functions, as well as on the convergence rates of the

bandwidth parameters involved.

• The existence and continuity of second-order derivatives of the m-variate distribution

function, for different values of m.

An appropriate choice of the bandwidths is required for implementation of our kernel proposals.

In Section 2.2, some guidelines are given for selection of these smoothing parameters.

2.1. Approximating the distribution function of Z(s)

Suppose that n observations, Z(s1), Z(s2), ..., Z(sn), have been collected, at spatial locations s1,

s2, ..., sn. A first attempt to derive a kernel-type estimator of Fs(x) can lead us to the following

weighted average of the indicator functions:

F̂s,h(x) =
∑i K

( s−si
h

)
I{Z(si)≤x}

∑i K
( s−si

h

) (3)

so that the closer si is to s, the more weight is assigned to I{Z(si)≤x}. Function K represents a d-

variate kernel function, h is the bandwidth parameter and IA denotes the indicator function of the

set A. Estimator (3) incorporates the data correlation, by taking into account the lags between sites.

However, it fails to produce a consistent approach, since F̂s,h(x) converges in probability to the

random variable I{Z(s)≤x}, rather than to the theoretical distribution Fs(x). In fact, we can check

that the means of F̂s,h(x)−Fs(x) and F̂s,h(x)− I{Z(s)≤x} are asymptotically negligible, while their

respective variances tend to Fs(x)−Fs(x)2 and 0, as the sample size increases. A proof of these

results is outlined in Appendix A.

In view of the above, we suggest proceeding in an alternative way, by taking advantage of the
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available data at the observed sites in the initial step, so as to implement the univariate distribution

at them, and then using this information as the basis for the overall estimation. Hence, our proposal

will start from approximating the distribution at each sampled location si by:

F̃1,si,h1(x) =
∑ j K1

(
Z(si)−Z(s j)

h1

)
I{Z(s j)≤x}

∑ j K1

(
Z(si)−Z(s j)

h1

) (4)

Secondly, the resulting terms will be combined in a weighted average, with weights incorporating

the spatial dependency, to obtain:

F̂1,s,h,h1(x) =
∑i K

( s−si
h

)
F̃1,si,h1(x)

∑i K
( s−si

h

) = ∑i ∑ j

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
I{Z(s j)≤x}

∑i′K
(

s−si′
h

)
∑ j′K1

(
Z(si)−Z(s j′)

h1

) (5)

where K and K1 denote a d-variate kernel and a univariate kernel functions, respectively, and the

bandwidth parameters are represented by h and h1.

The idea behind the implementation of F̂1,s,h,h1(x) is to replace each term I{Z(si)≤x} in (3) by a

consistent estimator of Fsi(x). To derive such an estimator at si, as defined in (4), we use a weighted

average of the indicator functions at the sampled sites, whose weights take into account the

differences between each of the observed values and the one at si, rather than the distances between

the respective sites, unlike estimator (3). Then, F̂1,s,h,h1(x) in (5) provides an approximation of:

∑i K
( s−si

h

)
Fsi(x)

∑i K
( s−si

h

)
which converges in probability to the target value Fs(x), thus solving the original inconsistency

that affects F̂s,h(x) in (3). A sketch of this proof is outlined in Appendix B, where we check that

the bias and variance of F̂1,s,h,h1(x) in (5) tend to 0, for large n.

Appropriate bandwidths h and h1 are required for implementation of estimator (5). Some ideas

for selection of both parameters are given in Section 2.2.
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Consequently, for construction of the probability map at a threshold x, we suggest proceeding as

follows:

• For each sampled site si, select the bandwidth h1 and compute the distribution of Z(si) at x

through F̃1,si,h1(x).

• Select the target locations s ∈ D for approximating the distribution of Z(s) at x.

• For each s, obtain the bandwidth h and estimate Fs(x) by using F̂1,s,h,h1(x).

We should remark that F̂1,s,h,h1 is a non-decreasing function, as it involves indicator functions

satisfying this property, and consequently this proposal avoids the order relation problem.

Furthermore, the referred distribution estimator is itself a distribution function, conditional on the

sample {Z(s1), ...,Z(sn)}, which takes values Z(s j) with probabilities p j defined as:

p j = ∑i

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
∑i′K

(
s−si′

h

)
∑ j′K1

(
Z(si)−Z(s j′)

h1

)
However, since F̂1,s,h,h1 is a discrete distribution function, the use of a smoother version seems

to be more appropriate for estimation of a continuous distribution. With this aim, an alternative

approach can be derived by applying the integral of a density in (4), rather than an indicator

function, and by replacing the resulting estimator for F̃1,si,h1 in (5). In other words, we could

construct a distribution estimator at each sampled site as:

F̃2,si,h1,h2(x) =
∑ j K1

(
Z(si)−Z(s j)

h1

)
K2

(
x−Z(s j)

h2

)
∑ j K1

(
Z(si)−Z(s j)

h1

) (6)

and then obtain a weighted average of the values achieved:

F̂2,s,h,h1,h2(x) =
∑i K

( s−si
h

)
F̃2,si,h1,h2(x)

∑i K
( s−si

h

) = ∑i ∑ j

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
K2

(
x−Z(s j)

h2

)
∑i′K

(
s−si′

h

)
∑ j′K1

(
Z(si)−Z(s j′)

h1

) (7)
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where K2(x) =
∫ x
−∞

K2(y)dy, K2 is a univariate kernel function and h2 is a new bandwidth

parameter.

Consistency holds again for estimator (7), since its bias and variance are asymptotically null. The

proof of the latter results, outlined in Appendix C, follows similar arguments as those used with

estimator F̂1,s,h,h1 . The main advantage of F̂2,s,h,h1,h2 over F̂1,s,h,h1 is that, by way of construction,

the former function is itself a continuous distribution, conditional on the sample, whose associated

density is given by:

f̂2,s,h,h1,h2(x) = ∑i ∑ j

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
K2

(
x−Z(s j)

h2

)
∑i′K

(
s−si′

h

)
∑ j′K1

(
Z(si)−Z(s j′)

h1

)
We deal with the selection of the smoothing parameters involved in Section 2.2. Then, the

procedure for constructing the probability map at a threshold x, when the continuous distribution

estimator is considered, would consist of the following steps:

• For each observed location si, select the bandwidth h1 and use it to obtain h2, which will

allow us to approximate the distribution of Z(si) at x by F̃2,si,h1,h2(x).

• Select the set of sites s ∈ D, where the distribution of Z(s) at x will be computed.

• For each s, compute the bandwidth h and estimate Fs(x) through F̂2,s,h,h1,h2(x).

2.2. Guidelines for selection of the bandwidths

Firstly, we address the selection of the smoothing parameters involved in the estimation of

the distribution function through (5). Thus, for the selection of h and h1, we could start by

asymptotically minimizing the mean squared error (MSE) or the mean integrated squared error

(MISE) of (5). These procedures would yield optimal bandwidths (Liu, 2001), although they would

be unknown in practice due to their dependence on the underlying distribution. Hence, we explore

other alternatives for the selection of the bandwidth parameters, more easily attainable for a given
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data set, such as those based on the cross-validation methods (Hall et al., 1992; Menezes et al.,

2010) or on the balloon estimation (Terrell and Scott, 1992; García-Soidán and Menezes, 2012).

The balloon approach consists of taking the bandwidth as the distance from the target value to

the k-nearest of the remainder values, for some k ∈ IN or, equivalently, as the m-th percentile of

the distances between the target value and each of the other observations, for some m ∈ (0,1).

This mechanism provides local bandwidths. For implementation of (4) at the sampled site si,

a bandwidth h1 = h1(si) is required, which could be obtained through the balloon approach as

the percentile of order m1 = m1(si) of the positive values |Z(si)−Z(s j)|, for all j 6= i and some

m1 ∈ (0,1). Regarding h, knowledge of which is necessary to compute (5) at location s, the balloon

estimator h = h(s) would be given by the percentile of the order m = m(s) of the distances ‖s−si‖,

for all i and some m ∈ (0,1).

The cross-validation methodology can give rise to global or local bandwidths, although the

latter ones typically demand the implementation of accurate replicates and, therefore, the use

of consistent resampling methods. Taking this into account, we focus on the global bandwidths

obtained through the classic cross-validation approach, based on the idea of omitting the

information at one sampled site and then trying to derive the estimation at that location with the

remaining data. This procedure is not applicable to the selection of bandwidth h1, needed to derive

(4), as this estimator cannot be computed at site si when Z(si) is left out.

The aforementioned problem, in turn, also affects the selection of the smoothing parameter h.

Consequently, we propose to select h1 through the balloon approach that can then be used to

compute F̃1,si,h1(x) at each site si. At a last stage, the bandwidth h can be taken as the value that

minimizes the following expression, so that:

h = argminh∈H

{
n

∑
i=1

∣∣∣F̂(−i)
1,si,h,h1

(x)− I{Z(si)≤x}

∣∣∣}
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where F̂(−i)
1,si,h,h1

(x) stands for estimator (5) at si, when the i-th location is omitted, namely:

F̂(−i)
1,si,h,h1

(x) =
∑ j 6=i K

(
si−s j

h

)
F̃1,s j,h1(x)

∑ j 6=i K
(

si−s j
h

)
and H is an adequate set of positive numbers, when taking into account the spatial distribution of

the sample locations.

When using estimator (7), selection of h and h1 is also required, as well as the specification of a

new smoothing parameter h2. We first focus on the last bandwidth h2, for which the optimal choices

would be again dependent on unknown terms, so different strategies are proposed. A first attempt

to obtain a balloon bandwidth h2, for a threshold x, would lead to take h2 as the m2-percentile of

the positive values |x−Z(s j)|, for all j and some m2 ∈ (0,1). Nevertheless, this procedure could

give rise to an inappropriate null estimate of the distribution at some or all sampled sites si through

F̃2,si,h1,h2(x), since the terms Z(s j) involved in the choice of h2 could correspond to null values of

K1

(
Z(si)−Z(s j)

h1

)
. Hence, to guarantee a reliable approximation of the distribution at each observed

location si, an alternative bandwidth should be considered instead, dependent on si and h1, as

well as restricted to the data Z(s j) for which K1

(
Z(si)−Z(s j)

h1

)
6= 0. Thus, we propose using the

bandwidth h2 = h2(si,h1) obtained as the percentile of the order m2 = m2(si,h1) of the resulting

positive values |x−Z(s j)|, for some m2 ∈ (0,1).

Selection of h2 by the cross-validation method presents the same problem as that indicated for

h1, since implementation of (6) at site si requires the observation Z(si). Thus, again we restrict the

application of the cross-validation method to the bandwidth h and proceed by a similar approach

as that suggested above for deriving the discrete distribution (5). This idea entails choosing the

balloon selectors for h1 and h2 and using them to obtain F̃2,si,h1,h2(x) at each si. Thus, the bandwidth

h can be taken as the minimizer of:

h = argminh∈H

n

∑
i=1

∣∣∣F̂(−i)
2,si,h,h1,h2

(x)− I{Z(si)≤x}

∣∣∣ (8)
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where F̂(−i)
2,si,h,h1,h2

(x) represents the result of (7) at si when this site is omitted, given by:

F̂(−i)
2,si,h,h1,h2

(x) =
∑ j 6=i K

(
si−s j

h

)
F̃2,s j,h1,h2(x)

∑ j 6=i K
(

si−s j
h

)
Remark 2.1 It is important to notice that d× d bandwidth matrices could have been considered

instead of the single smoothing parameters that we propose for the estimators F̂1,s,h,h1 and

F̂2,s,h,h1,h2 . The range of each optimal bandwidth matrix should equal the d-dimension of

the observation region and its efficient implementation would demand approximating the

corresponding covariance (Liu, 2001), dependent on the distribution function. A simple alternative

is given by a d-diagonal bandwidth matrix, where each term in the diagonal would control the

amount of smoothing in each direction. Under isotropy, a similar performance of the underlying

random process is assumed in all directions, thus making it reasonable to take a diagonal

bandwidth matrix with equal terms in the diagonal or, equivalently, to reduce the bandwidth to a

single parameter. When isotropy fails, the selection of one bandwidth parameter can be considered

as a compromise between efficiency of the estimation and simplicity of the method considered for

selection of the bandwidth. Hence, our choice of a single smoothing parameter, which is expected

to provide a bandwidth in the range of the selectors that would be derived in the different directions,

although this issue requires further research.

3. NUMERICAL STUDIES

In this section we describe the numerical studies carried out to analyze the performance of the

kernel-type estimators of the spatial distribution. Simulated data were used, with the aim of

comparing the continuous estimator (7) with the two approximations of the distribution function

given in García-Soidán and Menezes (2012). The latter ones are based on the indicator kriging and

the sill approaches when using kernel estimators, hereafter referred to as IK and Sill approaches.
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For the sake of simplicity, throughout this section, we will write F̂2,s,h,h1,h2 = F̂2.

Data were simulated on the unit square D = [0,1]× [0,1] ⊂ IR2, assuming a complete spatial

randomness design, so that sample locations were uniformly distributed on D. With the spatial

locations si obtained, for i = 1, . . . ,n and n = 60, stationary Gaussian data Z(si) following model

(2) were generated, with a linear trend and variance 2.25. To specify the spatial dependency, we

initially considered an isotropic exponential variogram, with an asymptotic sill of 2.25, a practical

range of 0.9 and a nugget effect equal to 0.36.

3.1. Study 1

Firstly, isotropy was assumed, and balloon estimators were adopted to obtain the different

bandwidth estimates, as described in Section 2.2. In particular, h1 in (6) was approximated as

a local bandwidth for each si, being constructed as the 20% percentile of the positive values

|Z(si)− Z(s j)|. The bandwidth h2, also needed in (6), was locally chosen for each x, si and h1,

by following the proposed criterion. Thus, we restricted to the observed data Z(s j) for which

K1

(
Z(si)−Z(s j)

h1

)
6= 0 and then derived the 10% percentile of the positive values |x−Z(s j)|. Finally,

the bandwidth h was taken to equal the 20% percentile of the total sampled distances.

In the preliminary numerical studies, the central point s = (0.5,0.5) was taken as the target

location to approximate Fs(x). Five thresholds x were selected, given by the quantiles 5%, 25%,

50%, 75% and 95%, as being representative of the distribution domain, which will be respectively

denoted by Pk, with k = 5,25,50,75,95 (%). A total of 150 independent data sets were generated

and the corresponding mean square error (MSE) was approximated, for each threshold and each

procedure. Results are summarized in Table 1, through the values of the mean and the standard

deviation derived for the MSE.

[Table 1 about here.]

Table 1 shows that the smallest estimates of the MSE, for both the mean and standard deviation,

are achieved by the continuous distribution estimator (7), thus confirming its better performance to
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approximate the univariate distribution function of Z(s) than the other methods.

3.2. Study 2

Further goals of our numerical studies include assessing the performance of estimator (7) for

distinct variogram models and parameters, evaluating the sensitivity of bandwidth parameters

and analyzing the effect of anisotropy. Taking into account the high computational cost of the

two estimators given in García-Soidán and Menezes (2012), we decided to restrict the current

comparison studies to the Sill approach. This way of proceeding allowed us to run a larger

number of independent simulations. In particular, the results presented in Table 2 were obtained

by generating 500 samples.

To evaluate the sensitivity of the bandwidth parameter h, we first considered the cross-validation

method described in section 2.2 and minimized the expression given in (8). As expected, more

accurate estimates for (7) were obtained when compared to the foregoing approach of taking a

specific percentile of the total sampled distances. So, when the computational cost is acceptable,

we would advise adopting the cross-validation method to select h. In the numerical study whose

results are presented in Table 2, since many replicates are involved, we followed the pragmatic

option of using a percentile of the total sampled distances, which allows for a lower computational

cost. The possibility of adopting percentiles 10%, 15%, 20% or 30% was tested and we ended up

with percentile 15%, as it originates more accurate estimates.

Model (2) was assumed, where µ(·) is a linear trend and Y (·) is a zero-mean Gaussian

process. Under isotropy, data were simulated from the spherical variogram model, given by

γ(t) = τ2 +σ2−C(t), where C(t =Cσ2,φ(‖t‖), for all t ∈ IR2, with:

Cσ2,φ (z) =


σ

2
(

1− 3z
2φ

+
z3

2φ3

)
, if z≤ φ

0, if z > φ
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Under anisotropy, instead of the previous covariance function, we considered C =Cσ2,φ,r, with:

Cσ2,φ,r (t) =Cσ2,φ

(√
t2
1 + rt2

2

)

where t = (t1, t2) ∈ IR2 and r identifies an anisotropy ratio. In particular, the numerical study was

developed by taking r as 0.2, the partial sill σ2 as 2.25, and the range φ as 0.3.

The performance of estimator (7) was assessed at the central point, for different values of the

relative nugget effect, by considering a measure of the percentage of the total variability not

spatially structured and two distinct values of τ2, namely, 0.36 and 0.64. Consequently, the relative

nugget effects, given by τ2/σ2, equaled 0.16 and 0.28, respectively.

[Table 2 about here.]

Table 2 summarizes the results derived for the second numerical study, regarding the mean

and the standard deviation estimates of the MSE, based on 500 samples and obtained for two

distribution estimators, the Sill approach and F̂2 in (7). As in the first study, the selected thresholds

were quantiles 5%, 25%, 50%, 75% and 95%. In general, estimator (7) offers more accurate

estimates, with smaller means and standard deviations, under both isotropic and anisotropic cases.

The exception is observed at threshold P95, although not much difference is exhibited between the

two distribution estimators in the distinct scenarios. It is worth noticing the effect of the spatial

dependence degree on the results; an increment of it (smaller nugget) yields larger values of the

MSE estimates, regardless of the setting considered. Furthermore, the MSE means and variances

achieved for F̂2, with the stronger dependent data (nugget equal to 0.36), suffer an increment from

the isotropic case to the anisotropic one.

Similar numerical studies were conducted to approximate the distribution function over different

points of the observation region D = [0,1]× [0,1] ⊂ IR2, including points close to the region

borders. Alternative trend models, such as a quadratic trend and a model with covariates, were

also tested. Nonetheless, all of them provided similar results to those presented and, therefore, we
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decided not to include them.

From the numerical studies derived in Section 3, we can conclude that they support the benefits

of the new distribution approach, over the estimators presented in García-Soidán and Menezes

(2012). In fact, estimator F̂2 avoids the needs of detrending data and characterizing the dependence

structure of the underlying indicator process. As a major advantage of our current proposal, we

should emphasize its lower computational effort compared to the other two approaches considered

in the numerical studies developed previously.

4. ASSESSMENT OF RISK CONTAMINATION BY AS

In this section, we describe the results obtained when applying the continuous approach (7) to a

biomonitoring data set, regarding As levels that were taken in the Central Region of Portugal. The

aim is to derive the risk map of the zone as well as estimates of the underlying standard deviations.

The sample was collected in the Central Region of Portugal (left panel of Figure 1), classified

as NUTS II (NUTS stands for “Nomenclature of Units for Territorial Statistics”). The measured

variable represents the concentrations of As in moss samples, in micrograms per gram dry weight.

The use of plants as biomonitors is frequent for ecosystem quality assessment, due to their

sensitivity to chemical changes in environmental composition. Other benefits of this use include,

among others, low costs, the possibility of long-term sampling, and high availability. Lower plant

organisms, like mosses, are often used in the analysis of atmospheric depositions, soil quality

and water purity. This measurement system has an additional advantage, as these plants have the

capacity to accumulate and store heavy metals and other toxins (Gadzala-Kopciuch et al., 2004).

This particular data set was collected in 2006 and it can be represented by

{(si,Z(si)), i = 1, ...,n}, with n = 98 and Z(si) identifying the log-transformed concentration of

As at location si. We adopted the log-transformation to reduce the impact of outliers. Following

the transformation, three evidently gross outliers were assumed as incorrect measurements, so
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they were replaced by the average of the remaining values from that year’s survey, as suggested

in Diggle et al. (2010). Table 3 gives the summary statistics for the resulting data, showing that

the log-transformation leads to a more symmetric distribution. Furthermore, Figure 1 illustrates

the spatial representation of the log-transformed data, where each bullet size is proportional to the

corresponding measured value.

[Table 3 about here.]

To highlight the usefulness of the new kernel estimator within the scope of environmental

sciences, or whenever one intends to quantify the risk of some variable indexed in a continuous

space exceeding a given threshold, we now proceed with the construction of a probability map, also

referred to as a risk map. The new proposal is then applied to the log-transformed As data from

Portugal, so that estimates of P [Z(s)> x] are calculated on a regular grid of locations s, with 10-km

spacing, over the target region (right panel of Figure 1). According to García-Soidán et al. (2014), it

is possible to identify an increasing linear trend for these data, when one moves from south to north

in NUTS II region. As explained before, the spatial distribution function will be approximated,

without requiring the estimation of the trend µ(s). Our threshold was defined similarly as in

Figueira et al. (2007), since neither regulatory critical values for As biomonitoring data have been

established, nor correspondence between As concentrations in moss and in other ecosystems was

found. In addition, we aimed to determine those areas with higher risk of As accumulation, as

being crucial in terms of health prevention, leading us to take the third quartile as the cutoff in the

current study, corresponding to Q3 = 0.0928. Hence, we approximated Fs(Q3) = P [Z(s)≤Q3] and

then plotted the estimate 1− F̂s(Q3).

[Figure 1 about here.]

[Figure 2 about here.]

The left panel of Figure 2 displays the pollution risk map of NUTS II region, where the

probabilities that As values exceed the quartile Q3 are represented. The darker colors identify
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the high risk areas, mainly located on the northern part of the region and, particularly, close to

the western and eastern borders. In addition, accuracy maps of the probability estimates were

constructed by applying the bootstrap approach given in García-Soidán et al. (2014). With this idea,

we generated 100 replicates of the available data, taking into account the dependence structure of

the underlying random process. Then, the probability P [Z(s) > Q3] was approximated for each

bootstrap sample and for each location in the regular grid considered. From the total replicates, the

standard deviations of the probability estimates were derived, whose values are represented in the

right panel of Figure 2. As expected, the lowest standard deviations are associated to the northwest

zone, where a dense data set was collected.

5. CONCLUSIONS

Different alternatives have been proposed in the statistics literature to approximate the spatial

distribution Fs(x) (or its complementary), mainly based on first characterizing the indicator

variogram and then deriving the estimates from the resulting sill or the indicator kriging

methodology. These procedures can be directly applied either to stationary data or in the presence

of a deterministic trend, although the latter case demands a previous specification of the trend

itself. Our kernel-type approaches have been provided to deal with the estimation of the spatial

distribution, which require the appropriate selection of distinct bandwidth parameters that is also

addressed in the current work. The results obtained enable us to understand the benefits of the

new distribution estimators, which do not require an analysis of the dependence structure of the

indicator process. When the underlying random process departs from the stationary condition and

presents some trend, our studies highlight the advantage of working with the original data instead

of the detrended data, in order to achieve more accurate estimates. The new approaches are quite

competitive in terms of computational effort and have valuable applications in environmental

sciences. Indeed, they allow for the construction of risk maps, a visual tool for assessing
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compliance with the environmental quality indicators regulated by the governments, as well as

for detecting hot spots.
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APPENDIX

Next, we check the properties of the proposed distribution estimators, where similar arguments as

those used in the proof of Theorem 3.1 of Figueira et al. (2007) are followed.

Hereafter, the use of "≈", instead of "=", means that only the dominant part of the second term

is specified. In addition, the distribution function and the density function of (Z (t1) , ...,Z (ti)) at

(x1, ...,xi) are respectively denoted by:

Ft1,...,ti (x1, ...,xi) = P (Z (t1)≤ x1, ...,Z (ti)≤ xi)

ft1,...,ti (x1, ...,xi) =
∂iFt1,...,ti (x1, ...,xi)

∂x1 · ... ·∂xi

for ti ∈ IRd , xi ∈ IR and i ∈ IN.

A. PROPERTIES OF F̂s,h(x)

To derive the dominant terms of the bias and the variance of F̂s,h(x), we assume the following

conditions:

(i) Ft1,t2 is absolutely continuous for all ti ∈ IRd and i = 1,2.
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(ii) ft1,t2 (x1,x2) is continuously differentiable as a function of ti ∈ IRd and xi ∈ IR, for

i = 1,2.

(iii) Z(·) is α-mixing, with α(r) = O(r−a), for r > 0 and some constant a > 0.

(iv) D = βD0, for some β = βn
n→+∞−→ +∞ and bounded D0 ⊂ IRd .

(v) si = βui, for 1 ≤ i ≤ n, where u1, ..., un denotes a realization of a random sample of size n

drawn from a density function g0 considered on D0.

(vi) K is a d-variate density function, which is symmetric and compactly supported.

(vii) {h+β−1 +n−2h−dβd} n→+∞−→ 0.

Firstly, take into account that:

E
[
F̂s,h(x)

]
= E

[
E
[

F̂s,h(x)
/

sk,∀k
]]

= ∑iE

[
K
( s−si

h

)
Fsi(x)

∑i K
( s−si

h

) ]
≈ A1(s,x)

A2(s)
≈ Fs(x)

with:

A1(s,x) =
∫

K
(

s−βu
h

)
Fβu(x)g0 (u)du≈ hdβ−dg0 (0)Fs(x)

∫
K(v)dv = hdβ−dg0 (0)Fs(x)

A2(s) =
∫

K
(

s−βu
h

)
g0 (u)du≈ hdβ−dg0 (0)

∫
K(v)dv = hdβ−dg0 (0)

Then, the bias of F̂s,h(x) is asymptotically negligible, namely, E
[
F̂s,h(x)

]
−Fs(x)≈ 0.

Now, bear in mind that:

E
[
F̂s,h(x)2]= E

[
E
[

F̂s,h(x)2/sk,∀k
]]
≈

≈ ∑iE

[
K
( s−si

h

)2 Fsi(x)(
∑i K

( s−si
h

))2

]
+∑i ∑i′E

K
( s−si

h

)
K
(

s−si′
h

)
Fsi,si′ (x,x)(

∑i K
( s−si

h

))2

≈
≈ B1(s,x)

nA2(s)2 +
B2(s,x)
A2(s)2
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where:

B1(s,x) =
∫

K
(

s−βu
h

)2
Fβu(x)g0 (u)du≈ g0 (0)hdβ−dFs(x)

∫
K(v)2dv

B2(s,x) =
∫ ∫

K
(

s−βu1
h

)
K
(

s−βu2
h

)
Fβu1,βu2(x,x)g0 (u1)g0 (u2)du1du2 ≈

≈ h2d
β
−2dg0 (0)

2 Fs(x)

Hence, F̂s,h(x) does not lead to a consistent estimator, because its variance does not necessarily

tend to zero as the sample size increases, since:

Var
[
F̂s,h(x)

]
= E

[
F̂s,h(x)2]− (E[F̂s,h(x)

])2 ≈ Fs(x)−Fs(x)2

Next, we establish the convergence in probability of F̂s,h(x) to I{Z(s)≤x}. For this purpose, observe

that E
[
F̂s,h(x)− I{Z(s)≤x}

]
= Bias

[
F̂s,h(x)

]
≈ 0, together with:

Var
[
F̂s,h(x)− I{Z(s)≤x}

]
= E

[(
F̂s,h(x)− I{Z(s)≤x}

)2
]
−
(
E
[
F̂s,h(x)− I{Z(s)≤x}

])2 ≈

≈ E
[
E
[(

F̂s,h(x)− I{Z(s)≤x}
)2
/

sk,∀k
]]
−0≈

≈ ∑iE

[
K
( s−si

h

)2
(Fsi(x)−2Fsi,s(x,x)+Fs(x))(

∑i K
( s−si

h

))2

]
+

+∑i ∑i′E

K
( s−si

h

)
K
(

s−si′
h

)(
Fsi,si′ (x,x)−Fsi,s(x,x)+Fs,si′ (x,x)−Fs(x)

)
(
∑i K

( s−si
h

))2

≈
≈ B3(s,x)

nA2(s)2 +
B4(s,x)
A2(s)2

with:

B3(s,x) =
∫

K
(

s−βu
h

)2 (
Fβu(x)−2Fβu,s(x,x)+Fs(x)

)
g0 (u)du≈

≈ g0 (0)hd
β
−d (Fs(x)−2Fs(x)+Fs(x))

∫
K(v)2dv = o

(
hd

β
−d
)

B4(s,x) =
∫ ∫

K
(

s−βu1
h

)
K
(

s−βu2
h

)(
Fβu1,βu2(x,x)−Fβu1,s(x,x)+Fs,βu2(x,x)−Fs(x)

)
·

·g0 (u1)g0 (u2)du1du2 ≈ g0 (0)
2 h2d

β
−2d (Fs(x)−Fs(x)+Fs(x)−Fs(x)) =

= o
(

h2d
β
−2d
)
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Hence, Var
[
F̂s,h(x)− I{Z(s)≤x}

]
≈ 0, since A2(s) is of the exact order hdβ−d , so we may conclude

that F̂s,h(x)
P→ I{Z(s)≤x}.

B. PROPERTIES OF F̂1,s,h,h1(x)

We will check that the bias and the variance of F̂s,h,h1(x) tend to zero as the sample size n increases,

which would state the consistency of the distribution estimator, under conditions (i’), (ii’), (iii)-(vi),

(vii’) and (viii), where:

(i’) Ft1,t2,t3,t4 is absolutely continuous for all ti ∈ IRd and all i≤ 4.

(ii’) ft1,t2,t3,t4 (x1,x2,x3,x4) is continuously differentiable as a function of ti ∈ IRd and xi ∈ IR, for

all i≤ 4.

(vii’) K1 is a univariate density function, which is symmetric and compactly supported.

(viii) {h+h1 +β−1 +n−2h−1
1 h−dβd} n→+∞−→ 0.

Starting with the bias, Bias
[
F̂1,s,h,h1(x)

]
= E

[
F̂1,s,h,h1(x)

]
−Fs(x). In addition:

E
[
F̂1,s,h,h1(x)

]
= E

[
E
[

F̂1,s,h,h1(x)
/

sk,∀k
]]

=

= ∑i ∑ jE

 K
( s−si

h

)
∑i K

( s−si
h

)E

K1

(
Z(si)−Z(s j)

h1

)
I{Z(s j)≤x}

∑ j K1

(
Z(si)−Z(s j)

h1

) /
sk,∀k

≈
≈ ∑i ∑ jE

[
K
( s−si

h

)
∑i K

( s−si
h

)C1
(
si,s j,x

)
nC2

(
si,s j

) ]≈ C3(s,x)
C4(s)

≈
∫

I{z≤x}
C5(s,z)
C6(s)

dz
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with:

C1
(
si,s j,x

)
=

∫ ∫
K1

(
z1−z2

h1

)
I{z2≤x} fsi,s j(z1,z2)dz1dz2 ≈ h1

∫
I{z≤x} fsi,s j(z,z)dz

C2
(
si,s j

)
=

∫ ∫
K1

(
z1−z2

h1

)
fsi,s j(z1,z2)z1dz2 ≈ h1

∫
fsi,s j(z,z)dz

C3(s,x) =
∫ ∫ ∫

K
(

s−βu1
h

)
I{z≤x} fβu1,βu2(z,z)g0 (u1)g0 (u2)dzdu1du2 ≈

≈ hd
β
−dg0 (0)

∫ ∫
I{z≤x} fs,βu(z,z)g0 (u)dzdu = hd

β
−dg0 (0)

∫
I{z≤x}C5(s,z)dz

C4(s) =
∫ ∫ ∫

K
(

s−βu1
h

)
fs,βu2(z,z)g0 (u1)g0 (u2)dzdu1du2 ≈

≈ hd
β
−dg0 (0)

∫ ∫
fs,βu(z,z)g0 (u)dzdu = hd

β
−dg0 (0)C6(s)

C5(s,z) =
∫

fs,βu(z,z)g0 (u)du

C6(s) =
∫ ∫

fs,βu(z,z)g0 (u)dzdu

Observe that C5(s,z) is the bivariate density of (Z (s)−Z (βU) ,Z (βU)) at (0,z) and that C6(s) is

the univariate density of Z (s)−Z (βU) at 0, where U denotes a random variable with density g0.

Then, C5(s,z)
C6(s)

equals the density of Z (βU) at z, conditional on Z (s)−Z (βU) = 0. In other words,
C5(s,z)
C6(s)

is the density of Z (s) at z, which leads to:

E
[
F̂1,s,h,h1(x)

]
≈

∫
I{z≤x}

C5(s,z)
C6(s)

dz =
∫

I{z≤x} fs(z)dz = Fs(x) (A.1)

The latter yields the convergence of Bias
[
F̂1,s,h,h1(x)

]
to zero.

We now deal with the variance of F̂1,s,h,h1(x), by considering that:

E
[
F̂1,s,h,h1(x)

2]= E
[
E
[

F̂1,s,h,h1(x)
2/sk,∀k

]]
≈ D1(s,x)+D2(s,x)
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where:

D1(s,x) = ∑i ∑ jE

 K
( s−si

h

)2(
∑i K

( s−si
h

))2 E

K1

(
Z(si)−Z(s j)

h1

)2
I{Z(s j)≤x}(

∑ j K1

(
Z(si)−Z(s j)

h1

))2

/
sk,∀k




D2(s,x) = ∑i ∑ j ∑i′∑ j′E

K
( s−si

h

)
K
(

s−si′
h

)
(
∑i K

( s−si
h

))2 ·

·E

K1

(
Z(si)−Z(s j)

h1

)
K1

(
Z(si′)−Z(s j′)

h1

)
I{Z(s j)≤x}I{Z(s j′)≤x}

∑ j K1

(
Z(si)−Z(s j)

h1

)
∑ j′K1

(
Z(si′)−Z(s j′)

h1

) /
sk,∀k




Similar arguments would allow us to check that:

D1(s,x)≈ ∑i ∑ jE

[
K
( s−si

h

)2(
∑i K

( s−si
h

))2

D3
(
si,s j,x

)
n2C2

(
si,s j

)2

]
≈ D4(s,x)

n2h2
1C4(s)2

with:

D3
(
si,s j,x

)
=

∫ ∫
K1

(
z1−z2

h1

)2
I{z2≤x} fsi,s j(z1,z2)dz1dz2 ≈

≈ h1

∫
I{z≤x} fsi,s j(z,z)dz

D4(s,x) = h1

∫ ∫ ∫
K
(

s−βu1
h

)2
I{z≤x} fβu1,βu2(z,z)g0 (u1)g0 (u2)dzdu1du2 ≈

≈ n2h1hd
β
−dg0 (0)

∫
K(v)2dv

∫ ∫
I{z≤x} fs,βu(z,z)g0 (u)dzdu

In consequence:

D1(s,x)≈
D4(s,x)

n2h2
1C4(s)2

=
h1hdβ−dg0 (0)

∫
K(v)2dv

∫
I{z≤x}C5(s,z)dz

n2h2
1h2dg0 (0)

2
β−2dC6(s)

=

=

∫
K(v)2dv

∫
I{z≤x} fs(z)dz

n2h1hdβ−dg0 (0)
=

Fs(x)
∫

K(v)2dv
n2h1hdβ−dg0 (0)C6(s)

= O
(

n−2h−1
1 h−d

β
d
)
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Finally, we focus on the approximation of D2(s,x), by proceeding as above to obtain:

D2(s,x)≈ ∑i ∑ j ∑i′∑ j′E

K
( s−si

h

)
K
(

s−si′
h

)
(
∑i K

( s−si
h

))2

D5
(
si,s j,si′,s j′,x

)
n2C2

(
si,s j

)
C2
(
si′,s j′

)
≈

≈ D6(s,x)
C4(s)2 ≈

h2dβ−2dg0(0)2 (D7(s,x)+D8(s,x))
C4(s)2

with:

D5
(
si,s j,si′,s j′,x

)
=

∫ ∫ ∫ ∫
K1

(
z1−z2

h1

)
K1

(
z3−z4

h1

)
I{z2≤x}I{z4≤x}·

· fsi,s j,si′ ,s j′ (z1,z2,z3,z4)dz1dz2dz3dz4 ≈ h2
1

∫ ∫
I{z≤x}I{z′≤x} fsi,s j,si′ ,s j′

(
z,z,z′,z′

)
dzdz′

D6(s,x) =
∫ ∫ ∫ ∫ ∫

K
(

s−βu1
h

)
K
(

s−βu2
h

)
I{z≤x}I{z′≤x}·

· fβu1,βu3,βu2,βu4(z,z,z
′,z′)g0 (u1)g0 (u2)dzdz′du1du2g0 (u3)g0 (u4)du3du4

D7(s,x) =
∫

S

(∫ ∫
I{z≤x}I{z′≤x} fs,βu,s,βu′(z,z,z

′,z′)dzdz′
)

g0 (u)g0
(
u′
)

dudu′

D8(s,x) =
∫

SC

(∫ ∫
I{z≤x}I{z′≤x} fs,βu,s,βu′(z,z,z

′,z′)dzdz′
)

g0 (u)g0
(
u′
)

dudu′

where S = {(u,u′) ∈ IR2d : ‖u−u′‖ ≤ β−1/2}.

From the definition of S, it is easy to see that D7(s,x) = O
(

β−d/2
)

. On the other hand:

fs,βu,s,βu′(z,z,z
′,z′) = D9

(
s,u,u′,z,z′

)
D10 (s,u)D10

(
s,u′
)

(A.2)

where D9 (s,u,u′,z,z′) denotes the density of (Z (βu) ,Z (βu′)), conditional on Z (s)−Z (βu) = 0

and Z (s)−Z (βu′) = 0, at (z,z′) and D10 (s,u) represents the density of Z (s)−Z (βu) at 0.

Now, for (u,u′) ∈ SC, one has that β‖u− u′‖ > β1/2. Hence, from hypothesis (iii), the random

variables Z (βu) and Z (βu′) are asymptotically uncorrelated to yield that:

D9
(
s,u,u′,z,z′

)
≈ D11 (s,u,z)D11

(
s,u′,z′

)
(A.3)
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where D11 (s,u,z) equals the density of Z (βu), conditional on Z (s)−Z (βu) = 0, at z. Then, from

relations (A.2) and (A.3), fs,βu,s,βu′(z,z,z′,z′)≈ fs,βu(z,z) fs,βu′(z′,z′), for (u,u′) ∈ SC.

In view of the latter, it follows that:

D2(s,x)≈
h2dβ−2dg0(0)2 (D7(s,x)+D8(s,x))

C4(s)2 =
h2dβ−2dg0(0)2D8(s,x)

C4(s)2 +O
(

β
−d/2

)
≈

≈
h2dβ−2dg0(0)2 ∫

SC

(∫ ∫
I{z≤x}I{z′≤x} fs,βu(z,z) fs,βu′(z′,z′)dzdz′

)
g0 (u)g0 (u′)dudu′

h2dβ−2dg0 (0)
2C6(s)2

≈

≈
∫ ∫

I{z≤x}I{z′≤x}
C5(s,z)
C6(s)

C5(s,z′)
C6(s)

dzdz′ =
(∫

I{z≤x} fs(z)dz
)2

= Fs(x)2

Therefore, E
[
F̂1,s,h,h1(x)

2]≈ D1(s,x)+D2(s,x)≈ Fs(x)2, which leads us to conclude that:

Var
[
F̂1,s,h,h1(x)

]
= E

[(
F̂1,s,h,h1(x)

)2
]
−
(
E
[
F̂1,s,h,h1(x)

])2 ≈ 0

on account of (A.1).

C. PROPERTIES OF F̂2,s,h,h2(x)

We will give just a sketch of the procedure to derive the dominant terms of the bias and the variance

of F̂2,s,h,h1,h2(x), which requires assuming hypotheses (i’), (ii’), (iii)-(vi), (vi’), (vii’), (viii’) and

(ix), where:

(viii’) K2 is a univariate density, which is symmetric and compactly supported.

(ix) {h+h1 +h2 +β−1 +n−2h−1
1 h−dβd} n→+∞−→ 0.

Take into account that:

∫
K2

(
x−z
h2

)
fs(z)dz = 1

h2

∫
K2

(
x−z
h2

)
Fs(z)dz =

∫
K2 (y)Fs (x−h2y)dy≈ Fs(x) (A.4)
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From (A.4), we could proceed as in section B to obtain the analogue of (A.1), adapted to this

setting, to yield:

E
[
F̂2,s,h,h1,h2(x)

]
≈

∫
K2

(
x−z
h2

)
fs(z)dz≈ Fs(x)

so that the bias of F̂2,s,h,h1,h2(x) is asymptotically negligible.

On the other hand, relation (A.4) together with the application of similar arguments as those used

to derive E
[
F̂1,s,h,h1(x)

2], in terms of D1(s,x) and D2(s,x), lead to:

E
[
F̂2,s,h,h1,h2(x)

2]≈ E1(s,x)+E2(s,x)

with:

E1(s,x) =

∫
K(v)2dv

∫
K2

(
x−z
h2

)
fs(z)dz

n2h1hdβ−dg0 (0)
≈ Fs(x)

∫
K(v)2dv

n2h1hdβ−dg0 (0)
= O

(
n−2h−1

1 h−d
β

d
)

E2(s,x) =
(∫

K2

(
x−z
h2

)
fs(z)dz

)2

≈ Fs(x)2

In consequence, Var
[
F̂2,s,h,h1,h2(x)

]
= E

[(
F̂2,s,h,h1,h2(x)

)2
]
−
(
E
[
F̂2,s,h,h1,h2(x)

])2 ≈ 0.
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Figure 1. The left panel displays the spatial representation of moss locations in the Central Region of Portugal (NUTS II). In the right panel, the black bullets also
represent the sampled locations, whose size is proportional to the measured values, while the red bullets identify the regular grid considered for construction of the maps
presented in Figure 2.
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Figure 2. The left panel presents the risk map derived for As pollution data in the NUTS II region, providing the probabilities P [Z(s)> Q3]. The right panel shows the
standard deviations of the estimated probabilities that were acquired from 100 bootstrap replicates.
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Table 1. Mean and standard deviation (in brackets) estimates of the MSE, based on 150 samples
and obtained for three distribution estimators, IK approach, Sill approach and F̂2 in (7). The
selected thresholds are quantiles 5%, 25%, 50%, 75% and 95%. All values were multiplied by
102. Data were generated considering an isotropic exponential model for the spatial dependency.

The approximation of the distribution function was done over s = (0.5,0.5).

Distrib. estim. P5 P25 P50 P75 P95
IK 1.52 (2.81) 3.70 (4.39) 3.07 (4.19) 3.87 (4.37) 1.42 (2.53)
Sill 0.24 (0.43) 2.53 (2.59) 2.54 (2.71) 2.83 (3.02) 0.31 (0.33)

F̂2 in (7) 0.20 (0.37) 0.54 (0.89) 1.06 (1.30) 0.59 (0.89) 0.12 (0.27)
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Table 2. Mean and standard deviation (in brackets) estimates of the MSE, based on 500 samples
and obtained for two distribution estimators, Sill approach and F̂2 in (7). The selected thresholds are
quantiles 5%, 25%, 50%, 75% and 95%. All values were multiplied by 102. Data were generated
considering an isotropic or an anisotropic spherical model for the spatial dependency. Two different
values for the nugget effect (τ2) were considered, namely 0.36 and 0.64, fixing the partial sill (σ2)

as 2.25.

Isotropy
Distr.estim. τ2/σ2 P5 P25 P50 P75 P95

Sill 0.16 0.07 (0.14) 4.46 (7.43) 9.17 (9.98) 3.49 (2.34) 0.21 (0.47)
F̂2 in (7) 0.16 0.06 (0.09) 2.66 (4.30) 4.36 (5.27) 1.85 (2.47) 0.43 (0.29)

Sill 0.28 0.07 (0.14) 4.07 (6.66) 8.23 (9.52) 3.11 (2.08) 0.15 (0.29)
F̂2 in (7) 0.28 0.07 (0.11) 3.17 (4.42) 5.19 (6.58) 1.71 (2.1) 0.47 (0.32)

Anisotropy
Distr.estim. τ2/σ2 P5 P25 P50 P75 P95

Sill 0.16 0.12 (0.28) 4.14 (5.89) 9.17 (9.97) 3.45 (2.34) 0.18 (0.35)
F̂2 in (7) 0.16 0.12 (0.28) 3.25 (4.87) 5.07 (5.87) 2.15 (2.79) 0.51 (0.38)

Sill 0.28 0.06 (0.12) 3.43 (4.34) 8.07 (9.04) 2.97 (1.98) 0.15 (0.33)
F̂2 in (7) 0.28 0.06 (0.11) 2.22 (3.60) 4.69 (6.21) 2.07 (2.81) 0.56 (0.42)
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Table 3. Summary statistics for As pollution levels measured in the Central Region of Portugal
(NUTS II).

Type of data Mean Median St. dev. Minimum Maximum
Untransformed 1.24 0.57 2.45 0.03 19.32

Log-transformed -0.49 -0.55 0.98 -2.30 2.53
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